
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

E-mail addre

dbnet.ece.ntua.g

(P. Georgantas)

spiros@dbnet.e
Information Systems 30 (2005) 492–525

www.elsevier.com/locate/infosys
A generic and customizable framework for the design
of ETL scenarios

Panos Vassiliadisa, Alkis Simitsisb, Panos Georgantasb, Manolis Terrovitisb,
Spiros Skiadopoulosb

aDepartment of Computer Science, University of Ioannina, Ioannina, Greece
bDepartment of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
Abstract

Extraction–transformation–loading (ETL) tools are pieces of software responsible for the extraction of data from

several sources, their cleansing, customization and insertion into a data warehouse. In this paper, we delve into the

logical design of ETL scenarios and provide a generic and customizable framework in order to support the DW

designer in his task. First, we present a metamodel particularly customized for the definition of ETL activities. We

follow a workflow-like approach, where the output of a certain activity can either be stored persistently or passed to a

subsequent activity. Also, we employ a declarative database programming language, LDL, to define the semantics of

each activity. The metamodel is generic enough to capture any possible ETL activity. Nevertheless, in the pursuit of

higher reusability and flexibility, we specialize the set of our generic metamodel constructs with a palette of frequently

used ETL activities, which we call templates. Moreover, in order to achieve a uniform extensibility mechanism for this

library of built-ins, we have to deal with specific language issues. Therefore, we also discuss the mechanics of template

instantiation to concrete activities. The design concepts that we introduce have been implemented in a tool, ARKTOS II,

which is also presented.

r 2004 Elsevier B.V. All rights reserved.

Keywords: Data warehousing; ETL
1. Introduction

Data warehouse operational processes normally
compose a labor-intensive workflow, involving
e front matter r 2004 Elsevier B.V. All rights reserve

2004.11.002

sses: pvassil@cs.uoi.gr (P. Vassiliadis), asimi@

r (A. Simitsis), pgeor@dbnet.ece.ntua.gr

, mter@dbnet.ece.ntua.gr (M. Terrovitis),

ce.ntua.gr (S. Skiadopoulos).
data extraction, transformation, integration,
cleaning and transport. To deal with this work-
flow, specialized tools are already available in the
market [1–4], under the general title Extraction—

Transformation– Loading (ETL) tools. To give a
general idea of the functionality of these tools we
mention their most prominent tasks, which include
(a) the identification of relevant information at the
source side, (b) the extraction of this information,
d.

www.elsevier.com/locate/infosys

ARTICLE IN PRESS

Security & Access Rights Management

Recovery Plan

Execution Schedule

Execution Sequence

Monitoring & Logging

Data Flowfor Logical Exceptions
Primary Data Flow

Execution Plan

Administration Plan

Relationship
with data

Resource Layer

Operational Layer

Logical Perspective Physical Perspective

Fig. 1. Different perspectives for an ETL workflow.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 493
(c) the customization and integration of the
information coming from multiple sources into a
common format, (d) the cleaning of the resulting
data set on the basis of database and business
rules, and (e) the propagation of the data to the
data warehouse and/or data marts.
If we treat an ETL scenario as a composite

workflow, in a traditional way, its designer is
obliged to define several of its parameters (Fig. 1).
Here, we follow a multi-perspective approach that
enables to separate these parameters and study
them in a principled approach. We are mainly
interested in the design and administration parts of
the lifecycle of the overall ETL process, and we
depict them at the upper and lower part of Fig. 1,
respectively. At the top of Fig. 1, we are mainly
concerned with the static design artifacts for a
workflow environment. We will follow a tradi-
tional approach and group the design artifacts into
logical and physical, with each category compris-
ing its own perspective. We depict the logical
perspective on the left-hand side of Fig. 1, and the
physical perspective on the right-hand side. At the
logical perspective, we classify the design artifacts
that give an abstract description of the workflow
environment. First, the designer is responsible for
defining an execution plan for the scenario. The
definition of an execution plan can be seen from
various perspectives. The execution sequence in-
volves the specification of which activity runs first,
second, and so on, which activities run in parallel,
or when a semaphore is defined so that several
activities are synchronized at a rendezvous point.
ETL activities normally run in batch, so the
designer needs to specify an execution schedule,
i.e., the time points or events that trigger the
execution of the scenario as a whole. Finally, due
to system crashes, it is imperative that there exists
a recovery plan, specifying the sequence of steps to
be taken in the case of failure for a certain activity
(e.g., retry to execute the activity, or undo any
intermediate results produced so far). On the right-
hand side of Fig. 1, we can also see the physical
perspective, involving the registration of the actual
entities that exist in the real world. We will reuse
the terminology of [5] for the physical perspective.
The resource layer comprises the definition of roles
(human or software) that are responsible for
executing the activities of the workflow. The
operational layer, at the same time, comprises the
software modules that implement the design
entities of the logical perspective in the real world.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525494
In other words, the activities defined at the logical
layer (in an abstract way) are materialized and
executed through the specific software modules of
the physical perspective.
At the lower part of Fig. 1, we are dealing with

the tasks that concern the administration of the
workflow environment and their dynamic beha-
vior at runtime. First, an administration plan

should be specified, involving the notification of
the administrator either on-line (monitoring) or
off-line (logging) for the status of an executed
activity, as well as the security and authentication
management for the ETL environment.
We find that research has not dealt with the

definition of data-centric workflows to the entirety
of its extent. In the ETL case, for example, due to
the data centric nature of the process, the designer
must deal with the relationship of the involved

activities with the underlying data. This involves the
definition of a primary data flow that describes the
route of data from the sources towards their final
destination in the data warehouse, as they pass
through the activities of the scenario. Also, due to
possible quality problems of the processed data,
the designer is obliged to define a data flow for

logical exceptions, i.e., a flow for the problematic
data, i.e., the rows that violate integrity or business
rules. It is the combination of the execution
sequence and the data flow that generates the
semantics of the ETL workflow: the data flow
defines what each activity does and the execution
plan defines in which order and combination.
In this paper, we work in the internals of the

data flow of ETL scenarios. First, we present a
metamodel particularly customized for the defini-
tion of ETL activities. We follow a workflow-like
approach, where the output of a certain activity
can either be stored persistently or passed to a
subsequent activity. Moreover, we employ a
declarative database programming language,
LDL, to define the semantics of each activity.
The metamodel is generic enough to capture any
possible ETL activity; nevertheless, reusability and
ease-of-use dictate that we can do better in aiding
the data warehouse designer in his task. In this
pursuit of higher reusability and flexibility, we
specialize the set of our generic metamodel
constructs with a palette of frequently used ETL
activities, which we call templates. Moreover, in
order to achieve a uniform extensibility mechan-
ism for this library of built-ins, we have to deal
with specific language issues: thus, we also discuss
the mechanics of template instantiation to concrete
activities. The design concepts that we introduce
have been implemented in a tool, ARKTOS II, which
is also presented.
Our contributions can be listed as follows:
�
 First, we define a formal metamodel as an

abstraction of ETL processes at the logical level.
The data stores, activities and their constituent
parts are formally defined. An activity is defined
as an entity with possibly more than one input
schemata, an output schema and a parameter
schema, so that the activity is populated each
time with its proper parameter values. The flow
of data from producers towards their consumers
is achieved through the usage of provider

relationships that map the attributes of the
former to the respective attributes of the latter.
A serializable combination of ETL activities,
provider relationships and data stores constitu-
tes an ETL scenario.
�
 Second, we provide a reusability framework that
complements the genericity of the metamodel.
Practically, this is achieved from a set of ‘‘built-
in’’ specializations of the entities of the meta-
model layer, specifically tailored for the most
frequent elements of ETL scenarios. This palette
of template activities will be referred to as
template layer and it is characterized by its
extensibility; in fact, due to language considera-
tions, we provide the details of the mechanism
that instantiates templates to specific activities.
�
 Finally, we discuss implementation issues and we
present a graphical tool, ARKTOS II that facil-
itates the design of ETL scenarios, based on our
model.

This paper is organized as follows. In Section 2,
we present a generic model of ETL activities.
Section 3 describes the mechanism for specifying
and materializing template definitions of fre-
quently used ETL activities. Section 4 presents
ARKTOS II, a prototype graphical tool. In Section 5,
we survey related work. In Section 6, we make a

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 495
general discussion on the completeness and general
applicability of our approach. Section 7 offers
conclusions and presents topics for future re-
search. Short versions of parts of this paper have
been presented in [6,7].
1In data warehousing terminology a DSA is an intermediate

area of the data warehouse, specifically destined to enable the

transformation, cleaning and integration of source data, before

being loaded to the warehouse.
2The technical points, like FTP, are mostly employed to show

what kind of problems someone has to deal with in a practical

situation, rather than to relate this kind of physical operations

to a logical model. In terms of logical modelling this is a simple

passing of data from one site to another.
2. Generic model of ETL activities

The purpose of this section is to present a formal
logical model for the activities of an ETL
environment. This model abstracts from the
technicalities of monitoring, scheduling and log-
ging while it concentrates on the flow of data from
the sources towards the data warehouse through
the composition of activities and data stores. The
full layout of an ETL scenario, involving activities,
recordsets and functions can be modeled by a
graph, which we call the architecture graph. We
employ a uniform, graph-modeling framework for
both the modeling of the internal structure of
activities and the ETL scenario at large, which
enables the treatment of the ETL environment
from different viewpoints. First, the architecture
graph comprises all the activities and data stores of
a scenario, along with their components. Second,
the architecture graph captures the data flow
within the ETL environment. Finally, the informa-
tion on the typing of the involved entities and the
regulation of the execution of a scenario, through
specific parameters are also covered.

2.1. Graphical notation and motivating example

Being a graph, the architecture graph of an ETL
scenario comprises nodes and edges. The involved
data types, function types, constants, attributes,
activities, recordsets, parameters and functions
constitute the nodes of the graph. The different
kinds of relationships among these entities are
modeled as the edges of the graph. In Fig. 2, we
give the graphical notation for all the modeling
constructs that will be presented in the sequel.

Motivating example: To motivate our discus-
sion, we will present an example involving the
propagation of data from a certain source S1,
towards a data warehouse DW through intermedi-
ate recordsets. These recordsets belong to a data
staging area (DSA)1 DS. The scenario involves the
propagation of data from the table PARTSUPP of
source S1 to the data warehouse DW. Table
DW.PARTSUPP (PKEY, SOURCE, DATE, QTY,
COST) stores information for the available quan-
tity (QTY) and cost (COST) of parts (PKEY)
per source (SOURCE). The data source S1.
PARTSUPP (PKEY, DATE, QTY, COST) records
the supplies from a specific geographical region,
e.g., Europe. All the attributes, except for the dates
are instances of the Integer type. The scenario is
graphically depicted in Fig. 3 and involves the
following transformations.
1.
 First, we transfer via FTP_PS1 the snapshot
from the source S1.PARTSUPP to the file
DS.PS1_NEW of the DSA.2
2.
 In the DSA, we maintain locally a copy of the
snapshot of the source as it was at the previous
loading (we assume here the case of the
incremental maintenance of the DW, instead of
the case of the initial loading of the DW). The
recordset DS.PS1_NEW (PKEY, DATE, QTY,
COST) stands for the last transferred snapshot
of S1.PARTSUPP. By detecting the difference
of this snapshot with the respective version of
the previous loading, DS.PS1_OLD (PKEY,
DATE, QTY, COST), we can derive the newly
inserted rows in S1.PARTSUPP. Note that the
difference activity that we employ, namely
Diff_PS1, checks for differences only on the
primary key of the recordsets; thus, we ignore
here any possible deletions or updates for the
attributes COST, QTY of existing rows. Any not
newly inserted row is rejected and so, it is
propagated to Diff_PS1_REJ that stores all
the rejected rows. The schema of Diff_PS1_
REJ is identical to the input schema of the
activity Diff_PS1.

ARTICLE IN PRESS

Add_Attr1 SK1

DS.PS1_NEW

DS.PS1_OLD

FTP_PS1

Diff_PS1 DW.PARTSUPP

S1.PARTSUPP

LOOKUP

DS.PS1_NEW.PKEY
=

DS.PS1_OLD.PKEY
SOURCE = 1

DS.PS1.PKEY
LOOKUP.PKEY

LOOKUP.SOURCE
LOOKUP.SKEY

NotNu111

COST

Diff_PS1
_REJ

Not Nul 111
_REJ

DSA

Source

Data
Warehouse

DS.PS1

Fig. 3. Bird’s-eye view of the motivating example.

Data Types Black ellipsoid RecordSets Cylinders

Function

Types
Black rectangles Functions Gray rectangles

Constants Black circles Parameters White rectangles

Attributes Unshaded ellipsoid Activities Triangles

Part-Of

Relationships

Simple lines with

diamond edges*

Provider

Relationships

Bold solid arrows

(from provider to

consumer)

Instance-Of

Relationships

Dotted arrows

(from instance

towards the type)

Derived

Provider

Relationships

Bold dotted

arrows (from

provider to

consumer)

Regulator

Relationships
Dotted lines

* We annotate the part-of relationship among a
function and its return type with a directed edge, to
distinguish it from therest of the parameters.

1

Fig. 2. Graphical notation for the architecture graph.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525496
3.
 The rows that pass the activity Diff_PS1 are
checked for null values of the attribute COST
through the activity NotNull1. Rows having a
NULL value for their COST are kept in the
Diff_PS1_REJ recordset for further examina-
tion by the data warehouse administrator.
4.
 Although we consider the data flow for only
one source, namely S1, the data warehouse can

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 497
clearly have more sources for part supplies. In
order to keep track of the source of each row
entering into the DW, we need to add a ‘flag’
attribute, namely SOURCE, indicating the re-
spective source. This is achieved through the
activity Add_Attr1. We store the rows that
stem from this process in the recordset DS.PS1
(PKEY, SOURCE, DATE, QTY, COST).
5.
 Next, we assign a surrogate key on PKEY. In the
data warehouse context, it is common tactics to
replace the keys of the production systems with
a uniform key, which we call a surrogate key [8].
The basic reasons for this replacement are
performance and semantic homogeneity. Tex-
tual attributes are not the best candidates for
indexed keys and thus, they need to be replaced
by integer keys. At the same time, different
production systems might use different keys for
the same object, or the same key for different
objects, resulting in the need for a global
replacement of these values in the data ware-
house. This replacement is performed through a
lookup table of the form L (PRODKEY,
SOURCE, SKEY). The SOURCE column is due
to the fact that there can be synonyms in the
different sources, which are mapped to different
objects in the data warehouse. In our case, the
activity that performs the surrogate key assign-
ment for the attribute PKEY is SK1. It uses the
lookup table LOOKUP (PKEY, SOURCE,
SKEY). Finally, we populate the data ware-
house with the output of the previous activity.

The role of rejected rows depends on the
peculiarities of each ETL scenario. If the designer
needs to administrate these rows further, then he/
she should use intermediate storage recordsets
with the burden of an extra I/O cost. If the rejected
rows should not have a special treatment, then the
best solution is to be ignored; thus, in this case we
avoid overloading the scenario with any extra
storage recordset. In our case, we annotate only
two of the presented activities with a destina-
tion for rejected rows. Out of these, while
NotNull1_REJ absolutely makes sense as a
placeholder for problematic rows having non-
acceptable NULL values, Diff_PS1_REJ is pre-
sented for demonstration reasons only.
Finally, before proceeding, we would like to
stress that we do not anticipate a manual
construction of the graph by the designer; rather,
we employ this section to clarify how the graph
will look once constructed. To assist a more
automatic construction of ETL scenarios, we have
implemented the ARKTOS II tool that supports the
designing process through a friendly GUI. We
present ARKTOS II in Section 4.

2.2. Preliminaries

In this subsection, we will introduce the formal
modeling of data types, data stores and functions,
before proceeding to the modeling of ETL
activities.

Elementary entities: We assume the existence of
a countable set of data types. Each data type T is
characterized by a name and a domain, i.e., a
countable set of values, called dom (T). The
values of the domains are also referred to as
constants.
We also assume the existence of a countable set

of attributes, which constitute the most elementary
granules of the infrastructure of the information
system. Attributes are characterized by their name
and data type. The domain of an attribute is a
subset of the domain of its data type. Attributes
and constants are uniformly referred to as terms.

A schema is a finite list of attributes. Each entity
that is characterized by one or more schemata will
be called structured entity. Moreover, we assume
the existence of a special family of schemata, all
under the general name of NULL schema,
determined to act as placeholders for data which
are not to be stored permanently in some data
store. We refer to a family instead of a single
NULL schema, due to a subtle technicality
involving the number of attributes of such a
schema (this will become clear in the sequel).

Recordsets: We define a record as the instantia-
tion of a schema to a list of values belonging to
the domains of the respective schema attributes.
We can treat any data structure as a re-
cordset provided that there are ways to logically

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525498
restructure it into a flat, typed record schema.
Formally, a recordset is characterized by its name,
its (logical) schema and its (physical) extension
(i.e., a finite set of records under the recordset
schema). If we consider a schema S ¼

[A1,y,Ak], for a certain recordset, its extension
is a mapping S ¼ [A1,y,Ak]-dom(A1)�y

�dom(Ak). Thus, the extension of the recordset
is a finite subset of dom(A1)�y�dom(Ak) and
a record is the instance of a mapping dom(A1)
�y�dom(Ak)-[x1,y,xk], xiAdom(Ai).
In the rest of this paper we will mainly deal with
the two most popular types of recordsets, namely
relational tables and record files. A database is a
finite set of relational tables.

Functions. We assume the existence of a
countable set of built-in system function types. A
function type comprises a name, a finite list of
parameter data types, and a single return data type.
A function is an instance of a function type.
Consequently, it is characterized by a name, a list
of input parameters and a parameter for its return
value. The data types of the parameters of the
generating function type also define (a) the data
types of the parameters of the function and (b) the
legal candidates for the function parameters (i.e.,
attributes or constants of a suitable data type).

2.3. Activities

Activities are the backbone of the structure of
any information system. We adopt the WfMC
terminology [9] for processes/programs and we will
call them activities in the sequel. An activity is an
amount of ‘‘work which is processed by a
combination of resource and computer applica-
tions’’ [9]. In our framework, activities are logical
abstractions representing parts or full modules of
code.
The execution of an activity is performed from a

particular program. Normally, ETL activities will
be either performed in a black-box manner by a
dedicated tool, or they will be expressed in some
language (e.g., PL/SQL, Perl, C). Still, we want to
deal with the general case of ETL activities. We
employ an abstraction of the source code of an
activity, in the form of an LDL statement. Using
LDL, we avoid dealing with the peculiarities of a
particular programming language. Once again, we
want to stress that the presented LDL description
is intended to capture the semantics of each
activity, instead of the way these activities are
actually implemented.
An elementary activity is formally described by

the following elements:
�
 Name: A unique identifier for the activity.

�
 Input schemata: A finite set of one or more input
schemata that receives data from the data
providers of the activity.
�
 Output schema: A schema that describes the
placeholder for the rows that pass the check
performed by the elementary activity.
�
 Rejections schema: A schema that describes the
placeholder for the rows that do not pass the
check performed by the activity, or their values
are not appropriate for the performed transfor-
mation.
�
 Parameter list: A set of pairs which act as
regulators for the functionality of the activity
(the target attribute of a foreign key check, for
example). The first component of the pair is a
name and the second is a schema, an attribute, a
function or a constant.
�
 Output operational semantics: An LDL state-
ment describing the content passed to the
output of the operation, with respect to its
input. This LDL statement defines (a) the
operation performed on the rows that pass
through the activity and (b) an implicit mapping
between the attributes of the input schema(ta)
and the respective attributes of the output
schema.
�
 Rejection operational semantics: An LDL state-
ment describing the rejected records, in a sense
similar to the output operational semantics.
This statement is by default considered to be the
complement of the output operational seman-
tics, except if explicitly defined differently.

There are two issues that we would like to
elaborate on, here:
�
 NULL schemata: Whenever we do not specify
a data consumer for the output or rejec-
tion schemata, the respective NULL schema

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 499
(involving the correct number of attributes) is
implied. This practically means that the data
targeted for this schema will neither be stored to
some persistent data store, nor will they be
propagated to another activity, but they will
simply be ignored.
�
 Language issues: Initially, we used to specify the
semantics of activities with SQL statements.
Still, although clear and easy to write and
understand, SQL is rather hard to use if one is
to perform rewriting and composition of state-
ments. Thus, we have supplemented SQL with
LDL [10], a logic programming, declarative
language as the basis of our scenario definition.
LDL is a Datalog variant based on a Horn-
clause logic that supports recursion, complex
objects and negation. In the context of its
implementation in an actual deductive database
management system, LDL++ [11], the lan-
guage has been extended to support external
functions, choice, aggregation (and even, user-
defined aggregation), updates and several other
features.
2.4. Relationships in the architecture graph

In this subsection, we will elaborate on the
different kinds of relationships that the entities of
an ETL scenario have. Whereas these entities are
modeled as the nodes of the architecture graph,
relationships are modeled as its edges. Due to their
diversity, before proceeding, we list these types of
relationships along with the related terminology
that we will use in this paper. The graphical
Date

DS.PS1

PKEY PKEY

QTY QTY

COST COST

DATE DATE

SOURCE SOURCE

OUT IN
SK1

Fig. 4. Instance-of relationships
notation of entities (nodes) and relationships
(edges) is presented in Fig. 2.

Part-of relationships. These relationships in-
volve attributes and parameters and relate them
to the respective activity, recordset or function
to which they belong.
Instance-of relationships. These relationships are
defined among a data/function type and its
instances.
Provider relationships. These are relationships
that involve attributes with a provider–consu-
mer relationship.
Regulator relationships. These relationships are
defined among the parameters of activities and
the terms that populate these activities.
Derived provider relationships. A special case of
provider relationships that occurs whenever
output attributes are computed through the
composition of input attributes and parameters.
Derived provider relationships can be deduced
from a simple rule and do not originally
constitute a part of the graph.

In the rest of this subsection, we will detail the
notions pertaining to the relationships of the
Architecture Graph; the knowledgeable reader is
referred to Section 2.5 where we discuss the issue
of scenarios. We will base our discussions on a
part of the scenario of the motivating example
(presented in Section 2.1), including activity SK1.

Data types and instance-of relationships: To
capture typing information on attributes and
SKEY

PKEY PKEY

QTY QTY

COST COST

DATE DATE

SOURCE SOURCE

OUT IN DW.PARTS

UPP

Integer

of the architecture graph.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525500
functions, the architecture graph comprises data
and function types. Instantiation relationships are
depicted as dotted arrows that stem from the
instances and head toward the data/function types.
In Fig. 4, we observe the attributes of the two
activities of our example and their correspondence
to two data types, namely integer and date.
For reasons of presentation, we merge several
instantiation edges so that the figure does not
become too crowded.

Attributes and part-of relationships: The first
thing to incorporate in the architecture graph is
the structured entities (activities and recordsets)
along with all the attributes of their schemata. We
choose to avoid overloading the notation by
incorporating the schemata per se; instead we
apply a direct part-of relationship between an
activity node and the respective attributes. We
annotate each such relationship with the name of
the schema (by default, we assume a IN, OUT,
PAR, REJ tag to denote whether the attribute
belongs to the input, output, parameter or rejec-
DS.PS1
OUT

OUT

PKEY PKEY

QTY QTY

COST COST

DATE DATE

SOURCE SOURCE

PKEY

PKEY

LSKEY

LPKEY

SKEY

SOURCE

SOURCE LSOURCLOOKUP

IN
SK1

P

Fig. 5. Part-of regulator and provider rela
tion schema of the activity, respectively). Natu-
rally, if the activity involves more than one input
schemata, the relationship is tagged with an INi
tag for the ith input schema. We also incorporate
the functions along with their respective para-
meters and the part-of relationships among the
former and the latter. We annotate the part-of
relationship with the return type with a directed
edge, to distinguish it from the rest of the
parameters.
Fig. 5 depicts a part of the motivating example.

In terms of part-of relationships, we present the
decomposition of (a) the recordsets DS.PS1,
LOOKUP, DW.PARTSUPP and (b) the activity SK1
and the attributes of its input and output
schemata. Note the tagging of the schemata of
the involved activity. We do not consider the
rejection schemata in order to avoid crowding the
picture. Also note, how the parameters of the
activity are also incorporated in the architecture
graph. Activity SK1 has five parameters: (a) PKEY,
which stands for the production key to be
replaced, (b) SOURCE, which stands for an integer
OUT

PKEY

SKEY

QTY

COST

DATE

SOURCE

E

PKEY

QTY

COST

DATE

SOURCE

IN

AR

DW.PARTS

UPP

tionships of the architecture graph.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 501
value that characterizes which source’s data are
processed, (c) LPKEY, which stands for the
attribute of the lookup table which contains the
production keys, (d) LSOURCE, which stands for
the attribute of the lookup table which contains
the source value (corresponding to the aforemen-
tioned SOURCE parameter), (e) LSKEY, which
stands for the attribute of the lookup table which
contains the surrogate keys.

Parameters and regulator relationships: Once the
part-of and instantiation relationships have been
established, it is time to establish the regulator
relationships of the scenario. In this case, we link
the parameters of the activities to the terms
(attributes or constants) that populate them. We
depict regulator relationships with simple dotted
edges.
In the example of Fig. 5 we can also observe

how the parameters of activity SK1 are populated
through regulator relationships. The parameters
in and out are mapped to the respective terms
through regulator relationships. All the para-
meters of SK1, namely PKEY, SOURCE, LPKEY,
LSOURCE and LSKEY, are mapped to the respec-
tive attributes of either the activity’s input schema
or the employed lookup table LOOKUP. The
parameter LSKEY deserves particular attention.
This parameter is (a) populated from the attribute
SKEY of the lookup table and (b) used to populate
the attribute SKEY of the output schema of the
activity. Thus, two regulator relationships are
related with parameter LSKEY, one for each of
the aforementioned attributes. The existence of a
regulator relationship among a parameter and an
output attribute of an activity normally denotes
that some external data provider is employed in
order to derive a new attribute, through the
respective parameter.

Provider relationships: The flow of data from the
data sources towards the data warehouse is
performed through the composition of activities
in a larger scenario. In this context, the input for
an activity can be either a persistent data store, or
another activity. Usually, this applies for the
output of an activity, too. We capture the passing
of data from providers to consumers by a provider
relationship among the attributes of the involved
schemata.
Formally, a provider relationship is defined by

the following elements:
�
 Name: A unique identifier for the provider
relationship.
�
 Mapping: An ordered pair. The first part of the
pair is a term (i.e., an attribute or constant)
acting as a provider and the second part is an
attribute acting as the consumer.

The mapping need not necessarily be 1:1 from
provider to consumer attributes, since an input
attribute can be mapped to more than one
consumer attributes. Still, the opposite does not
hold. Note that a consumer attribute can also be
populated by a constant, in certain cases.
In order to achieve the flow of data from the

providers of an activity towards its consumers, we
need the following three groups of provider
relationships:
1.
 A mapping between the input schemata of the
activity and the output schema of their data
providers. In other words, for each attribute of
an input schema of an activity, there must exist
an attribute of the data provider, or a constant,
which is mapped to the former attribute.
2.
 Amapping between the attributes of the activity
input schemata and the activity output (or
rejection, respectively) schema.
3.
 A mapping between the output or rejection
schema of the activity and the (input) schema of
its data consumer.

The mappings of the second type are internal to
the activity. Basically, they can be derived from the
LDL statement for each of the output/rejection
schemata. As far as the first and the third types of
provider relationships are concerned, the map-
pings must be provided during the construction of
the ETL scenario. This means that they are either
(a) by default assumed by the order of the
attributes of the involved schemata or (b) hard-
coded by the user. Provider relationships are
depicted with bold solid arrows that stem from
the provider and end in the consumer attribute.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525502
Observe Fig. 5. The flow starts from table
DS.PS1 of the data staging area. Each of the
attributes of this table is mapped to an attribute of
the input schema of activity SK1. The attributes of
the input schema of the latter are subsequently
mapped to the attributes of the output schema of
the activity. The flow continues to DW.PARTSUPP.
Another interesting thing is that during the data
flow, new attributes are generated, resulting on new
streams of data, whereas the flow seems to stop for
other attributes. Observe the rightmost part of
Fig. 5 where the values of attribute PKEY are not
further propagated (remember that the reason for
the application of a surrogate key transformation is
to replace the production keys of the source data to
a homogeneous surrogate for the records of the
data warehouse, which is independent of the source
they have been collected from). Instead of the
values of the production key, the values from the
attribute SKEY will be used to denote the unique
identifier for a part in the rest of the flow.
In Fig. 6, we depict the LDL definition of this

part of the motivating example. The three rules
correspond to the three categories of provider
addSkey_in1(A_IN1_PKEY,A_IN1_DATE,A_IN1_QTY,
ds_ps1(A_OUT_PKEY,A_OUT_DATE,A_OUT_QTY,A_OUT
A_OUT_PKEY=A_IN1_PKEY,
A_OUT_DATE=A_IN1_DATE,
A_OUT_QTY=A_IN1_QTY,
A_OUT_COST=A_IN1_COST,
A_OUT_SOURCE=A_IN1_SOURCE.

addSkey_out(A_OUT_PKEY,A_OUT_DATE,A_OUT_QTY,
 addSkey_in1(A_IN1_PKEY,A_IN1_DATE,A_IN1_QTY
lookup(A_IN1_SOURCE,A_IN1_PKEY,A_OUT_SKEY)
A_OUT_PKEY=A_IN1_PKEY,
A_OUT_DATE=A_IN1_DATE,
A_OUT_QTY=A_IN1_QTY,
A_OUT_COST=A_IN1_COST,
A_OUT_SOURCE=A_IN1_SOURCE.

dw_partsupp(PKEY,DATE,QTY,COST,SOURCE)
 addSkey_out(A_OUT_PKEY,A_OUT_DATE,A_OUT_QTY
DATE=A_IN1_DATE,

 QTY=A_IN1_QTY,
COST=A_IN1_COST
SOURCE=A_IN1_SOURCE,
PKEY=A_IN1_SKEY.

NOTE: For reasonsof readability we do not re
the activity name, i.e.,A_OUT_PKEYshould be

Fig. 6. LDL specification of t
relationships, previously discussed: the first rule
explains how the data from the DS.PS1 recordset
are fed into the input schema of the activity, the
second rule explains the semantics of activity (i.e.,
how the surrogate key is generated) and, finally,
the third rule shows how the DW.PARTSUPP
recordset is populated from the output schema of
the activity SK1.

Derived provider relationships: As we have
already mentioned, there are certain output
attributes that are computed through the composi-
tion of input attributes and parameters. A derived

provider relationship is another form of provider
relationship that captures the flow from the input
to the respective output attributes.
Formally, assume that (a) source is a term in

the architecture graph, (b) target is an attribute
of the output schema of an activity A and (c) x,y
are parameters in the parameter list of A (not
necessary different). Then, a derived provider
relationship pr(source, target) exists iff the
following regulator relationships (i.e., edges) exist:
rr1(source, x) and rr2(y, target).
A_IN1_COST,A_IN1_SOURCE)
_COST,A_OUT_SOURCE),

A_OUT_COST,A_OUT_SOURCE,A_OUT_SKEY)
,A_IN1_COST,A_IN1_SOURCE),
,

,A_OUT_COST,A_OUT_SOURCE,A_OUT_SKEY),

place the Ain attribute names with
diffPS1_OUT_PKEY.

he motivating example.

ARTICLE IN PRESS

IN OUT
SK1

PAR

IN OUT
SK1

PAR

PKEY PKEY

PKEY

SOURCE

PKEY

SOURCE

SOURCE

SOURCE

SKEY

PKEY

SOURCE

PKEY

SOURCE

SKEY

SKEY

SKEY

LPKEY

LSOURCE

LSKEY

LOOKUP
OUT

LOOKUP
OUT

Fig. 7. Derived provider relationships of the architecture graph: the original situation on the left and the derived provider relationships

on the right.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 503
Intuitively, the case of derived relationships
models the situation where the activity computes
a new attribute in its output. In this case, the
produced output depends on all the attributes that
populate the parameters of the activity, resulting
in the definition of the corresponding derived
relationship.
Observe Fig. 7, where we depict a small part of

our running example. The left side of the figure
depicts the situation where only provider relation-
ships exist. The legend in the right side of Fig. 7
depicts how we compute the derived provider
relationships between the parameters of the
activity and the computed output attribute SKEY.
The meaning of these five relationships is that
SK1.OUT.SKEY is not computed only from
attribute LOOKUP.SKEY, but from the combina-
tion of all the attributes that populate the
parameters.
One can also assume different variations of

derived provider relationships such as (a) relation-
ships that do not involve constants (remember that
we have defined source as a term); (b) relation-
ships involving only attributes of the same/
different activity (as a measure of internal com-
plexity or external dependencies); (c) relationships
relating attributes that populate only the same
parameter (e.g., only the attributes LOOKUP.SKEY
and SK1.OUT.SKEY).

2.5. Scenarios

A scenario is an enumeration of activities along
with their source/target recordsets and the respec-
tive provider relationships for each activity. An
ETL scenario consists of the following elements:
�
 Name: A unique identifier for the scenario.

�
 Activities: A finite list of activities. Note that by
employing a list (instead of e.g., a set) of
activities, we impose a total ordering on the
execution of the scenario.

ARTICLE IN PRESS

Entity Model-specific Scenario-specific

Data Types DI D
Function Types FI F

B
ui

lt
-i

n
Constants CI C
Attributes ΩI

Functions ΦI
Ω
Φ

Schemata SI S
RecordSets RSI RS
Activities AI A
Provider Relationships PrI Pr
Part-Of Relationships PoI Po
Instance-Of Relationships IoI Io
Regulator Relationships RrI Rr

U
se

r-
pr

ov
id

ed

Derived Provider Relationships DrI Dr

Fig. 8. Formal definition of domains and notation.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525504
�
 Recordsets: A finite set of recordsets.

�
 Targets: A special-purpose subset of the record-
sets of the scenario, which includes the final
destinations of the overall process (i.e., the data
warehouse tables that must be populated by the
activities of the scenario).
�
 Provider relationships: A finite list of provider
relationships among activities and recordsets of
the scenario.

In our modeling, a scenario is a set of activities,
deployed along a graph in an execution sequence
that can be linearly serialized. For the moment, we
do not consider the different alternatives for the
ordering of the execution; we simply require that a
total order for this execution is present (i.e., each
activity has a discrete execution priority).
In terms of formal modeling of the architecture

graph, we assume the infinitely countable, mu-
tually disjoint sets of names (i.e., the values of
which respect the unique name assumption) of
column model-specific in Fig. 8. As far as a specific
scenario is concerned, we assume their respective
finite subsets, depicted in column scenario-specific

in Fig. 8. Data types, function types and constants
are considered built-in’s of the system, whereas the
rest of the entities are provided by the user (user

provided).
Formally, the architecture graph of an ETL

scenario is a graph G(V,E) defined as follows:
V ¼ D[F[C[X[/[S[RS[A
E ¼ Pr[Po[Io[Rr[Dr.
In the sequel, we treat the terms architecture
graph and scenario interchangeably. The reason-
ing for the term ‘architecture graph’ goes all the
way down to the fundamentals of conceptual
modeling. As mentioned in [12], conceptual
models are the means by which designers conceive,
architect, design, and build software systems.
These conceptual models are used in the same
way that blueprints are used in other engineering
disciplines during the early stages of the lifecycle of
artificial systems, which involves the creation of
their architecture. The term ‘architecture graph’
expresses the fact that the graph that we employ
for the modeling of the data flow of the ETL
scenario is practically acting as a blueprint of the
architecture of this software artifact.
Moreover, we assume the following integrity

constraints for a scenario:

Static constraints:
�
 All the weak entities of a scenario (i.e.,
attributes or parameters) should be defined
within a part-of relationship (i.e., they should
have a container object).
�
 All the mappings in provider relationships
should be defined among terms (i.e., attributes
or constants) of the same data type.

Data flow constraints:
�
 All the attributes of the input schema(ta) of an
activity should have a provider.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 505
�
 Resulting from the previous requirement, if
some attribute is a parameter in an activity A,
the container of the attribute (i.e., recordset or
activity) should precede A in the scenario.
�
 All the attributes of the schemata of the target
recordsets should have a data provider.

Summarizing, in this section, we have presented
a generic model for the modeling of the data flow
for ETL workflows. In the next section, we will
proceed to detail how this generic model can be
accompanied by a customization mechanism, in
order to provide higher flexibility to the designer
of the workflow.
3. Templates for ETL activities

In this section, we present the mechanism for
exploiting template definitions of frequently used
ETL activities. The general framework for the
exploitation of these templates is accompanied
with the presentation of the language-related
issues for template management and appropriate
examples.
Datatypes

Elementary Activity RecotdSe

Metamodel Layer

Template Layer

Schema Layer

NotNull

Domain Mismatch

SK Assignment

Source T

S1.PARTSUPF NN DM1

Fig. 9. The metamodel for the logical
3.1. General framework

Our philosophy during the construction of our
metamodel was based on two pillars: (a) genericity,
i.e., the derivation of a simple model, powerful to
capture ideally all the cases of ETL activities and
(b) extensibility, i.e., the possibility of extending
the built-in functionality of the system with new,
user-specific templates.
The genericity doctrine was pursued through the

definition of a rather simple activity metamodel, as
described in Section 2. Still, providing a single
metaclass for all the possible activities of an ETL
environment is not really enough for the designer
of the overall process. A richer ‘‘language’’ should
be available, in order to describe the structure of
the process and facilitate its construction. To this
end, we provide a palette of template activities,
which are specializations of the generic metamodel
class.
Observe Fig. 9 for a further explanation of our

framework. The lower layer of Fig. 9, namely
schema layer, involves a specific ETL scenario.
All the entities of the schema layer are instances of
the classes Data Type, Function Type,
Functions

t Relationships

able

Fact Table

Provider Re

IsA

InstanceOf

SK1 DW.PARTSUPP

entities of the ETL environment.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525506
Elementary Activity, RecordSet and
Relationship. Thus, as one can see on the
upper part of Fig. 9, we introduce a meta-class
layer, namely metamodel layer involving the
aforementioned classes. The linkage between the
metamodel and the schema layers is achieved
through instantiation (InstanceOf) relation-
ships. The metamodel layer implements the afore-
mentioned genericity desideratum: the classes
which are involved in the metamodel layer are
generic enough to model any ETL scenario,
through the appropriate instantiation.
Still, we can do better than the simple provision

of a metalayer and an instance layer. In order to
make our metamodel truly useful for practi-
cal cases of ETL activities, we enrich it with a set
of ETL-specific constructs, which constitute a
subset of the larger metamodel layer, namely
the template layer. The constructs in the template
layer are also meta-classes, but they are
quite customized for the regular cases of ETL
activities. Thus, the classes of the template layer
are specializations (i.e., subclasses) of the generic
classes of the metamodel layer (depicted as
IsA relationships in Fig. 9). Through this custo-
mization mechanism, the designer can pick the
instances of the schema layer from a much
richer palette of constructs; in this setting, the
entities of the schema layer are instantiations, not
only of the respective classes of the metamodel
layer, but also of their subclasses in the template
layer.
Filters
- Selection (σ)
- Not null (NN)
- Primary key

violation (PK)

- Foreign key
violation (FK)

- Unique value (UN)

- Domain mismatch (DM)

Unary operations
- Push

- Aggregation (γ)
- Projection (Π)
- Function application
- Surrogate key assignm

- Tuple normalization (
- Tuple denormalization

File operations
- EBCDIC to ASCII conve

(EB2AS)
- Sort file (Sort)

Fig. 10. Template activities, along with their graph
In the example of Fig. 9 the concept DW.
PARTSUPP must be populated from a certain
source S1.PARTSUPP. Several operations must
intervene during the propagation. For instance in
Fig. 9, we check for null values and domain
violations, and we assign a surrogate key. As one
can observe, the recordsets that take part in this
scenario are instances of class RecordSet (be-
longing to the metamodel layer) and specifically of
its subclasses Source Table and Fact Table.
Instances and encompassing classes are related
through links of type InstanceOf. The same
mechanism applies to all the activities of
the scenario, which are (a) instances of class
Elementary Activity and (b) instances of
one of its subclasses, depicted in Fig. 9. Relation-
ships do not escape this rule either. For instance,
observe how the provider links from the concept
S1.PS toward the concept DW.PARTSUPP are
related to class Provider Relationship
through the appropriate InstanceOf links.
As far as the class Recordset is concerned, in

the template layer we can specialize it to several
subclasses, based on orthogonal characteristics,
such as whether it is a file or RDBMS table, or
whether it is a source or target data store (as in
Fig. 9). In the case of the class Relationship,
there is a clear specialization in terms of the five
classes of relationships which have already
been mentioned in Section 2 (i.e., Provider,
Part-Of, Instance-Of, Regulator and
Derived Provider).
(f)
ent (SK)

N)
(DN)

Binary operations
- Union (U)

- Join (
- Diff (∆)
- Update Detection (∆UPD)

rsion
Transfer operations
- Ftp (FTP)
- Compress / Decompress (Z/dZ)
- Encrypt / Decrypt (Cr/dCr)

)∆

∆

ical notation symbols, grouped by category.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 507
Following the same framework, class Elemen-
tary Activity is further specialized to an
extensible set of reoccurring patterns of ETL
activities, depicted in Fig. 10. As one can see on
the top side of Fig. 9, we group the template
activities in five major logical groups. We do not
depict the grouping of activities in subclasses in
Fig. 9, in order to avoid overloading the figure;
instead, we depict the specialization of class
Elementary Activity to three of its subclasses
whose instances appear in the employed scenario
of the schema layer. We now proceed to present
each of the aforementioned groups in more detail.
The first group, named filters, provides checks

for the satisfaction (or not) of a certain condition.
The semantics of these filters are the obvious
(starting from a generic selection condition
and proceeding to the check for null values,
primary or foreign key violation, etc.).
The second group of template activities is called
unary operations and except for the most generic
push activity (which simply propagates data from
the provider to the consumer), consists of the
classical aggregation and function appli-
cation operations along with three data ware-
house specific transformations (surrogate key
assignment, normalization and denorma-
lization). The third group consists of classical
binary operations, such as union, join and
difference of recordsets/activities as well as
with a special case of difference involving the
detection of updates. Except for the afore-
mentioned template activities, which mainly refer
to logical transformations, we can also consider
the case of physical operators that refer to the
application of physical transformations to whole
files/tables. In the ETL context, we are mainly
interested in operations like transfer operations

(ftp, compress/decompress, encrypt/
decrypt) and file operations (EBCDIC to AS-
CII, sort file).
Summarizing, the metamodel layer is a set of

generic entities, able to represent any ETL
scenario. At the same time, the genericity of the
metamodel layer is complemented with the exten-
sibility of the template layer, which is a set of
‘‘built-in’’ specializations of the entities of the
metamodel layer, specifically tailored for the most
frequent elements of ETL scenarios. Moreover,
apart from this ‘‘built-in’’, ETL-specific extension
of the generic metamodel, if the designer decides
that several ‘patterns’, not included in the palette
of the template layer, occur repeatedly in his data
warehousing projects, he can easily fit them into
the customizable template layer through a specia-
lization mechanism.

3.2. Formal definition and usage of template

activities

Once the template layer has been introduced,
the obvious issue that is raised is its linkage with
the employed declarative language of our frame-
work. In general, the broader issue is the usage of
the template mechanism from the user; to this end,
we will explain the substitution mechanism for
templates in this subsection and refer the interested
reader to [13] for a presentation of the specific
templates that we have constructed.
A template activity is formally defined by the

following elements:
�
 Name: A unique identifier for the template
activity.
�
 Parameter list: A set of names which act as
regulators in the expression of the semantics of
the template activity. For example, the para-
meters are used to assign values to constants,
create dynamic mapping at instantiation time,
etc.
�
 Expression: A declarative statement describing
the operation performed by the instances of the
template activity. As with elementary activities,
our model supports LDL as the formalism for
the expression of this statement.
�
 Mapping: A set of bindings, mapping input to
output attributes, possibly through intermediate
placeholders. In general, mappings at the
template level try to capture a default way of
propagating incoming values from the input
towards the output schema. These default
bindings are easily refined and possibly rear-
ranged at instantiation time.

The template mechanism we use is a substitution
mechanism, based on macros, that facilitates the

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525508
automatic creation of LDL code. This simple
notation and instantiation mechanism permits the
easy and fast registration of LDL templates. In the
rest of this section, we will elaborate on the
notation, instantiation mechanisms and template
taxonomy particularities.

3.2.1. Notation

Our template notation is a simple language
featuring five main mechanisms for dynamic
production of LDL expressions: (a) variables that
are replaced by their values at instantiation
time; (b) a function that returns the arity of an
input, output or parameter schema; (c) loops,
where the loop body is repeated at instantiation
time as many times as the iterator constraint
defines; (d) keywords to simplify the creation
of unique predicate and attribute names; and,
finally, (e) macros which are used as syntactic
sugar to simplify the way we handle complex
expressions (especially in the case of variable size
schemata).

Variables: We have two kinds of variables in the
template mechanism: parameter variables and loop

iterators. Parameter variables are marked with a @
symbol at their beginning and they are replaced by
user-defined values at instantiation time. A list of
an arbitrary length of parameters is denoted by
@/parameter nameS[]. For such lists, the
user has to explicitly or implicitly provide their
length at instantiation time. Loop iterators, on the
other hand, are implicitly defined in the loop
constraint. During each loop iteration, all the
properly marked appearances of the iterator in the
loop body are replaced by its current value
(similarly to the way the C preprocessor treats
#DEFINE statements). Iterators that appear
marked in loop body are instantiated even when
they are a part of another string or of a variable
name. We mark such appearances by enclosing
them with $. This functionality enables referencing
all the values of a parameter list and facilitates the
creation of an arbitrary number of pre-formatted
strings.

Functions: We employ a built-in function, ari-
tyOf(/input/output/parameter schemaS),
which returns the arity of the respective schema,
mainly in order to define upper bounds in loop
iterators.

Loops: Loops are a powerful mechanism that
enhances the genericity of the templates by
allowing the designer to handle templates with
unknown number of variables and with unknown
arity for the input/output schemata. The general
form of loops is

½hsimple constrainti�fhloop bodyig;

where simple constraint has the form:

hlower boundi hcomparison operatori hiteratori

hcomparison operatori hupper boundi:

We consider only linear increase with step equal
to 1, since this covers most possible cases. Upper
bound and lower bound can be arithmetic
expressions involving arityOf() function calls,
variables and constants. Valid arithmetic opera-
tors are +, �, /, * and valid comparison operators
are o, 4, ¼ , all with their usual semantics. If
lower bound is omitted, 1 is assumed. During each
iteration the loop body will be reproduced and at
the same time all the marked appearances of the
loop iterator will be replaced by its current value,
as described before. Loop nesting is permitted.

Keywords: Keywords are used in order to refer
to input and output schemata. They provide two
main functionalities: (a) they simplify the reference
to the input output/schema by using standard
names for the predicates and their attributes, and
(b) they allow their renaming at instantiation time.
This is done in such a way that no different
predicates with the same name will appear in the
same program, and no different attributes with the
same name will appear in the same rule. Keywords
are recognized even if they are parts of another
string, without a special notation. This facilitates a
homogenous renaming of multiple distinct input
schemata at template level, to multiple distinct
schemata at instantiation, with all of them having
unique names in the LDL program scope. For
example, if the template is expressed in terms of
two different input schemata a_in1 and a_in2,
at instantiation time they will be renamed to

ARTICLE IN PRESS

Keyword Usage Example

a_out

a_in

A unique name for the output/input schema
of the activity. The predicate that is
produced when this template is instantiated
has the form:

<unique_pred_name>_out (or, _in respectively)

difference3_out

difference3_in

A_OUT

A_IN

A_OUT/A_IN is used for constructing the names
of the a_out/a_in attributes. The names
produced have the form:

<predicate unique name in upper case>_OUT

(or, _IN respectively)

DIFFERENCE3_OUT

DIFFERENCE3_IN

Fig. 11. Keywords for templates.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 509
dm1_in1 and dm1_in2 so that the produced
names will be unique throughout the scenario
program. In Fig. 11, we depict the way the
renaming is performed at instantiation time.

Macros: To make the definition of templates
easier and to improve their readability, we
introduce a macro to facilitate attribute and
variable name expansion. For example, one of
the major problems in defining a language for
templates is the difficulty of dealing with schemata
of arbitrary arity. Clearly, at the template level, it
is not possible to pin-down the number of
attributes of the involved schemata to a specific
value. For example, in order to create a series of
names like the following
name_theme_1,name_theme_2,y,
name_theme_k
we need to give the following expression:

[iteratoromaxLimit]
{name_theme$iterator$}
[iterator ¼ maxLimit]
{name_theme$iterator$}
Obviously, this results in making the writing of
templates hard and reduces their readability. To
attack this problem, we resort to a simple reusable
macro mechanism that enables the simplification
of employed expressions. For example, observe the
definition of a template for a simple relational
selection:

a_out([ioarityOf(a_out)]{A_OUT_i,}

[i ¼ arityOf(a_out)]{A_OUT_i}) o-
a_in1([ioarityOf(a_in1)]

{A_IN1_i,} [i ¼ arityOf(a_in1)]

{A_IN1_i}),
expr([ioarityOf(@PARAM)]

{@PARAM[i],}
[i ¼ arityOf(@PARAM)]

{@PARAM[i]}),
[ioarityOf(a_out)]

{A_OUT_i ¼ A_IN1_i,}
[i ¼ arityOf(a_out)]

{A_OUT_i ¼ A_IN1_i}
As already mentioned at the syntax for loops, the
expression
[ioarityOf(a_out)]{A_OUT_i,}
[i ¼ arityOf(a_out)]{A_OUT_i}
defining the attributes of the output schema
a_out simply wants to list a variable number of
attributes that will be fixed at instantiation time.
Exactly the same tactics apply for the attributes of
the predicate names a_in1 and expr. Also, the
final two lines state that each attribute of the
output will be equal to the respective attribute of
the input (so that the query is safe), e.g.,
A_OUT_4 ¼ A_IN1_4. We can simplify the
definition of the template by allowing the designer

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525510
to define certain macros that simplify the manage-
ment of temporary length attribute lists. We
employ the following macros:

DEFINE INPUT_SCHEMA AS
[ioarityOf(a_in1)]{A_IN1_i,}
[i ¼ arityOf(a_in1)] {A_IN1_i}
DEFINE OUTPUT_SCHEMA AS
[ioarityOf(a_in)]{A_OUT_i,}
[i ¼ arityOf(a_out)]{A_OUT_i}
DEFINE PARAM_SCHEMA AS
[ioarityOf(@PARAM)]{@PARAM[i],}
[i ¼ arityOf(@PARAM)]{@PARAM[i]}
DEFINE DEFAULT_MAPPING AS
[ioarityOf(a_out)]

{A_OUT_i ¼ A_IN1_i,}
[i ¼ arityOf(a_out)]

{A_OUT_i ¼ A_IN1_i}
Then, the template definition is as follows:
a_out(OUTPUT_SCHEMA) o-
a_in1(INPUT_SCHEMA),
expr(PARAM_SCHEMA),
DEFAULT_MAPPING
3.2.2. Instantiation

Template instantiation is the process where the
user chooses a certain template and creates a
concrete activity out of it. This procedure requires
that the user specifies the schemata of the activity
and gives concrete values to the template para-
meters. Then, the process of producing the
respective LDL description of the activity is easily
automated. Instantiation order is important in our
template creation mechanism, since, as it can easily
been seen from the notation definitions, different
orders can lead to different results. The instantia-
tion order is as follows:
1.
 Replacement of macro definitions with their
expansions.
2.
 arityOf() functions and parameter variables
appearing in loop boundaries are calculated
first.
3.
 Loop productions are performed by instantiat-
ing the appearances of the iterators. This leads
to intermediate results without any loops.
4.
 All the rest parameter variables are instantiated.

5.
 Keywords are recognized and renamed.

We will try to explain briefly the intuition
behind this execution order. Macros are expanded
first. Step (2) proceeds step (3) because loop
boundaries have to be calculated before loop
productions are performed. Loops on the other
hand, have to be expanded before parameter
variables are instantiated, if we want to be able
to reference lists of variables. The only exception
to this is the parameter variables that appear in the
loop boundaries, which have to be calculated first.
Notice though, that variable list elements cannot
appear in the loop constraint. Finally, we have to
instantiate variables before keywords since vari-
ables are used to create a dynamic mapping
between the input/output schemata and other
attributes.
Fig. 12 shows a simple example of template

instantiation for the function application activity.
To understand the overall process better, first
observe the outcome of it, i.e., the specific activity
which is produced, as depicted in the final row of
Fig. 12, labeled keyword renaming. The output
schema of the activity, fa12_out, is the head of
the LDL rule that specifies the activity. The body
of the rule says that the output records are
specified by the conjunction of the following
clauses: (a) the input schema myFunc_in, (b)
the application of function subtract over the
attributes COST_IN, PRICE_IN and the produc-
tion of a value PROFIT, and (c) the mapping of
the input to the respective output attributes as
specified in the last three conjuncts of the rule.
The first row, template, shows the initial

template as it has been registered by the designer.
@FUNCTION holds the name of the function to be
used, subtract in our case, and the @PARAM[]
holds the inputs of the function, which in our case
are the two attributes of the input schema. The
problem we have to face is that all input, output
and function schemata have a variable number of
parameters. To abstract from the complexity of
this problem, we define four macro definitions, one
for each schema (INPUT_SCHEMA, OUTPUT_
SCHEMA, FUNCTION_INPUT) along with a macro
for the mapping of input to output attributes

ARTICLE IN PRESS

Fig. 12. Instantiation procedure.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 511
(DEFAULT_MAPPING). The second row, macro

expansion, shows how the template looks after the
macros have been incorporated in the template
definition. The mechanics of the expansion are
straightforward: observe how the attributes of the
output schema are specified by the expression
[ioarityOf(a_in)+1]{A_OUT_i,}OUT-
FIELD as an expansion of the macro OUTPUT_
SCHEMA. In a similar fashion, the attributes of the
input schema and the parameters of the function
are also specified; note that the expression for the
last attribute in the list is different (to avoid
repeating an erroneous comma). The mappings
between the input and the output attributes are
also shown in the last two lines of the template. In
the third row, parameter instantiation, we can see
how the parameter variables were materialized at
instantiation. In the fourth row, loop production,
we can see the intermediate results after the loop
expansions are done. As it can easily be seen, these
expansions must be done before @PARAM[]
variables are replaced by their values. In the fifth
row, variable instantiation, the parameter variables
have been instantiated creating a default mapping
between the input, the output and the function
attributes. Finally, in the last row, keyword

renaming, the output LDL code is presented after
the keywords are renamed. Keyword instantiation

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525512
is done on the basis of the schemata and the
respective attributes of the activity that the user
chooses.

3.2.3. Taxonomy: simple and program-based

templates

The most commonly used activities can be easily
expressed by a single predicate template; it is
obvious, though, that it would be very incon-
venient to restrict activity templates to single
predicates. Thus, we separate template activities
in two categories, simple templates, which cover
single-predicate templates and program-based tem-

plates where many predicates are used in the
template definition.
In the case of simple templates, the output

predicate is bound to the input through a mapping
and an expression. Each of the rules for obtaining
the output is expressed in terms of the input
schemata and the parameters of the activity. In the
case of program templates, the output of the
activity is expressed in terms of its intermediate
predicate schemata, as well as its input schemata
and its parameters. Program-based templates are
often used to define activities that employ con-
straints like does-not-belong, or does-not-exist,
which need an intermediate negated predicate to
be expressed intuitively. This predicate usually
describes the conjunction of properties we want to
avoid, and then it appears negated in the output
predicate. Thus, in general, we allow the construc-
tion of a LDL program, with intermediate
predicates, in order to enhance intuition. This
classification is orthogonal to the logical one of
Section 3.1.

Simple templates: Formally, the expression of an
activity which is based on a certain simple
template is produced by a set of rules of the
following form:

OUTPUTðÞo� INPUTðÞ; EXPRESSION; MAPPING

where INPUT() and OUTPUT() denote the full
expression of the respective schemata; in the case
of multiple input schemata, INPUT()expresses
the conjunction of the input schemata. MAPPING
denotes any mapping between the input, output,
and expression attributes. A default mapping can
be explicitly done at the template level, by
specifying equalities between attributes, where
the first attribute of the input schema is mapped
to the first attribute of the output schema, the
second to the respective second one and so on. At
instantiation time, the user can change these
mappings easily, especially in the presence of the
graphical interface. Note also that despite the fact
that LDL allows implicit mappings by giving
identical names to attributes that must be equal
our design choice was to give explicit equalities in
order to support the preservation of the names of
the attributes of the input and output schemata at
instantiation time.
To make ourselves clear, we will demonstrate

the usage of simple template activities through an
example. Suppose, thus, the case of the Domain
Mismatch template activity, checking whether
the values for a certain attribute fall within a
particular range. The rows that abide by the rule
pass the check performed by the activity and they
are propagated to the output.
Observe Fig. 13, where we present an example of

the definition of a template activity and its
instantiation in a concrete activity. The first row
in Fig. 13 describes the definition of the template
activity. There are three parameters; @FIELD, for
the field that will be checked against the expres-
sion, @Xlow and @Xhigh for the lower and upper
limit of acceptable values for attribute @FIELD.
The expression of the template activity is a simple
expression guaranteeing that @FIELD will be
within the specified range. The second row of
Fig. 13 shows the template after the macros are
expanded. Let us suppose that the activity named
DM1 materializes the templates parameters that
appear in the third row of Fig. 13, i.e., specifies the
attribute over which the check will be performed
(A_IN_3) and the actual ranges for this check (5,
10). The fourth row of Fig. 13 shows the resulting
instantiation after keyword renaming is done. The
activity includes an input schema dm1_in, with
attributes DM1_IN_1, DM1_IN_2, DM1_IN_3,
DM1_IN_4 and an output schema dm1_out with
attributes DM1_OUT_1, DM1_OUT_2, DM1_OUT_3,
DM1_OUT_4. In this case the parameter @FIELD
implements a dynamic internal mapping in the
template, whereas the @Xlow, @Xigh parameters
provide values for constants. The mapping from

ARTICLE IN PRESS

Fig. 13. Simple template example: domain mismatch.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 513
the input to the output is hardcoded in the
template.

Program-based templates: The case of program-

based templates is somewhat more complex, since
the designer who records the template creates more
than one predicate to describe the activity. This is
usually the case of operations where we want to
verify that some data do not have a conjunction of
certain properties. Such constraints employ nega-
tion to assert that a tuple does not satisfy a
predicate, which is defined in a way that it requires
that the data that satisfy it have the properties we
want to avoid. Such negations can be expressed by
more than one rules, for the same predicate, that
each negates just one property according to the
logical rule :(q4p)�:q3:p. Thus, in general,
we allow the construction of a LDL program, with
intermediate predicates, in order to enhance
intuition. For example the does-not-belong rela-
tion, which is needed in the Difference activity
template, needs a second predicate to be expressed
intuitively.
Let us see in more detail the case of Differ-

ence. During the ETL process, one of the very
first tasks that we perform is the detection of newly
inserted and possibly updated records. Usually,
this is physically performed by the comparison of
two snapshots (one corresponding to the previous
extraction and the other to the current one). To
capture this process, we introduce a variation of
the classical relational difference operator, which
checks for equality only on a certain subset of
attributes of the input records. Assume that during
the extraction process we want to detect the newly
inserted rows. Then, if PK is the set of attributes
that uniquely identify rows (in the role of a
primary key), the newly inserted rows can be
found from the expression D/PKS4(Rnew, R). The
formal semantics of the difference operator are

ARTICLE IN PRESS

Fig. 14. Program-based template example: Difference activity.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525514

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 515
given by the following calculus-like definition:
D/A1,y,AkS(R, S)¼ {xAR|:(yAS: x[A1]¼ y[A1]
4y4x[Ak]¼ y[Ak]}.
In Fig. 14, we can see the template of the

Difference activity and a resulting instantiation
for an activity named dF1. As we can see we need
the semijoin predicate so we can exclude all
tuples that satisfy it. Note also that we have two
different inputs, which are denoted as distinct by
adding a number at the end of the keyword a_in.
4. Implementation

In the context of the aforementioned frame-
work, we have implemented a graphical design
tool, ARKTOS II, with the goal of facilitating the
design of ETL scenarios, based on our model. In
order to design a scenario, the user defines the
source and target data stores, the participating
activities and the flow of the data in the scenario.
These tasks are greatly assisted (a) by a friendly
GUI and (b) by a set of reusability templates.
All the details defining an activity can be

captured through forms and/or simple point and
click operations. More specifically, the user may
explore the data sources and the activities already
Fig. 15. The motivating e
defined in the scenario, along with their schemata
(input, output and parameter). Attributes belong-
ing to an output schema of an activity or a
recordset can be ‘‘drag’n’dropped’’ in the input
schema of a subsequent activity or recordset, in
order to create the equivalent data flow in the
scenario. In a similar design manner, one can also
set the parameters of an activity. By default the
output schema of the activity is instantiated as a
copy of the input schema. Then, the user has the
ability to modify this setting according to his
demands, e.g., by deleting or renaming the proper
attributes. The rejection schema of an activity is
considered to be a copy of the input schema of the
respective activity and the user may determine its
physical location, e.g., the physical location of a
log file that maintains the rejected rows of the
specified activity. Apart from these features, the
user can (a) draw the desirable attributes or
parameters, (b) define their name and data type,
(c) connect them to their schemata, (d) create
provider and regulator relationships between
them, and (e) draw the proper edges from one
node of the architecture graph to another. The
system assures the consistency of a scenario, by
allowing the user to draw only relationships
respecting the restrictions imposed from the
xample in ARKTOS II.

ARTICLE IN PRESS

Fig. 16. A detailed zoom-in view of the motivaing example.

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525516
model. As far as the provider and instance-of
relationships are concerned, they are calculated
automatically and their display can be turned on
or off from an application’s menu. Moreover, the
system allows the designer to define activities
through a form-based interface, instead of defining
them through the point-and-click interface. Natu-
rally, the form automatically provides lists with
the available recordsets, their attributes, etc. Fig.
15 shows the design canvas of our GUI, where our
motivating example is depicted.

ARKTOS II offers zoom-in/zoom-out capabilities,
a particularly useful feature in the construction of
the data flow of the scenario through inter-
attribute ‘‘provider’’ mappings. The designer can
deal with a scenario in two levels of granularity: (a)
at the entity or zoom-out level, where only the
participating recordsets and activities are visible
and their provider relationships are abstracted as
edges between the respective entities, or (b) at the
attribute or zoom-in level, where the user can see
and manipulate the constituent parts of an
activity, along with their respective providers at
the attribute level. In Fig. 16, we show a part of the
scenario of Fig. 15. Observe (a) how part-of
relationships are expanded to link attributes to
their corresponding entities, (b) how provider
relationships link attributes to each other, (c)
how regulator relationships populate activity
parameters and (d) how instance-of relationships
relate attributes with their respective data types
that are depicted at the lower right part of the
figure.
In ARKTOS II, the customization principle is

supported by the reusability templates. The notion
of template is in the heart of ARKTOS II. There are
templates for practically every aspect of the model:
data types, functions and activities. Templates are
extensible; thus, providing the user with the
possibility of customizing the environment accord-
ing to his/her own needs. Especially for activities,
which form the core of our model, a specific menu
with a set of frequently used ETL Activities is
provided. The system has a built-in mechanism
responsible for the instantiation of the LDL
templates, supported by a graphical form that
helps the user define the variables of the template
by selecting its values among the appropriate
scenario’s objects. Another distinctive feature of
ARKTOS II is the computation of the scenario’s

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 517
design quality by employing a set of metrics that
are presented in [6], either for the whole scenario
or for each activity of it.
The scenarios are stored in ARKTOS II repository

(implemented in a relational DBMS); the system
allows the user to store, retrieve and reuse existing
scenarios. All the metadata of the system involving
the scenario configuration, the employed templates
and their constituents are stored in the repository.
The choice of a relational DBMS for our metadata
repository allows its efficient querying as well as
the smooth integration with external systems and/
or future extensions of ARKTOS II. The connectivity
to source and target data stores is achieved
through ODBC connections and the tool offers
an automatic reverse engineering of their schema-
ta. We have implemented ARKTOS II with Oracle
8.1.7 as basis for our repository and Ms Visual
Basic (Release 6) for developing our GUI.
An on-going activity is the coupling of ARKTOS II

with state-of-the-art algorithms for individual
ETL tasks (e.g., duplicate removal, or surrogate
key assignment) and with scheduling and monitor-
ing facilities. Future plans for ARKTOS II involve the
extension of data sources to more sophisticated
data formats, outside the relational domain, like
object-oriented or XML data.
5. Related work

In this section, we will report (a) on related
commercial studies and tools in the field of ETL,
(b) on related efforts in the academia in the issue,
and (c) applications of workflow technology in the
field of data warehousing.

5.1. Commercial studies and tools

In a recent study [14], the authors report that
due to the diversity and heterogeneity of data
sources, ETL is unlikely to become an open
commodity market. The ETL market has reached
a size of $667 millions for year 2001; still the
growth rate has reached a rather low 11% (as
compared with a rate of 60% growth for year
2000). This is explained by the overall economic
downturn environment. In terms of technological
aspects, the main characteristic of the area is the
involvement of traditional database vendors with
ETL solutions built in the DBMSs. The three
major database vendors that practically ship ETL
solutions ‘‘at no extra charge’’ are pinpointed:
Oracle with Oracle Warehouse Builder [4], Micro-
soft with Data Transformation Services [3] and
IBM with the Data Warehouse Center [1]. Still, the
major vendors in the area are Informatica’s
Powercenter [2] and Ascential’s DataStage suites
[15,16] (the latter being part of the IBM recom-
mendations for ETL solutions). The study goes on
to propose future technological challenges/fore-
casts that involve the integration of ETL with (a)
XML adapters, (b) enterprise application integra-
tion (EAI) tools (e.g., MQ-Series), (c) customized
data quality tools, and (d) the move towards
parallel processing of the ETL workflows.
The aforementioned discussion is supported

from a second recent study [17], where the authors
note the decline in license revenue for pure ETL
tools, mainly due to the crisis of IT spending and
the appearance of ETL solutions from traditional
database and business intelligence vendors. The
Gartner study discusses the role of the three major
database vendors (IBM, Microsoft, Oracle) and
points that they slowly start to take a portion of
the ETL market through their DBMS-built-in
solutions.
In the sequel, we elaborate more on the major

vendors in the area of the commercial ETL tools,
and we discuss three tools that the major database
vendors provide, as such two ETL tools that are
considered as best sellers. But, we stress the fact
that the former three have the benefit of the
minimum cost, because they are shipped with the
database, while the latter two have the benefit to
aim at complex and deep solutions not envisioned
by the generic products.

IBM. DB2 Universal Database offers the Data
Warehouse Center [1], a component that auto-
mates data warehouse processing, and the DB2
Warehouse Manager that extends the capabilities
of the Data Warehouse Center with additional
agents, transforms and metadata capabilities.
Data Warehouse Center is used to define the
processes that move and transform data for the
warehouse. Warehouse Manager is used to

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525518
schedule, maintain, and monitor these processes.
Within the Data Warehouse Center, the warehouse

schema modeler is a specialized tool for generating
and storing schema associated with a data ware-
house. Any schema resulting from this process can
be passed as metadata to an OLAP tool. The
process modeler allows user to graphically link the
steps needed to build and maintain data ware-
houses and dependent data marts. DB2 Ware-
house Manager includes enhanced ETL function
over and above the base capabilities of DB2 Data
Warehouse Center. Additionally, it provides me-
tadata management, repository function, as such
an integration point for third-party independent
software vendors through the information catalog.

Microsoft. The tool that is offered by Microsoft
to implement its proposal for the Open Informa-
tion Model is presented under the name of Data

Transformation Services(DTS) [3,18]. DTS are the
data-manipulation utility services in SQL Server
(from version 7.0) that provide import, export, and
data-manipulating services between OLE DB [19],
ODBC, and ASCII data stores. DTS are char-
acterized by a basic object, called a package, that
stores information on the aforementioned tasks
and the order in which they need to be launched. A
package can include one or more connections to
different data sources, and different tasks and
transformations that are executed as steps that
define a workflow process [20]. The software
modules that support DTS are shipped with MS
SQL Server. These modules include:
�
 DTS designer: A GUI used to interactively
design and execute DTS packages,
�
 DTS export and import wizards: Wizards that
ease the process of defining DTS packages for
the import, export and transformation of data,
�
 DTS programming interfaces: A set of OLE
Automation and a set of COM interfaces to
create customized transformation applications
for any system supporting OLE automation or
COM.

Oracle. Oracle Warehouse Builder [4,21] is a
repository-based tool for ETL and data ware-
housing. The basic architecture comprises two
components, the design environment and the
runtime environment. Each of these components
handles a different aspect of the system; the design
environment handles metadata, the runtime en-
vironment handles physical data. The metadata
component revolves around the metadata reposi-
tory and the design tool. The repository is based
on the Common Warehouse Model (CWM)
standard and consists of a set of tables in an
Oracle database that are accessed via a Java-based
access layer. The front-end of the tool (entirely
written in Java) features wizards and graphical
editors for logging onto the repository. The data
component revolves around the runtime environ-
ment and the warehouse database. The Warehouse
Builder runtime is a set of tables, sequences,
packages, and triggers that are installed in the
target schema. The code generator that bases on
the definitions stores in the repository, it creates
the code necessary to implement the warehouse.
Warehouse Builder generates extraction specific
languages (SQL*Loader control files for flat files,
ABAP for SAP/R3 extraction and PL/SQL for all
other systems) for the ETL processes and SQL
DDL statements for the database objects. The
generated code is deployed, either to the file system
or into the database.

Ascential software. DataStage XE suite from
Ascential Software [15,16] (formerly Informix
Business Solutions) is an integrated data ware-
house development toolset that includes an ETL
tool (DataStage), a data quality tool (Quality
Manager), and a metadata management tool
(MetaStage). The DataStage ETL component
consists of four design and administration mod-
ules: Manager, Designer, Director and Adminis-

trator, as such a metadata repository and a server.
The DataStage Manager is the basic metadata
management tool. In the Designer module of
DataStage, ETL tasks execute within individual
‘‘stage’’ objects (source, target and transformation
stages), in order to create ETL tasks. The Director
is DataStage’s job validation and scheduling
module. The DataStage Administrator is primarily
for controlling security functions. The DataStage
Server is the engine that moves data from source to
target.

Informatica. Informatica PowerCenter [2] is the
industry-leading (according to recent studies

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 519
[14,17]) data integration platform for building,
deploying, and managing enterprise data ware-
houses, and other data integration projects. The
workhorse of Informatica PowerCenter is a data
integration engine that executes all data extrac-
tion, transformation, migration and loading func-
tions in-memory, without generating code or
requiring developers to hand-code these proce-
dures. The PowerCenter data integration engine is
metadata driven, creating a repository-and-engine
partnership that ensures data integration processes
are optimally executed.

5.2. Research efforts

Research focused specifically on ETL. The AJAX

system [22] is a data cleaning tool developed at
INRIA France. It deals with typical data quality
problems, such as the object identity problem [23],
errors due to mistyping and data inconsistencies

between matching records. This tool can be used
either for a single source or for integrating
multiple data sources. AJAX provides a frame-
work wherein the logic of a data cleaning program
is modeled as a directed graph of data transforma-
tions that start from some input source data. Four
types of data transformations are supported:

Mapping transformations standardize data for-
mats (e.g. date format) or simply merge or split
columns in order to produce more suitable
formats.
Matching transformations find pairs of records
that most probably refer to same object. These
pairs are called matching pairs and each such
pair is assigned a similarity value.
Clustering transformations group together
matching pairs with a high similarity value by
applying a given grouping criteria (e.g. by
transitive closure).
Merging transformations are applied to each
individual cluster in order to eliminate dupli-
cates or produce new records for the resulting
integrated data source.

AJAX also provides a declarative language for
specifying data cleaning programs, which consists
of SQL statements enriched with a set of specific
primitives to express mapping, matching, cluster-
ing and merging transformations. Finally, a
interactive environment is supplied to the user in
order to resolve errors and inconsistencies that
cannot be automatically handled and support a
stepwise refinement design of data cleaning
programs. The theoretic foundations of this tool
can be found in [24], where apart from the
presentation of a general framework for the data
cleaning process, specific optimization techniques
tailored for data cleaning applications are
discussed.
Raman et al. [25,26] present the Potter’s Wheel

system, which is targeted to provide interactive
data cleaning to its users. The system offers the
possibility of performing several algebraic opera-
tions over an underlying data set, including format

(application of a function), drop, copy, add a
column, merge delimited columns, split a column
on the basis of a regular expression or a position in
a string, divide a column on the basis of a predicate
(resulting in two columns, the first involving the
rows satisfying the condition of the predicate and
the second involving the rest), selection of rows on
the basis of a condition, folding columns (where a
set of attributes of a record is split into several
rows) and unfolding. Optimization algorithms are
also provided for the CPU usage for certain classes
of operators. The general idea behind Potter’s
Wheel is that users build data transformations in
iterative and interactive way. In the background,
Potter’s Wheel automatically infers structures for
data values in terms of user-defined domains, and
accordingly checks for constraint violations. Users
gradually build transformations to clean the data
by adding or undoing transforms on a spread-
sheet-like interface; the effect of a transform is
shown at once on records visible on screen. These
transforms are specified either through simple
graphical operations, or by showing the desired
effects on example data values. In the background,
Potter’s Wheel automatically infers structures for
data values in terms of user-defined domains, and
accordingly checks for constraint violations. Thus
users can gradually build a transformation as
discrepancies are found, and clean the data with-
out writing complex programs or enduring long
delays.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525520
We believe that the AJAX tool is mostly
oriented towards the integration of web data
(which is also supported by the ontology of its
algebraic transformations); at the same time,
Potter’s wheel is mostly oriented towards an
interactive data cleaning tool, where the users
interactively choose data. With respect to these
approaches, we believe that our technique con-
tributes (a) by offering an extensible framework
though a uniform extensibility mechanism, and (b)
by providing formal foundations to allow the
reasoning over the constructed ETL scenarios.
Clearly, ARKTOS II is a design tool for traditional
data warehouse flows; therefore, we find the
aforementioned approaches complementary (espe-
cially Potter’s Wheel). At the same time, when
contrasted with the industrial tools, it is evident
that although ARKTOS II is only a design environ-
ment for the moment, the industrial tools lack the
logical abstraction that our model, implemented in
ARKTOS II, offers; on the contrary, industrial tools
are concerned directly with the physical perspec-
tive (at least to the best of our knowledge).

Data quality and cleaning. An extensive review
of data quality problems and related literature,
along with quality management methodologies
can be found in [27]. A collection of articles on
data transformations [28] offers a discussion on
various aspects of this research area. A collection
of articles on data cleaning [29] (including a survey
[30]), provides an extensive overview of the field,
along with research issues and a review of some
commercial tools and solutions on specific pro-
blems, e.g. [31,32]. In a related, still different,
context, we would like to mention the IBIS tool
[33]. IBIS is an integration tool following the
global-as-view approach to answer queries in a
mediated system. Departing from the traditional
data integration literature though, IBIS brings the
issue of data quality in the integration process. The
system takes advantage of the definition of
constraints at the intentional level (e.g., foreign
key constraints) and tries to provide answers that
resolve semantic conflicts (e.g., the violation of a
foreign key constraint). The interesting aspect here
is that consistency is traded for completeness. For
example, whenever an offending row is detected
over a foreign key constraint, instead of assuming
the violation of consistency, the system assumes
the absence of the appropriate lookup value and
adjusts its answers to queries accordingly [34].

Workflows. To the best of our knowledge,
research on workflows is focused around the
following reoccurring themes: (a) modeling
[5,9,35,36,37], where the authors are primarily
concerned in providing a metamodel for work-
flows; (b) correctness issues [35–37], where criteria
are established to determine whether a workflow is
well formed, and (c) workflow transformations
[35–37] where the authors are concerned on
correctness issues in the evolution of the workflow
from a certain plan to another.
In the literature there is a standard proposed by

the workflow management coalition (WfMC) [9].
The standard includes a metamodel for the
description of a workflow process specification
and a textual grammar for the interchange of
process definitions. A workflow process comprises
of a network of activities, their interrelationships,
criteria for staring/ending a process and other
information about participants, invoked applica-

tions and relevant data. Also, several other kinds
of entities which are external to the workflow, such
as system and environmental data or the organiza-
tional model, are roughly described. In [38] several
interesting research results on workflow manage-
ment are presented in the field of electronic
commerce, distributed execution and adaptive
workflows. Still, there is no reference to data flow
modeling efforts. In [5] the authors provide an
overview of the most frequent control flow
patterns in workflows. The patterns refer explicitly
to control flow structures like activity sequence,
AND/XOR/OR split/join and so on. Several
commercial tools are evaluated against the 26
patterns presented. In [35–37] the authors, based
on minimal metamodels, try to provide correctness
criteria in order to derive equivalent plans for the
same workflow scenario.
In more than one work [5,36] the authors

mention the necessity for the perspectives already
discussed in the introduction of the paper. Data
flow or data dependencies are listed within the
components of the definition of a workflow; still in
all these works the authors quickly move on to
assume that control flow is the primary aspect of

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 521
workflow modeling and do not deal with data-
centric issues any further. It is particularly inter-
esting that the [9] standard is not concerned with
the role of business data at all. The primary focus
of the WfMC standard is the interfaces that
connect the different parts of a workflow engine
and the transitions between the states of a work-
flow. No reference is made to business data
(although the standard refers to data which are
relevant for the transition from one state to
another, under the name workflow related data).

5.3. Applications of ETL workflows in data

warehouses.

Finally, we would like to mention that the
literature reports several efforts (both research and
industrial) for the management of processes and
workflows that operate on data warehouse sys-
tems. In [39], the authors describe an industrial
effort where the cleaning mechanisms of the data
warehouse are employed in order to avoid the
population of the sources with problematic data in
the fist place. The described solution is based on a
workflow that employs techniques from the field of
view maintenance. The industrial effort at Deutche
Bank, involving the import/export, transformation
and cleaning and storage of data in a Terabyte-size
data warehouse is described in Ref. [40]. The paper
explains also the usage of metadata management
techniques, which involves a broad spectrum of
applications, from the import of data to the
management of dimensional data and more
importantly for the querying of the data ware-
house. A research effort (and its application in an
industrial application) for the integration and
central management of the processes that lie
around an information system is presented in the
work of Jarke et al. [41]. A metadata management
repository is employed to store the different
activities of a large workflow, along with impor-
tant data that these processes employ.
Finally, we should refer the interested reader to

[6] for a detailed presentation of ARKTOS II model.
The model is accompanied by a set of importance

metrics where we exploit the graph structure to
measure the degree to which activities/recordsets/
attributes are bound to their data providers or
consumers. In [42] we propose a complementary
conceptual model for ETL scenarios and in [43] a
methodology for constructing it. Ref. [44] ab-
stractly describes our approach of modeling and
managing ETL processes.
6. Discussion

In this section we would like to briefly discuss
some comments on the overall evaluation of our
approach. Our proposal involves the data model-
ing part of ETL activities, which are modeled as
workflows in our setting; nevertheless, it is not
clear whether we covered all possible problems
around the topic. Therefore, in this section, we will
explore three issues as an overall assessment of our
proposal. First, we will discuss its completeness,
i.e., whether there are parts of the data modeling
that we have missed. Second, we will discuss the
possibility of further generalizing our approach to
the general case of workflows. Finally, we will exit
the domain of the logical design and deal with
performance and stability concerns around ETL
workflows.

Completeness. A first concern that arises,
involves the completeness of our approach. We
believe that the different layers of Fig. 1 fully cover
the different aspects of workflow modeling. We
would like to make clear that we focus on the data-
oriented part of the modeling, since ETL activities
are mostly concerned with a well-established
automated flow of cleanings and transformations,
rather than an interactive session where user

decisions and actions direct the flow (like for
example in [45]).
Still, is this enough to capture all the aspects of

the data-centric part of ETL activities? Clearly, we
do not provide any ‘‘formal’’ proof for the
completeness of our approach. Nevertheless, we
can justify our basic assumptions based on the
related literature in the field of software metrics,
and in particular, on the method of function points

[46,47]. Function points is a methodology trying
to quantify the functionality (and thus the re-
quired development effort) of an application.
Although based on assumptions that pertain to
the technological environment of the late 1970s,

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525522
the methodology is still one of the most cited in the
field of software measurement. In any case,
function points compute the measurement values
based on the five following characteristics: (i) user
inputs, (ii) user outputs, (iii) user inquiries, (iv)
employed files and (v) external interfaces.
We believe that an activity in our setting covers

all the above quite successfully, since (a) it employs
input and output schemata to obtain and forward
data (characteristics i, ii and iii), (b) communicates
with files (characteristic iv) and other activities
(practically characteristic v). Moreover, it is tuned
by some user-provided parameters, which are not
explicitly captured by the overall methodology but
are quite related to characteristics (iii) and (v). As
a more general view on the topic we could claim
that it is sufficient to characterize activities with
input and output schemata, in order to denote
their linkage to data (and other activities, too),
while treating parameters as part of the input and/
or output of the activity, depending on their
nature. We follow a more elaborate approach,
treating parameters separately, mainly because
they are instrumental in defining our template
activities.

Generality of the results. A second issue that we
would like to bring up is the general applicability
of our approach. Is it possible that we apply this
modeling for the general case of workflows,
instead of applying it simply to the ETL ones?
As already mentioned, to the best of our knowl-
edge, typical research efforts in the context of
workflow management are concerned with the
management of the control flow in a workflow
environment. This is clearly due to the complexity
of the problem and its practical application to
semi-automated, decision-based, interactive work-
flows where user choices play a crucial role.
Therefore, our proposal for a structured manage-
ment of the data flow, concerning both the
interfaces and the internals of activities appears
to be complementary to existing approaches for
the case of workflows that need to access
structured data in some kind of data store, or to
exchange structured data between activities.
It is possible, however, that due to the complex-

ity of the workflow, a more general approach
should be followed, where activities have multiple
inputs and outputs, covering all the cases of
different interactions due to the control flow. We
anticipate that a general model for business
workflows will employ activities with inputs and
outputs, internal processing, and communication
with files and other activities (along with all the
necessary information on control flow, resource
management, etc); nevertheless, we find this to be
outside the context of this paper.

Execution characteristics. A third concern in-
volves performance. Is it possible to model ETL
activities with workflow technology? Typically, the
back-stage of the data warehouse operates under
strict performance requirements, where a loading
time-window dictates how much time is assigned
to the overall ETL process to refresh the contents
of the data warehouse. Therefore, performance is
really a major concern in such an environment.
Clearly, in our setting we do not have in mind EAI
or other message-oriented technologies to bring
the loading task to a successful end. On the
contrary, we strongly believe that the volume of
data is the major factor of the overall process (and
not, for example, any user-oriented decisions).
Nevertheless, to our point of view, the paradigm of
activities that feed one another with data during
the overall process is more than suitable.
Let us mention a recent experience report on the

topic: in [48], the authors report on their data
warehouse population system. The architecture of
the system is discussed in the paper, with
particular interest (a) in a ‘‘shared data area’’,
which is an in-memory area for data transforma-
tions, with a specialized area for rapid access to
lookup tables and (b) the pipelining of the ETL
processes. A case study for mobile network traffic
data is also discussed, involving around 30 data
flows, 10 sources, and around 2TB of data, with 3
billion rows for the major fact table. In order to
achieve a throughput of 80M row/h and 100M
row/day, the designers of the system were practi-
cally obliged to exploit low-level OCI calls, in
order to avoid storing loading data to files and
then loading them through loading tools. With 4 h
of loading window for all this workload, the main
issues identified involve (a) performance, (b)
recovery, (c) day-by-day maintenance of ETL
activities, and (d) adaptable and flexible activities.

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 523
Based on the above, we believe that the quest for a
workflow, rather than a push-and-store paradigm,
is quite often the only way to follow.
Of course, this kind of workflow approach

possibly suffers in the issue of software stability,
and mostly recovery. Having a big amount of
transient data, processed through a large set of
activities in main memory is clearly vulnerable to
both software and hardware failures. Moreover,
once a failure has occurred, rapid recovery, if
possible within the loading time-window is also a
strong desideratum. Techniques to handle the issue
of recovery already exist. To our knowledge the
most prominent one is the one by Labio et al. [49],
where the ordering of data is taken into considera-
tion. Checkpoint techniques guarantee that once
the activity output is ordered, recovery can start
right at the point where the activity did the last
checkpoint, thus speeding up the whole process
significantly.
7. Conclusions

In this paper, we have focused on the data-
centric part of logical design of the ETL scenario
of a data warehouse. First, we have defined a
formal logical metamodel as a logical abstraction
of ETL processes. The data stores, activities and
their constituent parts, as well as the provider
relationships that map data producers to data
consumers have formally been defined. We have
also employed a declarative database program-
ming language, LDL, to define the semantics of
each activity. Then, we have provided a reusability
framework that complements the genericity of the
aforementioned metamodel. Practically, this is
achieved from an extensible set of specializations
of the entities of the metamodel layer, specifically
tailored for the most frequent elements of ETL
scenarios, which we call template activities. In the
context of template materialization, we have dealt
with specific language issues, in terms of the
mechanics of template instantiation to concrete
activities. Finally, we have presented a graphical
design tool, ARKTOS II, with the goal of facilitating
the design of ETL scenarios, based on our model.
Still, several research issues are still left open, on
the grounds of this work. A broad area of research
involves the efficient and reliable execution of an
ETL scenario. In this context, an obvious issue is
the optimization of ETL scenarios under time and
throughput constraints. The topic appears inter-
esting, since the frequent usage of functions in
ETL scenarios, drives the problem outside the
expressive power of relational algebra (and there-
fore the traditional optimization techniques, used
in the context of relational query optimizers). The
problem becomes even more complex if one
considers issues of reliability and recovery in the
presence of failures or even issues of software
quality (e.g., resilience to changes in the underlying
data stores). Similar results already exist in the
context of materialized views maintenance [50,51].
Of course, the issue of providing optimal algo-
rithms for individual ETL tasks (e.g., duplicate
detection, surrogate key assignment, or identifica-
tion of differentials) is also very interesting. In a
different line of research one could also work
towards providing a general model for the data
flow of data-centric business workflows, involving
issues of transactions, alternative interfaces in the
context of control flow decisions and contingency
scenarios. Finally, the extension of ETL techni-
ques for streaming or XML-formatted data is also
another interesting topic of future research.
Acknowledgments

We would like to thank the anonymous
reviewers of this paper for valuable comments
that improved the overall quality of the paper.
References

[1] IBM, IBM Data warehouse manager, available at http://

www-3.ibm.com/software/data/db2/datawarehouse/.

[2] Informatica, Power Center, available at http://www.

informatica.com/products/data+integration/powercenter/

default.htm.

[3] Microsoft, Data transformation services, available at

http://www.microsoft.com.

[4] Oracle, Oracle warehouse builder product page, available at

http://otn.oracle.com/products/warehouse/content.html.

http://www-3.ibm.com/software/data/db2/datawarehouse/
http://www-3.ibm.com/software/data/db2/datawarehouse/
http://www.informatica.com/products/data+integration/powercenter/default.htm
http://www.informatica.com/products/data+integration/powercenter/default.htm
http://www.informatica.com/products/data+integration/powercenter/default.htm
http://www.microsoft.com
http://otn.oracle.com/products/warehouse/content.html

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525524
[5] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepus-

zewski, A.P. Barros. Workflow Patterns, BETA Working

Paper Series, WP 47, Eindhoven University of Technology,

Eindhoven, 2000, available at the Workflow Patterns

web site, at tmit http://www.tm.tue.nl/research/patterns/

documentation.htm.

[6] P. Vassiliadis, A. Simitsis, S. Skiadopoulos, Modeling ETL

activities as graphs, in: Proceedings of the Fourth

International. Workshop on Design and Management of

Data Warehouses (DMDW), pp. 52–61, Toronto, Canada,

2002.

[7] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, A

framework for the design of ETL scenarios, in: Proceed-

ings of the 15th Conference on Advanced Information

Systems Engineering (CAiSE ‘03), pp. 520–535, Klagen-

furt/Velden, Austria, 16–20 June, 2003.

[8] R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite, The

Data Warehouse Lifecycle Toolkit: Expert Methods for

Designing, Developing, and Deploying Data Warehouses,

Wiley, New York, 1998.

[9] Workflow Management Coalition, Interface 1: Process

Definition Interchange Process Model, Document no.

WfMC TC-1016-P, 1998, available at http://www.

wfmc.org.

[10] S. Naqvi, S. Tsur, A Logical Language for Data and

Knowledge Bases, Computer Science Press, Rockville,

MD, 1989.

[11] C. Zaniolo, LDL++ Tutorial, UCLA, http://pike.cs.

ucla.edu/ldl/, December 1998.

[12] D. Dori, Conceptual modeling and system architecting,

Commun. ACM 46 (10) (2003) 62–65.

[13] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis,

S. Skiadopoulos, A generic and customizable frame-

work for the design of ETL scenarios (long version),

Technical Report TR-2004-1, Knowledge and Data-

base Systems Laboratory, National Technical University

of Athens, available at http://www.dbnet.ece.ntua.gr/

pubs/.

[14] Giga Information Group. Market Overview Update:

ETL. Technical Report RPA-032002-00021, March

2002.

[15] Ascential Software Inc., available at: http://www.ascen-

tialsoftware.com.

[16] Ascential Software Products—Data Warehousing Tech-

nology, available at: http://www.ascentialsoftware.com/

products/datastage.html.

[17] Gartner Inc., ETL magic quadrant update: market

pressure increases, Gartner’s Strategic Data Management

Research Note, M-19-1108, January 2003.

[18] P.A. Bernstein, T. Bergstraesser, Meta-data support for

data transformations using Microsoft repository. Special

issue on data transformations, Bull. Tech. Committee

Data Eng. 22 (1) (1999) 9–14.

[19] Microsoft Corp, OLEDB specification, available at http://

www.microsoft.com/data/oledb.

[20] C. Graves, M. Scott, M. Benkovich, P. Turley, R.

Skoglund, R. Dewson, S. Youness, D. Lee, S. Ferguson,
T. Bain, T. Joubert, Professional SQL Server 2000 data

warehousing with analysis services, 1st ed, Wrox Press

Ltd., 2001.

[21] Oracle, Oracle 9i Warehouse Builder, Architectural White

paper, April 2002.

[22] H. Galhardas, D. Florescu, D. Shasha, E. Simon, Ajax: An

extensible data cleaning tool, in: Proceedings of the ACM

SIGMOD International Conference on the Management

of Data, pp. 590, Dallas, TX, 2000.

[23] W. Cohen. Some practical observations on integration of

Web information, in: WebDB’99 Workshop in conj. with

ACM SIGMOD, 1999.

[24] H. Galhardas, D. Florescu, D. Shasha, E. Simon, An

extensible framework for data cleaning, Technical Report

INRIA 1999 (RR-3742).

[25] V. Raman, J. Hellerstein, Potters Wheel: an interactive

framework for data cleaning and transformation, Techni-

cal Report University of California at Berkeley, Computer

Science Division, 2000, available at http://www.cs.

berkeley.edu/rshankar/papers/pwheel.pdf.

[26] V. Raman, J. Hellerstein, Potter’s Wheel: an interactive

data cleaning system, in: Proceedings of 27th Inter-

national Conference on Very Large Data Bases (VLDB),

pp. 381–390, Roma, Italy, 2001.

[27] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis,

Springer, New York, 2000.

[28] E. Rundensteiner, Special issue on data transformations,

Bull. Tech. Committee Data Eng. 22 (1) (1999).

[29] S. Sarawagi, Special issue on data cleaning, Bull. Tech.

Committee Data Eng. 23 (4) (2000).

[30] E. Rahm, H. Hai Do, Data cleaning: problems and current

approaches, Bull. Tech. Committee Data Eng. 23 (4)

(2000).

[31] V. Borkar, K. Deshmuk, S. Sarawagi, Automatically

extracting structure form free text Addresses, Bull. Tech.

Committee Data Eng. 23 (4) (2000).

[32] A. Monge, Matching algorithms within a duplicate

detection system, Bull. Tech. Committee Data Eng. 23

(4) (2000).

[33] A. Calı́, D. Calvanese, G. De Giacomo, M. Lenzerini, P.

Naggar, F. Vernacotola, IBIS: Semantic data integration

at work, in: Proceedings of the 15th International

Conference on Advanced Information Systems Engineer-

ing (CAiSE 2003), vol. 2681 of Lecture Notes in Computer

Science, pp. 79–94. Springer, 2003.

[34] A. Calı́, D. Calvanese, G. De Giacomo, M. Lenzerini,

Data integration under integrity constraints, in: Proceed-

ings of the 14th International Conference on Advanced

Information Systems Engineering (CAiSE 2002), vol. 2348

of Lecture Notes in Computer Science, pp. 262–279.

Springer, 2002.

[35] J. Eder, W, Gruber, A meta model for structured work-

flows supporting workflow transformations, in Proceed-

ings of the Sixth East European Conference on Advances

in Databases and Information Systems (ADBIS 2002),

pp. 326–339, Bratislava, Slovakia, September 8–11,

2002.

http://www.tm.tue.nl/research/patterns/documentation.htm
http://www.tm.tue.nl/research/patterns/documentation.htm
http://www.wfmc.org
http://www.wfmc.org
http://pike.cs.ucla.edu/ldl/
http://pike.cs.ucla.edu/ldl/
http://www.dbnet.ece.ntua.gr/pubs/
http://www.dbnet.ece.ntua.gr/pubs/
http://www.ascentialsoftware.com
http://www.ascentialsoftware.com
http://www.ascentialsoftware.com/products/datastage.html
http://www.ascentialsoftware.com/products/datastage.html
http://www.microsoft.com/data/oledb
http://www.microsoft.com/data/oledb
http://www.cs.berkeley.edu/~rshankar/papers/pwheel.pdf
http://

ARTICLE IN PRESS

P. Vassiliadis et al. / Information Systems 30 (2005) 492–525 525
[36] W. Sadiq, M.E. Orlowska, On business process model

transformations, 19th International Conference on Con-

ceptual Modeling (ER 2000), Salt Lake City, UT, USA,

October 9–12, 2000, pp. 267–280.

[37] B. Kiepuszewski, A.H.M. ter Hofstede, C. Bussler, On

structured workflow modeling, in: Proceedings of the 12th

International Conference on Advanced Information Sys-

tems Engineering (CAiSE 2000), pp: 431–445, Stockholm,

Sweden, June 5–9, 2000.

[38] P. Dadam, M. Reichert, (eds.), Enterprise-wide and cross-

enterprise workflow management: concepts, systems,

applications, GI Workshop Informatik’99, 1999, available

at http://www.informatik.uni-ulm.de/dbis/veranstaltungen/

Workshop-Informatik99-Proceedings.pdf.

[39] M. Jarke, C. Quix, G. Blees, D. Lehmann, G. Michalk, S.

Stierl, Improving OLTP Data Quality Using Data Ware-

house Mechanisms, Proceedings of 1999 ACM SIGMOD

International Conference on Management of Data, Phila-

delphia, USA, June 1999, pp. 537–538.

[40] E. Schafer, J.-D. Becker, M. Jarke, DB-Prism: Integrated

data warehouses and knowledge networks for bank

controlling, Proceedings of the 26th International Con-

ference on Very Large Databases, Cairo, Egypt, 2000.

[41] M. Jarke, T. List, J. Koller, The challenge of process

warehousing. Proceedings of the 26th International Con-

ference on Very Large Databases, Cairo, Egypt, 2000.

[42] P. Vassiliadis, A. Simitsis, S. Skiadopoulos, Conceptual

modeling for ETL processes, in: Proceedings of the Fifth

ACM International Workshop on Data Warehousing and

OLAP (DOLAP), pp. 14–21, McLean, VA, USA, 2002.
[43] A. Simitsis, P. Vassiliadis, A methodology for the

conceptual modeling of ETL processes, in: Proceedings

of the Decision Systems Engineering (DSE ‘03), Velden,

Austria, June 17, 2003.

[44] A. Simitsis, Modeling and managing ETL processes, in:

Proceedings of the VLDB 2003 Ph.D Workshop, Berlin,

Germany, September 12–13, 2003.

[45] F. Casati, S. Ceri, B. Pernici, G. Pozzi. Conceptual

Modeling of Workflows, in: Proceedings of the OO-ER

Conference, Australia, 1995.

[46] A.J. Albrecht, Measuring Application Development Pro-

ductivity, in IBM Applications Development Symposium,

Monterey, CA, 1979, pp. 83–92.

[47] R.S. Pressman, Software Engineering: A Practitioner’s

Approach, 5th ed, McGraw-Hill, New York, 2000.

[48] J. Adzic, V. Fiore, Data Warehouse Population Platform,

in: Proceedings of the Fifth International Workshop on the

Design and Management of Data Warehouses

(DMDW’03), Berlin, Germany, September 2003.

[49] W. Labio, J.L. Wiener, H. Garcia-Molina, V. Gorelik,

Efficient resumption of interrupted warehouse loads, in:

Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data (SIGMOD 2000),

pp. 46–57, Dallas, TX, USA, 2000.

[50] J. Chen, S. Chen, E.A. Rundensteiner, A Transactional

Model for Data Warehouse Maintenance, in: Proceedings

of the of ER 2002, LNCS 2503, pp. 247–262, 2002.

[51] B. Liu, S. Chen, E.A. Rundensteiner, A transactional

approach to parallel data warehouse maintenance, in:

Proceedings of DaWaK 2002, LNCS 2454, 2002. pp. 307–316.

http://www.informatik.uni-ulm.de/dbis/veranstaltungen/Workshop-Informatik99-Proceedings.pdf
http://www.informatik.uni-ulm.de/dbis/veranstaltungen/Workshop-Informatik99-Proceedings.pdf

	A generic and customizable framework for the design �of ETL scenarios
	Introduction
	Generic model of ETL activities
	Graphical notation and motivating example
	Preliminaries
	Activities
	Relationships in the architecture graph
	Scenarios

	Templates for ETL activities
	General framework
	Formal definition and usage of template activities
	Notation
	Instantiation
	Taxonomy: simple and program-based templates

	Implementation
	Related work
	Commercial studies and tools
	Research efforts
	Applications of ETL workflows in data warehouses.

	Discussion
	Conclusions
	Acknowledgments
	References

