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Abstract—Extraction-Transformation-Loading (ETL) tools are pieces of software responsible for the extraction of data from several

sources, their cleansing, customization, and insertion into a data warehouse. In this paper, we delve into the logical optimization of

ETL processes, modeling it as a state-space search problem. We consider each ETL workflow as a state and fabricate the state space

through a set of correct state transitions. Moreover, we provide an exhaustive and two heuristic algorithms toward theminimization of the

execution cost of an ETL workflow. The heuristic algorithm with greedy characteristics significantly outperforms the other two algorithms

for a large set of experimental cases.
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1 INTRODUCTION

FORquite a long time in the past, research has treated data
warehouses as collections of materialized views, i.e.,

views whose data are locally stored and periodically
refreshed [6], [23]. Although this abstraction is elegant
and possibly sufficient for the purpose of examining
alternative strategies for view maintenance, it is not enough
with respect to mechanisms that are employed in real-world
data warehouse environments, where the execution of
operational processes is employed in order to export data
from operational data sources, transform them into the
format of the target tables, and, finally, load them to the
data warehouse. This preparation of data before their actual
loading in the warehouse for further querying is necessary
due to quality problems, incompatible schemata, and
unnecessary parts of source data not relevant for the
purposes of the warehouse. The category of tools that are
responsible for this task is generally called Extraction-
Transformation-Loading (ETL) tools. The functionality of
these tools can be coarsely summarized in the following
prominent tasks, which include:

1. the identification of relevant information at the
source side,

2. the extraction of this information,

3. the customization and integration of the information
coming from multiple sources into a common
format,

4. the cleaning of the resulting data set on the basis of
database and business rules, and

5. the propagation of the data to the data warehouse
and/or data marts.

To give an idea of the complexity of the problem, we

mention the characteristics of a vast data warehouse as cited

in a recent experience report [2]. In this paper, the authors

report that their data warehouse population system has to

process, within a time window of 4 hours, 80 million

records per hour for the entire process (compression, FTP of

files, decompression, transformation, and loading) on a

daily basis. The volume of data rises to about 2 TB with the

main fact table containing about 3 billion records. The

request for performance is so pressing that there are

processes hard-coded in low-level Data Base Management

Systems (DBMS) calls to avoid the extra step of storing data

to a target file to be loaded to the data warehouse through

the DBMS loader. The above clearly shows that intelligent

techniques for data preparation can greatly improve the

overall process of data warehouse population.
So far, research has only partially dealt with the problem

of designing and managing ETL workflows. Typically,

research approaches concern 1) the optimization of stand-

alone problems (e.g., the problem of duplicate detection

[21]) in an isolated setting and 2) problems mostly related to

Web data (e.g., [10]). Recently, research on data streams [1],

[4] has brought up the possibility of giving an alternative

look to the problem of ETL. Nevertheless, for the moment,

research in data streaming has focused on different topics

such as on-the-fly computation of queries [1], [4], [15]. To

our knowledge, there is no systematic treatment of the

problem, as far as the problem of the design of an optimal

ETL workflow is concerned.
On the other hand, leading commercial tools [12], [13],

[17], [19] allow the design of ETL workflows, but do not use

any optimization technique. The designed workflows are

propagated to the DBMS for execution; thus, the DBMS

undertakes the task of optimization. Clearly, we can do

better than this because an ETL process cannot be

considered as a “big” query. Instead, it is more realistic to

treat an ETL process as a complex transaction. In addition,

in an ETL workflow, there are processes that run in separate

environments, usually not simultaneously and under time

constraints.
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One could argue that we can possibly express all ETL

operations in terms of relational algebra and then optimize

the resulting expression as usual. Later in this paper, we

will demonstrate that the traditional logic-based algebraic

query optimization can be blocked, basically due to the

existence of data manipulation functions.
Consider the example of Fig. 1 that describes the

population of a table of a data warehouse DW from two

source databases S1 and S2. In particular, it involves the

propagation of data from the recordset PARTS1(PKEY,

SOURCE,DATE,COST) of source S1 that stores monthly

information, as well as from the recordset PARTS2(PKEY,

SOURCE,DATE,DEPT,COST) of source S2 that stores daily

information. In the DW, the recordset PARTS(PKEY,SOUR-

CE,DATE,COST) stores monthly information for the cost in

Euros (COST) of parts (PKEY) per source (SOURCE). We

assume that both the first supplier and the data warehouse

are European and the second is American; thus, the data

coming from the second source need to be converted to

European values and formats.
In Fig. 1, activities are numbered with their execution

priority and tagged with the description of their function-

ality. The flow for source S1 is 3: a check for Not Null values

is performed on attribute COST. The flow for source S2 is

4: a conversion from Dollars ($) to Euros (C= ) performed on

attribute COST, 5: dates (DATE) are converted from

American to European format, and 6: an aggregation for

monthly supplies is performed and the unnecessary

attribute DEPT (for department) is discarded from the

flow. Then, 7: the two flows are unified, and before being

loaded to the warehouse, 8: a final check is performed on

the COST attribute, ensuring that only values above a

certain threshold (e.g., COST > 0) are propagated to the

warehouse.

There are several interesting problems and optimization

opportunities in the example of Fig. 1:

. Traditional query optimization techniques should be
directly applicable. For example, it is desirable to
push selections all the way to the sources in order to
avoid processing unnecessary rows.

. Is it possible to push the selection on negative values
early enough in the workflow? As far as the flow for
source PARTS1 is concerned, this is straightforward
(exactly as in the relational sense). On the other
hand, as far as the second flow is concerned, the
selection should be performed after the conversion
of dollars to Euros. In other words, the activity
performing the selection cannot be pushed before the
activity applying the conversion function.

. Is it possible to perform the aggregation before the
transformation of American values to Europeans? In
principle, this should be allowed to happen, since
the dates are kept in the resulting data and can be
transformed later. In this case, the aggregation
operations can be pushed before the function.

. How can we deal with naming problems? PARTS1.

COST and PARTS2.COST are homonyms, but they

do not correspond to the same entity (the first is in

Euros and the second in Dollars). Assuming that the

transformation $2C= produces the attribute C= COST,

how can we guarantee that corresponds to the same

real-world entity with PARTS1.COST?

In Fig. 2, we can see how the workflow of Fig. 1 can be
transformed in an equivalent workflow performing the
same task. The selection on Euros has been propagated to
both branches of the workflow so that low values are
pruned early. Still, we cannot push the selection either
before the transformation $2C= or before the aggregation. At
the same time, there was a swapping between the
aggregation and the DATE conversion function (A2E). In
summary, the two problems that have risen are 1) to
determine which operations over the workflow are legal
and 2) which one is the best in terms of performance gains.

We take a novel approach to the problem by taking this
peculiarity into consideration. Moreover, we employ a
workflow paradigm for the modeling of ETL processes, i.e.,
we do not strictly require that an activity outputs data to
some persistent data store, but rather, activities are allowed
to output data to one another. In such a context, I/O
minimization is not the primary problem. In this paper, we
focus on the optimization of the process in terms of logical
transformations of the workflow. To this end, we devise a
method based on the specifics of an ETL workflow that can
reduce its execution cost either by decreasing the total
number of processes or by changing the execution order of
the processes.

The paper deals with the specification of the design of an
ETL workflow and its optimization. Our contributions can
be listed as follows:

. We set up the theoretical framework for the problem
by modeling the problem as a state space search
problem with each state representing a particular
design of the workflow as a graph. The nodes of the
graph represent activities and data stores. The edges
capture the flow of data among the nodes. Input and
output schemata characterize activities. We provide
a method for automating the computation of the
input and output schemata of the activities depend-
ing on the setup of each state.
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. Since the problem is modeled as a state space search
problem, we define transitions from one state to
another. We also provide details on how states are
generated and the conditions under which transi-
tions are allowed.

. Finally, we provide algorithms toward the optimiza-
tion of ETL workflows. First, we use an exhaustive
algorithm to explore the search space in its entirety
and to find the optimal ETL workflow. Then, we
introduce greedy and heuristic search algorithms to
reduce the search space and demonstrate the
efficiency of the approach through a set of experi-
mental results.

A short version of this paper has been accepted in [27].
The rest of this paper is organized as follows: Section 2
presents a formal statement for our problem as a state
space search problem. In Section 3, we discuss design
issues that concern the correct formulation of the states
before and after transitions take place. In Section 4, we
present three algorithms for the optimization of ETL
processes, along with experimental results. In Section 5,
we present related work. Finally, in Section 6, we conclude
our results and discuss topics of future research.

2 FORMAL STATEMENT OF THE PROBLEM

In this section, we show how the ETL optimization problem
can bemodeled as a state space search problem. First,we give
a formal definition of the constituents of an ETL workflow
andwedescribe the states. Then,wedefine a set of transitions
that can be applied to the states in order to produce the search
space. Finally, we formulate the problem of the optimization
of an ETL workflow.

2.1 Formal Definition of an ETL Workflow

An ETL workflow is modeled as a directed acyclic graph.
The nodes of the graph comprise activities and recordsets. A
recordset is any data store that can provide a flat record
schema (possibly through a gateway/wrapper interface); in
the rest of this paper, we will mainly deal with the two most
popular types of recordsets, namely, relational tables and
record files. The edges of the graph denote data provider (or
input/output) relationships: An edge going out of a node n1

and into a node n2 denotes that n2 receives data from n1 for
further processing. In this setting, we will refer to n1 as the
data provider and n2 as the data consumer. The graph
uniformly models situations where 1) both providers are
activities (combined in a pipelined fashion) or 2) activities
interact with recordsets, either as data providers or data
consumers.

Each node is characterized by one or more schemata, i.e.,

finite lists of attributes. Whenever a schema is acting as a data

provider for another schema, we assume a one-to-many

mapping between the attributes of the two schemata (i.e.,

one provider attribute can possibly populate more than

one consumer while a consumer attribute can only have

one provider). Recordsets have only one schema, whereas

activities have at least two (input and output). Intuitively,

an activity comprises a set of input schemata responsible for

bringing the records to the activity for processing and one

or more output schemata responsible for pushing the data to
the next data consumer (activity or recordset). An activity
with one input schema is called unary and an activity with
two input schemata is called binary. Wherever necessary,
we will overload the term output schema with the role of the
schema that provides the clean, consistent data to the
subsequent consumers and the term rejection schema for the
output schema that directs offending records to some log
file or cleaning activity for further auditing. In all cases, the
meaning of the terms will be clear from the context.

For each output schema, there is an algebraic expression
characterizing the semantics of the data pushed to the
respective schema. We consider an extended relational
algebra involving the operators selection (�), projection (�),
Cartesian product (�), join (ffl ), aggregation (�), ordering
(�), union ([), difference (�), and function application (f).
We will frequently employ the term projection-out (�out) to
refer to the complement of projection. The semantics of the
above operators are obvious; for the case of function
application, we assume the existence of a set of function
types (e.g., arithmetic or string manipulation functions)
which are instantiated each time by using attributes of the
input schemata as input parameters and produce a new
value as their return value.

Formally, an activity is a quadruple A ¼ ðId; I;O; SÞ such
that:

1. Id is a unique identifier for the activity,
2. I is a finite set of one or more input schemata

receiving data from the data providers of the
activity,

3. O is a finite set of one or more output schemata that
describe the placeholders for the rows that are
processed by the activity, and

4. S is one or more expressions in relational algebra
(extended with functions) characterizing the seman-
tics of the data flow for each of the output schemata.
This can be one expression per output schema or a
more complex expression involving intermediate
results too.

In our approach, we will model an ETL workflow as a
graph. Assume a finite list of activities A, a finite set of
recordsets RS, and a finite list of provider relationships Pr.
Formally, an ETL Workflow is a directed acyclic graph
(DAG), GðV;EÞ such that V ¼ A [RS and E ¼ Pr. A
subset of RS, denoted by RSS, contains the sources of the
graph (i.e., the source recordsets) and another subset of RS,
denoted by RST, contains the sinks of the graph (represent-
ing the final target recordsets of the warehouse). GðV;EÞ
can be topologically ordered, therefore, a unique execution
priority can be assigned to each activity as its unique
identifier. Finally, all activities of the workflow should have
a provider and a consumer (either another activity or a
recordset). Each input schema has exactly one provider
(many providers for the same consumer are captured by
UNION activities).

2.2 A Reference Example ETL Workflow

Next,we introduce a reference example involving two source
databases S1 and S2 as well as a central data warehouseDW.
This simple workflow describes the population of a table of
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the data warehouse. In particular, it involves the propaga-
tion of data from the recordset PARTSUPP(PKEY,SUPP-
KEY,EDATE,DEPT,QTY,COST) of source S1 that stores daily
information, as well as from the recordset PARTSUPP(P-
KEY,SUPPKEY,ADATE,QTY,COST) of source S2 that stores
monthly information. In the data warehouse, DW.PART-
SUPP(PKEY,SUPPKEY,DATE,QTY,COST,SOURCE) stores
monthly information for the available quantity (QTY) and
cost (COST) of parts (PKEY) per supplier (SUPPKEY). We
assume that the first supplier and the data warehouse are
European and the second is American; thus, the data coming
from the second source need to be converted to European
values and formats.

In Fig. 3, we depict the full-fledged diagram of our
reference example. Activities are numbered with their
execution priority and tagged with the description of their
functionality. Source recordsets have the highest priority
(i.e., the smallest identifiers), while target recordsets have
the lowest priority (i.e., the highest identifiers). The flow for
source S1 is 3: data are enriched with an extra attribute
SOURCE that describes their origin, 4: their production keys
are replaced with surrogate keys, 5: the unnecessary
attribute DEPT is discarded from the flow, 6: the aggrega-
tion for monthly supplies is performed, and 7: a check for
Not NULL values is performed on attribute SUPPKEY. The
flow for source S2 is 8: data are checked for duplicates,
9: data are also enriched with an extra attribute SOURCE
that describes their origin, 10: their production keys are
replaced with surrogate keys, 11: their dates are converted
from American to European format, and 12: Dollars are
converted to Euros. The two flows are then unified, and 13:
before being loaded to the warehouse, a final check is
performed 14: on whether the QTY attribute is not zero.

2.3 The Problem of ETL Workflow Optimization

We model the problem of ETL optimization as a state space
search problem.

States. Each state S is a graph as described in Section 2.1,
i.e., states are ETL workflows; therefore, we will use the
terms “state” and “ETL workflow” interchangeably.

Transitions. Transitions T are used to generate new,
equivalent states. In our context, equivalent states are
assumed to be states that are based on the same input
produce the same output. Practically, this is achieved in the
following way:

1. by transforming the execution sequence of the
activities of the state, i.e., by interchanging
two activities of the workflow in terms of their
execution sequence,

2. by replacing common tasks in parallel flows with an
equivalent task over a flow to which these parallel
flows converge, and

3. by dividing tasks of a joint flow to clones applied to
parallel flows that converge toward the joint flow.

Furthermore, we use the notation S0 ¼ T ðSÞ to denote
the transition from a state S to a state S0. We say that we
have visited a state if we use it to produce more states that
can originate from it. Next, we introduce a set of logical
transitions that we can apply to a state. These transitions
include:

. Swap. This transition can be applied to a pair of unary
activities a1 and a2 and interchange their sequence,
i.e., we swap the position of the two activities in the
graph (see Fig. 5a). Swap concerns only unary
activities, e.g., selection, checking for nulls, primary
key violation, projection, function application, and so
on. We denote this transition as SWAða1; a2Þ.

. Factorize and Distribute. These operations involve the
interchange of a binary activity, e.g., union, join,
difference, etc., and at least two unary activities that
have the same functionality, but are applied over
different data flows that converge toward the
involved binary activity. This is illustrated in
Fig. 5b. In the upper part, the two activities a1 and
a2 have the same functionality, but they are applied
to different data flows that converge towards the
binary activity ab. The Factorize transition replaces
the two activities a1 and a2 with a new one, a, which
is placed right after ab. Factorize and Distribute are
reciprocal transitions. If we have two activities that
perform the same operation to different data flows,
which are eventually merged, we can apply Factor-
ize in order to perform the operation only to the
merged data flow. Similarly, if we have an activity
that operates over a single data flow, we can
Distribute it to different data flows. One can notice
that Factorize and Distribute essentially model
swaping between unary and binary activities. We
denote Factorize and Distribute transitions as
FACðab; a1; a2Þ and DISðab; aÞ, respectively.

. Merge and Split. We use these two transitions to
“package” and “unpackage” a pair of activities with-
out changing their semantics. Merge indicates that
some activities have to be grouped according to the
constraints of the ETL workflow; thus, for example, a
third activity may not be placed between the two or
these two activities cannot be commuted. Split
indicates that a pair of grouped activities can be
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ungrouped, e.g., when the application of the transi-
tions has finished, we can ungroup any grouped
activities. The benefit is that the search space is
proactively reduced without sacrificing any of the
design requirements. We denote Merge and Split
transitionsasMERða1þ2; a1; a2ÞandSPLða1þ2; a1; a2Þ,
respectively.

The reasoning behind the introduction of the transitions

is quite straightforward.

. Merge and split are designated by the needs of ETL
design as already described.

. Swapping allows highly selective activities to be
pushed toward the beginning of the workflow in a
meaning similar to the case of traditional query
optimization.

. Factorization allows the exploitation of the fact that
a certain operation is performed only once (in the
merged workflow) instead of twice (in the conver-
ging workflows). For example, if an activity can
cache data (like in the case of surrogate key
assignment, where the lookup table can be cached),
such a transformation can be beneficial. On the other
hand, distributing an activity in two parallel
branches can be beneficial in the case where the
activity is highly selective and is pushed toward the
beginning of the workflow. Observe Fig. 4. Consider
a simple cost model that takes into account only the
number of processed rows in each process. Also,
consider an input of eight rows in each flow and
selectivities equal to 50 percent for process � and
100 percent for the rest processes. Given nlog2n and
n as the cost formulae for SK and �, respectively
(for simplicity, we ignore the cost of U), the total
costs for the three cases are:

c1 ¼ 2nlog2nþ n ¼ 56;

c2 ¼ 2ðnþ ðn=2Þlog2ðn=2ÞÞ ¼ 32; and

c3 ¼ 2nþ ðn=2Þlog2ðn=2Þ ¼ 24:

Thus, DIS (case b) and FAC (case c) can reduce the

cost of a state.

Formally, the transitions are defined as follows:

. Swapða1; a2Þ over G ¼ ðV;EÞ produces a new graph
G0 ¼ ðV0;E0Þ, where V0 ¼ V. Then, for each edge
e 2 E with e ¼ ðv; a1Þ, introduce into E0 the edge
e0 ¼ ðv; a2Þ. Similarly, for each edge e 2 E with
e ¼ ða1; vÞ, introduce into E0 the edge e0 ¼ ða2; vÞ.
Replace the edge ða1; a2Þ with the edge ða2; a1Þ. The
rest of the edges of the graph remain the same.

. Factorizeðab; a1; a2Þ over G ¼ ðV;EÞ produces a
new graph G0 ¼ ðV0;E0Þ. In this new graph,
remove nodes a1; a2 and introduce a new node a

to V0 ¼ V� fa1; a2g [ fag. For each edge e 2 E

with e ¼ ðv; a1Þ or e ¼ ðv; a2Þ, introduce into E0 the
edge e0 ¼ ðv; abÞ. For each edge e 2 E with
e ¼ ðab; vÞ, introduce into E0 the edge e0 ¼ ða; vÞ.
Add the edge ðab; aÞ. The rest of the edges of the
graph remain the same.

. Distributeðab; aÞ over G ¼ ðV;EÞ produces a new
graph G0 ¼ ðV0;E0Þ. In this new graph, remove node
a and introduce two new nodes a1 and a2 to
V0 ¼ V [ fa1; a2g � fag. Remove the edge ðab; aÞ.
For each edge e 2 E with e ¼ ðv; abÞ, introduce into
E0 the edges e0 ¼ ðv; a1Þ and e00 ¼ ðv; a2Þ. For each
edge e 2 E with e ¼ ða; vÞ, introduce into E0 the edge
e0 ¼ ðab; vÞ. Introduce into E0 the edges e1 ¼ ða1; abÞ
and e2 ¼ ða2; abÞ. The rest of the edges of the graph
remain the same.

. Mergeða1þ2; a1; a2Þ over G ¼ ðV;EÞ produces a new
graph G0 ¼ ðV0;E0Þ. In this new graph, introduce a
new node a1þ2 to V0 ¼ V� fa1; a2g [ fa1þ2g. Natu-
rally, the edge e ¼ ða1; a2Þ is removed. For each edge
e 2 E with e ¼ ðv; a1Þ, introduce into E0 the edge
e0 ¼ ðv; a1þ2Þ. For each edge e 2 E with e ¼ ða2; vÞ,
introduce into E0 the edge e0 ¼ ða1þ2; vÞ. The rest of
the edges of the graph remain the same.

. Splitða1þ2; a1; a2Þ over G ¼ ðV;EÞ produces a new
graph G0 ¼ ðV0;E0Þ. In this new graph, introduce
twonewnodesa1 anda2 toV

0 ¼ V� fa1þ2g [ fa1; a2g.
For each edge e 2 E with e ¼ ðv; a1þ2Þ, introduce into
E0 the edge e0 ¼ ðv; a1Þ. For each edge e 2 E with
e ¼ ða1þ2; vÞ, introduce into E0 the edge e0 ¼ ða2; vÞ.
Add the edge e ¼ ða1; a2Þ. The rest of the edges of the
graph remain the same.

Figs. 5a, 5b, and 5c illustrate abstract examples of theusage
of these transition, while in Figs. 5d, 5e, and 5f, we concretely
instantiate these examples over our reference example.

So far, we have demonstrated how to model each ETL
workflow as a state and how to generate the state space
through a set of appropriate transformations (transitions).
Naturally, in order to choose the optimal state, the problem
requires a convenient discrimination criterion. Such a
criterion is a cost model. Given an activity a, let cðaÞ denote
its cost (possibly depending not only on the cost model, but
also on its position in the workflow graph). Then, the total
cost of a state is obtained by summarizing the costs of all its
activities. The total cost CðSÞ of a state S that consists of

n activities is given by the next formula: CðSÞ ¼ �
n

i¼1
cðaiÞ:

The problem of the optimization of an ETL workflow involves
the discovery of a state SMIN, such that CðSMINÞ is minimal.

In the literature [8], [11], [14], [20], there exists a variety
of cost models for query optimization. Our approach is
general in that it is not in particular dependent on the cost
model chosen. Having described the problem in detail, we
move next to discussing problems that arise in generating
states and applying transformations on them.

3 STATE GENERATION AND TRANSITION

APPLICABILITY

In this section, we will deal with several nontrivial issues in
the context of our modeling for the optimization of ETL
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processes as a state space search problem. We consider
equivalent states asworkflows that, based on the same input,
produce the same output. To deal with this condition, we
will first discuss in detail how states are generated and then
we will deal with the problem of transition applicability.

3.1 Naming Principle

Aswehavealready seen in the introduction, aproblem for the
optimization of ETL workflows is that different attributes
names do not always correspond to different entities of the
real world.

To handle this problem, we resort to a simple naming
principle: 1) all synonyms refer to the same entity of the
real world and 2) all different attribute names, at the same
time, refer to different things in the real world. Naturally,
it might be the case that the employed recordsets violate
this principle. For example, in Fig. 3, the attributes COST
of the two sources (and the resulting data flows)
correspond to different meaning in the real world (Dollars
and Euros, respectively). At the same time, it is quite
possible that we do not care to trace the distinction
between the attributes EDATE and ADATE of the different
flows (see Section 3.3 for more on this). To deal with the
possibility of such conflicts, we employ a mapping from
the original attribute names of the involved recordsets to a
set of reference attribute names that do not suffer from this
problem. This is a procedure that cannot be fully
automated, therefore, we request from the designer to
resolve the synonymity problems (although, there already
exist results for the semiautomatic mapping of attributes).
Formally, we introduce:

1. a set of reference attribute names at the conceptual level,
i.e., a finite set of unique attribute names �n and a
mapping of each attribute of the workflow to this set
of attribute names and

2. a simple naming principle: All synonymous attri-
butes are semantically related to the same attribute
name in �n and no other mapping to the same
attribute is allowed.

For the reference example of Fig. 3, we can perform the

following mappings (original names are in capital and

reference attributes are in lowercase letters):

3.2 State Generation

In [26], we have presented a set of template activities for the

design of ETL workflows. Each template in this library has

predefined semantics and a set of parameters that tune its

functionality: For example, when the designer of a work-

flow materializes a Not Null template, he/she must specify

the attribute over which the check is performed. In order to

construct a certain ETL workflow, the designer must specify

the input and output schemata of each activity and the

respective set of parameters. Although this is a manual

procedure, in the context of this paper, the different states

are automatically constructed; therefore, the generation of

the input and output schemata of the different activities

must be automated too. In this section, we explain how this

generation is performed.
For the purpose of state transitions (e.g., swapping

activities), apart from the input and output schemata, each

activity is characterized by the following schemata:

1. Functionality (or necessary) schema. This schema is a

list of attributes, being a subset of (the union of) the
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input schema(ta), denoting the attributes which take
part in the computation performed by the activity.

For example, an activity having as input schema si ¼
½A;B;C;D� and performing a Not Null(B) operation

has a functionality schema sf ¼ ½B�.
2. Generated schema. This schema involves all the output

attributes being generated due to the processing of

the activities. For example, a function-based activity

$2C= converting an attribute dollar_cost to Euros, i.e.,

euro_cost ¼ $2C= (dollar_cost), has a generated schema

sg ¼ [euro_cost]. Filters have an empty generated
schema.

3. Projected-out schema. A list of attributes, belonging to

the input schema(ta), not to be propagated further

from the activity. For example, once a surrogate key

transformation is applied, we propagate data with

their new, generated surrogate key (belonging to the

generated schema) and we project out their original

production key (belonging to the projected-out

schema).

These auxiliary schemata are provided at the template

level. In other words, the designer of the template library

can dictate in advance 1) which are the parameters for the

activity (functionality schema) and 2) which are the new or

the nonnecessary attributes of the template. Then, these

attributes are properly instantiated at the construction of

the ETL workflow.
Once the auxiliary schemata of the activities have been

determined, we can automate the construction of the input/

output schemata (called Schema Generation) of the activ-

ities as follows: 1) we topologically sort the graph of the

workflow, 2) following the topological order, we assign the

input schema of an activity to be the same with the (output)

schema of each provider, and 3) the output schema of an

activity is equal to (the union of) its input schema(ta),

augmented by the generated schema, minus the projected-

out attributes. After each transition, we determine the

schemata of the activities based on the new graph of the

state. The automatic construction is coded in the algorithm

Schema Generation (SGen) that is depicted in Fig. 6.

In principle, we would be obliged to recompute the
activity schemata for the whole graph due to the fact that
there might be output schemata acting as providers for
more than one consumer (i.e., the node which models the
activity has more than one outgoing edges toward different
activities or recordsets). An obvious pruning involves the
exploitation of the topological order of the workflow: In this
approach, whenever we perform a transition, we need to
examine only the activities following (in terms of topologi-
cal order) the modified part of the workflow. There is a case,
still, where we can do better. In the case where all activities
have exactly one output and one consumer for each output
schema, the impact of a change due to a transition affects
only the involved activities, while the rest of the workflow
remains intact. In this case, instead of running the algorithm
Schema Generation for the whole graph, we simply
recompute the new schemata for the subgraph that includes
the affected activities.

3.3 Local Groups and Homologous Activities

We introduce the notion of local groups to capture activities
forming a linear path of execution and homologous
activities to capture the cases of activities that do the same
job while being in different local groups.

Local Groups. A local group is a subset of the graph
(state), the elements of which form a linear path of unary
activities. In the example of Fig. 3, the local groups of the
state are {3,4,5,6,7}, {8,9,10,11,12}, and {14}.

Homologous Activities. Two activities are homologous
when 1) they are found in converging local groups, 2) they
have the same semantics (as an algebraic expression), and
3) they have the same functionality generated and pro-
jected-out schemata.

For example, consider the ETL workflow depicted in
Fig. 7 that concerns the population of a target recordset
RS3(SKEY,SOURCE,QTY,COST) from two source record-
sets RS1(PKEY,SOURCE,QTY,COST), and RS2(PKEY,
SOURCE,QTY,COST). In this state, the two surrogate key
activities (3 and 4) are homologous since they both are
found in converging linear paths, have the same algebraic
expression, and the same functionality {PKEY,SOURCE},
generated {SKEY}, and projected-out {PKEY} schemata.
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3.4 Transition Applicability

So far, we have not answered the issue of transition

applicability. In other words, we need to define the rules

which allow or prohibit the application of a transformation

to a certain state. We have deliberately delayed this

discussion until schema generation was introduced since

the correctness of transitions depends on the correct

generation of schemata. Now, we are ready to present a

formal framework for the applicability of these transitions

in the rest of this section.
Swap. Swapping raises quite a few issues in our setting.

One would normally anticipate that swapping is already

covered by traditional query optimization techniques. Still,

this is not true: On the contrary, we have observed that the

swapping of activities deviates from the equivalent problem

of “pushing operators downward,” as we normally do in

the execution plan of a relational query. The major reason

for this deviation is the presence of functions, which

potentially change the semantics of attributes. Relational

algebra does not provide any support for functions; still, the

“pushing” of activities should be allowed in some cases,

whereas, in some others, it should be prevented.
Let us motivate the discussion with both a counter-

example and an example for the opportunity for operator

“pushing.” First, the counterexample (Fig. 8): Assume the

case where activity a1 performs a conversion of attribute

cost from Dollars to Euros and its consumer, activity a2,

selects only the tuples with an amount in Euro higher than

100C= . Clearly, we are not allowed to blindly swap these

activities. On the other hand, if we disallow any swapping

in the presence of functions, then, practically, we forbid

many useful operations since ETL workflows are quite

heavy on functions (mostly arithmetic and string processing

ones). For example, consider the case of Fig. 9, where

activity a1ðA2EÞ performs a conversion of attribute date

from American date format to European date format and

activity a2ðGDAY Þ isolates the name of a day (e.g.,

Thursday) from a date (e.g., Thursday, November 13, 2003 )

and produces a new attribute named day. In this case, the

swapping is permissible.
Formally, we allow the swapping of two activities a1 and

a2 if the following conditions hold:

1. a1 and a2 are adjacent in the graph (without loss of
generality, assume that a1 is a provider for a2),

2. both a1 and a2 have a single input and output
schemata and their output schema has exactly
one consumer,

3. the functionality schema of a1 and a2 is a subset of
their input schema (both before and after the
swapping), and

4. the input schemata of a1 and a2 are subsets of their
providers, again, both before and after the swapping.

Conditions 1 and 2 are simply measures to eliminate the
complexity of the search space and the name generation.
The other two conditions, though, cover two possible
problems. The first problem is covered by condition 3.
Observe Fig. 8, where activity a1 transforms Dollars to
Euros and has an input attribute named dollar_cost, a
functionality schema that contains dollar_cost, and an output
attribute named euro_cost. Activity a2, at the same time, is
specifically containing attribute euro_cost in its functionality
schema (e.g., it selects all costs above 100C= ). When a
swapping has to be performed and activity a2 is put in
advance of activity a1, the swapping will be rejected.
Schema Generation assigns attribute names from the
sources towards the targets: Then, the attributes of activity
a2 will be named as dollar_cost and, therefore, the function-
ality attribute euro_cost will not be in the input schema of
the activity.

The guard of condition 3 can be easily compromised if
the designer uses the same name for the attributes of the
functionality schemata of activities a1 and a2. For example,
if instead of dollar_cost and euro_cost, the designer used the
name cost, then condition 3 would not fire. To handle this
problem, we exploit the usage of the naming principle
described in Section 3.1.

Coming back to the example of Fig. 9, the swapping of
activities a1 and a2 is allowed in our setting, provided that
both activities have the same name for the attribute date in
their input and output schemata. In Fig. 9, we present 1) the
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originating state and 2) the state after the swap transition
and the application of the Schema Generation algorithm
which gives the new input and output schemata.

The second problem, confronted by condition 4, is
simpler. Assume that activity a2 is a �out (projected-out)
activity, rejecting an attribute at its output schema (Fig. 10).
Then, swapping will produce an error since, after the
swapping takes place, the rejected attribute in the input
schema of activity a1 (now a consumer of a2) will not have a
provider attribute in the output schema of a1. Clearly, we
tackle this problem with the automatic schema generation
that is described in Section 3.2.

In terms of the example of Fig. 3, we can observe another
case where the swapping is also allowed, involving
activities 11 and 12. The four conditions governing
swapping are met; thus, Fig. 11 presents all the steps of
this transition (concerning attribute COST): the initial state
(Fig. 11a), the activities after swapping (Fig. 11b), and the
final state after the application of the Schema Generation
(Fig. 11c).

Factorize/Distribute. We factorize two activities a1 and
a2 if we replace them by a new activity a that does the same
job to their combined flow. Formally, the conditions
governing factorization are as follows:

1. a1 and a2 have the same operation in terms of
algebraic expression; the only thing that differs is
their input (and output) schemata, and

2. a1 and a2 have a common consumer, say ab, which is
a binary operation (e.g., union, difference).

Obviously, a1 and a2 are removed from the graph and
replaced by a new activity a, following ab. In other words,
each edge ðx; a1Þ and ðx; a2Þ becomes ðx; abÞ for any node x,
edges ða1; abÞ and ða2; abÞ are removed, the nodes a1 and a2
are removed, a node a is added, the edge ðab; aÞ is added,
and any edge ðab; yÞ is replaced by ða; yÞ for any node y.

The distribution is governed by similar laws; an activity
a can be cloned in two paths if:

1. a binary activity ab is the provider of a and two clones,
activities a1 and a2 are generated for each path leading
to ab, and

2. a1 and a2 have the same operation in terms of
algebraic expression with a.

Naturally, a is removed from the graph. The node and
edge manipulation are the inverse from the ones of
factorize.

Merge/Split. Merge does not impose any significant
problems: The output schema of the new activity is the
output of the second activity and the input schema(ta) is the
union of the input schemata of the involved activities,
minus the input schema of the second activity linked to the
output of the first activity. Split requires that the originating
activity is a merged one, like, for example, aþ bþ c. In this
case, the activity is split in two activities as a and bþ c.

3.5 Correctness of the Introduced Transitions

An obvious question that arises concerns the correctness of
the transitions that we introduce. In other words, can we
guarantee that whenever we apply a transition to a certain
state of the problem, the derived state will produce exactly
the same data with the originating one, at the end of its
execution? In this section, we will prove the correctness of
the transitions we introduce.

There is more than one ways to establish the correctness
of the introduced transitions. One alternative would be to
treat activities as white-box modules with semantics
specified in a certain language. In this case, one must
employ a reasoning mechanism that checks the equivalence
of the semantics of the two workflows in terms of the
employed language. Candidate language for this task
would include formal specification languages, like Z or
VDM, or database languages like SQL or Datalog. Espe-
cially for the latter category, there are already results for the
modeling of ETL activities in LDL++ [26]. Although
feasible, both such approaches suffer from the main
drawbacks of formal specification (too much programming
for little effort, lack of maintainability, etc.) and the cost of
performing the equivalence check for each transition.

Under these thoughts, we decided to pursue a black-box
approach. In our setting, we annotate each activity with a
predicate, set to true whenever the activity successfully
completes its execution (i.e., it has processed all incoming
data and passed to the following activity or recordset). The
predicate consists of a predicate name and a set of variables.
We assume fixed semantics for each such predicate name.
In other words, given a predicate NNðAgeÞ, we implicitly
know that the outgoing data fulfill a constraint that the
involved variable (attribute Age) is not null.
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Once a workflow has executed correctly, all the activities’

predicates are set to true. Within this framework, it is easy

to check whether two workflows are equivalent: 1) they

must produce data under the same schema and 2) they

must produce exactly the same records (i.e., the same

predicates are true) at the end of their execution.
The semantics of this predicate postcondition is that the

predicate is set to true once the activity has successfully

completed. Otherwise, the predicate is false. In other words,

as data flow from the sources toward the warehouse and

pass through the activities, they set the postcondition to

true. Observe Fig. 12. Assume that the packets in positions 1

and 2 are the two last packets that are processed by

activities a and b. In position 1, the postcondition conda says

that data fulfill the properties described by conda. As data

are forwarded more, once activity b is completed, both

conda and condb hold for the propagated data.
An obvious consideration involves the interpretation of

the predicate in terms of the semantics it carries. Assume

the case of Fig. 13, where the depicted activity is

characterized by the postcondition NNðAGEÞ. One would

obviously wonder, why is it clear that we all agree to

interpret the semantics of NN as the check for not null

values over the parameter variable (here, AGE)? To tackle

this problem, we build upon the work of [26], where

template definitions are introduced for all the common

categories of ETL transformations. In this case, every

template has a “signature” (i.e., a parameter schema) and

a set of well-defined semantics in LDL. For example,

NNð#vrbl1Þ is the definition of the postcondition for Not

Null attributes at the template level. In Fig. 13, this is

instantiated as NNðAGEÞ, where AGE materializes the

#vrbl1. The scheme is extensible since, for any other, new

activity that the designer wishes to introduce, explicit LDL

semantics can be also given. For our case, it is sufficient to

employ the signature of the activity in a black box

approach, both for template-based or individual activities.
A second consideration would involve the commonly

agreed upon semantics of variables. We tackle this problem

by introducing the common scenario terminology �n and

the naming principle of Section 3.1.
Activity Predicate. Each activity or recordset is char-

acterized by a logical postcondition, which we call activity

predicate or activity postcondition, having as variables: 1) the

attributes of the functionality schema in the case of activities

or 2) the attributes of the recordset schema, in the case of

recordsets.
For each node n 2 V of a workflow S ¼ GðV;EÞ, there is

a predicate p that acts as postcondition condn for node n:

p � condnð#vrbl1; . . . ;#vrblk;#vrblkþ1; . . . ;#vrblNÞ. S ince

n 2 V ¼ A [RS, we discern three usual cases for node n:

1. n is a unary activity: The attributes of the function-
ality schema of the activity acting as the variables of
the predicate: f#vrbl1; . . . ;#vrblNg ¼ n:fun.

2. n is a binary activity: The attributes of the
functionality schemata of both activities acting as
the variables of the predicate: f#vrbl1; . . . ;#vrblkg ¼
n:in1:fun and f#vrblkþ1; . . . ;#vrblNg ¼ n:in2:fun.

3. n is a recordset: The attributes of the recordset acting
as the variables of the predicate.

Once all activities of a workflow are computed, there is a
set of postconditions which are set to true. Therefore, we
can obtain an expression describing what properties are
held by the data processed by the workflows once the
workflow is completed.

Workflow postcondition. Each workflow is also char-
acterized by a workflow postcondition, CondWF , which is a
Boolean expression formulated as a conjunction of the
postconditions of the workflow activities arranged in the
order of their execution (as provided by a topological sort).

For example, Fig. 14 depicts an example workflow along
with its postcondition CondWF .

The functionality schema of Diff activity comprises the
primary key attributes of the twoprovider activities ofDiff. In
this example, the primary key of SK is SK:SKEY andNN is
NN:SKEY , so the functionality schema of Diff contains the
attributes of the input schemata of Diff that are mapped
to SK:SKEY and NN:SKEY , i.e., Diff:IN1:SKEY and
Diff:IN2:SKEY , respectively.

Now, we are ready to define when two workflows
(states) are equivalent. Intuitively, this happens when 1) the
schema of the data propagated to each target recordset is
identical and 2) the postconditions of the two workflows are
equivalent.

Equivalent workflows. Two workflows W1 and W2 are
equivalent when:

1. the schema of the data propagated to each target
recordset is identical and

2. CondW1 � CondW2.

In the following theorems, we assume a set of affected
activities GA; for each transition type, we will define the set
GA precisely.

Theorem 1. Let a state S be a graph G ¼ ðV;EÞ, where all
activities have exactly one output and one consumer for each
output schema. Also, let a transition T derive a new state S0,
i.e., a new graph G0 ¼ ðV0;E0Þ, affecting a set of activities
GA � V [V0. Then, the schemata for the activities of V�
GA are the same with the respective schemata of V0 �GA.

Proof. We distinguish the different cases of transitions.
Swap transition SWAða; bÞ. Let a sequence of unary

activities k; a; b; l 2 A. In this case, GA ¼ fa; bg. If the
applicability conditions of swap are met for the activities
a and b, then the following holds.
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Before SWAða; bÞ: The input schema of the activity l is
equal to the output schema of the activity b:

l:inðbeforeÞ ¼ b:out ¼ ðb:in [ b:gen� b:proÞ
¼ ða:out [ b:gen� b:proÞ
¼ ða:in [ a:gen� a:pro [ b:gen� b:proÞ
¼ ðk:out [ a:gen� a:pro [ b:gen� b:proÞ:

After SWAða; bÞ:

l:inðafterÞ ¼ a:out ¼ ða:in [ a:gen� a:proÞ
¼ ðb:out [ a:gen� a:proÞ
¼ ðb:in [ b:gen� b:pro [ a:gen� a:proÞ
¼ ðk:out [ b:gen� b:pro [ a:gen� a:proÞ:

Obviously, l:inðbeforeÞ � l:inðafterÞ ¼ ;. Recall that:

ai:in ¼ ai�1:out:

Factorize transition FACðd; c1; c2Þ. Assume the example
of Fig. 15. In this case, GA ¼ fd; c1; c2; c1;2g. Before the
transition, we have that:

d:in1 ¼ c1:out ¼ ða:out [ c1:gen� c1:proÞ;
d:in2 ¼ c2:out ¼ ðb:out [ c2:gen� c2:proÞ;

f:inðbeforeÞ ¼ d:out ¼ ða:out [ c1:gen� c1:proÞ [
ðb:out [ c2:gen� c2:proÞ [ d:gen� d:pro:

After the transition, we have that:

d:in1 ¼ a:out;

d:in2 ¼ b:out;

d:out ¼ ða:out [ b:outÞ [ d:gen� d:pro

and

f:inðafterÞ ¼ c1;2:out ¼
ða:out [ b:out [ d:gen� d:pro [ c1;2:gen� c1;2:proÞ:

Then,

f:inðbeforeÞ � f:inðafterÞ ¼
ðc1:gen� c1:pro [ c2:gen� c2:proÞ � ðc1;2:gen� c1;2:proÞ:

This practically means that we can guarantee the

locality of the impact if c1þ2:pro ¼ ðc1:pro [ c2:gen [
c2:proÞ or c1þ2:pro ¼ ðc1:pro [ c1:gen [ c2:proÞ.

Distribute transition DISðd; c1;2Þ. Similarly, provided
again that we can guarantee that

f:inðbeforeÞ � f:inðafterÞ ¼
ðc1:gen� c1:pro [ c2:gen� c2:proÞ � ðc1;2:gen� c1;2:proÞ ¼ ;:

Merge and Split transitions MERGE, and SPLIT .
Obvious. tu

Theorem 2. All transitions produce equivalent workflows.

Proof. For each transition, we must show the validity of the

conditions 1 and 2 of the previous definition. Theorem 1

guarantees that the application of all the transitions does

not affect the schema of the workflow activities. Thus,

condition 1 is fulfilled for all transitions. Next, we prove

that condition 2 is fulfilled too, i.e., that if S2 ¼ T ðS1Þ
holds then CondS1 ¼ CondS2 holds too.

Swap transition. Without loss of generality, assume a

part of a workflow involving two adjacent activities a

and b. Before the application of SWAða; bÞ the data fulfill

the properties described by the expression: conda ^ condb.

After swapping the two activities, the postcondition is:

condb ^ conda. Obviously, the postconditions before and
after the application of the SWA transitions are equal.

Factorize transition. The general case for the application

of the factorization operator is depicted in Fig. 16. In this

case, before the application of FACðc; d 1; d 2Þ transition,
the postcondition at the end of the group of involved

activities is: conda ^ condb ^ condc ^ condd. After the ap-

plication of FACðc; d 1; d 2Þ, the postcondition at the

same point is: conda ^ condd 1 ^ condb ^ condd 2 ^ condc. It
suffices to show that condd 1 ^ condd 2 � condd, which is

obvious since:

1. d 1; d 2 are homologous, i.e., identical; therefore,
condd 1 � condd 2 ) condd 1 ^ condd 2 � condd 1.

2. condd 1 � condd by definition.

Distribute transition. The proof for distribute transition
is similar to the one for factorize transition.With respect to
the example of Fig. 16, before the application ofDISðc; dÞ,
the postcondition at the end of the group of involved
activities is: conda ^ condd 1 ^ condb ^ condd 2 ^ condc.
After the application of DISðc; dÞ, the postcondition at
the same point is: conda ^ condb ^ condc ^ condd. Again, it
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suffices to show that condd 1 ^ condd 2 � condd and this is
true as we show before.

Merge/Split transitions. The proof is obvious. Since

merge and split are mechanisms to “package” and

“unpackage” activities, they do not affect the postcondi-

tions, i.e., the semantics, of the activities. For example,
the application of merge transition to two subsequent

activities a and b results to the production of a “new”

merged activity aþ b. Then, the postcondition before

MERðaþ b; a; bÞ after activity b is: conda ^ condb. After

the merge, the postcondition at the same point is:

ðconda ^ condbÞ. Note that the postcondition of a merged

activity aþ b is not condaþb because merge does not

logically affect the semantics of the merged activities.
In the same sense, split does not affect the postcondi-

tions of the involved activities too. Thus, condition 2 is
fulfilled for all five transitions. tu

4 STATE SPACE SEARCH-BASED ALGORITHMS

In this section, we present three algorithms toward the
optimization of ETL processes. First, we use, wherever it is
possible, an exhaustive approach to construct the search
space in its entirety and to find the optimal ETL workflow.
Next, we introduce a heuristic algorithm that reduces the
search space, as such a greedy version of it. Finally, we
present our experimental results.

4.1 State Identification

During the application of the transitions, we need to be able
to discern states from one another so that we avoid
generating (and computing the cost of) the same state more
than once. As already mentioned, a state is a directed graph.
Moreover, it is characterized from extra constraints as 1) it
has some source nodes (source recordsets), 2) some sinks
(the ultimate warehouse tables or views), and 3) it can be
topologically ordered on the basis of the provider-consumer
relationship so that a unique execution priority can be
assigned to each activity. In order to automatically derive
activity identifiers for the full lifespan of the activities, we
choose to assign each activity with its priority, as it stems
from the topological ordering of the workflow graph, as
given in its initial form.

Based on the above observations, it is easy to assign an
identification scheme to each activity such that: 1) each
linear path is denoted as a string where the activities of the
path are delimited by points, and 2) concurrent paths are
delimited by a double slash. We call the string that

characterizes each state as the signature of the state. Between
concurrent paths, the signature of the state starts with the
path including the identifier with the lowest value.

Observe Fig. 3, where we have tagged each element of

the workflow with a unique identifier. The signature of that

state is ((1.3.4.5.6.7)//(2.8.9.10.11.12)).13.14.15. Each linear

path is traced as dot delimited list of identifiers included in

parentheses. If we swap activities 3 and 4, then the

signature becomes ((1.4.3.5.6.7)//(2.8.9.10.11.12)).13.14.15.

In Fig. 17, we present the algorithm Get Signature (GSign)

that we use to get the signature of a state. As an input,

GSign gets a state and a target node of the state. Starting

from the target node, GSign recursively adds the Ids of all

activities to the signature. If an activity is unary, then we

just put “.” and its Id to the signature, else, if the activity is

binary, GSign takes into account that it has to follow

two separate paths.

For the cases where new activities are derived from

existing ones, we use the following rules:

1. If two existing activities a and b are merged to create
a new one, then the new activity is denoted as aþ b,

2. if two existing activities a and b are factorized to
create a new one, then the new activity is denoted as
a; b,

3. if an activity is cloned in more that one paths, then
each of its clones adopts the identifier of the original
activity followed by an underscore and a unique
integer as a partial identifier (e.g., a 1; a 2), and

4. if a “composite” activity is split, we reuse the
identifiers of its components (e.g., aþ b or a; b can
be split to a and b, respectively).

Again, the lowest partial identifier is assigned to the

path including the activity identifier with the lowest

value, etc. For example, if we distribute activity 14 in

Fig. 3, then the concurrent linear paths end to activities

14_1 and 14_2 respectively; the signature of the state is

then ((1.3.4.5.6.7.14_1)//(2.8.9.10.11.12.14_2)).13.15. Observe

how we assign the partial identifiers _1 and _2 to the

individual paths. If we merge activities 11 and 12, then a

merged activity 11 + 12 is interleaved between activities 10

and 13 and the signature of the state becomes ((1.3.4.5.6.7)//

(2.8.9.10.11+12)).13.14.15.
Finally, note that the computation of the cost of each state

in all algorithms is realized in a semi-incremental way. That
is, the variation of the cost from the state S to the state S0

can be determined by computing only the cost of the path
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from the affected activities toward the target in the new
state and taking the difference between this cost and the
respective cost in the previous state.

4.2 Exhaustive and Heuristic Algorithms

Exhaustive Search. In the exhaustive approach, we gen-
erate all the possible states that can be generated by
applying all the applicable transitions to every state. The
Exhaustive Search algorithm (ES) (Fig. 18) employs a set of
unvisited nodes, which remain to be explored and a set of
visited nodes that have already been explored. While there
are still nodes to be explored, the algorithm picks an
unvisited state and produces its children to be checked in
the sequel. The search space is obviously finite and it is
straightforward that the algorithm generates all possible
states and then terminates. Afterward, we search the visited
states and we choose the one with the minimal cost as the
solution of our problem.

Heuristic Search. In order to avoid exploring the full
state space, we employ a set of heuristics, based on simple
observations, common practice (heuristic 4), and on the
definition of transitions (heuristics 1, 2, and 3).

Heuristic 1. The definition of FAC indicates that it is not
necessary to try factorizing all the activities of a state.
Instead, a new state should be generated from an old one
through a factorize transition (FAC) that involves only
homologous activities and the respective binary one.

Heuristic 2. The definition of DIS indicates that a new
state should be generated from an old one through a
distribute transition (DIS) that involves only activities that
could be distributed and the respective binary one. Such
activities are those that could be transferred in front of a
binary activity.

Heuristic 3. According to the reasons of the introduction
of merge transition, it should be used where it is applicable,
before the application of any other transition. This heuristic
reduces the search space.

Heuristic 4. Finally, we use a simple “divide and
conquer” technique to simplify the problem. A state is
divided in local groups, thus, each time optimization
techniques are applied in a part of, instead on the whole,
graph.

The algorithmHeuristic Search (HS) is illustrated in Fig. 19
and explained in detail in [27].

HS-Greedy. One could argue that the first part of HS
(lines 11-15) seems to be expensive, considering its repeti-
tion in the end of the algorithm. Experiments have shown
that the existence of the first phase leads to a much better
solution without consuming too many resources. Also, a
slight change in these parts of HS improves its performance.
In particular, if, instead of swapping all pairs of activities
for each local group, HS swaps only those that lead to a
state with less cost that the existing minimum, then HS
becomes a greedy algorithm: HS-Greedy.

4.3 Experimental Results

In order to validate our method, we implemented the
proposed algorithms in C++ and experimented on the
variation of measures like time (we present it in Fig. 20 as
the volume of visited states), volume of processed rows,
improvement, and quality of the proposed workflow. We
have used a simple cost model taking into consideration
only the number of processed rows based on simple
formulae [20] and assigned selectivities for the involved
activities. As test cases, we have used 40 different ETL
workflows categorized as small, medium, and large,
involving a range of 15 to 70 activities of various kinds.
All experiments were run on an AthlonXP machine running
at 1.4GHz with 768Mb RAM.

As expected, in all cases, the ES algorithm was slower
compared to the other two and, in most cases, it could not
terminate due to the exponential size of the search space. As
a threshold, in most cases, we let ES run up to 40 hours. This
is the reason for the peak and then the decrement of the
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search space of ES algorithm depicted in Fig. 22a because,

as the number of activities increases, the search space

explored in a constant portion of time (40h) decreases.
Thus, we did not get the optimal solution for all the test

cases and, consequently, for medium and large cases, we

compare (quality of solution) the best solution of HS and

HS-Greedy to the best solution that ES has produced when

it stopped (Fig. 21 and Fig. 22b). Fig. 20 depicts the number

of visited states for each algorithm and the percentage of

improvement for each algorithm compared with the cost of

the initial state.
We note that, for small workflows, HS provides the

optimal solution according to ES. Also, although both HS

and HS-Greedy provide solutions of approximately the

same quality, HS-Greedy was faster by at least 86 percent

(average value was 92 percent). For medium ETL work-

flows, HS finds a better solution than HS-Greedy (in a

range of 13-38 percent). On the other hand, HS-Greedy is

a lot faster than HS, while the solution that it provides

could be acceptable. In large test cases, HS proves that it

has an advantage because it returns workflows with

improved cost over 70 percent of the cost of the initial

state, while HS-Greedy returns “unstable” results in a low
average value of 47 percent.

The time needed for the execution of the algorithms is
satisfactory compared to the time we will earn from the
execution of the optimized workflow, given that usual ETL
workflows run into a whole night time window (Fig. 23).
For example, the average worst case of the execution of HS
for large scenarios is approximately 35 minutes, while the
gain from the execution of the proposed workflow out-
reaches a percentage of 70 percent. Finally, we mention that
the variation of the volume of rows did not change the
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Fig. 19. Algorithm Heuristic Search (HS).

Fig. 20. Number of visited states and improvement with respect to initial state.

Fig. 21. Quality of solution. The values with * are compared to the best of

ES when it stopped.



aforementioned results. This was expected since our
approach is general in that it does not in particular depend
on the cost model chosen.

5 RELATED WORK

In this section, we discuss the state of art and practice in the

field of ETL along with any related research efforts. There

exist a variety of ETL tools in the market; we mention a

recent review [9] and several commercial tools [12], [13],

[17], [19]. Although these tools offer GUI’s to the developer,

along with other facilities, the designer is not supported in

his task with any optimization tools. Therefore, the design

process deals with this issue in an ad-hoc manner. Research

efforts also exist in the ETL area, including [5], [7], [16].

Also, we mention three research prototypes: 1) AJAX [10],

2) Potter’s Wheel [22], and 3) ARKTOS II [24], [26]. The first

two prototypes are based on algebras, which we find mostly

tailored for the case of homogenizing web data; the latter

concerns the modeling of ETL processes in a customizable

and extensible manner. To our knowledge, no work in the

area of ETL has dealt with optimization issues so far.
In a similar setting, research has provided results for the

problem of stream management [1], [4], [15]. Techniques
used in the area of stream management, which construct
and optimize plans on-the-fly, come the closest that we
know of to the optimization style we discuss in the context
of ETL. Nevertheless, stream management techniques are
not directly applicable to typical ETL problems 1) due to the
fact that real time replication (necessary for the application
of stream management techniques) is not always applicable
to legacy systems and 2) pure relational querying, as

studied in the field of stream management is not sufficient

for ETL purposes. Also, to our knowledge, research in

stream management does not provide an optimal solution

to the optimization of the processes, basically due to the

requirement for on-the-fly computation of results. For

example, the authors of [1] verify that they cannot produce

a globally optimal plan, although they do apply local

optimization in an ad-hoc manner. Another technical part of

our work concerns the derivation of the schemata of the

involved activities. Quite a long line of research has dealt

with the problem in its general context [3], [18], [25];

nevertheless, we need a fully automated solution for our

particular centralized user-controlled setting, therefore, we

devised our own solution to the problem.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have concentrated on the problem of

optimizing ETL workflows. We set up the theoretical

framework for the problem by modeling the problem as a

state space search problem with each state representing a

particular design of the workflow as a graph. The nodes of

the graph represent activities and data stores and the edges

capture the flow of data among the nodes. Activities are

characterized by input and output schemata. Since the

problem is modeled as a state space search problem, we

have defined transitions from one state to another. We have

also made a thorough discussion on the issues of state

generation and the conditions under which transitions can

be applied to states. Finally, we have presented search

algorithms. First, we have described an exhaustive ap-

proach to construct the search space in its entirety in order

to find the optimal ETL workflow. Then, we have

introduced a heuristic algorithm and its greedy variant to

reduce the explored search space. Experimental results

suggest that the benefits of our method are significant.

Several research issues are left open as a continuation of this

work, including the physical optimization of ETL work-

flows, the smooth adaptation of the ETL workflow to

changes in the schema of the underlying data stores, the

exploitation of common tasks in different workflows and

the generalization of our results to non-ETL workflows. The

theoretical challenge of providing a complete set of

transitions is also open.
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Fig. 22. (a) Volume of the state space produced by each one of the

three algorithms. (b) Quality of solution.

Fig. 23. Time characteristics for all three algorithms: (a) Evolution of time for HS and HS-G algorithms, (b) evolution of time for all three algorithms (in

logarithmic scale), and (c) improvement of solution for all three algorithms.
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