
Computing and Managing Cardinal
Direction Relations

Spiros Skiadopoulos, Christos Giannoukos, Nikos Sarkas, Panos Vassiliadis,

Timos Sellis, and Manolis Koubarakis

Abstract—Qualitative spatial reasoning forms an important part of the commonsense reasoning required for building intelligent

Geographical Information Systems (GIS). Previous research has come up with models to capture cardinal direction relations for typical

GIS data. In this paper, we target the problem of efficiently computing the cardinal direction relations between regions that are

composed of sets of polygons and present two algorithms for this task. The first of the proposed algorithms is purely qualitative and

computes, in linear time, the cardinal direction relations between the input regions. The second has a quantitative aspect and

computes, also in linear time, the cardinal direction relations with percentages between the input regions. Our experimental evaluation

indicates that the proposed algorithms outperform existing methodologies. The algorithms have been implemented and embedded in

an actual system, CARDIRECT, that allows the user to 1) specify and annotate regions of interest in an image or a map, 2) compute

cardinal direction relations between them, and 3) pose queries in order to retrieve combinations of interesting regions.

Index Terms—Spatial databases and GIS, cardinal direction relations, computing spatial relations.
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1 INTRODUCTION

RECENT developments in the fields of mobile and
collaborative computing call for two particularly

important features that intelligent Geographical Informa-
tion Systems (GIS) should support: real-time response to
complex queries and interoperability. Related research in
the field of spatiotemporal data management and reasoning
has provided several results toward the aforementioned
problems. Among these research topics, qualitative spatial
reasoning has received a lot of attention in the areas of
Geographic Information Systems [3], [5], Artificial Intelli-
gence [2], [17], Databases [14], and Multimedia [19]. Several
kinds of useful spatial relations have been studied so far,
e.g., topological relations [2], [3], [17], directional relations
[6], [9], [12], [24], [25], and qualitative distance relations [4],
[30]. The uttermost aim in these lines of research is to define
new categories of spatial operators as well as to build
efficient algorithms for the automatic processing of queries
using such operators.

The present paper concentrates on cardinal direction
relations [6], [9], [12]. Cardinal direction relations are
qualitative spatial relations characterizing the relative
position of a region with respect to another (e.g., region a
is north of region b). Our starting point is the cardinal
direction framework presented in [6], [24], [25]. The under-
lining idea of this framework is quite simple. To express the

cardinal direction relation between a primary region and a
reference region, the aforementioned model uses the lines of
the minimum bounding box (MBB) of the reference region
to partition the space into a number of areas and records the
areas where the primary region falls in. For instance,
region a lies partly northeast and partly east of region b is a
cardinal direction relation. In other words, this model
approximates only the reference region (using its MBB)
while it uses the exact shape of the primary region. This
offers a more precise and expressive model than previous
approaches that approximate both extended regions using
points or MBBs [5], [9], [12], [14]. In this paper, we employ
the cardinal direction model presented in [23], [25] because
it is formally defined and can be applied to a wide set of
regions (e.g., disconnected regions and regions with holes).
Additionally, we also study cardinal direction relations
with percentages [6]. This extension offers the option to
record the percentage of the primary region that falls into
each area of the reference region. For instance, region a lies
50 percent northeast and 50 percent east of region b is a cardinal
direction relation with percentages.

The goal of this paper is to address the problem of
efficiently computing the cardinal direction relations [6],
[24], [25] between regions that are composed of sets of
polygons and to present an implemented system, CARDI-

RECT that encapsulates this functionality in order to answer
interesting user queries.

Algorithms for computing interesting and useful spatial
relations are in the heart of Spatial Databases and GISs.
Thus, they have attracted the interest of many researchers.
For some spatial relations (like topological relations [2], [3]),
these algorithms can be found in the Computational
Geometry literature [13], [16] while for other spatial
relations (like cardinal direction relations [6], [9], [24]),
there exist more direct methods. For instance, Peuquet and
Ci-Xiang [15] capture cardinal direction on polygons using
points and MBB’s approximations and present linear time
algorithms that compute the relative direction.
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For the cardinal direction relations model that we will
employ [6], [24], [25], a naive method to solve the computa-
tion of cardinal direction relations problem is to use polygon
clipping methods from Computational Geometry [7], [8],
[11], [26], [28]. Given two polygons a and b, a polygon
clipping algorithm returns a newpolygon that represents the
part of polygon a that falls inside polygon b. Thus, we can use
such algorithms to check if (and in what percentage) a
primary region falls in each area of the reference region and
solve the cardinal direction relations problem.

In this paper, we move a step forward and solve the
problem of computing cardinal direction relations in a more
direct way that does not use polygon clipping. To this end,
we present two linear time algorithms (with respect to the
number of input polygons’ edges). The input of both
algorithms is two sets of polygons representing the two
involved regions. The first of the proposed algorithms
computes the cardinal direction relation between the input
regions, while the second computes the cardinal direction
relations with percentages between the input regions. The
latter algorithm is based on a novel technique for the
computation of areas of polygons. To the best of our
knowledge, these are the first algorithms that directly handle
the aforementioned problem for the cardinal direction
relations that can be expressed in [6], [24], [25], [21].

We also perform an experimental evaluation of the
algorithms’ performance. Our algorithms are compared
with methods based on well-studied polygon clipping
algorithms from Computational Geometry. Particularly,
we employ the clipping methods of Sutherland and Hodg-
man [26] and Liang and Barsky [8]. We demonstrate that
our algorithms outperform these methods by taking
advantage of the specific properties of the cardinal direction
relations computation problem.

The proposed algorithms have been implemented and
embedded in an actual system, CARDIRECT. The scenario
for CARDIRECT usage is based on a simple scheme, where
raw digital data (e.g., astronomical images, city maps,
etc.,) are examined to identify possibly interesting areas.
CARDIRECT allows the user to specify, edit, and annotate
these regions of interest. Then, the tool automatically
computes the cardinal direction relations between these
regions using the aforementioned linear algorithms. The
information concerning the underlying image, the intro-
duced regions, their composing polygons, and their
relations form the metainformation for the overall config-
uration. This metainformation is persistently stored using
an XML description. Additionally, the user is allowed to
query the stored XML description of the image and
retrieve combinations of interesting regions. A preliminary
version of this paper appears in Proceedings of the of
Extending Database Technology Conf. [21].

The rest of the paper is organized as follows: Section 2
presents the cardinal direction relations model. In Section 3,
we present two algorithms for the problem of computing
cardinal direction relations and prove their correctness.
Section 4 experimentally evaluates the performance of the
aforementioned algorithms. In Section 5, we present the
architecture and functionality of the CARDIRECT tool.
Finally, Section 6 offers conclusions and lists topics of
future research.

2 A FORMAL MODEL FOR CARDINAL DIRECTION

INFORMATION

Cardinal direction relations, for various types of regions,
have been defined in [6], [24], [25]. Goyal [6] first presented

a set of cardinal direction relations for connected regions.
Skiadopoulos and Koubarakis [22], [24] formally define the
above cardinal direction relations, propose composition
algorithms, and prove that these algorithms are correct.
Moreover, Skiadopoulos and Koubarakis [23], [25] have
presented an extension that handles disconnected regions
and regions with holes, and study the consistency problem
for a given set of cardinal direction constraints. In this
paper, we start with the cardinal direction relations for the
composite regions presented in [23], [25] and then we
present an extension with percentages in the style of [6].

We consider the Euclidean space <2. Regions are defined
as nonempty and bounded sets of points in <2. Let a be a
region. The greatest lower bound or the infimum [10] of the
projection of region a on the x-axis (respectively, y-axis) is
denoted by infxðaÞ (respectively, infyðaÞ). The least upper
bound or the supremum of the projection of region a on the x-
axis (respectively, y-axis) is denoted by supxðaÞ (respectively,
supyðaÞ). We will often refer to sup and inf as endpoints.

The minimum bounding box of a region b, denoted by
mbbðbÞ, is the rectangular region formed by the straight lines
x ¼ infxðbÞ, x ¼ supxðbÞ, y ¼ infyðbÞ, and y ¼ supyðbÞ (see
Fig. 1a). Obviously, the projections on the x-axis (respec-
tively, y-axis) of a region and its minimum bounding box
have the same endpoints.

Throughout this paper, we will consider regions that are
formed by finite unions of regions that are homeomorphic
to the closed unit disk [24]. This set of regions is denoted by
REG�. Regions in REG� can be disconnected and have holes.
However, class REG� excludes points, lines, and regions
with emanating lines. Regions in REG� are very common in
GISs, Multimedia, and Image Databases [1], [19]. For
example, countries are made up of separations (islands,
exclaves, external territories) and holes (enclaves) [1]. In
Fig. 1, regions a, b, c, and d ¼ d1 [ � � � [ d8 are in REG�.
Notice that region d is disconnected and has a hole.

Let us now consider two arbitrary regions a and b in
REG�. Let region a be related to region b through a
cardinal direction relation (e.g., a is north of b). Region b
will be called the reference region (i.e., the region which
the relation refers to), while region a will be called the
primary region (i.e., the region for which the relation is
introduced). The axes forming the minimum bounding
box of the reference region b divide the space into nine
areas which we call tiles (Fig. 1a). The peripheral tiles
correspond to the eight cardinal direction relations south,
southwest, west, northwest, north, northeast, east, and
southeast. These tiles will be denoted by SðbÞ, SWðbÞ,
WðbÞ, NWðbÞ, NðbÞ, NEðbÞ, EðbÞ, and SEðbÞ, respectively.
The central area corresponds to the region’s minimum
bounding box and is denoted by BðbÞ. By definition, each
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one of these tiles includes the parts of the axes forming it.
The union of all nine tiles is <2.

If a primary region a is included (in the set-theoretic
sense) in tile SðbÞ of some reference region b (Fig. 1b), then
we say that a is south of b and we write a S b. Similarly, we
can define southwest (SW ), west (W ), northwest (NW ),
north (N), northeast (NE), east (E), southeast (SE), and
bounding box (B) relations.

If a primary region c lies partly in the area NEðbÞ and
partly in the area EðbÞ of some reference region b (Fig. 1b),
then we say that c is partly northeast and partly east of b and
we write c NE :E b.

The general definition of a cardinal direction relation in
our framework is as follows:

Definition 1. A cardinal direction relation is an expression
R1 : � � � : Rk, where 1 � k � 9,

R1; . . . ; Rk 2 fB;S; SW;W;NW;N;NE;E; SEg;

and Ri 6¼ Rj for every i, j such that 1 � i; j � k, and i 6¼ j. A
cardinal direction relation R1 : � � � : Rk is called single-tile if
k ¼ 1; otherwise, it is called multitile.

To formally define cardinal direction relations, we first
define single-tile relations and then multitile relations. Let a
and b be two regions in REG�. Single-tile cardinal direction
relations are defined as follows:

. a B b infxðbÞ � infxðaÞ, supxðaÞ � supxðbÞ,

infyðbÞ � infyðaÞ;

and supyðaÞ � supyðbÞ.
. a S b supyðaÞ � infyðbÞ, infxðbÞ � infxðaÞ, and

supxðaÞ � supxðbÞ:

. a SW b supxðaÞ � infxðbÞ and supyðaÞ � infyðbÞ.

. a W b supxðaÞ � infxðbÞ, infyðbÞ � infyðaÞ, and

supyðaÞ � supyðbÞ:

. a NW b supxðaÞ � infxðbÞ and supyðbÞ � infyðaÞ.

. a N b supyðbÞ � infyðaÞ, infxðbÞ � infxðaÞ, and

supxðaÞ � supxðbÞ:

. a NE b supxðbÞ � infxðaÞ and supyðbÞ � infyðaÞ.

. a E b supxðbÞ � infxðaÞ, infyðbÞ � infyðaÞ, and

supyðaÞ � supyðbÞ:

. a SE b supxðbÞ � infxðaÞ and supyðaÞ � infyðbÞ.
Multitile (2 � k � 9) relations are defined as follows:

. a R1 : � � � : Rk b iff there exist regions a1; . . . ; ak 2
REG� such that a1 R1 b; . . . ; ak Rk b and

a ¼ a1 [ � � � [ ak:

In Definition 1, notice that for every i, j such that 1 � i,
j � k, and i 6¼ j, ai, and aj have disjoint interiors but may
share points aolong their boundaries.

Example 1. Expressions S, NE :E and B :S :SW:W:NW:N :
E :SE are cardinal direction relations. The first relation is

single-tile while the others are multitile. In Fig. 1, we have
a S b, c NE : E b, and d B :S :SW:W:NW :N:E : SE b.
For instance, in Fig. 1c, we have d B :S :SW :W :NW:N:

E :SE b because there exist regions d1; . . . ; d8 in REG�

such that d ¼ d1 [ � � � [ d8, d1 B b, d2 S b, d3 SW b, d4 W b,
d5 NW b, d6 N b, d7 E b, and d8 SE b.

In order to avoid confusion, we will write the single-tile
elements of a cardinal direction relation according to the
following order: B, S, SW , W , NW , N , NE, E, and SE.
Thus, we always write B :S :W instead of W :B :S or
S :B :W . Moreover, for a relation such as B :S :W we will
often refer to B, S, and W as its tiles.

The set of cardinal direction relations for regions in
REG� contains

P9
i¼1

9
i

� �
¼ 511 elements. We will use D� to

denote this set. Relations in D� are jointly exhaustive and
pairwise disjoint, and can be used to represent definite

information about cardinal directions, e.g., a N :W b denotes
that region a is partly north and partly west of region b. Using
the relations of D� as our basis, we can define the powerset

2D� of D� which contains 2511 relations. Elements of 2D� are
called disjunctive cardinal direction relations and can be used
to represent not only definite, but also indefinite information

about cardinal directions, e.g., a fN; Wg b denotes that

region a is either north or west of region b. A detailed study
of cardinal direction relations is presented in [24], [25].

Goyal [6] uses direction relation matrices to represent
cardinal direction relations. At a finer level of granularity,
the notation of [6] also offers the option to record how much
of the a region falls into each tile. Such relations are called
cardinal direction relations with percentages and can be
represented with cardinal direction matrices with percentages.
Let a and b be two regions in REG�. The cardinal direction
matrices with percentages can be defined as follows:

a 100%
areaðaÞ�

areaðNWðbÞ\aÞ areaðNðbÞ\aÞ areaðNEðbÞ\aÞ
areaðWðbÞ\aÞ areaðBðbÞ\aÞ areaðEðbÞ\aÞ
areaðSWðbÞ\aÞ areaðSðbÞ\aÞ areaðSEðbÞ\aÞ

2
4

3
5 b;

where areaðaÞ denotes the area of region a.
Consider, for example, regions c and b in Fig. 1b; region c

is 50 percent northeast and 50 percent east of region b. This
relation is captured by the following cardinal direction
matrix with percentages:

c
0% 0% 50%
0% 0% 50%
0% 0% 0%

2
4

3
5 b:

In this paper, we will use simple assertions (e.g., S,
B :S :SW ) to capture cardinal direction relations [22], [23],
[24], [25] and direction relations matrices to capture
cardinal direction relations with percentages [6].

3 COMPUTING CARDINAL DIRECTION RELATIONS

Typically, in Geographical Information Systems and Spatial
Databases, the composite regions in REG� are represented
using sets of polygons [18], [29]. In this paper, the edges of
polygons are taken in a clockwise order. For instance, in
Fig. 2, region a 2 REG� is represented using polygon
ðM1 � � �M9Þ. Notice that using sets of polygons, we can even
represent regions with holes. For instance, in Fig. 2, region
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b 2 REG� is represented using polygons ðO2O3O4P3P2P1Þ
and ðO1O2P1P4P3O4Þ.

Given the polygon representations of a primary region a
and a reference region b, the computation of cardinal direction
relations problem lies in the calculation of the cardinal
direction relation R, such that a R b holds. Similarly, we
can define the computation of cardinal direction relations with
percentages problem.

Let us consider a primary region a and a reference
region b. According to Definition 1, in order to calculate the
cardinal direction relation between regions a and b, we have
to divide the primary region a into segments such that each
segment falls exactly into one tile of b. Furthermore, in order
to calculate the cardinal direction relation with percentages
we also have to measure the area of each segment.
Segmenting polygons using bounded boxes is a well-studied
topic of Computational Geometry called polygon clipping [7],
[8], [11], [26], [28]. A polygon clipping algorithm can be
extended to handle unbounded boxes (such as the tiles of
reference region b) as well. Since polygon clipping algo-
rithms are very efficient (linear in the number of polygon
edges), someone would be tempted to use them for the
calculation of cardinal direction relations and cardinal
direction relations with percentages. Let us briefly discuss
the disadvantages of such an approach.

Let us consider regions a and b presented in Fig. 3a.
Region a is formed by a quadrangle (i.e., a total of four
edges). To achieve the desired segmentation, polygon
clipping algorithms introduce new edges to a [26], [8]. After
the clipping algorithms are performed (Fig. 3b), region a is
formed by four quadrangles (i.e., a total of 16 edges). The
worst case that we can think (illustrated in Fig. 3c) starts with
three edges (a triangle) and ends with 35 edges (two
triangles, six quadrangles, and one pentagon).

Specifically, the problem is focused on the new edges that
lie on the lines forming the bounding box of the reference
region. For example, in Fig. 3b, these lines are O1B1, B1O3,
O2B1, and B1O4. These new edges are only used for the
calculation of cardinal direction relations and are discarded
afterwards. Thus, it would be important to minimize their
number. Moreover, in order to clip the primary region a, its
edges must be scanned nine times (one time for every tile of
the reference region b). In real GIS applications, we expect
that the average number of edges is quite high. Thus, each
scan of the edges of a polygon can be time consuming.
Finally, polygon clipping algorithms sometimes require
complex floating point operations which are costly.

In Sections 3.1 and 3.2, we consider the problem of
calculating cardinal direction relations and cardinal direction
relations with percentages, respectively. We provide algo-
rithms specifically tailored for this task, which avoid the
drawbacks of polygon clipping-based methods. Our propo-
sal does not segment polygons; instead, it only divides some
of the polygon edges. In Example 2, we show that such a
division is necessary for the correct calculation. Interestingly,

the resulting number of introduced edges is significantly
smaller than the respective number of polygon clipping
methods. Furthermore, the complexity of our algorithms is
not only linear in the number of polygon edges, but it can be
performed with a single pass. The efficiency of these
algorithms is experimentally verified in Section 4.

3.1 Cardinal Direction Relations

We start by considering the calculation of cardinal direction
relations problem. First, we need the following definition.

Definition 2. Let R1; . . . ; Rk be cardinal direction relations. The
tile-union of R1; . . . ; Rk, denoted by tile-unionðR1; . . . ; RkÞ,
is a relation formed from the union of the tiles of R1; . . . ; Rk.

For instance, if R1 ¼ S :SW , R2 ¼ S :E :SE, and R3 ¼ W ,
then we have tile-unionðR1; R2Þ ¼ S :SW :E :SE and tile-
unionðR1; R2; R3Þ ¼ S :SW :W :E :SE.

Let Sa ¼ fp1; . . . ; pkg and Sb ¼ fq1; . . . ; qlg be sets of
polygons representing a primary region a and a reference
region b. To calculate the cardinal direction R between the
primary region a and the reference region b, we can record
the tiles of region b where the points forming the edges of
the polygons p1; . . . ; pk fall in. Unfortunately, as the
following example presents, this is not enough.

Example 2. Let us consider the region a (formed by the
single polygon ðN1N2N3N4Þ) and the region b presented
in Fig. 4a. Clearly, points N1, N2, N3, and N4 lie in
W ðbÞ, NWðbÞ, NWðbÞ and NEðbÞ, respectively, but the
relation between p and b is B :W :NW :N :NE and not
W :NW :NE.

The problem of Example 2 arises because there exist
edges of polygon ðN1N2N3N4Þ that expand over three tiles
of the reference region b. For instance, N3N4 expands over
tiles NWðbÞ, NðbÞ, and NEðbÞ. In order to handle such
situations, we use the lines forming the minimum bounding
box of the reference region b to divide the edges of the
polygons representing the primary region a and create new
edges such that 1) region a does not change and 2) every
new edge lies in exactly one tile. To this end, for every edge
AB of region a such that A and B lie in different tiles of b,
we compute the set of intersection points I of AB with the
lines forming the minimum bounding box of b. We use the
intersection points of I to divide AB into a number of
segments fAO1; . . . ; OkBg. Each segment AO1; . . . ; OkB lies
in only one tile of b and the union of all segments is AB.
Thus, we can safely replace edge AB with AO1; . . . ; OkB
without affecting region a. Finally, to compute the cardinal
direction between regions a and b, we only have to record
the tile of b where each new segment lies. Choosing a single
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point from each segment is sufficient for this purpose; we
choose to pick the middle of the segment as a representative
point. Thus, the tile where the middle point lies gives us the
tile of the segment, too. The above procedure is captured in
Algorithm COMPUTE-CDR (Fig. 5) and is illustrated in the
following example.

Example 3. Let us continue with the regions of Example 2

(see also Fig. 4). Algorithm COMPUTE-CDR considers

every edge of region a (polygon ðN1N2N3N4Þ) in turn

and performs the replacements presented in the follow-

ing table.

It is easy to verify that every new edge lies in
exactly one tile of b (Fig. 4b). The middle points of the
new edges lie in BðbÞ, WðbÞ, NW ðbÞ, NðbÞ, NEðbÞ, and
EðbÞ. Therefore, Algorithm COMPUTE-CDR returns
B :W :NW :N :NE :E, which precisely captures the
cardinal direction relation between regions a and b.

Notice that in Example 3, Algorithm COMPUTE-CDR
takes as input a quadrangle (four edges) and returns nine
edges. This should be contrasted with the polygon clipping
method that would have resulted in 19 edges (two triangles,
two quadrangles, and one pentagon). Similarly, for the
shapes in Figs. 3b and 3c, Algorithm COMPUTE-CDR
introduces eight and 11 edges, respectively, while polygon
clipping methods introduce 16 and 34 edges, respectively.

The following theorem captures the correctness of
Algorithm COMPUTE-CDR and measures its complexity.

Theorem 1. Algorithm COMPUTE-CDR is correct, i.e., it returns
the cardinal direction relation between two regions a and b in
REG� that are represented using two sets of polygons Sa and
Sb, respectively. The running time of Algorithm COMPUTE-
CDR is Oðka þ kbÞ, where ka (respectively, kb) is the total
number of edges of all polygons in Sa (respectively, Sb).

Proof. Initially, Algorithm COMPUTE-CDR computes the
minimum bounding box of b. Then, the algorithm
considers every polygon p in Sa (the outer For loop)
and calculates the cardinal direction relation of p with
respect to region b. To this end, the algorithm considers
every edge AB of polygon p (the inner For loop). Each
edge, is divided such that every new edge lies in exactly
one tile of the reference region b. To find in which tile of
the region b a particular edge AB lies, we just have to
check the middle point of AB. For instance, consider
Fig. 6a. Edge AB is divided into three segments AO1,
O1O2, and O2B. The middle points of these segments lie
in NW , N , and NE tiles of b which are exactly the tiles
where edge AB lies.

Degenerated cases arise when an edge AB (and, of
course, its middle point) lies entirely on one of the lines
forming the minimum bounding box of the reference
region b. Such edges are called degenerated edges. The
middle point of such an edge cannot be used to
determine its relative position with respect to a reference
region. For instance, consider Fig. 6b, where the
degenerated edge AB lies on the east vertical line of
the minimum bounding box of b. Using the middle point
O of AB, we cannot tell whether the polygon p lies in
NðbÞ or NWðbÞ. We distinguish the following cases:
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1. Polygon p has only one degenerated edge. Let AB be
the degenerated edge of polygon p. In this case,
we can resolve the uncertainty introduced by
edge AB by looking at the edge that precedes or
the edge that follows AB. For instance, let us
consider Fig. 6c and the degenerated edge AB of
p. The fact that polygon p lies in NðbÞ cannot be
derived by edge AB, but it can be derived by edge
BC that follows AB. Summarizing, we can safely
ignore the degenerated edge AB of a polygon p
without affecting the correct computation of the
cardinal direction relation of polygon p with
respect to region b.

2. Polygon p has only degenerated edges. This may

happen only when p ¼ mbbðbÞ (see Fig. 6d). In this

case, none of the middle points determine the

cardinal direction relation. This case is handled

by the If statement of Algorithm COMPUTE-CDR.

For instance, in Fig. 6d, the center of mbbðbÞ lies

inside polygon p, thus the algorithm correctly

returns p B b. Thus, in this case, we can ignore the

degenerated edges, too. Notice that the If state-

ment is sound, so it will not affect the correct

computation of any other (nondegenerated) case.
3. Polygon p has k, 1 < k, degenerated edges. It is easy to

see that to correctly compute the direction relation
between polygon p and region b, we have to ignore
the degenerate edges,consider only nondegener-
ated edges, and, finally, check whether the center
ofmbbðbÞ lies inside polygon p, exactly as it is done
in Algorithm COMPUTE-CDR.
See, for instance, Fig. 6e and Fig. 6f, where the
algorithm correctly returns p B : N b.

Let us now calculate the running time of this

algorithm. The minimum bounding box of b can be

calculated in OðkbÞ time. Following, Algorithm COM-

PUTE-CDR performs an outer loop. This loop examines

every polygon p in Sa and performs an inner loop and a

check (the If statement). The inner loop examines every

edge of polygon p once. The condition of the If statement

also requires an examination of every edge of polygon p

[16]. Summarizing, the outer loop can be executed in

OðkaÞ time. Finally, the total complexity of Algorithm

COMPUTE-CDR is Oðka þ kbÞ time. tu
Notice that Algorithm COMPUTE-CDR can be easily

changed so that the inner loop and the If statement are

merged and performed with a single pass on the edges of

region a (instead of the two passes that are required now).

The new algorithm has the same complexity, but it has

improved performance especially in real GIS applications

where the number of edges is high.
Summarizing this section, we can use Algorithm

COMPUTE-CDR to compute the cardinal direction relation
between two sets of polygons representing two regions a
and b in REG�. The following section considers the case of
cardinal direction relations with percentages.

3.2 Cardinal Direction Relations with Percentages

In order to compute cardinal direction relations with
percentages, we have to calculate the area of the primary
region that falls in each tile of the reference region. A naive
way for this task is to segment the polygons that form the
primary region (using polygon clipping algorithms) so that
every polygon lies in exactly one tile of the reference region.
Then, for each tile of the reference region, we find the
polygon segments of the primary region that lie inside it
and compute their area. In this section, we will propose an
alternative method that is based on Algorithm COMPUTE-
CDR. This method simply computes the area between the
edges of the polygons that represent the primary region and
an appropriate reference line without segmenting these
polygons. Specifically, in the rest of this section, we proceed
with the following steps:

1. We present two expressions to compute the areas
that lie between a certain edge and two axes
(Definition 4) and we employ these expressions to
compute the area of a polygon (Lemma 1).

2. Depending on the tile T that an edge of a polygon
lies in, we present a simple method to decide which
of the two aforementioned expressions should be
used for the correct computation of the area that lies
within tile T (Lemma 2).

3. We present Algorithm COMPUTE-CDR% that com-
putes the cardinal direction relation with percen-
tages of two regions (Fig. 10).

We will now present a method to compute the area
between a line and an edge. We will first need the following
definition.

Definition 3. Let AB be an edge and e be a line. Line e does not

cross AB if and only if one of the following holds: 1) AB and e

do not intersect, 2) AB and e intersect only at point A or B, or

3) AB completely lies on e.

For example, in Fig. 7, line y ¼ l does not cross edge AB.

Let us now calculate the area between an edge and a line.

Definition 4. Let AðxA; yAÞ and BðxB; yBÞ be two points

forming edge AB, y ¼ l, and x ¼ m be two lines that do not

cross AB. Also, let LA and LB (respectively, MA and MB) be

the projections of points A, B to line y ¼ l (respectively,

x ¼ m)—see also Fig. 7. We define the expressions ElðABÞ
and E0

mðABÞ as follows:
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ElðABÞ ¼
ðxA � xBÞðyA þ yB � 2lÞ

2
and

E0
mðABÞ ¼ ðyA � yBÞðxA þ xB � 2mÞ

2
:

Expressions ElðABÞ and E0
mðABÞ can be positive or

negative depending on the direction of vector AB
�!

. It is

easy to verify that ElðABÞ ¼ �ElðBAÞ and E0
mðABÞ ¼

�E0
mðBAÞ holds. The absolute value of ElðABÞ equals to

the area between edge AB and line y ¼ l, i.e., the area
of polygon ðABLBLAÞ. In other words, we have

areað ðABLBLAÞ Þ ¼ jElðABÞj ¼
���� ðxA � xBÞðyA þ yB � 2lÞ

2

����:
Symmetrically, the area between edge AB and line x ¼ m,

i.e., the area of polygon ðAMBMABÞ, equals to the absolute

value of E0
mðABÞ, thus we have

areað ðAMAMBBÞ Þ ¼ jE0
mðABÞj

¼
���� ðyA � yBÞðxA þ xB � 2mÞ

2

����:
Expressions El and E0

m can be used to calculate the area

of polygons. Consider the following lemma.

Lemma 1. Let p ¼ ðN1 � � �NkÞ be a polygon and y ¼ l and x ¼
m be two lines that do not cross with any edge of polygon p.

The area of polygon p, denoted by areaðpÞ, can be calculated as

follows:

areaðpÞ ¼ j ElðN1N2Þ þ � � � þ ElðNkN1Þ j
¼ j E0

mðN1N2Þ þ � � � þ E0
mðNkN1Þ j:

Proof. Let O be an arbitrary point. The area of polygon

p ¼ ðN1 � � �NkÞ can be computed using expression

areaðpÞ ¼ j EðO;N1; N2Þ þ EðO;N2; N3Þ
þ � � � þ EðO;Nk;N1Þ j;

where EðA;B;CÞ is the area of triangle with corners A,

B, and C [13], [16]. If Ni ¼ ðxi; yiÞ, 1 � i � k, then

equivalently we have:

areaðpÞ ¼
���� 1

2

� Xk�1

i¼1

ðxiyiþ1 � yixiþ1Þ þ ðxky1 � ykx1Þ
� ����:

Let us now consider expressions j ElðN1N2Þ þ � � � þ
ElðNkN1Þ j and j E0

mðN1N2Þ þ � � � þE0
mðNkN1Þ j. It is easy

to verify that by replacing expressions ElðNiNjÞ ¼
ðxi�xjÞðyiþyj�2lÞ

2 and E0
mðNiNjÞ ¼ ðyi�yjÞðxjþxj�2mÞ

2 , we have

that:

areaðpÞ ¼ j ElðN1N2Þ þ � � � þElðNkN1Þ j

¼ j E0
mðN1N2Þ þ � � � þ E0

mðNkN1Þ j:
ut

Notice that, in order to calculate the area of a polygon p,

Computational Geometry algorithms use a similar method

that is based on a reference point (instead of a line) [13],

[16]. This point-based method is not appropriate for our

case because it requires to segment the primary region

using polygon clipping algorithms (see also the discussion

at the beginning of Section 3). In the rest of this section, we

will present a method that utilizes expressions El and E0
m

and does not require polygon clipping.

Example 4. Let us consider polygon p ¼ ðN1N2N3N4Þ and

line y ¼ l presented in Fig. 8d. The area of polygon p can

be calculated using formula

areaðpÞ ¼ j ElðN1N2Þ þ ElðN2N3Þ þ ElðN3N4Þ þ ElðN4N1Þ j:

All the intermediate expressions ElðN1N2Þ,

ElðN1N2Þ þ ElðN2N3Þ; ElðN1N2Þ þ ElðN2N3Þ þ ElðN3N4Þ;

and ElðN1N2Þ þElðN2N3Þ þElðN3N4Þ þElðN4N1Þ are

presented as the gray areas of Figs. 8a, 8b, 8c, and

8d, respectively.

We will use expressions El and E0
m to compute the

percentage of the area of the primary region that falls in

each tile of the reference region. Let us consider region a

presented in Fig. 9. Region a is formed by polygons

ðN1N2N3N4Þ and ðM1M2M3Þ. Similarly to Algorithm COM-

PUTE-CDR, to compute the cardinal direction relation with

percentages of a with b we first use the mbbðbÞ to divide the

edges of region a. Region b is not depicted in Fig. 9, in order

to avoid overloading the figure. Let x ¼ m1, x ¼ m2, y ¼ l1,

and y ¼ l2 be the lines forming mbbðbÞ. These lines divide

the edges of polygons ðN1N2N3N4Þ and ðM1M2M3Þ as

shown in Fig. 9.
Let us now compute the area of a that lies in the NW tile

of b (i.e., areaðNWðbÞ \ aÞ). Notice that

areaðNWðbÞ \ aÞ ¼ areaððO1N2O2B1ÞÞ:

To compute the area of polygon ðO1N2O2B1Þ it is

convenient to use the reference line x ¼ m1. Doing so, we

do not have to compute edges B1O1 and O2B1 because

E0
m1
ðB1O1Þ ¼ 0 and E0

m1
ðO2B1Þ ¼ 0 hold and, thus, the area

we are looking for can be calculated with formula

areaðNWðbÞ \ aÞ ¼ areaððO1N2O2B1ÞÞ
¼ j E0

m1
ðO1N2Þ þ E0

m1
ðN2O2Þ j:

In other words, to compute the area of a that lies inNWðbÞ
(areaðNWðbÞ \ aÞ) we calculate the area between the west

line ofmbbðbÞ (x ¼ m1) and every edge of a that lies inNWðbÞ,
i.e., we have areaðNWðbÞ \ aÞ ¼ j

P
AB2NWðbÞ E

0
m1
ðABÞ j.

Similarly, to calculate the area of a that lies in the WðbÞ
and SWðbÞ, we can use the expressions: areaðWðbÞ \ aÞ ¼
j
P

AB2WðbÞ E
0
m1
ðABÞ j and
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areaðSW ðbÞ \ aÞ ¼
���� X
AB2SWðbÞ

E0
m1
ðABÞ

����:
For instance, in Fig. 9, we have areaðWðbÞ \ aÞ ¼
jE0

m1
ðN1O1Þ þ E0

m1
ðO4N1Þj and areaðSWðbÞ \ aÞ ¼ 0.

To calculate the area of a that lies in NEðbÞ, EðbÞ,
SEðbÞ, SðbÞ, and NðbÞ we simply have to change the line
of reference that we use. In the first three cases, we use
the east line of mbbðbÞ (i.e., x ¼ m2 in Fig. 9), in the
fourth case, we use the south line of mbbðbÞ (y ¼ l1) and,
in the last case, we use the north line of mbbðbÞ (y ¼ l2).

In all cases, we use the edges of a that fall in the tile
of b that we are interested in. Thus, we have:
areaðT ðbÞ \ aÞ ¼ j

P
AB2T ðbÞ E

0
m2
ðABÞ j if T 2 fNE;E; SEg,

areaðSðbÞ \ aÞ ¼ j
P

AB2SðbÞ El1ðABÞ j, and

areaðNðbÞ \ aÞ ¼
���� X

AB2NðbÞ
El2ðABÞ

����:
For instance, in Fig. 9, we have areaðNðbÞ \ aÞ ¼
j El2ðO2N3Þ þEl2ðN3O3Þ j and

areaðEðbÞ \ aÞ ¼ j E0
m2
ðQ1M2Þ þE0

m2
ðM2Q2Þ j:

Let us now consider the area of a that lies in BðbÞ. None
of the lines of mbbðbÞ can help us compute areaðBðbÞ \ aÞ
without segmenting the polygons that represent region a.
For instance, in Fig. 9, using line y ¼ l1, we have

areaðBðbÞ \ aÞ ¼ j El1ðQ4M1Þ þEl1ðM1Q1Þ þ El1ðO3N4Þ
þEl1ðN4O4Þ þ El1ðB1O3Þ j:

Edge B1O3 is not an edge of any of the polygons
representing a. To handle such situations, we employ the
following method. We use the south line of mbbðbÞ
(y ¼ l1) as the reference line and calculate the areas

between y ¼ l1 and all edges that lie both in NðbÞ and
BðbÞ. This area will be denoted by areaððBþNÞðbÞ \ aÞ
and is practically the area of a that lies on NðbÞ and BðbÞ,
i.e., areaððBþNÞðbÞ \ aÞ ¼ areaðNðbÞ \ aÞ þ areaðBðbÞ \ aÞ.

Since areaðNðbÞ \ aÞ has been previously computed, we
just have to subtract it from areaððBþNÞðbÞ \ aÞ in order
to derive areaðBðbÞ \ aÞ. For instance, in Fig. 9, we have

areaððBþNÞðbÞ \ aÞ ¼
���� X

AB2BðbÞ[NðbÞ
El1ðABÞ

����
¼ j El1ðO2N3Þ þEl1ðN3O3Þ þEl1ðO3N4Þ
þEl1ðN4O4Þ þ El1ðM1Q1Þ
þEl1ðQ4M1Þ j

¼ areað ðO2N3O3N4O4Þ
þ ðM1Q1B2Q4Þ Þ

and

areaðNðbÞ \ aÞ ¼
���� X

AB2NðbÞ
El2ðABÞ

����
¼ j El2ðO2N3Þ þ El2ðN3O3Þ j
¼ areað ðO2N3O3B1Þ Þ:

Therefore,

areaðBðbÞ \ aÞ ¼ areaððBþNÞðbÞ \ aÞ � areaðNðbÞ \ aÞ

holds.
The above method is summarized in the following

lemma.

Lemma 2. Let a and b be two polygons. Let us also assume that
every edge of AB of a lies in exactly one tile of b. Then, the area
of polygon a that falls in every tile of polygon b can be
computed as follows:

areaðT ðbÞ \ aÞ ¼
���� X

AB2T ðbÞ
E0

m1
ðABÞ

���� if T 2 fNW;W;SWg

areaðT ðbÞ \ aÞ ¼
���� X

AB2T ðbÞ
E0

m2
ðABÞ

���� if T 2 fNE;E; SEg

areaðSðbÞ \ aÞ ¼
���� X

AB2SðbÞ
El1ðABÞ

����
areaðNðbÞ \ aÞ ¼

���� X
AB2NðbÞ

El2ðABÞ
����

areaðBðbÞ \ aÞ ¼ j
X

AB2NðbÞ[BðbÞ El1ðABÞ j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
areaðBðbÞ[NðbÞÞ

�

j
X

AB2NðbÞ El2ðABÞ j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
areaðNðbÞÞ

;

SKIADOPOULOS ET AL.: COMPUTING AND MANAGING CARDINAL DIRECTION RELATIONS 1617

Fig. 8. Using expression El to calculate the area of a polygon.

Fig. 9. Computing cardinal direction relations with percentages.



where AB 2 T ðbÞ denotes all the edges of polygon a that fall in

the T tile of polygon b.

Algorithm COMPUTE-CDR%, presented in Fig. 10,
utilizes Lemma 2 to compute cardinal direction relations
with percentages. The following theorem captures the
correctness of Algorithm COMPUTE-CDR% and measures
its complexity.

Theorem 2. Algorithm COMPUTE-CDR% is correct, i.e., it
returns the cardinal direction relation with percentages
between two regions a and b in REG� that are represented
using two sets of polygons Sa and Sb, respectively. The
running time of Algorithm COMPUTE-CDR% is Oðka þ kbÞ,
where ka (respectively, kb) is the total number of edges of all
polygons in Sa (respectively, Sb).

Proof. The correctness of Algorithm COMPUTE-CDR%
follows from the correctness of Algorithm COMPUTE-
CDR and Lemmas 1 and 2. With respect to the running
time, Algorithm COMPUTE-CDR starts by dividing the
edges of region a using the lines of the minimum
bounding box of region b. This can be done in Oðka þ kbÞ
time (similarly to Algorithm COMPUTE-CDR). Then,
Algorithm COMPUTE-CDR% performs a For loop which
examines every edge of Sa. All the checks inside this loop
can be done in constant time, thus the complexity of the
For loop is OðkaÞ time. Summarizing, the total complex-
ity of Algorithm COMPUTE-CDR% is Oðka þ kbÞ time. tu

4 EXPERIMENTAL EVALUATION

In Section 3, we have presented Algorithms COMPUTE-CDR
and COMPUTE-CDR% that compute cardinal direction
relations and cardinal direction relations with percentages,
respectively. Moreover, we have briefly discussed the
advantages of using Algorithms COMPUTE-CDR and COM-

PUTE-CDR% over methods that compute cardinal direction
relations and are based on polygon clipping. In this section,
we experimentally evaluate the performance of our algo-
rithms to support the aforementioned theoretical analysis.

A preliminary evaluation analysis has indicated that
Algorithm COMPUTE-CDR% is marginally slower than
Algorithm COMPUTE-CDR. Therefore, in our experiments,
we have only used Algorithm COMPUTE-CDR% since it
provides more informative relations than Algorithm COM-
PUTE-CDR. We compare Algorithm COMPUTE-CDR% with
two algorithms that are based on the popular Sutherland
and Hodgman [26] and Liang and Barsky [8] polygon
clipping methods. These algorithms solve a special case of
the polygon clipping problem. They take as input a polygon
a and a rectangle b and return a new polygon that represents
the part of polygon a that fall inside b. There are also some
more recent and more sophisticated algorithms for polygon
clipping in the Computational Geometry literature [7], [28].
We do not consider these algorithms since they solve the
general polygon clipping problem (i.e., where both a and b
are arbitrary polygons) and this functionality is not
required to solve the problem of computing cardinal
direction relations.

Particularly, the Sutherland and Hodgman method clips
the polygon a against a rectangle b as follows: Every edge of
rectangle b, if extended to a line, divides the plane into two
half-planes. Clipping a polygon against a line involves
computing the part of the polygon a that lies on the half-
plane that contains b. Based on this observation, the
Sutherland and Hodgman method clips polygon a con-
secutively against each edge of rectangle b. The Liang and
Barsky method treats the edges of polygon a and rectangle b
as lines of infinite extent. Then, the intersection points of
these extended lines are computed and these points are
used to determine the segment of each edge that falls inside
rectangle b, as well as any additional edges that need to be
included in the output polygon.

The three algorithms that we compare were pro-
grammed in C and all experiments were performed on an
AMD Sempron 2400+ with 512MB of memory running
Windows XP. In our experiments, we have used both real
and synthetic data. The synthetic data is comprised of four
different groups of artificially produced configurations of
polygons. Each group contains 20 configurations that are
formed by randomly generated polygons all having three,
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four, five, and 10 edges, respectively. Additionally, the
number of polygons in the configurations of each group
ranges from 25 to 500.

The real data is comprised of two configurations. The
first configuration is a map of the prefectures of Hellas. It is
formed by 129 polygons with 53 edges on average. The
second configuration is a map of land parcels from the
Hellenic Cadastre and it is comprised of 1,995 polygons
with 17 edges on average.

For every map, we compute the cardinal direction
relation between every possible pair of polygons (in this
particular map). As we have mentioned in Section 3, both
Algorithm COMPUTE-CDR% and polygon clipping-based
algorithms introduce additional edges in order to compute
cardinal direction relations. Therefore, we calculate the total
time needed by the algorithms for every image, as well as
the total number of new edges that are introduced. Our
results are summarized in Fig. 11. Fig. 11a presents the
increase in the total number of polygon edges of an image,
as a percentage of the original total number. We can see that
Algorithm COMPUTE-CDR% introduces at least two times
(respectively, three times) fewer edges than the algorithm
based on Sutherland and Hodgman (respectively, Liang
and Barsky) clipping method.

Fig. 11b illustrates the running time of the three
algorithms that we compare. Algorithm COMPUTE-CDR%
is between 7 and 12 times (respectively, 14 and 28) faster
than the method based on Sutherland and Hodgman
(respectively, Liang and Barsky) clipping algorithm.

For the synthetic data, we also present more detailed
results (Fig. 12). For each of the four groups of maps we
present a pair of graphs. The left-hand side graphs illustrate
the number of additional edges that the three algorithms
introduce (in thousands). The right-hand side graphs
illustrate the running time of the three algorithms (in
milliseconds). For instance, the second pair of graphs
presents the additional edges and the running time of the
three algorithms for the group of configurations that
contains polygons with four edges.

Summarizing, in this section we have compared Algo-
rithm COMPUTE-CDR% and two algorithms that use
polygon clipping in order to compute cardinal direction

relations. We have experimentally demonstrated that
Algorithm COMPUTE-CDR% outperforms the clipping-
based methods. In the following section, we present an
actual system, CARDIRECT, that incorporates Algorithms
COMPUTE-CDR and COMPUTE-CDR%.

5 A TOOL FOR THE MANIPULATION OF CARDINAL

DIRECTION INFORMATION

In this section, we will present a tool that implements the
aforementioned algorithms for the computation of cardinal
direction relations among regions. The tool, CARDIRECT, has
been implemented in C++ over the Microsoft Visual Studio
toolkit.1 Using CARDIRECT, the user can specify, edit, and
annotate regions of interest over some underlying image
(astronomical images, city maps, etc.). Then, the tool
automatically computes the cardinal direction relations
(with and without percentages) between these regions using
the linear algorithms of Section 3. The information concern-
ing the underlying image, the introduced regions, their
composing polygons and their relations form the metain-
formation for the overall configuration. The configuration of
the image and the introduced regions is persistently stored
in an ASCII file using a simple XML description. Such a
representation of data is economical in terms of data size
(only a few kilobytes, without any compression). Moreover,
the user is allowed to query the stored XML description of
the image and retrieve combinations of interesting regions.
The queries are expressions in conjunctive normal form,
with variables ranging either over regions or other mean-
ingful properties of the polygons of the configuration (e.g.,
color). The results are regions that fulfill the criteria of the
submitted query.

The architecture of CARDIRECT involves

1. a graphical front-end component, through which the
user manipulates his configurations and poses
queries,

2. a reasoner component, used to compute all the
combinations of cardinal direction relations, and

3. a query engine to answer queries.

It is also possible to export the constructed configurations in
XML descriptions and to pose queries over them, though
the respective components.

The XML description of the exported scenarios is quite
simple. A configuration (Image) is defined upon an image
file (e.g., a map) and is comprised of a set of regions and a set
of relations among them. Each region is comprised of a set of
polygons of the same color and each polygon is comprised of
a set of edges (defined by x and y-coordinates). The direction
relations among the different regions are all stored in the
XML description of the configuration. More details about the
used XML description can be found in [20].

Observe Fig. 13a. In this configuration, the user has
opened a map of Ancient Greece at the time of the
Peloponnesian war as the underlying image. Then, the user
defined three sets of regions:

1. the “Athenean Alliance” in blue, comprising of
Attica, the Islands, the regions in the East, Corfu
and South Italy,

2. the “Spartan Alliance” in red, comprising of Pelo-
ponnesos, Beotia, Crete and Sicily, and

3. the “Pro-Spartan” in black, comprising ofMacedonia.
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1. See http://www.microsoft.com/visualc/.



To further improve the readability of Fig. 13, gray lines

(Spartan Alliance) also appear dashed, black lines (Pro-

Spartan) are thicker, while other gray lines (Athenean

Alliance) are normal.

Moreover, CARDIRECT can compute the cardinal direc-

tion relations and the cardinal direction relations with

percentages between the identified regions. In Figs. 13b and

13c, we have calculated the relations between the regions of

1620 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Fig. 12. Detailed results for synthetic data.



Fig. 13a. For instance, Peloponnesos is B : S : SW : W of
Attica (Fig. 13b) while Attica is

0% 19% 12%
0% 19% 50%
0% 0% 0%

2
4

3
5

of Peloponnesos (Fig. 13c).

The query language that we employ is based on the

following simple model. Let A be a set of regions in REG�

over a configuration. Let C be a finite set of thematic

attributes for the regions of REG� (e.g., the color of each

region) and f a function, f : REG� ! domðCÞ, practically
relating each of the regions with a value over the domain of

C (e.g., the fact that the Spartan Alliance is colored).

A query condition over variables x1; . . . ; xk is a conjunc-

tion of the following types of formulae xi ¼ a, fðxiÞ ¼ c,

xi R xj, where 1 � i; j � k, a 2 A is a region of the

configuration, c 2 domðCÞ is a value of a thematic

attribute, and R 2 2D� is a (possibly disjunctive) cardinal

direction relation. A query q over variables x1; . . . ; xk is a

formula of the form q ¼ fðx1; . . . ; xkÞ j �ðx1; . . . ; xkÞg,
where �ðx1; . . . ; xkÞ is a query condition.

Intuitively, the query returns a set of regions in the

configuration of an image that satisfy the query condition,

which can take the form of:

1. a cardinal direction constraint between the query
variables (e.g., x1 B :SE :S x2),

2. a restriction in the thematic attributes of a variable
(e.g., colorðx1Þ ¼ blue), and

3. direct reference of a particular region (e.g.,
x1 ¼ Attica).

For instance, over the configuration of Fig. 13a, we can
pose the following query: “Find all regions of the Athenean
Alliance which are surrounded by a region in the Spartan
Alliance.” This query can be expressed as

q ¼ fða; bÞ j colorðaÞ ¼ red; colorðbÞ ¼ blue;

a S :SW :W :NW :N :NE :E :SE bg:

We can express and execute the above query using
CARDIRECT. Moreover, CARDIRECT allows the user to store
the query using XML. For instance, the above query can be
expressed in XML as follows:

<?query version=”1.0” encoding=”UTF-8”?>

<Image id=”image1” >

<Variables>

<name=”a” color=”Red”/>

<name=”b” color=”Blue”/>

</Variables>

<Relations>

<primary=”a” reference=”b”

relations=”S:SW:W:NW:N:NE:E:SE”/>

</Relations>

</Image>

For the regions of Fig. 13a, only Peloponnesos and Argos
satisfy the query. Peloponnesos, which belongs to the
Spartan Alliance presented in dashed lines, is S :SW:W :
NW:N :NE :E :SE of Argos, which belongs to the Athe-
nean Alliance presented in normal lines.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of efficiently
computing the cardinal direction relations between regions
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that are composed of sets of polygons 1) by presenting two
linear algorithms for this task and 2) by explaining their
incorporation into an actual system. The input of both
algorithms is two sets of polygons representing the two
involved regions. The first of the proposed algorithms
computes the cardinal direction relations between the input
regions while the second computes the cardinal direction
relations with percentages between the input regions. To
the best of our knowledge, these are the first algorithms that
address the aforementioned problem. Moreover, we have
experimentally evaluated the proposed algorithms and
demonstrated their improved performance over algorithms
based on polygon clipping methodologies. The algorithms
have been implemented and embedded in an actual system,
CARDIRECT, which allows the user to specify, edit, and
annotate regions of interest in an image. Then, CARDIRECT

automatically computes the cardinal direction relations
between these regions. The configuration of the image
and the introduced regions are persistently stored using a
simple XML description. The user is allowed to query the
stored XML description of the image and retrieve combina-
tions of interesting regions on the basis of the query.

Although this part of our research addresses the problem
of relation computation to a sufficient extent, there are still
open issues for future research. An interesting topic is the
possibility of combining the presented cardinal direction
relations model with topological [3] and distance relations
[4]. Another issue is the possibility of combining the
underlying model with extra thematic information and the
enrichment of the employed query language on the basis of
this combination. Finally, a long-term goal would be the
integration of CARDIRECT with image segmentation soft-
ware [27], which would assist the user to specify interesting
regions in an image, thus, providing a more automated
environment for the management of image configurations.
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