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ABSTRACT

Data visualization is one of the major issues of database research. OLAP a decision support
technology, isclearly inthe center of thiseffort. Thusfar, visualization hasnot been incor porated
in the abstraction levels of DBMS architecture (conceptual, logical, physical); neither has it
been formally treated in this context. In this paper we start by reconsidering the separation of
the aforementioned abstraction level sto take visualization into consideration. Then, we present
the Cube Presentation Model (CPM), a novel presentational model for OLAP screens. The
proposal lies on the fundamental idea of separating thelogical part of a data cube computation
from the presentational part of the client tool. Then, CPM can be naturally mapped on the
Table Lens, which isan advanced visualization technique from the Human-Computer Interaction
area, particularly tailored for cross-tab reports. Based on the particularities of Table Lens, we
propose automated proactive support to the user for the interaction with an OLAP screen.
Finally, we discuss implementation and usage issues in the context of an academic prototype
system (CubeView) that we have implemented.

Keywords: graphical user interface; mobile technologies; OLAP; presentation model;
visualization

INTRODUCTION Vassiliadis & Sellis, 1999) has been exten-

sively dealt with, an equally important is-

In the last years, Online Analytical SUe in the OLAP domain, the presenta-

Processing (OLAP) and data warehous- 110N qf data, has not been adequately
ing (DW) have become major research Investigated. _

areasin the database community (Abiteboul As the Lowell report (Abiteboul et

et a., 2003; Inmon, 1996). Although the & 2003) mentions, visualizationis one of
modeling of data (Tsois et al., 2001; the big issues of database research for the

next years. To cite the Lowell report:
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The original Laguna-Beach report lamented
that therewaslittle research on user interfaces
to DBMSs. ... There have not been comparable
advancesinthelast 15years. Thereisacrying
need for better ideasin this area.

It is easy to understand that of all
fields of database research, decision sup-
port, and OLAP arethe onesto be affected
most out of this phenomenon.

In the context of OLAP, data visual-
ization deal swith the techniques and tools
used for presenting OLAP-specific infor-
mation to end users and decision makers.
During the next years, the database com-
munity expects visualization to be of sig-
nificant importance in the area (Abiteboul
et a., 2003), and although research has
provided results dealing with the presenta-
tion of vast amounts of data (Gebhardt et
al., 1997; Inselberg, 2001; Keim, 1997), to
our knowledge, OLAP has not been part
of advanced visualization techniquessofar.

For us, itisclear that one of themain
reasons for the research community not
dealing with visualization issues so far is
the heritage of the computing paradigm of
the past three decades. This paradigm si-
lently made the assumption that the user
sitting infront of aconsole makesonequery
and retrieves one answer (as would have
happenedinaUNIX terminal 30 yearsago).
Still, thisis not the case with modern user
interfaces for datasets, especialy in the
context of OLAP. A singlefront-end screen
typically involvesthe combination of more
than one back-end query. Still, to the best
of our knowledge, there are no modeling
techniques and languages (from the rela-
tional model to SQL and the OL AP model-
ing efforts proposed in the academia) that
build upon thisfact. Our effort triesto for-
malize the simultaneous presence of more
than one query, which is done in two lay-
ers. Inthe presentational layer, we provide

a uniform and generic model for the user
interface, which hides the complexity of
answer retrieval, detached in the logical
layer. As a second interesting difference,
note that the users work in sessions of
queries, as opposed to sequences of unre-
lated queries. OLAP is a typical, but not
the only, case for this behavior.

In this paper, we try to approach the
problem from a clean sheet of paper. Al-
though we do not claim to provide a ge-
neric answer for al kinds of database vi-
sualization problems, wefocus on the spe-
cificsof the OLAPfield. Having observed
that presentational models are not really
part of the classical conceptual-logical-
physical hierarchy of database models (de-
pictedin Figure 1), we propose anew sepa-
ration of layers. In the sequel, we will re-
fer to the different layers of abstraction
(models) that help us design, manage, and
operate an OLAP environment through the
termlayers.

Inthemiddle, thereisalogical layer
that abstracts from the particularities of
data storage and describes cubes and di-
mensions. This layer is naturally mapped
to physical storage entities, like relational
tables (ROLAP), or proprietary structures
like multidimensiona matrices (MOLAP).
These kinds of physical entities form the
physical layer. Having these structures
covers well enough the part pertaining to
the query formulation. Still, although the
logical layer deals with the representation
of datain an abstract form, as well as the
formulation of queriesand operationsover
them, we need a way to model how the
answer to aquery isrepresented in thecli-
ent part. The role of the logical layer for
the server is played by the presentational
layer for theclient, whichinvolvesasimple
and generic model to abstract from the
particularities of dataretrieval. The ultimate
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Figure 1. General Framework for CPM
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representation is performed by the specific
visualization techniques (pies, bar charts,
etc.) handled by the visualization layer.
The presentational layer isgeneric enough
to discuss the broad strategy of how data
are to be visualized (e.g., by 2D vs. 3D
means, focused for tabular vs. multimedia
data, and so on), whereasthe visualization
layer deals with the particularities of the
final visualization means (e.g., palmtop,
printer, virtual reality environment, and so
on).

Asonecanseein Figure 1, thereisa
part of the functionality that pertainsto the
server and part of it that pertains to the
application server and theclient. Naturaly,
the distinguishing lines between thisthree-
tier architecture can be rearranged easily
for a two-tier or a four-tier architecture.
Note also that conceptual modeling is or-
thogonal to this classification for two rea-
sons: (1) conceptual models are not really
part of the OL AP enginesor environments,

and (2) inthe OLAPfield, the logical and

conceptual levels are quite often indistin-

guishable (Kimbal et al., 1998).

Someone could possibly questionthe
need for new models. Is it really neces-
sary to depart from the well-known classi-
fication of models? Our answer ispositive,
and we base our proposal on the following
reasons:

e First, we need to allow the formal defi-
nition of the presentation of the result of
adatabase query — in our case, acube.
Thisiscurrently donein an ad hoc man-
ner from theclient tools; noformal foun-
dations are given for this kind of
representation.

e Second, we need to decoupl e the defini-
tion of thelogical underpinnings of user
operations from the way the result is
presented. Even if we create a model
for the presentation of the results, we
need to keep it loosely coupled with the
model of the underlying data. One could
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claim that a generic, complete model
could cover al cases; still, to our under-
standing, such a model is too hard to
achieve. Therefore, the natural antidote
to the lack of completeness should be
applied, and this is genericity: by
decoupling logical and presentational
models, we can decide how we match a
particular logical model to a presenta-
tional one, among many choices.

e Third, weneed to be ableto depart from
thetraditional thinking of treating visu-
alization as appropriate only for com-
puter screens. On the contrary, we live
in an age where a computer screen is
just one of the possible choices for the
presentation of data. Bundling the
choices for different presentation de-
vices with the logical models and lan-
guages would probably create hard-to-
use constructs.

In the context of all the aforemen-
tioned issues, we move on in this paper to
makethefollowing contributions.

First, we introduce CPM (Cube Pre-
sentation Model), apresentation model for
OLAP, and we combine it with non-tradi-
tional visualization techniques. The main
idea behind CPM liesin the separation of
logical data retrieval (which we encap-
sulateinthelogical layer of CPM) and data
presentation (captured from the presen-
tational layer of CPM). The logical layer
that we propose is based on an extension
of a previous proposal (Vassiliadis &
Skiadopoulos, 2000) to incorporate more
complex cubes. At the sametime, the pre-
sentational layer provides aformal model
for OLAP screens. To our knowledge, there
isno such result in the related literature.

Once CPM has been introduced, we
move on to give a mapping of the generic
presentational scheme of CPM to the par-
ticularities of an advanced visualization

technique coming from thefield of Human
Computer Interaction. The Table Lens
technique (Pirollo & Rao, 1996; Rao &
Card, 1994) is particularly tailored for
cross-tab reports, which are most commonly
used for OLAP purposes and accompa-
nied by a set of handy features for the ex-
ploration of data setsthat are presented in
this way. In the sequel, we provide algo-
rithmsfor the automated proactive support
of theuser during hisor her interaction with
an OL AP screen, based on the particulari-
tiesof Table Lens. Specificaly, TableLens
employs a particular distortion of the pre-
sentation to highlight areas of increasing
interest to the user. We provide a generic
algorithm to support this task proactively
and customizeit to aparticular instance to
show how it could actually work. By ex-
ploiting Table L ens, along with suitable col-
oring schemes, we provide a new presen-
tation technique, which we call OLAP
Lens.

Moreover, an academic software
platform specifically designed and imple-
mented to support both CPM and OLAP
Lensisintroduced. The architecture of the
platform, whichiscalled CubeView, ispar-
ticularly tailored to support Mobile OLAPR,
aterm used to denote the porting of OLAP
Visudization and Anaysisapplicationsonto
portable, mobile, and wirelessdevices.

To motivate the discussion, we will
usethroughout the paper arunning example,
wherewe customize the exampl e presented
inMicrosoft (1998) to aninternational pub-
lishing company, with traveling salesmen
selling books and CDsto other bookstores
al over the world (Figure 2). In this ex-
ample, we assume that a cube —
SalesCube — is defined over the dimen-
sions — Products, Salesman, Time, and
Geography — eachinvolving several levels
of aggregation. In this query, we restrict
the Timedimensiontothesalesof Year 1991.
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Figure 2: Motivating Example for the Cube Model (taken from Microsoft, 1998)

SELECT CROSSJOIN ({Venk,Netz}, {USA_N.Children, USA_S, Japan}) ON COLUMNS
{Qtr1.CHILDREN, Qtr2, Qtr3, Qtr4. CHILDREN} ON ROWS
FROM  SalesCube
WHERE Sales, [1991], Products.ALL)
Year = 1991 c1 | c2 | c3 c4 | cs | cs
Product = ALL Venk Netz
USA Japan USA Japan
USA_N USA_S USA N USA_S
Seattle| Boston Seattle | Boston
Size {(City)
R1 Qtr1 [Jan 20 32 62 97 23 40 75 12
Feb 25 40 74 121 18 32 51 20
Mar 18 12 36 110 42 48 65 3
R2 Qtr2 56 63 150 253 50 70 280 50
R3 [Qtr3 52 65 147 200 53 64 270 50
R4 |Qtrd [Oct 25 24 64 98 32 12 64 76
Nov 28 28 76 102 40 21 83 69
Dec 23 30 68 150 42 29 99 77

We ignore the Products dimension
(Products.ALL) in the subsequent aggrega-
tion of detailed data. Whenever we need
to present a 2D screen and more than two
dimensionsareinvolved, we needto merge
(CROSSJOIN in[Microsoft, 1998] terminol-
ogy) as many dimensions as necessary in
asingle axis. In this case, we combine the
dimensions Salesman (restricted by the
guery author to two particul ar salesmen —
Salesman in ['Venk','Netz] — and Geogra-
phy on the COLUMNS axis and leave the
dimension Time on the ROWS axis. Note
that the Geography dimension involvesmore
than onelevel of aggregation (both City and
Region). The same applies for the Time
dimension, where both Quarters and Months
are employed.

The remainder of this paper is struc-
tured asfollows: In Section 2, we summa-
rizethelogical layer of CPM. In Section 3,
we present in detail the presentation layer
of CPM. In Section 4, we show how CPM
can be naturally combined with TableLens
and how we can automate the task of
proactively supporting the user with high-

lighted areas of interest. In Section 5, we
describe aprototype platform — CubeView
— where we have implemented the pro-
posed visualization schemes. In Section 6,
we present work closely related to our re-
search, and finally, in Section 7, we con-
clude our results and present topicsfor fu-
ture work.

LOGICAL FOUNDATIONS

In thissection, we present thelogical
layer of CPM; to this end, we extend a
logical model (Vassiliadis& Skiadopoulos,
2000) in order to compute more complex
cubes. In a nutshell, the logical layer in-
volves (a) dimensions defined as lattices
of dimension levels, (b) ancestor functions

(inthe form of anc;;) mapping values be-

tween related levels of a dimension, (c)
detailed data sets, practically modeling fact
tables at the lowest granule of information
for al their dimensions, and (d) cubes, de-
fined as aggregations over detailed data
sets.
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Formally, the constructs of the model
(Vassiliadis & Skiadopoulos, 2000) are:
e Four countable pairwisedigoint infinite

- Given levels L, L, and L, such that
L,<L,<L,, thefunction anc}; equalsto

L2

sets exist: aset of level names (or sm-
ply levels) U ; a set of measure names
(or simply measures) U,,; a set of di-
mension names (or simply dimensions)
U,; and a set of cube names (or simply
cubes) U.. The set of attributes U is
defined as U=U LU, . For each AcU ,
wedefineacountabletotally ordered set
dom(A), the domain of A, which isiso-
morphic to the integers. Similarly, for
each AeU,,, we define an infinite set
dom(A), the domain of A, which isiso-
morphic to the real numbers. We can
impose the usual comparison operators
to al the values participating to totally
ordered domains {<, >, <, >}. We also
assume the existence of two attributes
— ALL and RANK. The role of the spe-
cial attribute ALL will beanayzedinthe
sequel. Level ALL hasasingle valuein
itsdomain, namely “all”. RANK isa spe-
cia purpose measure, whichwill be used
for the ordering of a cube. The domain
of RANK isthe set of integers.

* A dimension D is a lattice (L,<) such
that:
- L=(L,,...,.L) isafinite subset of U,.
- dom(Li)mdom(Lj) = J for every i#.
- < isapartia order defined among the

levelsof L.

Each path in the dimension lattice, be-
ginning fromitsupper bound and ending
initslower bound, iscalled adimension
path.

* A family of functions anc?} is defined,
satisfying thefollowing conditions:

- For each pair of levelsL, and L, such

that L,<L, the function anc;? maps

each element of dom(L,) to an element
of dom(L,).

the composition anc
pliesthat:

1. anc; (X)=x.

PR
eancy,. Thisim-

2. if y=anc??(x) and z=anc;; (y), then

z=aanc;; (x).
- for each pair of levels L, and L, such
that L, <L, thefunction anc:? is mono-

tone (preservesthe ordering of val ues).
In other words:

vx,yedom(L,):
X<y = anc,; (x)<anc? (y),L,<L,

A schema S isafinite subset of U. Nor-

mally, wewill represent aschemaasdi-

videdintwo parts: S=[D,.L,, ...,D_L , A,

. A ], where:

- (L,...,.L) are levels from a dimension
setD=(D,,...,D,) andlevel L comesfrom
dimensionD, for 1 <i<n.

- (A,...,A) areattributes (i.e., measures
and levels).

A detailed schema S° is a schema
whose levels are the lowest in the re-
spective dimensions. When we refer to
alevel L asthelowest in the dimension,
it means that there does not exist any
other level L', such that L'<L.

A tuplet over aschemaS=[L,, ..., L , A,

.., A ] isatota and injective mapping

from S to dom(L)x...xdom(L )

xdom(A )x...xdom(A ), such that

t[X]e dom(X) for each XeS.

A data set DS over aschema S=[L, ...,

L.A, ... A ]isafiniteset of tuplesover S

such that:

-V t,teDsS, tL,....L]tIL,....L] =
t=t,.
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- for nostrict subset XL,.... L }, the pre-
viousalso holds.

Inotherwords, A ,...,A_arefunctionally

dependent (in the relational sense) on

levels(L,,....L ) of schemaS. A detailed

data set DS° is a data set over a de-

tailed schemasS.

* Anatom istrue, false (with obvious se-
mantics) or an expression of the form
xdy, where x and y can be one of the
following: (a) alevel L, (i.e., not amea-
sure); (b) avaluel; (c) an expression of

the form anc?(L,) where L <L,; (d) an

expression of the form anc?(l) where

L,<L, andledom(L,). If x and y are lev-
els then they should belong to isomor-
phic dimensions. d is an operator from
theset (>, <, =, 2, <, #).

* A selection condition ¢ is a formula
involving atoms and the logical
connectives A, v, and —. A selection
condition isaways applied to adata set
such that al the level names occurring
in the sel ection condition—either\in the
form (1) or (3)—belong to the schema
of the data set. Let DS be a data set
over schema S. The expression ¢(DS)
isaset of tuples X belonging to DS such
that when, for all the occurrences of
level namesin ¢, we substitute the re-
spective level values of every xe X, the
formula ¢ becomes true. A detailed
selection condition @° is a selection
condition where al participating levels
are the detailed levels of their dimen-
sons.

* A primary cube ¢ (over the schema
[L,.....M,,...M, ]) isan expression of the
form:

c=(DS°@[L,, L M,y M
agg,(M;),...,agg, (M7)]), where:

- DS° is a detailed data set over the
schemaS=[L},...,.L) ,M],...,M, ], mk.

- @ isadetailed selection condition.
- M, ..., M are measures.

- L} and L, are levels such that L <L,

1<i<n.
- agg.e {sum,min,max,count}, 1<i<m.

The expression characterising acube has
thefollowing semantics:

c=fxe Tup(L,,...,L M,,....M )| Tye ¢(DS),
x[L]=anc s (y[L}]),1<i<n,
x[M]=agg,({alsze (DS"),

x[L]=ancye  (z[L}]),1<i<n,

q=z[M} }),1<j<m}

In other words, a cube ¢ is a set of
tuples. To compuite it, first we apply the
selection condition to the detail ed data set.
Then, we replace the values of the levels
for the tuples of the result, with their re-
spective ancestor values (at the levels of
the schema of c) and group them into a
singlevaluefor each measure, through the
application of the appropriate aggregate
function. Coming back to our motivating
example, we can detect the following di-
mensons.

e arrival date and departure date (when the
salesman arrives/leaves the store).

e salesman (instantiated in Figure 4).

e product (instantiated in Figure 5).

e |ocation (instantiated in Figure 6).

Thefunctionally dependent measures
are Sales, PercentChange. Our data set DS,
isdepicted in Figure 7. Based on this data
set we can define abasic primary cube as:

c’=(DSC true, [arrival day.day, departure day.day,
product.item,
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Figure 3: Dimensions Arrival Date, Departure Date, Location, Product and Salesman

departure arrival location product person
date date
ALL ALL ALL ALL ALL
! f f 1 {
year year continent category
quarter quarter country I
T week T week T type
month /' month / region I
day day city item salesman

Figure 4: Dimension Person

Salesman
Venk
Netz

person.salesman, location.city,sales],sum
(sales))

For brevity we can write ¢° as:

c=(DSC true,[arrival day,departure day,item,
salesman,city,sales],sum(sales)).

A primary cube can be defined as
follows:

Figure 5: Dimension Product

c=(DS?, anciXrese =11997", [arrival.month,

leparture.day
departure.month,category,
salesman.ALL,continent,sum_sales],sum(sales))

with the data values shown in Figure 8.
Thelimitationsof primary cubesisthat
although they model accurately SELECT-

FROM-WHERE-GROUPBY queries, they fail

to model (a) ordering, (b) computation of

valuesthrough functions, and (c) selection

over computed or aggregate values (i.e.,

the HAVING clause of a SQL query). To

compensate this shortcoming, we extend
the aforementioned model with thefollow-
ing entities:

* LetF beaset of functions mapping sets
of attributesto attributes. We distinguish
the following major categories of func-
tions: property functions, arithmetic func-

Category Type Item
Books Literature “Report to El Greco”
“Karamazof brothers’
Philosophy “Zarathustra’
“Symposium”
Music Heavy Meta “Piece of Mind”
“Ace of Spades’
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Figure 6: Dimension Location

Continent Country Region City
Europe Greece Greece-North Salonica
Greece-South Athens
Rhodes
North America USA USA-East New York
Boston
USA-West Los Angeles
San Francisco
USA-North Seattle
Asia Japan Kiusiu Nagasaki
Hondo Tokyo
Y okohama
Kioto
Figure 7. Data Set
Arrival Day Departure day Item Salesman City %Change | Sales
1-Jan-97 3-Jan-97 “Report to El Greco” Netz Rhodes 10 10
1-Jan-97 3-Jan-97 “Symposium” Netz Rhodes 20
6-Feb-97 17-Feb-97 “Symposium” Netz Athens -30
6-Feb-97 17-Feb-97 “Karamazof brothers’ Netz Athens -50 10
6-Feb-97 17-Feb-97 “Piece of Mind” Netz Athens +35 13
18-Feb-97 10-May-97 “Karamazof brothers’ Netz Seattle -50
11-May-97 7-Jun-97 “Report to El Greco” Netz Los Angeles 100
11-May-97 7-Jun-97 “Ace of Spades’ Netz Los Angeles 100 20
3-Sep-97 5-Sep-97 “Zarathustra’ Netz Nagasaki 0 50
3-Sep-97 5-Sep-97 “Report to El Greco” Netz Nagasaki 0 30
6-Sep-97 16-Dec-97 “Piece of Mind” Netz Tokyo 10 10
1-Jul-97 4-Aug-97 “Ace of Spades’ Venk Salonica 30 13
1-Jul-97 4-Aug-97 “Piece of Mind” Venk Salonica 50 34
6-Sep-97 12-Oct-97 “Symposium” Venk Boston -30 7
6-Sep-97 12-Oct-97 “Zarathustra’ Venk Boston 0 10
1-Feb-98 10-Apr-98 “Ace of Spades’ Venk Seattle 50 15
1-Feb-98 10-Apr-98 “Piece of Mind” Venk Seettle 6 53
4-May-98 7-Jun-98 “Report to El Greco” Venk Kyoto -30 14
13-Jun-98 15-Jul-98 “Zarathustra’ Venk Nagasaki 0 50
13-Jun-98 15-Jul-98 “Report to El Greco” Venk Nagasaki 0 30
tions, and control functions. For example, tions simulate the control statements of
for thelevel Day, we can have the prop- the programming languages.

erty function holiday(Day) indicating e A secondary selection condition v is
whether a day is a holiday or not. An aformulaindigunctivenormal form. An
arithmetic function isfor example Profit atom of the secondary selection condi-
=(Price-Cost)*Sold_Items. Control func- tion istrue, false or an expression of the
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Figure8: APrimary Cube

Arrival month Departure month Category Salesman.ALL Continent Sales
Jan-97 Jan-97 Books all Europe 15
Feb-97 Feb-97 Books all Europe 17
Feb-97 Feb-97 Music al Europe 13
Feb-97 May-97 Books al North-America 5
May-97 Jun-97 Books al North-America 2
May-97 Jun-97 Music al North-America 20
Jul-97 Aug-97 Music al Europe 47
Sep-97 Sep-97 Books al Asia 80
Sep-97 Oct-97 Books all North-America 17
Sep-97 Dec-97 Music al Asia 10

form x 6y, where x and y can be one of s=[c,[A A ).
thefollowing: (a) an attribute A (includ- et
ing RANK), (b) avaluel, an expression
of the form f(A), where A is a set of
attributes (level sand measures), and ()
0 isan operator from the set (>, <, =, >, c=(DS%, [L,,....L,M,,... M, ][agg,(M?),...,
<, #). Withthiskind of formul ae, we can agg. (M°)])
compute relationships between mea- mem
sures (Cost>Price), ranking and range _ _
selections (ORDER BY....STOP after 200,  |S@primary cube,
RANK[20:30]), measure selections
(sales>3000), property-based selection A IclL,.-
(Color(Product)='Green’). ACS-{RANK},

* Suppose a data set DS over the schema

SA

m+p’ m+p( m+p)

1,05 vl

where

M,

m+1’"" ' m+p l"'

A A, Al Without loss of generdlity, ~ mar ey &€ functions belonging to F
1ot and v is a secondary selection condi-
suppose a non-empty subset of the fion

schema S=A,,...,A k<z. Then, thereis a

set of ordering operations Og used to A secondary cube has the following

sort the values of the data set, with re-  formal semantics:

spect to the set of attributes participat-

ingtoS. 6 belongstotheset {<,>,J} in  s={xe Tup(L

order to denote ascending, descending,

and no order, respectively. Anordering  data set DS® defined over the schema:

operation is applied over adata set and

returns another data set, which obliga- Lyl My MUA L

torily encompasses the measure RANK. yeDS*y,ect [LJ y,[L],
* A secondary cube over the schema 1<i<n,

S=lL,. LML MUA AL RANK] TS yM]=y,[M],1<i<m,

an expression of the form:

LM,...M_A

Py M’

A, RANK)

AL

m+p’
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VA, J5 A, ) 1<i<p xe v (0% ADS))

e A star schema (D,S°) is a couple com-
prising afinite set of dimensionsD and a
detailed schema S defined over (a sub-
set of) these dimensions.

* A star databases instance over a star
schema (D,S?) is a triplet [DS°,C,C9],
where
- DS’ isadetailed data set defined over S
- Cisafinite set of cubes, defined over

DSY;
- CSis afinite set of secondary cubes,
defined over C.

With these additions, primary cubes
are extended to secondary cubes that in-
corporate: (a) computation of new attributes
(A,,) through therespectivefunctions(f_);

(b) ordering (0% ); and (c) the HAVING

clause, through the secondary selection
condition.

PRESENTATIONAL LAYER

In this section, we present the pre-
sentational layer of CPM. As already
mentioned, thereason for introducing apre-
sentational layer is twofold: (a) decouple
the definition of thelogical underpinnings
of user operations or queriesfrom the way
the result is presented; and (b) allow the
formal definition of the presentation of the
result. Our approach is based on theintro-
duction of points, axes, and layers with a
particular focus on two-dimensional spaces
that can be represented easily in the regu-
lar devices used for data representation
(e.g., screens, paper, etc.). Areas of this
space can then be mapped to underlying
database constructs, such as cubes. In the
rest of this section, we will first give an
intuitive, informal description of the presen-

tation layer. Then, we will present its for-

mal definition. Throughout this section, we

will usethe exampleof Figure 2 asour ref-
erence example.

The most important entities of the
presentational layer of CPM (depicted in
Figure9) include:

e AXxis: OLAP is based on the multidi-
mensional representation of information.
Each dimension of an OLAP environ-
ment conceptually represents a differ-
ent categorization of measures, in the
mind of the knowledge worker. In prin-
ciple, we would prefer each dimension
to be graphically represented as an axis
(e.g., an axisfor Salesman, another axis
for Product, and so on). In this case, an
axis can be viewed as a set of points,
and combinations of axes defineamul-
tidimensional space, just like in geom-
etry. Nevertheless, in CPM we focus
ontwo-dimensional devicesfor therep-
resentation of information. Therefore,
for presentation reasons, wewill seehow
we can handle the reduction of spaces
with high dimensionality to two-dimen-
sional representationsin order to depict
data on 2D devices.

e Points: A point over an axisresembles
the classical notion of points over axes
in mathematics. In the simple case, a
point is characterized by an equality se-
lection condition over a level (e.g.,
City=Seattle) and representsadimension
valuein any of the levels of the dimen-
sion. Still, since we need to multiplex
several logical dimensions to one pre-
sentational axis, apoint will beformally
defined to handlethiskind of situations,
too.

e Multicubes: A combination of axes
forms a multidimensional space. The
datavalues of the points of the multidi-
mensional spaces are the (aggregate)
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Figure 9: Mapping CPM Objectsto 3D and 2D Cross Tabular Layouts

Custamer Store

Time

Multicube (MC)

Axls 2

Auis 1

2D Slice on a screen

(c)

measure values that have to be com-
puted over the detailed data of the logi-
cal model. Inthissection, we show how
constructs in the logical model will be
mapped to constructs of the multidimen-
sional space.

2D-dice: Asalready mentioned, thefo-
cus of CPM is set on two-dimensional
devices. A 2D-diceisatwo-dimensional
layer of data over the multidimensional
space that can be presented on the
screen. Consider amulticube MC, com-
posed of K axes. A 2D-slice over MC
can be sufficiently defined by a set of
(K-2) points, each from a separate axis.
Intuitively, a 2D-dlice pins the axes of
the multicube to specific points, except
for 2 axes, which will be presented on

Tape 1

Product

Axig

_I
|
.|.
|

Axis 2

4
5

Cross Join

=N

'/_

Tapes & Cross Joins

(d)

the screen (or a printout). In both Fig-
ure 2 and Figure 10, we depict such a
2D-slice over amulticube.

Tape: Intuitively, atape isacolumn or
arow over a 2D-dlice (i.e., a construct
paralel to one of the axis of the 2D —
dlice). Again, if we consider a2D-dlice
SL over amulticube MC, composed of K
axes, atape is sufficiently defined by a
set of (K-1) points, where the (K-2) points
are the points of SL. A tape is always
parallel toaspecific axis: out of thetwo
“free” axes of the 2D-dlice, we pin one
of them to a specific point that distin-
guishes the tape from the 2D-dlice.
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Figure 10: The 2D-Sice S for the Example of Figure 2

Year=1992 Sections

Year=1991

mmmmm

Quarter
= Qtr3

month

.,
o
o

e Crossjoin: Intuitively, if we take one
tape paralle to the horizontal axis and
another parallel tothe vertical axis, their
intersection is a cell. In the most gen-
eral case, aswe shall see, it can be aset
of cells. In both cases, the intersection
of two non-parallel tapes is called a
cross-join. Cross-joins are directly
mapped to secondary cubes of thelogi-
cal model and form the basis of map-
ping an OLAP screen to a set of que-
ries over the underlying database.

In terms of CPM terminology, the
guery of Figure2isa2D-Slice, say SL (see
also Figure 3). In SL one can identify four
horizontal tapes denoted asR1, R2, R3 and
R4 in Figures 2 and 6 vertical tapes (num-
bered from C1 to C6). The meaning of the
horizontal tapes is straightforward; they
represent the Quarter dimension, expressed
either as quarters or as months. The mean-
ing of the vertical tapesis somewhat more
complex; they represent the combination
of the dimensions Salesman and Geogra-
phy, with the latter expressed in City, Re-
gion, and Country level. Moreover, two con-

Salesman='Venk',
Region='USA_S'

Invisible Content
+ +

Products.ALL Sales,
= sum(Sales”),
'all!' true

(2) Salesman="Netzl
ancgd, " (City) =
"USA_N'

(4)

& esman:'l\i:etz ',
Country='Jgpan'
(6) i

Salesman='Venk',
ountry="'Japan'

Salesman="'Netz', !
Region='USA S' |
n.

| }nlum s

straints are superimposed over these tapes
— the Year dimension is pinned to a spe-
cific value and the Product dimension is
ignored. Inthismultidimensional world of
five axes, the tapes C1 and R1 are defined
as.

C1 = [(Salesman='Venk A ancis™ (city)=
‘USA_N),(Year="1991"),

anc/-- (Products)="all'),(Sales, sum(Sales))]

RL = [(ancgzy™ (Month)='Qtrl'AYear
=1991"),(Year='1991"),

anc/ (Products)="all'),(Sales, sum(Sales))]

item

One can aso consider the cross-join
t1 defined by the common cells of thetapes
R1 and C1. Remember that City definesan
attribute group along with [Size(City)].

t1=(SalesCube,(Salesman="Venk'a ancL??y“’” (city)=
‘USA N A
ancgy" (Month)='Qtr1'AYear='1991’

Aancht (Products)="all’),

item
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[Salesman,City,Month, Year,Products.ALL,
Sales],sum],[Size(City)],true)

Intherest of thissection, wewill de-
scribe the presentational layer of CPM in
its formality. First, we will introduce the
multidimensional space, and then we will
show how the contents of the space are
computed.

TheMultidimensional Space

In this subsection, we will introduce
the multidimensional space of the presen-
tational layer. Themain entities of themul-
tidimensional space are axes and points.
Before giving their formal definition, how-
ever, we will introduce auxiliary entities
necessary to cover the multiplexing of more
than onelogica dimensiontoasingleaxis.

Preliminaries

We assume the existence of the fol-
lowing pairwisedigointinfinitely countable
sets: a set of point names (or simply
points) U, a set of axes names (or smply
axes) U, and a set of multicube names
(or simply multicubes) U,

We will also assumetheir finite sub-
sets, P for points, A for axes and MC for
multicubes, each time that we deal with a
particular instance.

Before proceeding, we need to ex-
tend thedefinition of dimensionsand to deal
with multiplexing of dimensions. First, we
extend the notion of dimension to incorpo-
rate any kind of attributes (i.e., results of
functions, measures, etc.). Consequently,
we consider every attribute not already
belonging to somedimensionto belongtoa
single-level dimension (with thesamename
astheattribute), with no ancestor functions
or properties defined over it. We will dis-
tingui sh between the dimensions compris-
ing levels and functionally dependent at-

tributesthrough thetermslevel dimensions
and attribute dimensions, wherever nec-
essary. Thedimensionsinvolving arithmetic
measures will be called measure dimen-
sions.

Now we are ready to deal with mul-
tiplexing dimensionsinasingleaxis. Thisis
necessary dueto thefact that typically data
are presented by 2D means(e.g., ascreen),
meaning that the multidimensional space
has to be folded in a 2D projection. For
example, observe Figure 11: thelogical di-
mensions Salesman and Geography have
been multiplexed in order to be presented
on the same axis. This practically means
that for every value of Salesman, all the
values of Geography are repeated. There-
fore, in order to be able to represent these
kinds of structures we need to define
groupsof attributesto be multiplexedinthe
same axis.

An attribute group AG is a pair
[ADA], whereAisalist of attributes(called
the key of the group) and DA is a list of
attributes dependent on the attributes of
A. With the term dependent we mean (a)
measures dependent over the respective
levels of the data set and (b) function re-
sults depending on the arguments of the
function. One can consider examplesof the
attribute groups such as:

ag,=

([City],[Size(City)]),ag,=([Sales.Expenses],[Profit]).

A dimension group DG is a pair
[D,DD], where D is a list of dimensions
(called thekey of the dimension group) and
DD is alist of dimensions dependent on
the dimensions of D. With the term depen-
dent we simply extend the respective defi-
nition of attribute groups to cover also the
respective dimensions. For reasons of brev-
ity, wherever possible we will denote an
attribute/dimension group comprising only
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of itskey ssimply by the respective attribute/
dimension.

Axes & Points

An axis schema is a pair [DG,AG],
where DG is alist of K dimension groups
and AG is an ordered list of K finite or-
dered lists of attribute groups, where the
keysof each (inner) list belong to the same
dimension, found inthesamepositionin DG,
where K>0. The members of each ordered
list are not necessarily different. We de-
note an axis schema as a pair:

AS 2
([DG,xDG,x...xDG,],[[ag; , ag’ ...,

ag; |x[ag, . ag; , .., agy ]x .. x [ ag, ,

ag? ....ag" ).

In other words, one can consider an
axis schema as the Cartesian product of
the respective dimension groups, instanti-
ated at afinite number of attribute groups.
For instance, in the example of Figure 1,
we can observe two axes schemata hav-
ing thefollowing definitions:

Row_ S = {[Quarter],[Month,Quarter,
Quarter,Month]}
Column_S = {[SalesmanxGeography],

[Salesman]x[[City,Size(City)], Region, Coun-
tryl}

A point is a member of the set U,..

A point over an axis schema AS, is
apoint tagged with a set of equality selec-
tion conditions, onefor the key of each at-
tribute group of the axis schema.

For example, given the axis schema
[Salesman,[City,Size(City)]], a point can be
defined as:

p,=([Salesman='Venk’, ancis” (City)=
‘USA N)

or, if wewishtoincorporatethe axis schema
inthedefinition,

p,=([Salesman,[City,Size(City)]],
[Salesman="Venk’, anct>*" (City) ='USA_N))

city

An axis over an axis schema AS, is
afinite list of points, al defined over the
axisschemaAS.

Practically, an axisisarestriction of
an axis schemato specific values through
the introduction of specific constraintsfor
each occurrence of alevel.

a=(AS,[¢,,9,....0,]),KSN or
a={[DG xDG x...xDG ] [[ag;,ag; ..., agy]x

[ag;, . ag; , .., ag; | x .. x[ag ,
agy a0l 11, [ er, ¢f 4y @ I
(05,95 @5 1. X[ @y, 07 ..., 0 I}

We will denote the set of dimension
groups of each axis a by dim(a).

In our mativating example, we can
observe the following two axes:

Rows = {Row_S,[anciy" (Month)=
Qtrl,Quarter=Qtr2,Quarter
=Qtr3, ancio™ (Month)=Qtr4]}

day
Columns = {Column_S {[Salesman=
‘Venk',Salesman="Netz’],

[ancgy™ (City)="USA_N’, Region="USA_S",

Country="Japan’]}

e Lemma. An axis can be reduced to a
finite set of pointsif one calculates the
Cartesian products of the attribute
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groups and their respective selection
conditions. In other words:

a=([DG xDG,x...xDG ],[[p,.p,: ...
1=k }K,%... %K,

),

Proof. Obvious.

Inthe sequel, we will mostly treat an
axisasafiniteset of pairwisedigoint points;
therefore, weimpose the constraint that the
selection conditions characterizing each
point are pairwisedigjoint, too.

We will differentiate between two
types of points: atomic and hierarchically
decomposable. Theformer constitute points
defined over single level or measure val-
ues, whereas the latter are defined over
sets of values.

Atomic points are characterized by
the fact that all the equality selection con-
ditionsfor their attribute groupsinvolve an
attribute (level or measure) and aconstant.
In other words, atomic points are of the
form Level=constant or Measure=constant.

Hierarchically decomposable
points are characterized by the fact that
the selection condition of one (or possibly
more) of their attribute groupsinvolvesthe
usage of an ancestor function.

For example, p, is a hierarchically
decomposable point:

p,=([Salesman,[City,Size(City)]],
[Salesman="Venk’,ancedenciy(City)=
'USA_NY)

whereas p, is an atomic point:

p,=([Time,[Quarter], [Quarter=Qtr2])

Naturally, ahierarchically decompos-
able point corresponds to a finite set of
atomic points (directly stemming fromthe
finiteness of the domain of ancestor func-

tions). Therefore, the aforementioned point
p, corresponds to the points p,, and p,,,
defined at the City level.

p,,=([Salesman,[City,Size
[Salesman="Venk’,City="Seattle']
p,,=([Salesman,[City,Size
[Salesman="Venk',City="Boston’]

—

City)]],

City)]],

An axis that comprises only atomic
pointsisan atomic-level axis. An atomic-
level axis X. which comprises the atomic
points produced from the hierarchical de-
composition of the points of an axis X, is
the atomic-level equivalent of X.

In the sequel, we will refer to points
indiscriminately of their type; in the case
where we will need to make a distinction,
thiswill be shown clearly.

An axis tag is a characterization of
an axiswith respect to (a) its natural prop-
ertiesand (b) the fact that it can be visual-
ized in a 2D screen or not. Therefore, an
axisis characterized as:
 coordinate vs. measure, depending on

whether it represents values that deter-
minethe coordinatesor theinternal points
of the multidimensional space (see sec-
tion3.2)

* visible vs. invisible, depending on whether
we allow its representation on a 2D
screen or we usethe axissimply for pin-
pointing values of its pointswithout in-
volving them in the visualization of the
result. For example, in Figure 2, thereis
aninvisibleaxis, pinpointing Yearto 1991
and Products to ALL.

Finally, we say that two axes sche-
mata are joinable over a data set if their
key dimensions (a) belong to the set of di-
mensions of the dataset and (b) their points
are disjoint. For instance, Rows_S and
Columns_S are joinable.
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Figure 11: The Paints for the Axes Rows & Columns

ancmonth,day —— —_
(Month)=Qtrl

Quarter=Qtr2 |

Quarter=Qtr3 —

ancmonth, day
(Month)=Qtrd ——

Rows Columns

The Contentsof
Multidimensional Space

In this subsection, we will introduce
the contents of the multidimensional space
of the presentational layer. The main enti-
ties of the multidimensional space are
multicubes that more or less correspond
to n-dimensional structures. Prevalent en-
titiesin their context are 2D-dlices, stand-
ing for two-dimensional structuresthat can
be presented on a 2D screen — tapes —
which are one-dimensional entities and
cross-joins which are areas of a 2D-dlice
where two tapes meet.

Multicubes

A multicube schema MCS=[AS] is a
finite set of axis schemata AS.

A multicube MC=[Af], where A is a
finite set of axes and f is a contents func-
tion, mapping coordinatesto measures. We
require that A = C u {M}, where C are the
coordinate axes and M isthe measure axis
of the multicube.

Let also M be a measure axis. The
points of M will be computed through que-
riesto the underlying database. Still, itisa
regular axis with the only difference that

Salesman="'Venk',
(City)="USA N'

Salesman="Netz',
(City)="USA N'

ancregion, city

—T Salesman='Venk',KRegion="USA S'

— Salesman='Venk', Country="Japan'

ancregion,city

—T Salesman='Netz',KRegion='USA S'

—- Salesman='Netz',6 Country="Japan'

the same point (e.g., Sales = 40) can be
repeated more than once (since measures
can haveidentical values). Remember that
axes are finite lists of points; for measure
axeswe assume bag semantics underlying
thislist.

In the simple case, a point is charac-
terized by a single equation of the form
[measure=constant]. Still, we can multiplex
more than one logical measure in a mea
sure axis and each point of the measure
axisis characterized by a set of equations
of the form [measure =constant,...,
measure, =constant,], depending on the at-
tribute/dimension group that regul ates the
axis.

In the case of a measure axis, we
can tag the schema of the axis with an ag-
gregatefunction for each of the dimensions
participating in the schema. Also, a sec-
ondary sel ection condition can be attached
tothe schema, acting asafilter for retrieved
data.

In our motivating example of Figure
2, we have a measure axis, named Con-
tent, comprising 64 points. Observethat the
measure axis is defined in terms of the
atomic-level equivalents of the involved
coordinate axes. The Time axis is hierar-
chically decomposedin eight valuesand the
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GeographyxSalesman axis, also in another
eight points. The measure axis schemais
also tagged with the aggregation
Sales=sum(Sales’) and the secondary se-
lection condition true (i.e., no selection is
performed).

We assume the existence of a con-
tents function for M. The contents func-
tion practically instantiatesthe points of the
measure axis by computing them as que-
riesover theunderlying dataset. Each point
in the measure axes is then dependent on
the points of the atomic-level equivalents
of the coordinate axes responsiblefor its
identification. Formally, let contents, (C):
C->U,.

In other words, supposing that there
are K-1 axes in C, contents (C) is defined
as[A,...A ] therefore, for every combi-
nation of points [p,,....p, ] (€ach point p,
coming from axisA) there existsapoint p
inU_, astheresult of the contents, (C) func-
tion. Based on the fact that C comprises a
finite number of points, then contents, (C)
returnsalso afinite number of points; nev-
ertheless, asaready mentioned, morethan
one coordinates can map to the same mea-
surevalue. Thisfact disqualifiesthe exist-

ence of an inverse function; to compen-
sate for this shortcoming, we assume the
mapping coordinates(u), such that
coordinates(w)=[p,,....p, J-

In our mativating example, we can
observe the following axes schemata and
axes:

Row S = {[Quarter],[Month,Quarter,
Quarter,Month]}

Column_S = {[SalesmanxGeography],
[Salesman]x[[City,Size(City)], Region, Coun-
tryl}

Invisible_S = {[ProductxTime],[[Product.
ALL]x[Year]]}

Content_S = {[Sales],[Sales=sum(Sales?),
true]}

and their respective axes:

Rows={[ancg" (Month)=Qtr1,Quarter=

Qtr2,Quarter=Qtr3, anco™ (Month)= Qtr4]}

day
Columns = {[Salesman='Venk’,Salesman

=Netz] x [ancgy™ (City)='USA_N’, Region

='USA_S', Country="Japan’]}

Figure 12: Multidimensional Space for the Variant of the Motivating Example, Extended with

Sections

Sections

Year=1992

Year=1991

hodav (Month) =
Qtr4

ancmen

Rows

Invisible Content
+ +

Products.ALL Sales,
= sum(Sales0),
'all' true

Salesman='Venk',
Region='USA S'

Quarter (
= Qtr3
(1)
Salesman='Venk',
Quarter ancresten ity (City)
= Qtr2 = 'USA N' (3)

2) Salesman='Netz',
ancresion ety (City)
= 'USA N'

(4)

Salesman='Netz',
Country="'Japan'
(6)

Salesman='Venk',
Country="'Japan'

(5)
Salesman='Netz',
Region='USA S'

Columns
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Invisible = {[Year=1991] x [ALL="all']}
Content = {64 points}

Then, amulticube MC can be defined
as:

MC = {Rows, Columns, Invisible, Content}

Assume now that we want to present
data in multiple spreadsheets, and each
sheet comprises a certain year (e.g., the
first sheet involves 1991 and the second
involves 1992). We can resolvethisby add-
ing an extraaxis, Sections (Figure 12). The
changes are as follows:

Axes schemata:
Section_S = {[Time],[Year]}
Invisible_S = {[Product],[Product.ALL]}

and axes:
Sections =
{Section_S,[Year=1991,Year=1992]}
Invisible = {Invisible_S,[ALL="all'}
Content = {128 points}

Then, the multicube MC can be de-
fined as:

MC =
{Rows, Columns, Sections, Invisible, Content}

2D-Slices

In the beginning of this section, we
have informally introduced 2D-Slices. In-
tuitively, a 2D-dlice represents a bounded
two-dimensional plane. To achieve this, it
is only necessary to pin the axes of the
multicubeto specific points, except for two
axes, which are |eft free. Then, these two
axes define a two-dimensional plane that
can be presented on a screen (or a print-
out).

Formally, consider a multicube MC
composed of K axes. A 2D-dlice over MC

isaset of (K-2) points, each from a sepa-
rate axis, where the points of the Invisible
and the Content axis are comprised within
the points of the 2D-dlice.

In our motivating example, Figure 2
and Figure 11 represent the same 2D dlice.

Tapes

Tapes represent “one-dimensiona”
parts of a2D dlice. In fact, out of the two
free axes of the 2D dlice, we have only
one left free and the other pinpointed to a
particular point, say p. In this case, atape
isparallel to thisparticular axis. Tapesare
not considered “lines’ dueto hierarchically
decomposablepoints; if the pinpointed point
p ishierarchically decomposable, the tape
will bevisualized asaset of parallel lines.

Formally, consider a2D-dlice SL over
a multicube MC composed of K axes. A
tape over SL isaset of (K-1) points, where
the (K-2) pointsarethe pointsof SL. A tape
isaways paralel to aspecific axis; out of
the two “free” axes of the 2D-dlice, we
pin one of themto aspecific point that dis-
tinguishes the tape from the 2D-dlice. A
tape is more restrictively defined with re-
spect to the 2D-dlice by asingle point. We
will call this point the key of the tape with
respect to its 2D-slice. Moreover, if a
2D-slice has two axes a,,a, with size(a,)
and size(a,) points each, then one can
define size(a,)*size(a,) tapes over this2D-
dice.

Observe Figure 2. All C1, C2, C3, C4,
C5, C6 and R1, R2, R3, R4 are tapes. Ob-
serve C1 or R1; due to the fact that they
are pinpointed to hierarchically decompos-
able points, they involve more than one
“line.” The different colors correspond to
different vertical tapes (C1-C6).
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Cross-Joins

Intuitively, acrossjoinisaset of cells
produced by the intersection of two tapes.
If the two tapes are defined over atomic
points, thecross-joininvolvesasinglecell
(e.g., the case of tapes R2 and C3); other-
wise, a set of cellsis produced, as in the
case of tapesR2 and C1. Notethat a*“cell”
correspondsto apoint of the measure axis.

Formally, consider a2D-dlice SL over
amulticube MC, composed of K axes. Con-
sider also two tapest, and t, which are not
paralel tothe sameaxis. A cross-join over
t, andt, isaset of K points, where the (K-
2) points are the points of SL and each of
the two remaining points is a point on a
different axis of the remaining axes of the
dice.

Two tapes are joinable if they can
produce a cross-join.

The only difference between a tape
and a cross-join is that the cross-join re-
stricts al of its dimensions with equality
constraints, whereas the tape constraints
only a subset of them.

BridgingthePresentation &
Logical Layersof CPM

Cross-joins form the bridge between
thelogical and the presentational layers. In
this section, we provide atheorem proving
that across-joinisasecondary cube. Then,
we show how common OL AP operations
can be performed on the basis of our
mode.

Theorem 1. Assume a star schema data-
base [DS?,C,C"], over a star schema
[D,S%. Assume also a cross-join, say ¢,
defined over asubset of the dimensions
D. Then, ¢ can be mapped to a sec-
ondary cube over the star schema da-
tabase.

Proof. We will constructively obtain the
definition of the secondary cube. Re-
member that the cross-joinispracticaly
defined by a set of K points over the
axes of amulticube.

. The detailed data set is naturally DS°.

2. Each of thedimensions of the cross-join

is a subset of D, and we can assume
that thelevelsreferring to each point are
[L,....L,M,...M ] with the first being
coordinate axes and the latter being
measure axes.

3. A selection condition ¢ can be derived

from the points of the coordinate axes.

4. If there are any functions applied, they

are aso defined over the attributes of
the data set; suppose that we have
At A AT (A Jattributesin
the definitions of the attribute groups of
themulticube. The measure axisaso has
aset of aggregate expressionsover mea-

sures, say [agg,(M; ).....agg, (M )], and a
secondary selection condition.

5. The function f of the cross-join’s
multicube is defined as a mapping of
[L,...L]to[M,,...M ], possibly exploiting
the use of the functionsf .

6. Consequently, one can produce the fol-
lowing secondary cube out of the cross-
joinc:

=

DS @[L,.., M,,...M, 1agg, (My).....agg, (Mg )]}
A AL DA (A )]0 ]

where ¢ is the conjunction of the pri-
mary selection conditions of the levels
and v is the conjunction of the second-
ary selection conditions of the rest of
the attributes.

The only difference between a tape
and a cross-join is that the cross-join re-
stricts al of its dimensions with equality
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Figure 13: A Table Lens Example — (a) 2x4 Focus Window is Defined Over a Space of 8x8
Paints; (b) Table Lens Distortion of the Columns Axis
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constraints, whereas the tape constraints
only asubset of them. Moreover, from the
definition of the joinable tapes it follows
that a2D-dice containsas many cross-joins
as the number of pairs of joinable tapes
belonging to this particular slice. This ob-
servation also helps us to understand why
a tape can aso be viewed as a collection
of cross-joins (or cubes). Thus, we have
thefollowing lemma.

* Lemma. A tape is a finite set of sec-
ondary cubes.

* Proof. Each of the cross-joinsisdefined
from the k-1 points of the tape and one
point fromall itsjoinabletapes. Thispoint
bel ongsto the points of the axisthe tape
is parallel to. Consequently, we are al-
lowed to treat a tape as a set of cross-
joins, or cubes: t=[c,,...,C,].

MAPPING TO TABLE
LENS

In the previous section, we have
shown how ageneric presentational model
— CPM — can represent multi-query
screens that can be mapped to constructs

a

Transfer
function

A 4

of anunderlying logical model. At thesame
time, thereismore that we can do over the
presentation model, which involves ad-
vanced visualization techniques. It would
be straightforward to visualize the CPM
constructs simply as tabular data. Never-
theless, we can do better than that and ap-
ply advanced visualization techniques over
the CPM constructs. In this section, we
will demonstrate how CPM can be com-
binedwith TableLens(TL) (Pirollo & Rao,
1996; Rao & Card, 1994), anon-traditional
cross-tabular presentational model fromthe
Human Computer Interaction area. This
model, based on the “focus plus context”
technique, isused in applications and plat-
forms for the visualization of tabular data
and appears to be quite appropriate for
OLAP purposes. Using Table L ens, we can
easily examine patternsand correlationsin
large tables and effectively zoom in with-
out losing the global picture of our data.
We have chosen Table Lens as a visual-
ization technique due to the fact that it is
based on a cross-tabular paradigm for the
presentation of information; a paradigm
quite popular in OLAP screens, too.
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Mapping CPM to TableLens

Inthissubsection, wewill present the
main features of Table Lens, and then we
will link it to the CPM model. The main
constructs of the Table Lenstechniquein-
volve:

e Axes: The Table Lens model assumes
two axes. For clarity, wewill use Rows
and Columns to denote these two axes,
asshownin Figurel3.

e 2D Space: The2D Spaceisconstructed
from the Cartesian product of the two
Table Lens axes. It is a (finite) matrix
of cells. One of the basic ideas behind
the Table Lenstechniqueis that not all
cells are considered equal in terms of
presentation. In fact, certain cells com-
prising a concrete region of the 2D
Space are assigned to occupy more sur-
face of the screen than the rest of the
cells. This resembles zooming into the
particular region of the 2D Space.

e Degree of Interest Function (DOI):
DOl is afunction that maps each axis
point to a value that indicates the level
of interest for that point. For each axis,
adifferent DOI function is prescribed;
thus, a2D Spaceis characterized by 2D
windows of focus. In the simplest set-
ting of Table Lens, each DOI function
isasimple “pulse” function, meaning
that it hasastandard valuefor al points,
except for the points of a certain inter-
val that are mapped to a higher value.
In Figure 13a, we depict an 8x8 space
with a2x4 focuswindow. In Figure 13b,
we show how the originally equally im-
portant cells of the Columns axis are
assigned importance values by the DOI
function (notice the pulse on two par-
ticular cells that assigns them greater
importance than the rest of the cells).

e Transfer Function: A transfer function
maps each cell to its physical location,
indicating thelevel of zoomfor each cell.
Practicaly, the transfer function is the
tranglation of the respective DOI func-
tion (operating at the “interest” space)
to the “pixel” space. In Figure 13b, we
show how the Transfer function, defined
asaweighted integral of the DOI func-
tion, mapsthe pointsto pixel areas. For
reasons of efficient representation (Rao
& Card, 1994) (Figure 13b), the pro-
duced axis is rotated by 90 . Finaly,
another interesting feature of Table Lens
is the ability to define more than one
window of focus. Thisisquite helpful in
situations where two areas can be con-
trasted and compared. As we shall see
in the next section, this feature is par-
ticularly useful in the case of OLAP.

There is an easy way to map the un-
derlying constructs of the CPM to the ones
of the Table Lens. The axis points of CPM
are mapped to axis points of Table Lens
and a2D Slicein CPM isimplemented as
a 2D Space in Table Lens. The contents
function providesthe values of the cells of
the 2D Space. Naturally, CPM is generic
enough to lack the particul arities of the axis
distortion due to the DOI function. The
naiveway to overcomethelimitationissim-
ply to ask the user to define a certain win-
dow of focusover the presented 2D Space,
specifying both its size and position. Still,
we can automate the process on the basis
of the structure and the contents of a 2D
Space.

Which Window of
I nterest to Choose?

In this subsection, we will deal with
the problem of providing the user with pro-
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Figure 14: Instantiation of the Motivating Example with Values (Different coloring determines
different cross-joins and thick borders highlight the cross-joins with the highest, lowest and

closest to average values.)
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active automated support for the explora-
tion of an OLAP report. Our main tool to-
wardsthisend isthe window of interest as
determined by the DOI functions, and the
basic idea is to provide an algorithm to
proactively determine the window of in-
terest over a 2D Space. We want to de-
finean algorithm that automatically deter-
minesthiswindow whenever auser invokes
an OLAP report. It appears that we can
come up with a generic algorithm where
the controlling parameters (e.g., stopping
conditions, error range, etc.) can be tuned
by the user. Actually, we can even treat as
aparameter the choice of whether the user
issimply interested in having awindow of
acertain surface or if he or sheisactualy
interested in seeing a focus on a range of
cellssatisfying certain statistical properties
(e.g., minimum/maximum/closest to aver-
age set of values). Having determined
algorithmically the window of interest, the
two involved DOI functions, which arein-
dependent of each other, aredirectly derived.

Motivation & Assumptions
Before providing the generic algo-

rithm, let usclarify our contribution through
a specific example. We instantiate the ex-

ample of Figure 2 with the values in Fig-
ureld. Let us assume that when the user
activatesthis OLAP screen, hewould like
to be informed on three particular cross-
joins: (1) oneinvolving the maximum sales
(max); (2) another involving the lowest
(min); and (3) athird involving the cross-
join with behavior closest to the average
(closest-to-avg) of the whole 2D Space.
Practically, thisinvolvesthree windows of
focus, which wedepict through athick bor-
der around theinvolved cross-joins. Inthis
particular case, the cross-join R1/C6 isthe
one with the lowest summary of values,
the cross-join R4/C3, the one with the high-
est sum, and the cross-join R2/C3, the one
closest to the average sales per cross-join
(which amounts to 240.5 sales per cross-
jain).

A simple algorithm to compute the
aforementioned quantities proceeds asfol-
lows: (a) summarizes all cells per cross-
join; (b) sortscross-joinsand computesthe
average cross-join value; and (¢) pinpoints
thethreeregionsof interest. Thisalgorithm
haslinear (precisely, one-pass) complexity
on the number of cells and nlogn (due to
sorting) complexity on the number of cross-
joins. Actualy, if wearesimply to keep the
max, min or closest-to-avg cross-join, alin-
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ear single pass from al the cellsis suffi-
cient without any sorting. In the case of
avg, each timethat we summarizethecells
from across-join, we can compute the av-
erage of theindividual cross-join summa-
ries and compute the closest cross-join to
the current value of this average.

Assumptions. Underlying this proactive
notification to the user, we have made
thefollowing assumptions:

e Cross-joins constitute homogeneous
pieces of information. This means that
we can assume a certain level of se-
mantic cohesion among the cells of a
certain cross-join. Moreover, we can
assume that each cross-join can be con-
sidered as a distinct semantic unit and
that cross-joins are comparable to each
other. For example, we assume that it
makes sense to compare sales from Ja-
pan to the sales of Southern USA. Natu-

rally, theuser choicesfor the axes points
(and the produced cross-joins) may se-
verely affect this assumption.

* We are allowed to perform certain
aggregate operations over our data.
Specifically, we assume that the under-
lying detailed data set has been summa-
rized by a distributive aggregate func-
tion.

InLenz and Thalheim (2001), aggre-
gationfunctions are categorized as (a) dis-
tributive functions, like max, min, sum or
count, meaning that there isaway to com-
pute the result of the application of the ag-
gregation function to the overall data set
by composing the individual results of its
application to subsets of the dataset; (b)
algebraic functions that are expressed as
finite algebraic expressions over distribu-
tive functions, like avg; and (c) holistic
functions for al other functions.

Figure 15: (a) Algorithm GenericFocuswindow (b) Instantiation of the Algorithm

Algorithm GenericFocusWindow
Input:

determined by its coordinates.
Parameters:

Output:

Begin
11 o={}
12. C = OriginalPick (GJ)
AddctoQ.
While (GuardCondition) {
CJ = Pick(GJQ);
If CO#NULL Then add cJ to Q Else exit the loop

}
Return @

End.

A set of cross-joins GJ and adisplay grid of cells Grid related to GJ.
Each cdll belonging to Grid is characterized by coordinates (x,y) and each CJ belonging to GJ is
characterized by the coordinates of its upper |eft and lower right cell. Each cross-join hasa surface,

OriginalPick (GJ): aroutineto determine the starting cross-join of the algorithm
GuardCondition: aroutine to determine whether the algorithm should stop

: atolerance or error range for the acceptance of a solution or not

Qualifies: aBoolean function that determines whether a solution satisfies a set of constraints
DeterminingQuality: aproperty of across-join like surface, sum of vaues, ...

Pick (@J, Q) : aroutine picking a cross-join to enlarge the produced solution

A set of cross-joins, Q that satisfies the conditions set by the user.
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Figure 15: (a) Algorithm GenericFocuswindow (b) Instantiation of the Algorithm (cont.)

OoriginalPick (GJ){

Among equals pick the upper and left-wise;
Return (c.); }
DeterminingQuality (Q) {
Return surface(Q)-surface(3x3); }
GuardCondition (Q,1){

Else Return false }
Pick (cJT,Q){

Return vo; }
Qualifies(v,CJ,Q){
If (visadjacent to across-join cgecd) s&
(v u @ formsarectangle)
Then Return true;
Else Return false}

Let the cross-join ¢, st., [sum(c;) | isthe minimum;

If surface(Q)-surface(3x3) <1 Then Return true;

Let v be the subset of the cross-joins of cg, st., for eachvev: Qualifies(v,CJ,Q)
Let vee v beacrossjoin st., [peterminingQuality (Q) | isminimum, if v; isadded to Q.

Toforestall any possiblecriticism, we
want to point out that the exact result of
aggregation operations over a2D Sliceis
handled by thelogical layer. In the case of
the logical OLAP model presented in
Vassiliadis and Skiadopoulos (2000), all
operations are formally defined as opera-
tions over the detailed data set; optimiza-
tion results for the obvious cases are also
provided. Nevertheless, in the case of this
paper, we want a quick approximation of
the statistical measures under consideration
to be used for the determination of the fo-
cus window and not of the values of the
report. Thus, problems like the Smpson’s
paradox or the non-invariance property
(Lenz & Thalheim, 2001) are not consid-
ered inthe scope of thispaper. Finaly, asa
general comment, sinceit isquite cumber-
some to ask the user each time to charac-
terize the statistical nature of the underly-
ing data, we employ the idea that one can
have an indication of the statistical nature
of the information of screen by observing
the aggregate function that has been ap-
plied to compute them. Thus, sincein our
case we are starting with a sum aggregate

function, we conclude that we can apply
further distributive operations to the mea-
sure Sales in order to obtain our indicative
approximations.

A GenericAlgorithm for
Deter miningtheWindow of Focus

Naturally, we can do better than the
aforementioned algorithm by adding extra
criteria to the proactive selection of the
starting window of focus. We propose a
guided greedy generic algorithm,
GenericFocuswindow (Figurel5), to deal
with theissue. The simpleideaunderlying
the algorithm is that there are certain con-
ditionsto be met for thefocuswindow. For
example, one could require that the focus
window occupy at most/least acertain per-
centage of the screen size, or of a certain
size of cells. Moreover, the selected win-
dow optimizes an objective function. The
property Determining Quality of the al-
gorithms captures exactly thisregquirement
intheform of acertain function. Since our
algorithm is greedy, we need an Original
Pick routineto start the processing; in gen-
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eral thisisclosely related to the Determin-
ing Quality function and we require that it
start with a smallest value. Moreover, a
Guard Condition checks for the satisfac-
tion of the desired property, meaning that
we can possibly alow a certain approxi-
mation error ¢ to out obtained solution. Fi-
nally, afunction Pick provides the neces-
sary details for working from the original
small-in-value solution towards the final
result, practically picking the next cross-
join to enlarge the current window of fo-
cus.

One implicit assumption that our a-
gorithm makes is that the Original Pick
fitsinside the allowed window. This con-
straint can easily be relaxed by an exten-
sion of the algorithm picking subparts of a
crossjoininasimilar fashionwith the pro-
posed algorithm, if weconsider that we pick
subparts of a 2D-dlice.

We present an example for the
instanti ation of the af orementioned generic
algorithmin Figure 15b, wherewe arein-
terested in a focus window which (a) in-
cludesthe window with the minimum sum-
mary of values and (b) is not bigger than
3x3 (with a tolerance of the surface e=1).

Toaccomplishthis, weinitidizeaccordingly
the parameters of the algorithm
(GuardCondition, €) and define accordingly
thefunctionsof the algorithms (OriginalPick,
DeterminingQuality and Pick). The greedy
agorithmis guided to pick the window of
minimum value as its starting point. The
first constraint is met by the original pick
and the second by the stop condition of the
algorithm. During the expansion phase,
each time we choose a cross-join such that
(@) is neighbouring with the current solu-
tion; (b) if merged with the current solu-
tion, it comprisesarectangle (easily deter-
mined by comparing the lengths of the op-
posite sides of the new solution; and (c)
has the smallest surface.

If we execute the algorithm on the
data of Figurel4, the result will be Q={R1/
C6,R2/C6,R3/C6,R4/C6}, whichispractically
the tape C6. If, instead of the minimum
value, in function Pick we had chosen the
maximum, then the result would be Q={R1/
C6,R1/C5}. Another obvious extension
would be to employ a 2-greedy algorithm:
inthiscasethe small cross-joinsR2/C5 and
R2/C6, each comprising asinglecdll, could
have been incorporated in the solution, too.

Figure 16: The System Architecture of CubeView

Focus + Context

(OuPserverlaver  ApplicationServeriaver  Userlayer
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InManiatiset a. (2003a), we present
more examples for the instantiation of the
algorithm.

IMPLEMENTATION

In this section we will present a
framework in support of Maobile OLAP, a
term used to expressthe porting of require-
ments and specifications for OLAP appli-
cationsinto the wireless and mobile com-
puting world, as introduced in Maniatis
(2004). In this context, we present
CubeView, a pilot academic platform en-
abling OL AP visualization both for contem-
porary desktops as well as for mobile de-
vices. We present detail s about the adopted
system and software architecture of the
system, along with explanations on the us-
age of the system.

TheArchitectureof CubeView

In this section we present the archi-
tecture of CubeView, organized as (@) sys-
tem architecture, (b) software architecture,
and (c) implementations specifics.

The system architecture for
CubeView is depicted in Figurel6. The
general ideaisthat the user on the mobile
device (PDA, mobile phone, or even re-
mote desktop PC) uses a specific user in-
terface on the user’s device to navigate on
the screen between OLAP data and per-
form OLAP analysisin general, based on
data stored locally on the device in highly
aggregated and summarized format.

Thesystemiscomposed of threedis-
crete and autonomous modules: A tradi-
tional OLAP Server Module, used as a
black box in the process since it can be
any of theexistingcommercial, open source,
or academic ones; a Middleware Appli-
cation Server, serving as the mediator be-

tween the data stored in the OLAP Server

and the mobile device and the mobile

Front-End Applications, incorporating the

local storage; and the user interface, navi-

gation, and presentation options.

The Software Architecture of
CubeMiew is depicted in Figurel7. Each
distinct system layer holds a number of
software modules, each inturn performing
specific tasks in the context of the whole
system. To be more specific, the software
layers of CubeView are:

* The OLAP Server Layer, which, as
mentioned before, is“trangparent” tothe
user and used as a “black box” from
the system, meaning that only aspecific
API is used to query the server for
OLAP data. Typically, any available
OLAP server (MOLAP or ROLAP),
commercid, or academic platform could
be used for storing and processing the
actual OLAP queries.

e The Application Server Layer, which
is the software layer holding the Java
server-side application logic. It incorpo-
ratesthefollowing software modules: (i)
The Query Manager, responsible for
directly querying the OLAP Server ac-
cording to the query posed by the mo-
bile user; (ii) the XML OLAP Data
Manager, a component responsible for
formatting the requested data in XML
format and interacts with (iii) the Cube
to CMP (XML) Converter; and (iv) the
XML Cross-join Metadata, which for-
mats the OLAP data queried in a for-
mat suitablefor presentation using CPM
entities. A simple (v) Caching Mecha-
nismis employed for performance pur-
poses, which holdsboth the actual OLAP
data and the necessary OLAP
metadata, retrieved and managed
through (vi) the OLAP Metadata Man-
ager. Finaly, (vii) the Connection Man-
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Figure 17: The Software Architecture of CubeView
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ager is the synchronization mediator
between the Application Server and the
User Layer, controlling the connection
process when data from the OLAP
Server are needed to refresh the OLAP
datain CPM entities format, stored |o-
cally onthe mobiledevice.

User Layer

e The User Layer incorporates a number

of software modulesand client tool sthat
suppliesthe mobile user with instruments
for (i) storing OLAP datalocally on the
Local Slorage RDBMS, which holdsthe
metadata of the system aswell ashighly
aggregated OLAP data; (i) executing

Figure 18: A Prototype Front-End for CubeView on Pocket PC Employing OLAP Lens
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Figure 19: OLAP Lens User Interface Details
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simplead hoclocal queries, meaning on
the OLAP data stored locally through
(iii) the OLAP Query Manager; (iv)
the OLAP Request Manager interacts
with the Application Server Layer —
actually with the Connection Manager
— to retrieve data from the OLAP
Server if such acaseisenforced due to
the query posed by the user; and finally,
(V) a suitable User Interface and Lo-
cal Metadata Browser are the front end
toolson themobiledevicethrough which
the user can pose queries, browse the
local data, and display the results of his
guerieson OLAP screens, employing the
Table L ensvisualization technique.

Using CubeView

Inthissectionwegiveanillustrative
example of how CubeView is designed to
work and respond to queries posed by mo-
bile users.

SEX

Ex Pocket PC 2002
Emulator  Help

An implementation on a Pocket PC
environment of the example described in
Figure2isdisplayedin Figure 18, wherea
prototype for the front end tool used is de-
veloped and displayed on the simulator pro-
vided by Microsoft (http://www.microsoft.
com/windowsmobile/information/
devprograms/default.mspx). In terms of
usability of the system and user interface
characteristics, special features are em-
ployed. A step-by-step usability of the user
interface controlsisasfollows:

e The user exploits the user interface fa-
cilities of the front end application to
specify the user’s range query, using
drag and drop to select from the pop up
dimensionswindow theactual dimension
levelstoformtheinitial screen. Thefirst
level of the highly aggregated data ap-
pears on the screen (Figure 18).

* |nanext specialization manipulation, the
user selectsfrom apop up menu afunc-
tion or formula (system or user defined)
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to focus on specific characteristics and
attributes of the displayed data. For ex-
ample, it may be that the user wants to
locate the cell with the max value of the
displayed dataand drill into them to lo-
cate further details. The appearance of
the display screen focusesto thedesired
cell, which is distorted (in accordance
to the Table Lens characteristics) to
guide the user to the exact results of the
user’s query (Figure 19).

* By double clicking on the focused cell,
theuser drillsinto the detailsof thecell.
The cross tab displayed is replaced by
the next level of the dimension hierar-
chies, both for rows and columns. The
previous level of the dimension hierar-
chiesis displayed as pull down menus
on the top of the screen.

e The user may continue performing the
previous stepsto perform further analy-
sis. Specia controls (such as /N for
drill in and drill out) and menu options
assist the user in performing OLAP
analysis on the user’s mobile device.

Findly, wewould asoliketo point out
that the architecture implemented in
CubeView isflexible enough to provide a
framework suitable for both desktop and
mobile OL AP visualization applications.

RELATED WORK

Inthissection, wewill present related
work on thetopics covered by our research.
Thisincludes existing presentation models
for databases and multidimensional data,
implementations of visualizationtools, and
adiscussion of related effortsin the field
of OLAP for mobile environments.

Furthermore, we should mention that
preliminary results of the work analysed
herein canbefoundinManiatiset a. (2003),

Maniatis et al. (2003a), Maniatis (2003),
and Maniatis (2004). Still, in thispaper, (a)
we providethe big picturefor these works,
(b) we have further decoupled the logical
and presentational models from the work
of Maniatis et al. (2003), and (c) we pro-
vide more examples and details on the
proofs.

Presentational M odels

Although OLAP has been an active
research area for the past few years, the
efforts devoted to the visualization of
OLAP screens are very scarce. To our
knowledge, only two such efforts exist.

Thefirst effort is from the industrial
field, where Microsoft has issued a com-
mercia standard for multidimensional da-
tabases and where the presentational is-
sues form amajor part (Microsoft, 1998).
In thisapproach, apowerful query language
is used to provide the user with complex
reports created from several cubes (or ac-
tually subsets of existing cubes). However,
thisstandard suffersfrom several problems,
with two of them being the most promi-
nent: First, the logical and presentational
models are mixed, resulting in a complex
language that we personally found hard to
use (although powerful enough). Secondly,
themodel isformalized but not thoroughly;
for instance, we did not really see adefini-
tion for the schema of a multicube. Also,
there are specific axes that are predefined,
namely “rows,” “columns,” “pages,” “ sec-
tions,” and “chapters’; no other axes are
supposed.

The second proposal is an academic
approach — the Tape Model (Gebhardt et
al., 1997) — based on the notion of
“Tapes,” called thus due to their look and
feel. Tapes areinfinite and can overlap (if
they contain shared data dimensions) or
intersect with each other. A two-dimen-
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sional intersection is called a matrix and
represents akind of cross-tab between the
corresponding dimensions. Each tape com-
prises a variable number of tracks. The
most important operationson tapesinclude:
(a) insertion and deletion of tracks; (b)
changing the sequence of tracks (e.g., sort-
ing); and (c) scrolling on tracks. The model
offersthe possibility of defining hierarchi-
cal structureswithin atape. Tapesareinfi-
nite and can overlap (if they contain shared
data dimensions) or intersect with each
other. A two-dimensional intersection is
called a matrix and represents a kind of
cross-tab between the corresponding di-
mensions. Each tape comprises of a vari-
able number of tracks.

Compared to CPM, the aforemen-
tioned models can be characterized asfol-
lows: CPM is a formal approach, with a
rigorous formal background. The tape
model seemsto belimitedinitsexpressive
power (with respect to the Microsoft pro-
posal), and, to our knowledge, its formal
aspects are not yet publicly available. The
Microsoft proposal, on the other hand, ap-
pearsto betoo complicated, without aclean-
cut separation of the underlying concepts.
Also, itscoupling to the underlying logical
structures is not clear.

Visualization in Contemporary
OLAPTooIS

Most vendors offering data ware-
housing and OLAP tools and platforms
haveincludedintheir productsspecial mod-
ules running on mobile devices and offer-
ing OLAP analysis possibilities to mobile
decision makers. Vendors such as
MicroStrategy Inc. (http://www.micro
strategy.com) and Business Objects (http:/
/www.businessobjects.com) have done a
great deal towardsimplementing dedicated

broadcast serversthat provide OLAP spe-
cificinformation to usersin numeroustypi-
cal formats such as e-mails, beeps on pag-
ers, or specifically designed Web pages,
using WAP and WML and employing a
specific but typical server-based architec-
tureto offer thisfunctionality.

With respect to academic pilot visu-
dlizationtoolsand platforms, numerous have
been developed, mainly in the area of the
general area of information visualization.
Many proposals focused on more specific
areas such as statistical and scientific da-
tabases, datamining, and multidimensional
data visualization. In the last area, we can
mention VisDB (Keim & Kriegel, 1994),
HD-Eye (Hinneburg et a., 2002) and Po-
laris (Stolte & Hanrahan, 2000).

VisDB (Keim & Kriegel, 1994) and
itsmore recent sibling HD-Eye (Hinneburg
et al., 2002) originated from the area of
general database exploration techniques,
with specidizationin multi-dimensional vi-
sualization. It cannot be considered as an
OLAPvisualization platform; instead, itis
aplatformfor the exploration of large mullti-
dimensiona datasetsusing techniquessuch
as the mapping of two dimensions to
axes, parallel coordinates, etc., all inte-
grated into an interactive graphical en-
vironment. In a sense, ViSDB can be
viewed as being closer to data mining
than OLAP. HD-Eye is a more recent
version oriented towards visual cluster-
ing of large data sets containing high-
dimensional data.

Finally, Polaris (Stolte & Hanrahan,
2000) isone of the most recently designed
and implemented visua interfaces, designed
to explore large multi-dimensional data-
bases that extends the well-known Pivot
Table interface. The features of Polaris
include aninterface for constructing visual
specifications of table-based graphical dis-
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plays and the ability to generate a precise
set of relational queries from the visual
specification. Thevisual specificationscan
beincrementally devel oped, giving the ana-
lyst visual feedback asthey construct com-
plex queriesand visualizations.

Applicationsfor MobileOLAP

OLAP-specific functionality for mo-
bile devices provided by the vendors does
very little towards exploiting the specific
characteristics and power of the mobile
devices on which these applications run.
Rather, they basetheir solutionson migrat-
ing the desktop OLAP interface of their
tool sto the mobile device employing WAP
and the WML, but fail to takeinto account
recent improved facts about mobile devices
such asincreased system memory; clearer
color screens; increased processing power
or their limitations, such as small screen
size, different usability, and user interface
reguirements; common off line work, etc.

Tofill thisgap, numerous approaches
coming mainly from theacademiaand from
various research areas have been propos-
ing solutions and frameworks that address
thisproblem. Many of them propose novel
approaches to cope with the case of mo-
bile OLAP and, moreimportantly, many of
them have been actually implemented and
usedinreal case scenarios. Wewill briefly
present some of the most notable (in our
judgment) approaches.

MOCHA (Rodriguez-Martinez &
Rossopoulos, 2000) was an early, more
generic approach to adatabase middleware
for distributed datasources, which, although
not specifically addressing the case of mo-
bile devicesand OL AP, incorporates many
of the notions present in “Mabile OLAP,”
such as the distributed nature of the sys-
tem, the scaling to a larger environment,

and the novel approach of deploying appli-
cation-specific functionaity from one point
of the system to al the others through the
middleware itself. The system was imple-
mented in Java, which allowed for the ship-
ping of Java code to implement either ad-
vanced data types or tailored remote op-
erators to remote data sources and have it
executed remotely, and was actually put to
work effectively on a large aerospace or-
ganization.

A more specific approach is pre-
sented in Cuzzocrea et al. (2003), namely
Hand-OLAP, a system specifically de-
signed for bringing OLAPfunctionality to
users of mobile devices. This proposal fo-
cuses mainly on a number of the draw-
backs of handhelds devices, with empha-
sisonthesmall storage space and the usual
discontinuance of the connection to the
Wireless LAN, as opposed to the user
needsfor querying and browsing informa:
tion extracted from enormous amounts of
data accessible through the network. To
cope with thisissue, this approach focuses
on presenting asolution for storing locally
in the mobile device a compressed and
highly summarized view of the data that
can be more efficiently transmitted from
the OLAP server than the original ones.
Hand-OLAP is a prototype system with a
suitable architecture that seamlessly sup-
ports the interaction between mobile de-
vice and OLAP server, stores data locally
on the mobile device in acompressed for-
mat (based on Quadtree representation),
and always provides the user with a spe-
cific bi-dimensional (tabular) view of the
data, even when the connection to the
WLAN is off.

Finally, the work of Sharaf and
Chrysanthis (2002, 2002a) focused more
on matters of wireless network and power
consumption on the mobile devices, pro-
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posing asuitablemobile OLAPmodel, dong
with an on-demand scheduling algorithmto
minimize accesstime and energy consump-
tion on mobile agents. This approach is
based also on summary tables, along with
thefunctionality of simple OLAPfront-end
toolsto execute simple SQL queries. What
is more, this proposal maximizes the ag-
gregated data sharing between clients and
reduces the broadcast length. Finaly, the
proposed on-demand scheduling algorithm
employs user parameters to fine tune the
degree of aggregation of dataso asto con-
trol the tradeoff between access time and
energy consumption, and adapts to differ-
ent request rates, access patterns, and data
distributions.

As a whole, as we compare
CubeView with al the previously described
tools — those used for visualization and
those reviewed for Mobile OLAP — we
stressthefact that our prototypeistheonly
onethat supportsthefull cycle, starting from
aformal and rigorous theory background
depicted in CPM itself, and reaching afull
fledged implementation covering both
worlds, the traditional desktop environ-
ments, and themobile devices. All the other
paradigms are departmental in the sense
that the they tamper only portions of the
big picture, this being either the informa-
tion visuaization area (VisDB [Keim &
Kriegel, 1994]; HD-Eye[Hinneburget al.,
2002]; Polaris[Stolte & Hanrahan, 2000]),
or specific approaches and implementa-
tions for mobile devices (Hand-OLAP
[Cuzzocrea et al., 2003]) or simply
middleware, like MOCHA (Rodriguez-
Martinez & Rossopoulos, 2000), or, finally,
a framework for a wireless OLAP model
(Sharaf & Chrysanthis, 2002, Sharaf &
Chrysanthis, 2002a).

CONCLUSIONS &
FUTURE WORK

Sofar, visualization hasnot been fully
incorporated in the abstraction levels of
DBM Sarchitecture (conceptual, logical, or
physical). Inthis paper, we have discussed
the separation of the aforementioned ab-
straction levels to take visualization into
consideration. Inthiscontext, we have pre-
sented the Cube Presentation Model
(CPM), a formal presentation model for
OLAPdata. Our contributions can belisted
as follows: (a) we have presented an ex-
tension of a previous logical model for
cubes to handle more complex cases; (b)
we haveintroduced anovel presentational
model for OLAP screens, intuitively based
onthe geometrical representation of acube
and its human perception in the space; and
(c) we have discussed how these two mod-
els can be smoothly integrated. Moreover,
we have demonstrated how CPM can be
naturally mapped into an advanced visual-
izationtechnique (Table Lens), and wehave
discussed suitable algorithmsfor proactive
automated support of the user towardsthe
highlighting of interesting areas of areport.
Finally, we have discussed implementation
and usage issues in the context of an aca-
demic prototype system (CubeView) that
we have implemented.

Obviously, we do not claim that this
is the ultimate solution to the problem of
OLAPdatavisualization, but rather wewish
toindicatethat thereisquiteaninteresting
research field in thisareaand a supportive
body of knowledge from other disciplines
such as Human-Computer Interaction and
Information Visualization.

An obvious particularity of our ap-
proachisthat it is crafted mostly for tabu-
lar data in the context of OLAP. Should
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wewish to differentiate the context of data
utilization or the datathemselves (e.g., per-
form OLAP over spatid or biologica data),
the presentation and visudization techniques
would have been different. In general, itis
an interesting research challengeto discuss
the integration of different models in the
presence of different contexts, either in
terms of the data or their usage.

At the same time, new hardware de-
vel opments pose hew requirementsfor our
visualization techniques. One of our goals
hasbeentoimplement OLAPvisuaization
techniques for particularly small devices
such mobile phonesand pal mtops. Although
the processing power of these gadgets is
no more negligible (actually, the buzzword
“thin client” seems to disappear from the
standard vocabulary of the area), their
screen sizes shrink over time. To make
OLAP screens presentable to such de-
vices, one can follow several paths such
as: (a) showing only high level summaries
whichinvolvesmall 2D dlicesor (b) show-
ing simply pie or bar charts. We have cho-
sen an alternative approach where (a) the
contents of the screen do not have to be
squeezedinsizein order tofitinthe screen,
and, most importantly, (b) the report does
not have to be rewritten and neither do we
have to check for the aggregation level of
the presented data. On the contrary, a cer-
tain part of thereport is presented, depend-
ing onthe particularitiesof thedevice. Here,
we make the reasonable assumption that
either the device has the computational
power to determine the amount of cellsthat
can be presented to the user, or, if thisis
not an option, thedevice can at least piggy-
back its characteristicsto the OLAP server
and let the server decide on the focuswin-
dow. Naturally, as part of future research,
different implementationissues(e.g., cach-
ing schemes or visualization techniques) can
be applied in this context.

Finally, coming back to thevisualiza-
tion issue, we have brought up Table Lens
to highlight the possibility of facilitating pro-
active user decision support in the pres-
ence of large datasets (in our case, the
value axisis quite larger than the size that
someone can handle efficiently). Clearly,
asreport screens are limited, not only due
to hardware constraints but also dueto the
particularities of human nature (e.g., the
classical discussion onthelimited capacity
of personsin processinginformation (Miller,
1956), it comes quite natural that automated
proactive support to the users is thus one
of the new requirementsthat decision sup-
port tools have to provide. Thus, our con-
tribution is related to a broader line of re-
search (Han, 1998, Sarawagi et al., 1998),
whichisobviously open to awide range of
different possibilities.
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