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ABSTRACT

Data visualization is one of the major issues of database research. OLAP a decision support
technology, is clearly in the center of this effort. Thus far, visualization has not been incorporated
in the abstraction levels of DBMS architecture (conceptual, logical, physical); neither has it
been formally treated in this context. In this paper we start by reconsidering the separation of
the aforementioned abstraction levels to take visualization into consideration. Then, we present
the Cube Presentation Model (CPM), a novel presentational model for OLAP screens. The
proposal lies on the fundamental idea of separating the logical part of a data cube computation
from the presentational part of the client tool. Then, CPM can be naturally mapped on the
Table Lens, which is an advanced visualization technique from the Human-Computer Interaction
area, particularly tailored for cross-tab reports. Based on the particularities of Table Lens, we
propose automated proactive support to the user for the interaction with an OLAP screen.
Finally, we discuss implementation and usage issues in the context of an academic prototype
system (CubeView) that we have implemented.

Keywords: graphical user interface; mobile technologies; OLAP; presentation model;
visualization

INTRODUCTION

In the last years, Online Analytical
Processing (OLAP) and data warehous-
ing (DW) have become major research
areas in the database community (Abiteboul
et al., 2003; Inmon, 1996). Although the
modeling of data (Tsois et al., 2001;

Vassiliadis & Sellis, 1999) has been exten-
sively dealt with, an equally important is-
sue in the OLAP domain, the presenta-
tion of data, has not been adequately
investigated.

As the Lowell report (Abiteboul et
al., 2003) mentions, visualization is one of
the big issues of database research for the
next years. To cite the Lowell report:
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The original Laguna-Beach report lamented
that there was little research on user interfaces
to DBMSs. … There have not been comparable
advances in the last 15 years. There is a crying
need for better ideas in this area.

It is easy to understand that of all
fields of database research, decision sup-
port, and OLAP are the ones to be affected
most out of this phenomenon.

In the context of OLAP, data visual-
ization deals with the techniques and tools
used for presenting OLAP-specific infor-
mation to end users and decision makers.
During the next years, the database com-
munity expects visualization to be of sig-
nificant importance in the area (Abiteboul
et al., 2003), and although research has
provided results dealing with the presenta-
tion of vast amounts of data (Gebhardt et
al., 1997; Inselberg, 2001; Keim, 1997), to
our knowledge, OLAP has not been part
of advanced visualization techniques so far.

For us, it is clear that one of the main
reasons for the research community not
dealing with visualization issues so far is
the heritage of the computing paradigm of
the past three decades. This paradigm si-
lently made the assumption that the user
sitting in front of a console makes one query
and retrieves one answer (as would have
happened in a UNIX terminal 30 years ago).
Still, this is not the case with modern user
interfaces for datasets, especially in the
context of OLAP. A single front-end screen
typically involves the combination of more
than one back-end query. Still, to the best
of our knowledge, there are no modeling
techniques and languages (from the rela-
tional model to SQL and the OLAP model-
ing efforts proposed in the academia) that
build upon this fact. Our effort tries to for-
malize the simultaneous presence of more
than one query, which is done in two lay-
ers. In the presentational layer, we provide

a uniform and generic model for the user
interface, which hides the complexity of
answer retrieval, detached in the logical
layer. As a second interesting difference,
note that the users work in sessions of
queries, as opposed to sequences of unre-
lated queries. OLAP is a typical, but not
the only, case for this behavior.

In this paper, we try to approach the
problem from a clean sheet of paper. Al-
though we do not claim to provide a ge-
neric answer for all kinds of database vi-
sualization problems, we focus on the spe-
cifics of the OLAP field. Having observed
that presentational models are not really
part of the classical conceptual-logical-
physical hierarchy of database models (de-
picted in Figure 1), we propose a new sepa-
ration of layers. In the sequel, we will re-
fer to the different layers of abstraction
(models) that help us design, manage, and
operate an OLAP environment through the
term layers. 

In the middle, there is a logical layer
that abstracts from the particularities of
data storage and describes cubes and di-
mensions. This layer is naturally mapped
to physical storage entities, like relational
tables (ROLAP), or proprietary structures
like multidimensional matrices (MOLAP).
These kinds of physical entities form the
physical layer. Having these structures
covers well enough the part pertaining to
the query formulation. Still, although the
logical layer deals with the representation
of data in an abstract form, as well as the
formulation of queries and operations over
them, we need a way to model how the
answer to a query is represented in the cli-
ent part. The role of the logical layer for
the server is played by the presentational
layer for the client, which involves a simple
and generic model to abstract from the
particularities of data retrieval. The ultimate
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representation is performed by the specific
visualization techniques (pies, bar charts,
etc.) handled by the visualization layer.
The presentational layer is generic enough
to discuss the broad strategy of how data
are to be visualized (e.g., by 2D vs. 3D
means, focused for tabular vs. multimedia
data, and so on), whereas the visualization
layer deals with the particularities of the
final visualization means (e.g., palmtop,
printer, virtual reality environment, and so
on).

As one can see in Figure 1, there is a
part of the functionality that pertains to the
server and part of it that pertains to the
application server and the client. Naturally,
the distinguishing lines between this three-
tier architecture can be rearranged easily
for a two-tier or a four-tier architecture.
Note also that conceptual modeling is or-
thogonal to this classification for two rea-
sons: (1) conceptual models are not really
part of the OLAP engines or environments,

and (2) in the OLAP field, the logical and
conceptual levels are quite often indistin-
guishable (Kimbal et al., 1998).

Someone could possibly question the
need for new models. Is it really neces-
sary to depart from the well-known classi-
fication of models? Our answer is positive,
and we base our proposal on the following
reasons:
• First, we need to allow the formal defi-

nition of the presentation of the result of
a database query — in our case, a cube.
This is currently done in an ad hoc man-
ner from the client tools; no formal foun-
dations are given for this kind of
representation.

• Second, we need to decouple the defini-
tion of the logical underpinnings of user
operations from the way the result is
presented. Even if we create a model
for the presentation of the results, we
need to keep it loosely coupled with the
model of the underlying data. One could

Figure 1: General Framework for CPM
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claim that a generic, complete model
could cover all cases; still, to our under-
standing, such a model is too hard to
achieve. Therefore, the natural antidote
to the lack of completeness should be
applied, and this is genericity: by
decoupling logical and presentational
models, we can decide how we match a
particular logical model to a presenta-
tional one, among many choices.

• Third, we need to be able to depart from
the traditional thinking of treating visu-
alization as appropriate only for com-
puter screens. On the contrary, we live
in an age where a computer screen is
just one of the possible choices for the
presentation of data. Bundling the
choices for different presentation de-
vices with the logical models and lan-
guages would probably create hard-to-
use constructs.

In the context of all the aforemen-
tioned issues, we move on in this paper to
make the following contributions.

First, we introduce CPM (Cube Pre-
sentation Model), a presentation model for
OLAP, and we combine it with non-tradi-
tional visualization techniques. The main
idea behind CPM lies in the separation of
logical data retrieval (which we encap-
sulate in the logical layer of CPM) and data
presentation (captured from the presen-
tational layer of CPM). The logical layer
that we propose is based on an extension
of a previous proposal (Vassiliadis &
Skiadopoulos, 2000) to incorporate more
complex cubes. At the same time, the pre-
sentational layer provides a formal model
for OLAP screens. To our knowledge, there
is no such result in the related literature.

Once CPM has been introduced, we
move on to give a mapping of the generic
presentational scheme of CPM to the par-
ticularities of an advanced visualization

technique coming from the field of Human
Computer Interaction. The Table Lens
technique (Pirollo & Rao, 1996; Rao &
Card, 1994) is particularly tailored for
cross-tab reports, which are most commonly
used for OLAP purposes and accompa-
nied by a set of handy features for the ex-
ploration of data sets that are presented in
this way. In the sequel, we provide algo-
rithms for the automated proactive support
of the user during his or her interaction with
an OLAP screen, based on the particulari-
ties of Table Lens. Specifically, Table Lens
employs a particular distortion of the pre-
sentation to highlight areas of increasing
interest to the user. We provide a generic
algorithm to support this task proactively
and customize it to a particular instance to
show how it could actually work. By ex-
ploiting Table Lens, along with suitable col-
oring schemes, we provide a new presen-
tation technique, which we call OLAP
Lens.

Moreover, an academic software
platform specifically designed and imple-
mented to support both CPM and OLAP
Lens is introduced. The architecture of the
platform, which is called CubeView, is par-
ticularly tailored to support Mobile OLAP,
a term used to denote the porting of OLAP
Visualization and Analysis applications onto
portable, mobile, and wireless devices.

To motivate the discussion, we will
use throughout the paper a running example,
where we customize the example presented
in Microsoft (1998) to an international pub-
lishing company, with traveling salesmen
selling books and CDs to other bookstores
all over the world (Figure 2). In this ex-
ample, we assume that a cube —
SalesCube — is defined over the dimen-
sions — Products, Salesman, Time, and
Geography — each involving several levels
of aggregation. In this query, we restrict
the Time dimension to the sales of Year 1991.
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We ignore the Products dimension
(Products.ALL) in the subsequent aggrega-
tion of detailed data. Whenever we need
to present a 2D screen and more than two
dimensions are involved, we need to merge
(CROSSJOIN in [Microsoft, 1998] terminol-
ogy) as many dimensions as necessary in
a single axis. In this case, we combine the
dimensions Salesman (restricted by the
query author to two particular salesmen —
Salesman in [‘Venk’,‘Netz’] — and Geogra-
phy on the COLUMNS axis and leave the
dimension Time on the ROWS axis. Note
that the Geography dimension involves more
than one level of aggregation (both City and
Region). The same applies for the Time
dimension, where both Quarters and Months
are employed.

The remainder of this paper is struc-
tured as follows: In Section 2, we summa-
rize the logical layer of CPM. In Section 3,
we present in detail the presentation layer
of CPM. In Section 4, we show how CPM
can be naturally combined with Table Lens
and how we can automate the task of
proactively supporting the user with high-

lighted areas of interest. In Section 5, we
describe a prototype platform — CubeView
— where we have implemented the pro-
posed visualization schemes. In Section 6,
we present work closely related to our re-
search, and finally, in Section 7, we con-
clude our results and present topics for fu-
ture work.

LOGICAL FOUNDATIONS

In this section, we present the logical
layer of CPM; to this end, we extend a
logical model (Vassiliadis & Skiadopoulos,
2000) in order to compute more complex
cubes. In a nutshell, the logical layer in-
volves (a) dimensions defined as lattices
of dimension levels, (b) ancestor functions

(in the form of L1
L2anc ) mapping values be-

tween related levels of a dimension, (c)
detailed data sets, practically modeling fact
tables at the lowest granule of information
for all their dimensions, and (d) cubes, de-
fined as aggregations over detailed data
sets.

Figure 2: Motivating Example for the Cube Model (taken from Microsoft, 1998)
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Formally, the constructs of the model
(Vassiliadis & Skiadopoulos, 2000) are:
• Four countable pairwise disjoint infinite

sets exist: a set of level names (or sim-
ply levels) U

L
; a set of measure names

(or simply measures) U
M
; a set of di-

mension names (or simply dimensions)
U

D
; and a set of cube names (or simply

cubes) U
C
. The set of attributes U is

defined as U=U
L
∪U

M
. For each A∈U

L
,

we define a countable totally ordered set
dom(A), the domain of A, which is iso-
morphic to the integers. Similarly, for
each A∈U

M
, we define an infinite set

dom(A), the domain of A, which is iso-
morphic to the real numbers. We can
impose the usual comparison operators
to all the values participating to totally
ordered domains {<, >, ≤, ≥}. We also
assume the existence of two attributes
— ALL and RANK. The role of the spe-
cial attribute ALL will be analyzed in the
sequel. Level ALL has a single value in
its domain, namely “all”. RANK is a spe-
cial purpose measure, which will be used
for the ordering of a cube. The domain
of RANK is the set of integers. 

• A dimension D is a lattice (L,�) such
that:
- L=(L

1
,…,L

n
) is a finite subset of U

L
.

- dom(L
i
)∩dom(L

j
) = ∅ for every i≠j.

- � is a partial order defined among the
levels of L.

Each path in the dimension lattice, be-
ginning from its upper bound and ending
in its lower bound, is called a dimension
path. 

• A family of functions L2
L1anc  is defined,

satisfying the following conditions:
- For each pair of levels L1 and L2 such

that L
1
�L

2
 the function L2

L1anc  maps

each element of dom(L1) to an element
of dom(L2).

- Given levels L
1
, L

2
 and L

3
 such that

L1�L2�L3, the function L3
L1anc  equals to

the composition L2
L1anc °

L3
L2anc . This im-

plies that:

1. L1
L1anc (x)=x.

2. if y= L2
L1anc (x) and z= L3

L2anc (y), then

z=a L3
L1anc (x).

- for each pair of levels L1 and L2 such

that L1�L2 the function L2
L1anc  is mono-

tone (preserves the ordering of values).
In other words:

∀x,y∈dom(L
1
):

x<y ⇒ L2
L1anc (x)≤ L2

L1anc (y),L1�L2

• A schema S is a finite subset of U. Nor-
mally, we will represent a schema as di-
vided in two parts: S=[D1.L1, …, Dn.Ln, A1,
…, Am], where:
- (L1,…,Ln) are levels from a dimension

set D=(D1,…,Dn) and level Li comes from
dimension Di, for 1 ≤ i ≤ n.

- (A1,…,Am) are attributes (i.e., measures
and levels).

• A detailed schema S0 is a schema
whose levels are the lowest in the re-
spective dimensions. When we refer to
a level L as the lowest in the dimension,
it means that there does not exist any
other level L’, such that L’�L.

• A tuple t over a schema S=[L1, …, Ln, A1,
…, Am] is a total and injective mapping
from S to dom(L1)× ...×dom(Ln)
×dom(A1)× ...×dom(Am), such that
t[X]∈dom(X) for each X∈S.

• A data set DS over a schema S=[L1, …,
Ln, A1, …,Am] is a finite set of tuples over S
such that: 
- ∀ t1,t2∈DS, t1[L1,…,Ln]=t2[L1,…,Ln] ⇒

t1=t2.
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- for no strict subset X⊂{L
1
,…,L

n
}, the pre-

vious also holds. 
In other words, A

1
,…,A

m
 are functionally

dependent (in the relational sense) on
levels (L

1
,…,L

n
) of schema S. A detailed

data set DS0 is a data set over a de-
tailed schema S.

• An atom is true, false (with obvious se-
mantics) or an expression of the form
x∂y, where x and y can be one of the
following: (a) a level L

1
 (i.e., not a mea-

sure); (b) a value l; (c) an expression of

the form L2
L1anc (L1) where L1�L2; (d) an

expression of the form L2
L1anc (l) where

L1�L2 and l∈dom(L1). If x and y are lev-
els then they should belong to isomor-
phic dimensions. ∂ is an operator from
the set (>, <, =, ≥, ≤, ≠).

• A selection condition ϕ is a formula
involving atoms and the logical
connectives ∧, ∨, and ¬. A selection
condition is always applied to a data set
such that all the level names occurring
in the selection condition—either\in the
form (1) or (3)—belong to the schema
of the data set. Let DS be a data set
over schema S. The expression ϕ(DS)
is a set of tuples X belonging to DS such
that when, for all the occurrences of
level names in ϕ, we substitute the re-
spective level values of every x∈X, the
formula ϕ becomes true. A detailed
selection condition ϕ0 is a selection
condition where all participating levels
are the detailed levels of their dimen-
sions. 

• A primary cube c (over the schema
[L1,…,Ln,M1,…,Mm]) is an expression of the
form:

c=(DS0,ϕ,[L1,…,Ln,M1,…,Mm],[

agg1(
0
1M ),…,aggm( 0

mM )]), where:

- DS0 is a detailed data set over the

schema S=[ 0
1L ,…, 0

nL , 0
1M ,…, 0

kM ], m≤k.

- ϕ is a detailed selection condition.
- M1, …, Mm are measures.

- 0
iL  and Li are levels such that 0

iL �Li,

1≤i≤n.
- aggi∈{sum,min,max,count}, 1≤i≤m. 

The expression characterising a cube has
the following semantics:

c={x∈Tup(L1,…,Ln,M1,…,Mm)| ∃y∈ϕ(DS0),

x[Li]= 0
Li
Lianc (y[ 0

iL ]),1≤i≤n,

x[Mj]=aggj({q|≤z∈ϕ(DS0),

x[Li]= 0
Li
Lianc (z[ 0

iL ]),1≤i≤n,

q=z[ 0
jM ]}),1≤j≤m}

In other words, a cube c is a set of
tuples. To compute it, first we apply the
selection condition to the detailed data set.
Then, we replace the values of the levels
for the tuples of the result, with their re-
spective ancestor values (at the levels of
the schema of c) and group them into a
single value for each measure, through the
application of the appropriate aggregate
function. Coming back to our motivating
example, we can detect the following di-
mensions: 
• arrival date and departure date (when the

salesman arrives/leaves the store).
• salesman (instantiated in Figure 4).
• product (instantiated in Figure 5).
• location (instantiated in Figure 6).
 

The functionally dependent measures
are Sales, PercentChange. Our data set DS0

is depicted in Figure 7. Based on this data
set we can define a basic primary cube as:

c0=(DS0,true,[arrival day.day, departure day.day,
product.item, 
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person.salesman, location.city,sales],sum
(sales))

For brevity we can write c0 as:

c0=(DS0,true,[arrival day,departure day,item,
salesman,city,sales],sum(sales)).

A primary cube can be defined as
follows:

c=(DS0, departure.year
departure.dayanc ='1997', [arrival.month,

d e p a r t u r e . m o n t h , c a t e g o r y ,
salesman.ALL,continent,sum_sales],sum(sales))

with the data values shown in Figure 8.
The limitations of primary cubes is that

although they model accurately SELECT-
FROM-WHERE-GROUPBY queries, they fail
to model (a) ordering, (b) computation of
values through functions, and (c) selection
over computed or aggregate values (i.e.,
the HAVING clause of a SQL query). To
compensate this shortcoming, we extend
the aforementioned model with the follow-
ing entities:
• Let F be a set of functions mapping sets

of attributes to attributes. We distinguish
the following major categories of func-
tions: property functions, arithmetic func-

Figure 3: Dimensions Arrival Date, Departure Date, Location, Product and Salesman
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Figure 4: Dimension Person

Salesman 

Venk 

Netz 

Figure 5: Dimension Product

Category Type Item 

Books Literature “Report to El Greco” 

  “Karamazof brothers” 

 Philosophy “Zarathustra” 

  “Symposium” 

Music Heavy Metal “Piece of Mind” 

  “Ace of Spades” 
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tions, and control functions. For example,
for the level Day, we can have the prop-
erty function holiday(Day) indicating
whether a day is a holiday or not. An
arithmetic function is for example Profit
=(Price-Cost)*Sold_Items. Control func-

tions simulate the control statements of
the programming languages.

• A secondary selection condition ψ is
a formula in disjunctive normal form. An
atom of the secondary selection condi-
tion is true, false or an expression of the

Figure 6: Dimension Location

Figure 7:  Data Set

Continent Country Region City 

Europe Greece Greece-North Salonica 

  Greece-South Athens 

   Rhodes 

North America USA USA-East New York 

   Boston 

  USA-West Los Angeles 

   San Francisco 

  USA-North Seattle 

Asia Japan Kiusiu Nagasaki 

  Hondo Tokyo 

   Yokohama 

   Kioto 

 

Arrival Day Departure day Item Salesman City %Change Sales 

1-Jan-97 3-Jan-97 “Report to El Greco” Netz Rhodes 10 10 

1-Jan-97 3-Jan-97 “Symposium” Netz Rhodes 20 5 

6-Feb-97 17-Feb-97 “Symposium” Netz Athens -30 7 

6-Feb-97 17-Feb-97 “Karamazof brothers” Netz Athens -50 10 

6-Feb-97 17-Feb-97 “Piece of Mind” Netz Athens +35 13 

18-Feb-97 10-May-97 “Karamazof brothers” Netz Seattle -50 5 

11-May-97 7-Jun-97 “Report to El Greco” Netz Los Angeles 100 2 

11-May-97 7-Jun-97 “Ace of Spades” Netz Los Angeles 100 20 

3-Sep-97 5-Sep-97 “Zarathustra” Netz Nagasaki 0 50 

3-Sep-97 5-Sep-97 “Report to El Greco” Netz Nagasaki 0 30 

6-Sep-97 16-Dec-97 “Piece of Mind” Netz Tokyo 10 10 

1-Jul-97 4-Aug-97 “Ace of Spades” Venk Salonica 30 13 

1-Jul-97 4-Aug-97 “Piece of Mind” Venk Salonica 50 34 

6-Sep-97 12-Oct-97 “Symposium” Venk Boston -30 7 

6-Sep-97 12-Oct-97 “Zarathustra” Venk Boston 0 10 

1-Feb-98 10-Apr-98 “Ace of Spades” Venk Seattle 50 15 

1-Feb-98 10-Apr-98 “Piece of Mind” Venk Seattle 6 53 

4-May-98 7-Jun-98 “Report to El Greco” Venk Kyoto -30 14 

13-Jun-98 15-Jul-98 “Zarathustra” Venk Nagasaki 0 50 

13-Jun-98 15-Jul-98 “Report to El Greco” Venk Nagasaki 0 30 
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form x θ y, where x and y can be one of
the following: (a) an attribute Ai (includ-
ing RANK), (b) a value l, an expression
of the form fi(Ai), where Ai is a set of
attributes (levels and measures), and (c)
θ is an operator from the set (>, <, =, ≥,
≤, ≠). With this kind of formulae, we can
compute relationships between mea-
sures (Cost>Price), ranking and range
selections (ORDER BY...;STOP after 200,
RANK[20:30]), measure selections
(sales>3000), property-based selection
(Color(Product)=‘Green’).

• Suppose a data set DS over the schema
[A1,A2,…,Az]. Without loss of generality,
suppose a non-empty subset of the
schema S=A1,…,Ak,k≤z. Then, there is a

set of ordering operations θOS  used to

sort the values of the data set, with re-
spect to the set of attributes participat-
ing to S. θ belongs to the set {<,>,∅} in
order to denote ascending, descending,
and no order, respectively. An ordering
operation is applied over a data set and
returns another data set, which obliga-
torily encompasses the measure RANK.

• A secondary cube over the schema
S=[L1,…,Ln,M1,…,Mm,Am+1,…,Am+p, RANK] is
an expression of the form:

s=[c,[Am+1:fm+1(Am+1),…,Am+p:fm+p(Am+p)],
θOA ,ψ]

where

c=(DS0,ϕ, [L1,…,Ln,M1,…,Mm],[agg1(
�M1 ),…,

agg
m
( �Mm )])

is a primary cube,

[A
m+1

,…,A
m+p

]⊆[L
1
,…,L

n
,M

1
,…,M

m
],

A⊆S-{RANK},

f
m+1

,…,f
m+p

 are functions belonging to F
and ψ is a secondary selection condi-
tion.

A secondary cube has the following
formal semantics:

s={x∈Tup(L
1
,…,L

n
,M

1
,…,M

m
,A

m+1
,…,A

m+p
,RANK)|∃

data set DSs defined over the schema:

[L
1
,…,L

n
,M

1
,…,M

m
,A

m+1
,…,A

m+p
],

y∈DSs,y
1
∈c1:y[L

i
]=y

1
[L

i
],

1≤i≤n,
y[M

i
]=y

1
[M

i
],1≤i≤m,

Figure 8:  A Primary Cube

Arrival month Departure month Category Salesman.ALL Continent Sales 

Jan-97 Jan-97 Books all Europe 15 

Feb-97 Feb-97 Books all Europe 17 

Feb-97 Feb-97 Music all Europe 13 

Feb-97 May-97 Books all North-America 5 

May-97 Jun-97 Books all North-America 2 

May-97 Jun-97 Music all North-America 20 

Jul-97 Aug-97 Music all Europe 47 

Sep-97 Sep-97 Books all Asia 80 

Sep-97 Oct-97 Books all North-America 17 

Sep-97 Dec-97 Music all Asia 10 
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y[A
m+i

]=f
m+i

[A
m+i

],1≤i≤p,x∈ψ ( θOA ;A(DSs))}

• A star schema (D,S0) is a couple com-
prising a finite set of dimensions D and a
detailed schema S0 defined over (a sub-
set of) these dimensions.

• A star databases instance over a star
schema (D,S0) is a triplet [DS0,C,CS],
where
- DS0 is a detailed data set defined over S0;
- C is a finite set of cubes, defined over

DS0;
- CS is a finite set of secondary cubes,

defined over C.

With these additions, primary cubes
are extended to secondary cubes that in-
corporate: (a) computation of new attributes
(Am+i) through the respective functions (fm+i);

(b) ordering ( θOA ); and (c) the HAVING

clause, through the secondary selection
condition ψ.

PRESENTATIONAL LAYER

In this section, we present the pre-
sentational layer of CPM. As already
mentioned, the reason for introducing a pre-
sentational layer is twofold: (a) decouple
the definition of the logical underpinnings
of user operations or queries from the way
the result is presented; and (b) allow the
formal definition of the presentation of the
result. Our approach is based on the intro-
duction of points, axes, and layers with a
particular focus on two-dimensional spaces
that can be represented easily in the regu-
lar devices used for data representation
(e.g., screens, paper, etc.). Areas of this
space can then be mapped to underlying
database constructs, such as cubes. In the
rest of this section, we will first give an
intuitive, informal description of the presen-

tation layer. Then, we will present its for-
mal definition. Throughout this section, we
will use the example of Figure 2 as our ref-
erence example.

The most important entities of the
presentational layer of CPM (depicted in
Figure 9) include:
• Axis: OLAP is based on the multidi-

mensional representation of information.
Each dimension of an OLAP environ-
ment conceptually represents a differ-
ent categorization of measures, in the
mind of the knowledge worker. In prin-
ciple, we would prefer each dimension
to be graphically represented as an axis
(e.g., an axis for Salesman, another axis
for Product, and so on). In this case, an
axis can be viewed as a set of points,
and combinations of axes define a mul-
tidimensional space, just like in geom-
etry. Nevertheless, in CPM we focus
on two-dimensional devices for the rep-
resentation of information. Therefore,
for presentation reasons, we will see how
we can handle the reduction of spaces
with high dimensionality to two-dimen-
sional representations in order to depict
data on 2D devices.

• Points: A point over an axis resembles
the classical notion of points over axes
in mathematics. In the simple case, a
point is characterized by an equality se-
lection condition over a level (e.g.,
City=Seattle) and represents a dimension
value in any of the levels of the dimen-
sion. Still, since we need to multiplex
several logical dimensions to one pre-
sentational axis, a point will be formally
defined to handle this kind of situations,
too.

• Multicubes: A combination of axes
forms a multidimensional space. The
data values of the points of the multidi-
mensional spaces are the (aggregate)
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measure values that have to be com-
puted over the detailed data of the logi-
cal model. In this section, we show how
constructs in the logical model will be
mapped to constructs of the multidimen-
sional space.

• 2D-slice: As already mentioned, the fo-
cus of CPM is set on two-dimensional
devices. A 2D-slice is a two-dimensional
layer of data over the multidimensional
space that can be presented on the
screen. Consider a multicube MC, com-
posed of K axes. A 2D-slice over MC
can be sufficiently defined by a set of
(K-2) points, each from a separate axis.
Intuitively, a 2D-slice pins the axes of
the multicube to specific points, except
for 2 axes, which will be presented on

the screen (or a printout). In both Fig-
ure 2 and Figure 10, we depict such a
2D-slice over a multicube.

• Tape: Intuitively, a tape is a column or
a row over a 2D-slice (i.e., a construct
parallel to one of the axis of the 2D —
slice). Again, if we consider a 2D-slice
SL over a multicube MC, composed of K
axes, a tape is sufficiently defined by a
set of (K-1) points, where the (K-2) points
are the points of SL. A tape is always
parallel to a specific axis: out of the two
“free” axes of the 2D-slice, we pin one
of them to a specific point that distin-
guishes the tape from the 2D-slice.

Figure 9: Mapping CPM Objects to 3D and 2D Cross Tabular Layouts

(a) (b)

(c)

(d)
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• Cross-join: Intuitively, if we take one
tape parallel to the horizontal axis and
another parallel to the vertical axis, their
intersection is a cell. In the most gen-
eral case, as we shall see, it can be a set
of cells. In both cases, the intersection
of two non-parallel tapes is called a
cross-join. Cross-joins are directly
mapped to secondary cubes of the logi-
cal model and form the basis of map-
ping an OLAP screen to a set of que-
ries over the underlying database.

In terms of CPM terminology, the
query of Figure 2 is a 2D-Slice, say SL (see
also Figure 3). In SL one can identify four
horizontal tapes denoted as R1, R2, R3 and
R4 in Figures 2 and 6 vertical tapes (num-
bered from C1 to C6). The meaning of the
horizontal tapes is straightforward; they
represent the Quarter dimension, expressed
either as quarters or as months. The mean-
ing of the vertical tapes is somewhat more
complex; they represent the combination
of the dimensions Salesman and Geogra-
phy, with the latter expressed in City, Re-
gion, and Country level. Moreover, two con-

straints are superimposed over these tapes
— the Year dimension is pinned to a spe-
cific value and the Product dimension is
ignored. In this multidimensional world of
five axes, the tapes C1 and R1 are defined
as:

C1 = [(Salesman=‘Venk’∧ region
cityanc (city)=

‘USA_N’),(Year=‘1991’),
ALL
itemanc (Products)=‘all’),(Sales, sum(Sales))]

R1 = [( month
dayanc (Month)=‘Qtr1’∧Year

=‘1991’),(Year=‘1991’),
ALL
itemanc (Products)=‘all’),(Sales, sum(Sales))]

One can also consider the cross-join
t1 defined by the common cells of the tapes
R1 and C1. Remember that City defines an
attribute group along with [Size(City)].

t1=([SalesCube,(Salesman=‘Venk’∧ region
cityanc (city)=

‘USA_N ∧
month
dayanc ( M o n t h ) = ‘ Q t r 1 ’ ∧ Ye a r = ‘ 1 9 9 1 ’

∧ ALL
itemanc (Products)=‘all’),
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Figure 10: The 2D-Slice SL for the Example of Figure 2
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[Salesman,City,Month,Year,Products.ALL,
Sales],sum],[Size(City)],true)

In the rest of this section, we will de-
scribe the presentational layer of CPM in
its formality. First, we will introduce the
multidimensional space, and then we will
show how the contents of the space are
computed.

The Multidimensional Space

In this subsection, we will introduce
the multidimensional space of the presen-
tational layer. The main entities of the mul-
tidimensional space are axes and points.
Before giving their formal definition, how-
ever, we will introduce auxiliary entities
necessary to cover the multiplexing of more
than one logical dimension to a single axis.

Preliminaries
We assume the existence of the fol-

lowing pairwise disjoint infinitely countable
sets: a set of point names (or simply
points) U

P
, a set of axes names (or simply

axes) U
L
, and a set of multicube names

(or simply multicubes) U
MC

.
We will also assume their finite sub-

sets, P for points, A for axes and MC for
multicubes, each time that we deal with a
particular instance.

Before proceeding, we need to ex-
tend the definition of dimensions and to deal
with multiplexing of dimensions. First, we
extend the notion of dimension to incorpo-
rate any kind of attributes (i.e., results of
functions, measures, etc.). Consequently,
we consider every attribute not already
belonging to some dimension to belong to a
single-level dimension (with the same name
as the attribute), with no ancestor functions
or properties defined over it. We will dis-
tinguish between the dimensions compris-
ing levels and functionally dependent at-

tributes through the terms level dimensions
and attribute dimensions, wherever nec-
essary. The dimensions involving arithmetic
measures will be called measure dimen-
sions.

Now we are ready to deal with mul-
tiplexing dimensions in a single axis. This is
necessary due to the fact that typically data
are presented by 2D means (e.g., a screen),
meaning that the multidimensional space
has to be folded in a 2D projection. For
example, observe Figure 11: the logical di-
mensions Salesman and Geography have
been multiplexed in order to be presented
on the same axis. This practically means
that for every value of Salesman, all the
values of Geography are repeated. There-
fore, in order to be able to represent these
kinds of structures we need to define
groups of attributes to be multiplexed in the
same axis.

An attribute group AG is a pair
[A,DA], where A is a list of attributes (called
the key of the group) and DA is a list of
attributes dependent on the attributes of
A. With the term dependent we mean (a)
measures dependent over the respective
levels of the data set and (b) function re-
sults depending on the arguments of the
function. One can consider examples of the
attribute groups such as:

ag
1
=

([City],[Size(City)]),ag
2
=([Sales,Expenses],[Profit]).

A dimension group DG is a pair
[D,DD], where D is a list of dimensions
(called the key of the dimension group) and
DD is a list of dimensions dependent on
the dimensions of D. With the term depen-
dent we simply extend the respective defi-
nition of attribute groups to cover also the
respective dimensions. For reasons of brev-
ity, wherever possible we will denote an
attribute/dimension group comprising only
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of its key simply by the respective attribute/
dimension.

Axes & Points
An axis schema is a pair [DG,AG],

where DG is a list of K dimension groups
and AG is an ordered list of K finite or-
dered lists of attribute groups, where the
keys of each (inner) list belong to the same
dimension, found in the same position in DG,
where K>0. The members of each ordered
list are not necessarily different. We de-
note an axis schema as a pair:

AS
K
=

( [ D G
1
× DG

2
× …× DG

K
] , [ [ 1

1ag , 2
1ag , … ,

1k
1ag ] × [ 1

2ag , 2
2ag , … , 2k

2ag ] × … × [ 1
kag ,

2
kag ,…, kk

kag ])}.

In other words, one can consider an
axis schema as the Cartesian product of
the respective dimension groups, instanti-
ated at a finite number of attribute groups.
For instance, in the example of Figure 1,
we can observe two axes schemata hav-
ing the following definitions:

Row_S = {[Quarter],[Month,Quarter,
Quarter,Month]}

Column_S = {[Salesman×Geography],
[Salesman]×[[City,Size(City)], Region, Coun-
try]}

A point is a member of the set UP.
A point over an axis schema AS, is

a point tagged with a set of equality selec-
tion conditions, one for the key of each at-
tribute group of the axis schema.

For example, given the axis schema
[Salesman,[City,Size(City)]], a point can be
defined as:

p
1
= ( [Sa lesman= ‘Venk ’ , region

cityanc (C i t y )=

‘USA_N’])

or, if we wish to incorporate the axis schema
in the definition,

p 1 = ( [ S a l e s m a n , [ C i t y , S i z e ( C i t y ) ] ] ,

[Salesman=‘Venk’, region
cityanc (City) =‘USA_N’])

An axis over an axis schema AS, is
a finite list of points, all defined over the
axis schema AS.

Practically, an axis is a restriction of
an axis schema to specific values through
the introduction of specific constraints for
each occurrence of a level.

a = (ASK,[ϕ1,ϕ2,...,ϕK]),K≤N or

a={[DG1×DG2×…×DGK],[[ 1
1ag , 2

1ag ,…, 1k
1ag ]×

[ 1
2ag , 2

2ag , … , 2k
2ag ] × … × [ 1

kag ,
2
kag , … , kk

kag ] ] , [ [ ϕ1
1 , ϕ2

1 , … , ϕ 1k
1 ] ×

[ ϕ1
2 , ϕ2

2 ,…,ϕ 2k
2 ] ×...×[ ϕ1

k , ϕ2
k ,…,ϕ kk

k ]]}

We will denote the set of dimension
groups of each axis a by dim(a).

In our motivating example, we can
observe the following two axes:

Rows = {Row_S,[ month
dayanc (Month)=

Q t r 1 , Q u a r t e r = Q t r 2 , Q u a r t e r

=Qtr3, month
dayanc (Month)=Qtr4]}

Columns = {Column_S,{[Salesman=
‘Venk’,Salesman=‘Netz’],

[ region
cityanc (City)=‘USA_N’, Region=‘USA_S’,

Country=‘Japan’]}

• Lemma. An axis can be reduced to a
finite set of points if one calculates the
Cartesian products of the attribute
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groups and their respective selection
conditions. In other words:

a=( [DG
1
×DG

2
× . . .×DG

K
] , [ [p

1
,p

2
,…,p

l
] ) ,

l=k
1
×k

2
×…×k

kk
.

Proof. Obvious.

In the sequel, we will mostly treat an
axis as a finite set of pairwise disjoint points;
therefore, we impose the constraint that the
selection conditions characterizing each
point are pairwise disjoint, too.

We will differentiate between two
types of points: atomic and hierarchically
decomposable. The former constitute points
defined over single level or measure val-
ues, whereas the latter are defined over
sets of values.

Atomic points are characterized by
the fact that all the equality selection con-
ditions for their attribute groups involve an
attribute (level or measure) and a constant.
In other words, atomic points are of the
form Level=constant or Measure=constant.

Hierarchically decomposable
points are characterized by the fact that
the selection condition of one (or possibly
more) of their attribute groups involves the
usage of an ancestor function.

For example, p
1
 is a hierarchically

decomposable point:

p
1
= ( [ S a l e s m a n , [ C i t y , S i z e ( C i t y ) ] ] ,
[Salesman=’Venk’ ,anc region;c i ty(Ci ty)=
’USA_N’])

whereas p
2
 is an atomic point:

p
2
=([Time,[Quarter], [Quarter=Qtr2])

Naturally, a hierarchically decompos-
able point corresponds to a finite set of
atomic points (directly stemming from the
finiteness of the domain of ancestor func-

tions). Therefore, the aforementioned point
p

1
 corresponds to the points p

1.1
 and p

1.2
,

defined at the City level.

p
1 . 1

= ( [ S a l e s m a n , [ C i t y , S i z e ( C i t y ) ] ] ,
[Salesman=‘Venk’,City=‘Seattle’])

p
1 . 2

= ( [ S a l e s m a n , [ C i t y , S i z e ( C i t y ) ] ] ,
[Salesman=‘Venk’,City=’Boston’])

An axis that comprises only atomic
points is an atomic-level axis. An atomic-
level axis X

a
 which comprises the atomic

points produced from the hierarchical de-
composition of the points of an axis X, is
the atomic-level equivalent of X.

In the sequel, we will refer to points
indiscriminately of their type; in the case
where we will need to make a distinction,
this will be shown clearly.

An axis tag is a characterization of
an axis with respect to (a) its natural prop-
erties and (b) the fact that it can be visual-
ized in a 2D screen or not. Therefore, an
axis is characterized as:
• coordinate vs. measure, depending on

whether it represents values that deter-
mine the coordinates or the internal points
of the multidimensional space (see sec-
tion 3.2)

• visible vs. invisible, depending on whether
we allow its representation on a 2D
screen or we use the axis simply for pin-
pointing values of its points without in-
volving them in the visualization of the
result. For example, in Figure 2, there is
an invisible axis, pinpointing Year to 1991
and Products to ALL.

Finally, we say that two axes sche-
mata are joinable over a data set if their
key dimensions (a) belong to the set of di-
mensions of the data set and (b) their points
are disjoint. For instance, Rows_S and
Columns_S are joinable.
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The Contents of
Multidimensional Space

In this subsection, we will introduce
the contents of the multidimensional space
of the presentational layer. The main enti-
ties of the multidimensional space are
multicubes that more or less correspond
to n-dimensional structures. Prevalent en-
tities in their context are 2D-slices, stand-
ing for two-dimensional structures that can
be presented on a 2D screen — tapes —
which are one-dimensional entities and
cross-joins which are areas of a 2D-slice
where two tapes meet.

Multicubes
A multicube schema MCS=[AS] is a

finite set of axis schemata AS.
A multicube MC=[A,f], where A is a

finite set of axes and f is a contents func-
tion, mapping coordinates to measures. We
require that A = C ∪∪∪∪∪ {M}, where C are the
coordinate axes and M is the measure axis
of the multicube.

Let also M be a measure axis. The
points of M will be computed through que-
ries to the underlying database. Still, it is a
regular axis with the only difference that

the same point (e.g., Sales = 40) can be
repeated more than once (since measures
can have identical values). Remember that
axes are finite lists of points; for measure
axes we assume bag semantics underlying
this list.

In the simple case, a point is charac-
terized by a single equation of the form
[measure=constant]. Still, we can multiplex
more than one logical measure in a mea-
sure axis and each point of the measure
axis is characterized by a set of equations
of the form [measure1=constant1,…,
measurek=constantk], depending on the at-
tribute/dimension group that regulates the
axis.

In the case of a measure axis, we
can tag the schema of the axis with an ag-
gregate function for each of the dimensions
participating in the schema. Also, a sec-
ondary selection condition can be attached
to the schema, acting as a filter for retrieved
data.

In our motivating example of Figure
2, we have a measure axis, named Con-
tent, comprising 64 points. Observe that the
measure axis is defined in terms of the
atomic-level equivalents of the involved
coordinate axes. The Time axis is hierar-
chically decomposed in eight values and the

Figure 11: The Points for the Axes Rows & Columns
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Geography×Salesman axis, also in another
eight points. The measure axis schema is
also tagged with the aggregation
Sales=sum(Sales0) and the secondary se-
lection condition true (i.e., no selection is
performed).

We assume the existence of a con-
tents function for M. The contents func-
tion practically instantiates the points of the
measure axis by computing them as que-
ries over the underlying data set. Each point
in the measure axes is then dependent on
the points of the atomic-level equivalents
of the coordinate axes responsible for its
identification. Formally, let contents

M
(C):

C ->U
p
.

In other words, supposing that there
are K-1 axes in C, contents

M
(C) is defined

as [A
1
,…,A

K-1
], therefore, for every combi-

nation of points [p
1
,…,p

K-1
] (each point p

i

coming from axis A
i
) there exists a point µ

in Up.
, as the result of the contents

M
(C) func-

tion. Based on the fact that C comprises a
finite number of points, then contents

M
(C)

returns also a finite number of points; nev-
ertheless, as already mentioned, more than
one coordinates can map to the same mea-
sure value. This fact disqualifies the exist-

ence of an inverse function; to compen-
sate for this shortcoming, we assume the
mapping coordinates(µ), such that
coordinates(µ)=[p

1
,…,p

K-1
].

In our motivating example, we can
observe the following axes schemata and
axes:

Row_S = {[Quarter],[Month,Quarter,
Quarter,Month]}

Column_S = {[Salesman×Geography],
[Salesman]×[[City,Size(City)], Region, Coun-
try]}

Invisible_S = {[Product×Time],[[Product.
ALL]×[Year]]}

Content_S = {[Sales],[Sales=sum(Sales0),
true]}

and their respective axes:

Rows={[ month
dayanc (Month)=Qtr1,Quarter=

Qtr2,Quarter=Qtr3, month
dayanc (Month)= Qtr4]}

Columns = {[Salesman=‘Venk’,Salesman

=‘Netz’] × [ region
cityanc (City)=‘USA_N’, Region

=‘USA_S’, Country=‘Japan’]}
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Figure 12: Multidimensional Space for the Variant of the Motivating Example, Extended with
Sections
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Invisible = {[Year=1991] × [ALL=‘all’]}
Content = {64 points}

Then, a multicube MC can be defined
as:

MC = {Rows, Columns, Invisible, Content}

Assume now that we want to present
data in multiple spreadsheets, and each
sheet comprises a certain year (e.g., the
first sheet involves 1991 and the second
involves 1992). We can resolve this by add-
ing an extra axis, Sections (Figure 12). The
changes are as follows:

Axes schemata:
Section_S = {[Time],[Year]}
Invisible_S = {[Product],[Product.ALL]}

and axes:
Sections =
     {Section_S,[Year=1991,Year=1992]}
Invisible = {Invisible_S,[ALL=’all’]}
Content = {128 points}

Then, the multicube MC can be de-
fined as:

MC =
{Rows, Columns, Sections, Invisible, Content}

2D-Slices
In the beginning of this section, we

have informally introduced 2D-Slices. In-
tuitively, a 2D-slice represents a bounded
two-dimensional plane. To achieve this, it
is only necessary to pin the axes of the
multicube to specific points, except for two
axes, which are left free. Then, these two
axes define a two-dimensional plane that
can be presented on a screen (or a print-
out).

Formally, consider a multicube MC
composed of K axes. A 2D-slice over MC

is a set of (K-2) points, each from a sepa-
rate axis, where the points of the Invisible
and the Content axis are comprised within
the points of the 2D-slice.

In our motivating example, Figure 2
and Figure 11 represent the same 2D slice.

Tapes

Tapes represent “one-dimensional”
parts of a 2D slice. In fact, out of the two
free axes of the 2D slice, we have only
one left free and the other pinpointed to a
particular point, say p. In this case, a tape
is parallel to this particular axis. Tapes are
not considered “lines” due to hierarchically
decomposable points; if the pinpointed point
p is hierarchically decomposable, the tape
will be visualized as a set of parallel lines.

Formally, consider a 2D-slice SL over
a multicube MC composed of K axes. A
tape over SL is a set of (K-1) points, where
the (K-2) points are the points of SL. A tape
is always parallel to a specific axis; out of
the two “free” axes of the 2D-slice, we
pin one of them to a specific point that dis-
tinguishes the tape from the 2D-slice. A
tape is more restrictively defined with re-
spect to the 2D-slice by a single point. We
will call this point the key of the tape with
respect to its 2D-slice. Moreover, if a
2D-slice has two axes a

1
,a

2
 with size(a

1
)

and size(a
2
) points each, then one can

define size(a
1
)*size(a

2
) tapes over this 2D-

slice.
Observe Figure 2. All C1, C2, C3, C4,

C5, C6 and R1, R2, R3, R4 are tapes. Ob-
serve C1 or R1; due to the fact that they
are pinpointed to hierarchically decompos-
able points, they involve more than one
“line.” The different colors correspond to
different vertical tapes (C1-C6).
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Cross-Joins
Intuitively, a cross join is a set of cells

produced by the intersection of two tapes.
If the two tapes are defined over atomic
points, the cross-join involves a single cell
(e.g., the case of tapes R2 and C3); other-
wise, a set of cells is produced, as in the
case of tapes R2 and C1. Note that a “cell”
corresponds to a point of the measure axis.

Formally, consider a 2D-slice SL over
a multicube MC, composed of K axes. Con-
sider also two tapes t

1
 and t

2
 which are not

parallel to the same axis. A cross-join over
t
1
  and t

2
 is a set of K points, where the (K-

2) points are the points of SL and each of
the two remaining points is a point on a
different axis of the remaining axes of the
slice.

Two tapes are joinable if they can
produce a cross-join.

The only difference between a tape
and a cross-join is that the cross-join re-
stricts all of its dimensions with equality
constraints, whereas the tape constraints
only a subset of them.

Bridging the Presentation &
Logical Layers of CPM

Cross-joins form the bridge between
the logical and the presentational layers. In
this section, we provide a theorem proving
that a cross-join is a secondary cube. Then,
we show how common OLAP operations
can be performed on the basis of our
model.

Theorem 1. Assume a star schema data-
base [DS0,C,CS], over a star schema
[D,S0]. Assume also a cross-join, say c,
defined over a subset of the dimensions
D. Then, c can be mapped to a sec-
ondary cube over the star schema da-
tabase.

Proof. We will constructively obtain the
definition of the secondary cube. Re-
member that the cross-join is practically
defined by a set of K points over the
axes of a multicube.

1. The detailed data set is naturally DS0.
2. Each of the dimensions of the cross-join

is a subset of D, and we can assume
that the levels referring to each point are
[L

1
,…,L

n
,M

1
,…,M

m
] with the first being

coordinate axes and the latter being
measure axes.

3. A selection condition ϕ can be derived
from the points of the coordinate axes.

4. If there are any functions applied, they
are also defined over the attributes of
the data set; suppose that we have
A

m+1
:f

m+1
(A

m+1
),…,A

m+p
:f

m+p
(A

m+p
)attributes in

the definitions of the attribute groups of
the multicube. The measure axis also has
a set of aggregate expressions over mea-

sures, say [agg
1
( 1

0M ),…,agg
m
( m

0M )], and a

secondary selection condition.
5. The function f of the cross-join’s

multicube is defined as a mapping of
[L

1
,…,L

n
] to [M

1
,…,M

m
], possibly exploiting

the use of the functions f
m+i

.
6. Consequently, one can produce the fol-

lowing secondary cube out of the cross-
join c:

c=[DS0,ϕ,[L
1
,…,L

n
,M

1
,…,M

m
],[agg

1
( 1

0M ),…,agg
m
( m

0M )],

[Am+1:fm+1(Am+1),…,Am+p:fm+p(Am+p)],
<
∅O ,ψ]

where ϕ is the conjunction of the pri-
mary selection conditions of the levels
and ψ is the conjunction of the second-
ary selection conditions of the rest of
the attributes.

The only difference between a tape
and a cross-join is that the cross-join re-
stricts all of its dimensions with equality
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constraints, whereas the tape constraints
only a subset of them. Moreover, from the
definition of the joinable tapes it follows
that a 2D-slice contains as many cross-joins
as the number of pairs of joinable tapes
belonging to this particular slice. This ob-
servation also helps us to understand why
a tape can also be viewed as a collection
of cross-joins (or cubes). Thus, we have
the following lemma.

• Lemma. A tape is a finite set of sec-
ondary cubes.

• Proof. Each of the cross-joins is defined
from the k-1 points of the tape and one
point from all its joinable tapes. This point
belongs to the points of the axis the tape
is parallel to. Consequently, we are al-
lowed to treat a tape as a set of cross-
joins, or cubes: t=[c1,…,ck].

MAPPING TO TABLE
LENS

In the previous section, we have
shown how a generic presentational model
— CPM — can represent multi-query
screens that can be mapped to constructs

of an underlying logical model. At the same
time, there is more that we can do over the
presentation model, which involves ad-
vanced visualization techniques. It would
be straightforward to visualize the CPM
constructs simply as tabular data. Never-
theless, we can do better than that and ap-
ply advanced visualization techniques over
the CPM constructs. In this section, we
will demonstrate how CPM can be com-
bined with Table Lens (TL) (Pirollo & Rao,
1996; Rao & Card, 1994), a non-traditional
cross-tabular presentational model from the
Human Computer Interaction area. This
model, based on the “focus plus context”
technique, is used in applications and plat-
forms for the visualization of tabular data
and appears to be quite appropriate for
OLAP purposes. Using Table Lens, we can
easily examine patterns and correlations in
large tables and effectively zoom in with-
out losing the global picture of our data.
We have chosen Table Lens as a visual-
ization technique due to the fact that it is
based on a cross-tabular paradigm for the
presentation of information; a paradigm
quite popular in OLAP screens, too.
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Figure 13: A Table Lens Example – (a) 2x4 Focus Window is Defined Over a Space of 8x8
Points; (b) Table Lens Distortion of the Columns Axis
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Mapping CPM to Table Lens

In this subsection, we will present the
main features of Table Lens, and then we
will link it to the CPM model. The main
constructs of the Table Lens technique in-
volve:
• Axes: The Table Lens model assumes

two axes. For clarity, we will use Rows
and Columns to denote these two axes,
as shown in Figure13.

• 2D Space: The 2D Space is constructed
from the Cartesian product of the two
Table Lens axes. It is a (finite) matrix
of cells. One of the basic ideas behind
the Table Lens technique is that not all
cells are considered equal in terms of
presentation. In fact, certain cells com-
prising a concrete region of the 2D
Space are assigned to occupy more sur-
face of the screen than the rest of the
cells. This resembles zooming into the
particular region of the 2D Space.

• Degree of Interest Function (DOI):
DOI is a function that maps each axis
point to a value that indicates the level
of interest for that point. For each axis,
a different DOI function is prescribed;
thus, a 2D Space is characterized by 2D
windows of focus. In the simplest set-
ting of Table Lens, each DOI function
is a simple “pulse” function, meaning
that it has a standard value for all points,
except for the points of a certain inter-
val that are mapped to a higher value.
In Figure 13a, we depict an 8x8 space
with a 2x4 focus window. In Figure 13b,
we show how the originally equally im-
portant cells of the Columns axis are
assigned importance values by the DOI
function (notice the pulse on two par-
ticular cells that assigns them greater
importance than the rest of the cells).

• Transfer Function: A transfer function
maps each cell to its physical location,
indicating the level of zoom for each cell.
Practically, the transfer function is the
translation of the respective DOI func-
tion (operating at the “interest” space)
to the “pixel” space. In Figure 13b, we
show how the Transfer function, defined
as a weighted integral of the DOI func-
tion, maps the points to pixel areas. For
reasons of efficient representation (Rao
& Card, 1994) (Figure 13b), the pro-
duced axis is rotated by 90˜ . Finally,
another interesting feature of Table Lens
is the ability to define more than one
window of focus. This is quite helpful in
situations where two areas can be con-
trasted and compared. As we shall see
in the next section, this feature is par-
ticularly useful in the case of OLAP.

There is an easy way to map the un-
derlying constructs of the CPM to the ones
of the Table Lens. The axis points of CPM
are mapped to axis points of Table Lens
and a 2D Slice in CPM is implemented as
a 2D Space in Table Lens. The contents
function provides the values of the cells of
the 2D Space. Naturally, CPM is generic
enough to lack the particularities of the axis
distortion due to the DOI function. The
naïve way to overcome the limitation is sim-
ply to ask the user to define a certain win-
dow of focus over the presented 2D Space,
specifying both its size and position. Still,
we can automate the process on the basis
of the structure and the contents of a 2D
Space.

Which Window of
Interest to Choose?

In this subsection, we will deal with
the problem of providing the user with pro-
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active automated support for the explora-
tion of an OLAP report. Our main tool to-
wards this end is the window of interest as
determined by the DOI functions, and the
basic idea is to provide an algorithm to
proactively determine the window of in-
terest over a 2D Space. We want to de-
fine an algorithm that automatically deter-
mines this window whenever a user invokes
an OLAP report. It appears that we can
come up with a generic algorithm where
the controlling parameters (e.g., stopping
conditions, error range, etc.) can be tuned
by the user. Actually, we can even treat as
a parameter the choice of whether the user
is simply interested in having a window of
a certain surface or if he or she is actually
interested in seeing a focus on a range of
cells satisfying certain statistical properties
(e.g., minimum/maximum/closest to aver-
age set of values). Having determined
algorithmically the window of interest, the
two involved DOI functions, which are in-
dependent of each other, are directly derived.

Motivation & Assumptions

Before providing the generic algo-
rithm, let us clarify our contribution through
a specific example. We instantiate the ex-

ample of Figure 2 with the values in Fig-
ure14. Let us assume that when the user
activates this OLAP screen, he would like
to be informed on three particular cross-
joins: (1) one involving the maximum sales
(max); (2) another involving the lowest
(min); and (3) a third involving the cross-
join with behavior closest to the average
(closest-to-avg) of the whole 2D Space.
Practically, this involves three windows of
focus, which we depict through a thick bor-
der around the involved cross-joins. In this
particular case, the cross-join R1/C6 is the
one with the lowest summary of values,
the cross-join R4/C3, the one with the high-
est sum, and the cross-join R2/C3, the one
closest to the average sales per cross-join
(which amounts to 240.5 sales per cross-
join).

A simple algorithm to compute the
aforementioned quantities proceeds as fol-
lows: (a) summarizes all cells per cross-
join; (b) sorts cross-joins and computes the
average cross-join value; and (c) pinpoints
the three regions of interest. This algorithm
has linear (precisely, one-pass) complexity
on the number of cells and nlogn (due to
sorting) complexity on the number of cross-
joins. Actually, if we are simply to keep the
max, min or closest-to-avg cross-join, a lin-

 

Figure 14: Instantiation of the Motivating Example with Values (Different coloring determines
different cross-joins and thick borders highlight the cross-joins with the highest, lowest and
closest to average values.)
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ear single pass from all the cells is suffi-
cient without any sorting. In the case of
avg, each time that we summarize the cells
from a cross-join, we can compute the av-
erage of the individual cross-join summa-
ries and compute the closest cross-join to
the current value of this average.

Assumptions: Underlying this proactive
notification to the user, we have made
the following assumptions:

• Cross-joins constitute homogeneous
pieces of information. This means that
we can assume a certain level of se-
mantic cohesion among the cells of a
certain cross-join. Moreover, we can
assume that each cross-join can be con-
sidered as a distinct semantic unit and
that cross-joins are comparable to each
other. For example, we assume that it
makes sense to compare sales from Ja-
pan to the sales of Southern USA. Natu-

rally, the user choices for the axes points
(and the produced cross-joins) may se-
verely affect this assumption.

• We are allowed to perform certain
aggregate operations over our data.
Specifically, we assume that the under-
lying detailed data set has been summa-
rized by a distributive aggregate func-
tion.

In Lenz and Thalheim (2001), aggre-
gation functions are categorized as (a) dis-
tributive functions, like max, min, sum or
count, meaning that there is a way to com-
pute the result of the application of the ag-
gregation function to the overall data set
by composing the individual results of its
application to subsets of the dataset; (b)
algebraic functions that are expressed as
finite algebraic expressions over distribu-
tive functions, like avg; and (c) holistic
functions for all other functions.

Algorithm GenericFocusWindow 
Input:  

 A set of cross-joins GJ and a display grid of cells Grid related to GJ.  
 Each cell belonging to Grid is characterized by coordinates (x,y) and each CJ belonging to GJ is 

characterized by the coordinates of its upper left and lower right cell. Each cross-join has a surface, 
determined by its coordinates. 

Parameters:  
 OriginalPick(GJ): a routine to determine the starting cross-join of the algorithm 
 GuardCondition: a routine to determine whether the algorithm should stop 
 4: a tolerance or error range for the acceptance of a solution or not 
 Qualifies: a Boolean function that determines whether a solution satisfies a set of constraints 
 DeterminingQuality: a property of a cross-join like surface, sum of values, … 
 Pick(GJ,Q): a routine picking a cross-join to enlarge the produced solution 

Output:  

 A set of cross-joins, Q that satisfies the conditions set by the user. 

Begin 

1.1.  Q = {} 
1.2.  C = OriginalPick(GJ) 

 Add C to Q. 
 While (GuardCondition) { 
  CJ = Pick(GJ,Q);  
  If CJ≠NULL Then add CJ to Q Else exit the loop 
 } 
 Return Q 

End. 
 

Figure 15: (a) Algorithm GenericFocusWindow (b) Instantiation of the Algorithm
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To forestall any possible criticism, we
want to point out that the exact result of
aggregation operations over a 2D Slice is
handled by the logical layer. In the case of
the logical OLAP model presented in
Vassiliadis and Skiadopoulos (2000), all
operations are formally defined as opera-
tions over the detailed data set; optimiza-
tion results for the obvious cases are also
provided. Nevertheless, in the case of this
paper, we want a quick approximation of
the statistical measures under consideration
to be used for the determination of the fo-
cus window and not of the values of the
report. Thus, problems like the Simpson’s
paradox or the non-invariance property
(Lenz & Thalheim, 2001) are not consid-
ered in the scope of this paper. Finally, as a
general comment, since it is quite cumber-
some to ask the user each time to charac-
terize the statistical nature of the underly-
ing data, we employ the idea that one can
have an indication of the statistical nature
of the information of screen by observing
the aggregate function that has been ap-
plied to compute them. Thus, since in our
case we are starting with a sum aggregate

function, we conclude that we can apply
further distributive operations to the mea-
sure Sales in order to obtain our indicative
approximations.

A Generic Algorithm for
Determining the Window of Focus

Naturally, we can do better than the
aforementioned algorithm by adding extra
criteria to the proactive selection of the
starting window of focus. We propose a
guided greedy generic algorithm,
GenericFocusWindow (Figure15), to deal
with the issue. The simple idea underlying
the algorithm is that there are certain con-
ditions to be met for the focus window. For
example, one could require that the focus
window occupy at most/least a certain per-
centage of the screen size, or of a certain
size of cells. Moreover, the selected win-
dow optimizes an objective function. The
property Determining Quality of the al-
gorithms captures exactly this requirement
in the form of a certain function. Since our
algorithm is greedy, we need an Original
Pick routine to start the processing; in gen-

OriginalPick(GJ){ 
 Let the cross-join Cr s.t., |sum(Cr) | is the minimum; 
 Among equals pick the upper and left-wise; 
 Return (Cr); } 
DeterminingQuality(Q) { 
 Return surface(Q)-surface(3x3); } 
GuardCondition (Q,1){ 
 If surface(Q)-surface(3x3) <1 Then Return true; 
 Else Return false } 
Pick(CJ,Q){ 
 Let V be the subset of the cross-joins of CJ, s.t., for each v∈V: Qualifies(v,CJ,Q) 
 Let vP∈V be a cross-join s.t., |DeterminingQuality(Q)| is minimum, if vP is added to Q. 
 Return vP; } 
Qualifies(v,CJ,Q){ 
 If (v is adjacent to a cross-join CJ∈CJ) && 
  (v ∪ Q  forms a rectangle) 
 Then Return true; 
 Else Return false} 

 

Figure 15: (a) Algorithm GenericFocusWindow (b) Instantiation of the Algorithm (cont.)
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eral this is closely related to the Determin-
ing Quality function and we require that it
start with a smallest value. Moreover, a
Guard Condition checks for the satisfac-
tion of the desired property, meaning that
we can possibly allow a certain approxi-
mation error ε to out obtained solution. Fi-
nally, a function Pick provides the neces-
sary details for working from the original
small-in-value solution towards the final
result, practically picking the next cross-
join to enlarge the current window of fo-
cus.

One implicit assumption that our al-
gorithm makes is that the Original Pick
fits inside the allowed window. This con-
straint can easily be relaxed by an exten-
sion of the algorithm picking subparts of a
cross-join in a similar fashion with the pro-
posed algorithm, if we consider that we pick
subparts of a 2D-slice.

We present an example for the
instantiation of the aforementioned generic
algorithm in Figure 15b, where we are in-
terested in a focus window which (a) in-
cludes the window with the minimum sum-
mary of values and (b) is not bigger than
3x3 (with a tolerance of the surface ε=1).

To accomplish this, we initialize accordingly
the parameters of the algorithm
(GuardCondition, ε) and define accordingly
the functions of the algorithms (OriginalPick,
DeterminingQuality and Pick). The greedy
algorithm is guided to pick the window of
minimum value as its starting point. The
first constraint is met by the original pick
and the second by the stop condition of the
algorithm. During the expansion phase,
each time we choose a cross-join such that
(a) is neighbouring with the current solu-
tion; (b) if merged with the current solu-
tion, it comprises a rectangle (easily deter-
mined by comparing the lengths of the op-
posite sides of the new solution; and (c)
has the smallest surface.

If we execute the algorithm on the
data of Figure14, the result will be Q={R1/
C6,R2/C6,R3/C6,R4/C6}, which is practically
the tape C6. If, instead of the minimum
value, in function Pick we had chosen the
maximum, then the result would be Q={R1/
C6,R1/C5}. Another obvious extension
would be to employ a 2-greedy algorithm:
in this case the small cross-joins R2/C5 and
R2/C6, each comprising a single cell, could
have been incorporated in the solution, too.
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Figure 16: The System Architecture of CubeView



Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

International Journal of Data Warehousing & Mining, 1(1), 1-36, Jan-March 2005   27

In Maniatis et al. (2003a), we present
more examples for the instantiation of the
algorithm.

IMPLEMENTATION

In this section we will present a
framework in support of Mobile OLAP, a
term used to express the porting of require-
ments and specifications for OLAP appli-
cations into the wireless and mobile com-
puting world, as introduced in Maniatis
(2004). In this context, we present
CubeView, a pilot academic platform en-
abling OLAP visualization both for contem-
porary desktops as well as for mobile de-
vices. We present details about the adopted
system and software architecture of the
system, along with explanations on the us-
age of the system.

The Architecture of CubeView

In this section we present the archi-
tecture of CubeView, organized as (a) sys-
tem architecture, (b) software architecture,
and (c) implementations specifics.

The system architecture for
CubeView is depicted in Figure16. The
general idea is that the user on the mobile
device (PDA, mobile phone, or even re-
mote desktop PC) uses a specific user in-
terface on the user’s device to navigate on
the screen between OLAP data and per-
form OLAP analysis in general, based on
data stored locally on the device in highly
aggregated and summarized format.

The system is composed of three dis-
crete and autonomous modules: A tradi-
tional OLAP Server Module, used as a
black box in the process since it can be
any of the existing commercial, open source,
or academic ones; a Middleware Appli-
cation Server, serving as the mediator be-

tween the data stored in the OLAP Server
and the mobile device and the mobile
Front-End Applications, incorporating the
local storage; and the user interface, navi-
gation, and presentation options.

The Software Architecture of
CubeView is depicted in Figure17. Each
distinct system layer holds a number of
software modules, each in turn performing
specific tasks in the context of the whole
system. To be more specific, the software
layers of CubeView are:
• The OLAP Server Layer, which, as

mentioned before, is “transparent” to the
user and used as a “black box” from
the system, meaning that only a specific
API is used to query the server for
OLAP data. Typically, any available
OLAP server (MOLAP or ROLAP),
commercial, or academic platform could
be used for storing and processing the
actual OLAP queries.

• The Application Server Layer, which
is the software layer holding the Java
server-side application logic. It incorpo-
rates the following software modules: (i)
The Query Manager, responsible for
directly querying the OLAP Server ac-
cording to the query posed by the mo-
bile user; (ii) the XML OLAP Data
Manager, a component responsible for
formatting the requested data in XML
format and interacts with (iii) the Cube
to CMP (XML) Converter; and (iv) the
XML Cross-join Metadata, which for-
mats the OLAP data queried in a for-
mat suitable for presentation using CPM
entities. A simple (v) Caching Mecha-
nism is employed for performance pur-
poses, which holds both the actual OLAP
data and the necessary OLAP
metadata, retrieved and managed
through (vi) the OLAP Metadata Man-
ager. Finally, (vii) the Connection Man-
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ager is the synchronization mediator
between the Application Server and the
User Layer, controlling the connection
process when data from the OLAP
Server are needed to refresh the OLAP
data in CPM entities format, stored lo-
cally on the mobile device.

• The User Layer incorporates a number
of software modules and client tools that
supplies the mobile user with instruments
for (i) storing OLAP data locally on the
Local Storage RDBMS, which holds the
metadata of the system as well as highly
aggregated OLAP data; (ii) executing

 

Figure 17: The Software Architecture of CubeView

Figure 18: A Prototype Front-End for CubeView on Pocket PC Employing OLAP Lens
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simple ad hoc local queries, meaning on
the OLAP data stored locally through
(iii) the OLAP Query Manager; (iv)
the OLAP Request Manager interacts
with the Application Server Layer —
actually with the Connection Manager
— to retrieve data from the OLAP
Server if such a case is enforced due to
the query posed by the user; and finally,
(v) a suitable User Interface and Lo-
cal Metadata Browser are the front end
tools on the mobile device through which
the user can pose queries, browse the
local data, and display the results of his
queries on OLAP screens, employing the
Table Lens visualization technique.

Using CubeView

In this section we give an illustrative
example of how CubeView is designed to
work and respond to queries posed by mo-
bile users.

An implementation on a Pocket PC
environment of the example described in
Figure 2 is displayed in Figure 18, where a
prototype for the front end tool used is de-
veloped and displayed on the simulator pro-
vided by Microsoft (http://www.microsoft.
com/windowsmobile / informat ion/
devprograms/default.mspx). In terms of
usability of the system and user interface
characteristics, special features are em-
ployed. A step-by-step usability of the user
interface controls is as follows:
• The user exploits the user interface fa-

cilities of the front end application to
specify the user’s range query, using
drag and drop to select from the pop up
dimensions window the actual dimension
levels to form the initial screen. The first
level of the highly aggregated data ap-
pears on the screen (Figure 18).

• In a next specialization manipulation, the
user selects from a pop up menu a func-
tion or formula (system or user defined)

Figure 19: OLAP Lens User Interface Details
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to focus on specific characteristics and
attributes of the displayed data. For ex-
ample, it may be that the user wants to
locate the cell with the max value of the
displayed data and drill into them to lo-
cate further details. The appearance of
the display screen focuses to the desired
cell, which is distorted (in accordance
to the Table Lens characteristics) to
guide the user to the exact results of the
user’s query (Figure 19).

• By double clicking on the focused cell,
the user drills in to the details of the cell.
The cross tab displayed is replaced by
the next level of the dimension hierar-
chies, both for rows and columns. The
previous level of the dimension hierar-
chies is displayed as pull down menus
on the top of the screen.

• The user may continue performing the
previous steps to perform further analy-
sis. Special controls (such as �� for
drill in and drill out) and menu options
assist the user in performing OLAP
analysis on the user’s mobile device.

Finally, we would also like to point out
that the architecture implemented in
CubeView is flexible enough to provide a
framework suitable for both desktop and
mobile OLAP visualization applications.

RELATED WORK

In this section, we will present related
work on the topics covered by our research.
This includes existing presentation models
for databases and multidimensional data,
implementations of visualization tools, and
a discussion of related efforts in the field
of OLAP for mobile environments.

Furthermore, we should mention that
preliminary results of the work analysed
herein can be found in Maniatis et al. (2003),

Maniatis et al. (2003a), Maniatis (2003),
and Maniatis (2004). Still, in this paper, (a)
we provide the big picture for these works,
(b) we have further decoupled the logical
and presentational models from the work
of Maniatis et al. (2003), and (c) we pro-
vide more examples and details on the
proofs.

Presentational Models

Although OLAP has been an active
research area for the past few years, the
efforts devoted to the visualization of
OLAP screens are very scarce. To our
knowledge, only two such efforts exist.

The first effort is from the industrial
field, where Microsoft has issued a com-
mercial standard for multidimensional da-
tabases and where the presentational is-
sues form a major part (Microsoft, 1998).
In this approach, a powerful query language
is used to provide the user with complex
reports created from several cubes (or ac-
tually subsets of existing cubes). However,
this standard suffers from several problems,
with two of them being the most promi-
nent: First, the logical and presentational
models are mixed, resulting in a complex
language that we personally found hard to
use (although powerful enough). Secondly,
the model is formalized but not thoroughly;
for instance, we did not really see a defini-
tion for the schema of a multicube. Also,
there are specific axes that are predefined,
namely “rows,” “columns,” “pages,” “sec-
tions,” and “chapters”; no other axes are
supposed.

The second proposal is an academic
approach — the Tape Model (Gebhardt et
al., 1997) — based on the notion of
“Tapes,” called thus due to their look and
feel. Tapes are infinite and can overlap (if
they contain shared data dimensions) or
intersect with each other. A two-dimen-
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sional intersection is called a matrix and
represents a kind of cross-tab between the
corresponding dimensions. Each tape com-
prises a variable number of tracks. The
most important operations on tapes include:
(a) insertion and deletion of tracks; (b)
changing the sequence of tracks (e.g., sort-
ing); and (c) scrolling on tracks. The model
offers the possibility of defining hierarchi-
cal structures within a tape. Tapes are infi-
nite and can overlap (if they contain shared
data dimensions) or intersect with each
other. A two-dimensional intersection is
called a matrix and represents a kind of
cross-tab between the corresponding di-
mensions. Each tape comprises of a vari-
able number of tracks.

Compared to CPM, the aforemen-
tioned models can be characterized as fol-
lows: CPM is a formal approach, with a
rigorous formal background. The tape
model seems to be limited in its expressive
power (with respect to the Microsoft pro-
posal), and, to our knowledge, its formal
aspects are not yet publicly available. The
Microsoft proposal, on the other hand, ap-
pears to be too complicated, without a clean-
cut separation of the underlying concepts.
Also, its coupling to the underlying logical
structures is not clear.

Visualization in Contemporary
OLAP Tools

Most vendors offering data ware-
housing and OLAP tools and platforms
have included in their products special mod-
ules running on mobile devices and offer-
ing OLAP analysis possibilities to mobile
decision makers. Vendors such as
MicroStrategy Inc. (http://www.micro
strategy.com) and Business Objects (http:/
/www.businessobjects.com) have done a
great deal towards implementing dedicated

broadcast servers that provide OLAP spe-
cific information to users in numerous typi-
cal formats such as e-mails, beeps on pag-
ers, or specifically designed Web pages,
using WAP and WML and employing a
specific but typical server-based architec-
ture to offer this functionality.

With respect to academic pilot visu-
alization tools and platforms, numerous have
been developed, mainly in the area of the
general area of information visualization.
Many proposals focused on more specific
areas such as statistical and scientific da-
tabases, data mining, and multidimensional
data visualization. In the last area, we can
mention VisDB (Keim & Kriegel, 1994),
HD-Eye (Hinneburg et al., 2002) and Po-
laris (Stolte & Hanrahan, 2000).

VisDB (Keim & Kriegel, 1994) and
its more recent sibling HD-Eye (Hinneburg
et al., 2002) originated from the area of
general database exploration techniques,
with specialization in multi-dimensional vi-
sualization. It cannot be considered as an
OLAP visualization platform; instead, it is
a platform for the exploration of large multi-
dimensional data sets using techniques such
as the mapping of two dimensions to
axes, parallel coordinates, etc., all inte-
grated into an interactive graphical en-
vironment. In a sense, ViSDB can be
viewed as being closer to data mining
than OLAP. HD-Eye is a more recent
version oriented towards visual cluster-
ing of large data sets containing high-
dimensional data.

Finally, Polaris (Stolte & Hanrahan,
2000) is one of the most recently designed
and implemented visual interfaces, designed
to explore large multi-dimensional data-
bases that extends the well-known Pivot
Table interface. The features of Polaris
include an interface for constructing visual
specifications of table-based graphical dis-
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plays and the ability to generate a precise
set of relational queries from the visual
specification. The visual specifications can
be incrementally developed, giving the ana-
lyst visual feedback as they construct com-
plex queries and visualizations.

Applications for Mobile OLAP

OLAP-specific functionality for mo-
bile devices provided by the vendors does
very little towards exploiting the specific
characteristics and power of the mobile
devices on which these applications run.
Rather, they base their solutions on migrat-
ing the desktop OLAP interface of their
tools to the mobile device employing WAP
and the WML, but fail to take into account
recent improved facts about mobile devices
such as increased system memory; clearer
color screens; increased processing power
or their limitations, such as small screen
size, different usability, and user interface
requirements; common off line work, etc.

To fill this gap, numerous approaches
coming mainly from the academia and from
various research areas have been propos-
ing solutions and frameworks that address
this problem. Many of them propose novel
approaches to cope with the case of mo-
bile OLAP and, more importantly, many of
them have been actually implemented and
used in real case scenarios. We will briefly
present some of the most notable (in our
judgment) approaches.

MOCHA (Rodriguez-Martinez &
Rossopoulos, 2000) was an early, more
generic approach to a database middleware
for distributed data sources, which, although
not specifically addressing the case of mo-
bile devices and OLAP, incorporates many
of the notions present in “Mobile OLAP,”
such as the distributed nature of the sys-
tem, the scaling to a larger environment,

and the novel approach of deploying appli-
cation-specific functionality from one point
of the system to all the others through the
middleware itself. The system was imple-
mented in Java, which allowed for the ship-
ping of Java code to implement either ad-
vanced data types or tailored remote op-
erators to remote data sources and have it
executed remotely, and was actually put to
work effectively on a large aerospace or-
ganization.

A more specific approach is pre-
sented in Cuzzocrea et al. (2003), namely
Hand-OLAP, a system specifically de-
signed for bringing OLAP functionality to
users of mobile devices. This proposal fo-
cuses mainly on a number of the draw-
backs of handhelds devices, with empha-
sis on the small storage space and the usual
discontinuance of the connection to the
Wireless LAN, as opposed to the user
needs for querying and browsing informa-
tion extracted from enormous amounts of
data accessible through the network. To
cope with this issue, this approach focuses
on presenting a solution for storing locally
in the mobile device a compressed and
highly summarized view of the data that
can be more efficiently transmitted from
the OLAP server than the original ones.
Hand-OLAP is a prototype system with a
suitable architecture that seamlessly sup-
ports the interaction between mobile de-
vice and OLAP server, stores data locally
on the mobile device in a compressed for-
mat (based on Quadtree representation),
and always provides the user with a spe-
cific bi-dimensional (tabular) view of the
data, even when the connection to the
WLAN is off.

Finally, the work of Sharaf and
Chrysanthis (2002, 2002a) focused more
on matters of wireless network and power
consumption on the mobile devices, pro-
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posing a suitable mobile OLAP model, along
with an on-demand scheduling algorithm to
minimize access time and energy consump-
tion on mobile agents. This approach is
based also on summary tables, along with
the functionality of simple OLAP front-end
tools to execute simple SQL queries. What
is more, this proposal maximizes the ag-
gregated data sharing between clients and
reduces the broadcast length. Finally, the
proposed on-demand scheduling algorithm
employs user parameters to fine tune the
degree of aggregation of data so as to con-
trol the tradeoff between access time and
energy consumption, and adapts to differ-
ent request rates, access patterns, and data
distributions.

As a whole, as we compare
CubeView with all the previously described
tools — those used for visualization and
those reviewed for Mobile OLAP — we
stress the fact that our prototype is the only
one that supports the full cycle, starting from
a formal and rigorous theory background
depicted in CPM itself, and reaching a full
fledged implementation covering both
worlds, the traditional desktop environ-
ments, and the mobile devices. All the other
paradigms are departmental in the sense
that the they tamper only portions of the
big picture, this being either the informa-
tion visualization area (VisDB [Keim &
Kriegel, 1994]; HD-Eye [Hinneburg et al.,
2002]; Polaris [Stolte & Hanrahan, 2000]),
or specific approaches and implementa-
tions for mobile devices (Hand-OLAP
[Cuzzocrea et al., 2003]) or simply
middleware, like MOCHA (Rodriguez-
Martinez & Rossopoulos, 2000), or, finally,
a framework for a wireless OLAP model
(Sharaf & Chrysanthis, 2002, Sharaf &
Chrysanthis, 2002a).

CONCLUSIONS &
FUTURE WORK

So far, visualization has not been fully
incorporated in the abstraction levels of
DBMS architecture (conceptual, logical, or
physical). In this paper, we have discussed
the separation of the aforementioned ab-
straction levels to take visualization into
consideration. In this context, we have pre-
sented the Cube Presentation Model
(CPM), a formal presentation model for
OLAP data. Our contributions can be listed
as follows: (a) we have presented an ex-
tension of a previous logical model for
cubes to handle more complex cases; (b)
we have introduced a novel presentational
model for OLAP screens, intuitively based
on the geometrical representation of a cube
and its human perception in the space; and
(c) we have discussed how these two mod-
els can be smoothly integrated. Moreover,
we have demonstrated how CPM can be
naturally mapped into an advanced visual-
ization technique (Table Lens), and we have
discussed suitable algorithms for proactive
automated support of the user towards the
highlighting of interesting areas of a report.
Finally, we have discussed implementation
and usage issues in the context of an aca-
demic prototype system (CubeView) that
we have implemented.

Obviously, we do not claim that this
is the ultimate solution to the problem of
OLAP data visualization, but rather we wish
to indicate that there is quite an interesting
research field in this area and a supportive
body of knowledge from other disciplines
such as Human-Computer Interaction and
Information Visualization.

An obvious particularity of our ap-
proach is that it is crafted mostly for tabu-
lar data in the context of OLAP. Should
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we wish to differentiate the context of data
utilization or the data themselves (e.g., per-
form OLAP over spatial or biological data),
the presentation and visualization techniques
would have been different. In general, it is
an interesting research challenge to discuss
the integration of different models in the
presence of different contexts, either in
terms of the data or their usage.

At the same time, new hardware de-
velopments pose new requirements for our
visualization techniques. One of our goals
has been to implement OLAP visualization
techniques for particularly small devices
such mobile phones and palmtops. Although
the processing power of these gadgets is
no more negligible (actually, the buzzword
“thin client” seems to disappear from the
standard vocabulary of the area), their
screen sizes shrink over time. To make
OLAP screens presentable to such de-
vices, one can follow several paths such
as: (a) showing only high level summaries
which involve small 2D slices or (b) show-
ing simply pie or bar charts. We have cho-
sen an alternative approach where (a) the
contents of the screen do not have to be
squeezed in size in order to fit in the screen,
and, most importantly, (b) the report does
not have to be rewritten and neither do we
have to check for the aggregation level of
the presented data. On the contrary, a cer-
tain part of the report is presented, depend-
ing on the particularities of the device. Here,
we make the reasonable assumption that
either the device has the computational
power to determine the amount of cells that
can be presented to the user, or, if this is
not an option, the device can at least piggy-
back its characteristics to the OLAP server
and let the server decide on the focus win-
dow. Naturally, as part of future research,
different implementation issues (e.g., cach-
ing schemes or visualization techniques) can
be applied in this context.

Finally, coming back to the visualiza-
tion issue, we have brought up Table Lens
to highlight the possibility of facilitating pro-
active user decision support in the pres-
ence of large datasets (in our case, the
value axis is quite larger than the size that
someone can handle efficiently). Clearly,
as report screens are limited, not only due
to hardware constraints but also due to the
particularities of human nature (e.g., the
classical discussion on the limited capacity
of persons in processing information (Miller,
1956), it comes quite natural that automated
proactive support to the users is thus one
of the new requirements that decision sup-
port tools have to provide. Thus, our con-
tribution is related to a broader line of re-
search (Han, 1998, Sarawagi et al., 1998),
which is obviously open to a wide range of
different possibilities.
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