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ABSTRACT

Extraction-Transformation-Loading (ETL) tools aréeqes of
software responsible for the extraction of datamfreeveral
sources, their cleansing, customization and inserinto a data
warehouse. Usually, these processes must be cauplet a
certain time window; thus, it is necessary to opténtheir
execution time. In this paper, we delve into thegidal
optimization of ETL processes, modeling it as séestpace search
problem. We consider each ETL workflow as a statk fabricate
the state space through a set of correct statsitiars. Moreover,
we provide algorithms towards the minimization loé texecution
cost of an ETL workflow.

1. INTRODUCTION

For quite a long time in the past, research haatdce data
warehouses as collections of materialized viewshdgh this
abstraction is elegant and possibly sufficient thee purpose of
examining alternative strategies for view maintem®ant is not
enough with respect to mechanisms that are emplayeeal-
world settings. Indeed, in real-world data warekous
environments, instead of automated mechanisms fog t
refreshment of materialized views, the executionopérational
processes is employed in order to export data foperational
data sources, transform them into the format oftéinget tables
and finally, load them to the data warehouse. Taegory of
tools that are responsible for this task is geherahlled
Extraction-Transformation-Loading (ETL) tools. The
functionality of these tools can be coarsely sunimedrin the
following prominent tasks, which include: (a) tlientification of
relevant information at the source side; (b) thgastion of this
information; (c) the customization and integratiasf the
information coming from multiple sources into a coon format;
(d) the cleaning of the resulting data set, onbtags of database
and business rules, and (e) the propagation odidke to the data
warehouse and/or data marts.

So far, research has only partially dealt with fheblem of
designing and managing ETL workflows. Typically,search
approaches concern (a) the optimization of standeaproblems
(e.g., the problem of duplicate detection [18]) an isolated
setting and (b) problems mostly related to web datg., [8]).
Recently, research on data streams [1], [3] hasigioup the
possibility of giving an alternative look to theoptem of ETL.
Nevertheless, for the moment research in data rsinga has
focused on different topics, such as on-the-fly potation of
queries [1], [3]. To our knowledge, there is no tegmtic
treatment of the problem, as far as the probleth@flesign of an
optimal ETL workflow is concerned.

On the other hand, leading commercial tools [10],][[14], [16]
allow the design of ETL workflows, but do not usaya
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optimization technique. The designed workflows prepagated
to the DBMS for execution; thus, the DBMS undertakee task
of optimization. Clearly, we can do better tharsttbhecause, an
ETL process cannot be considered as a “big” questead, it is

more realistic to treat an ETL process as a comipémsaction. In

addition, in an ETL workflow, there are processhat trun in

separate environments, usually not simultaneousdyumder time

constraints.

One could argue that we can possibly express dll &lerations

in terms of relational algebra and then optimize tesulting
expression as usual. In this paper we demonstizé the
traditional logic-based algebraic query optimizatican be
blocked, basically due to the existence of data ipudation
functions. Consider the example of Fig. 1 that dbes the
population of a table of a data wareho®&from two source
database$1 andS2. In particular, it involves the propagation of
data from the recordsePARTS1(PKEY,SOURCE,DATE,
COST) of sourceS1 that stores monthly information, as well as
from the recordsetPARTS2(PKEY,SOURCE,DATE,DEPT,
COST) of sourceS2 that stores daily information. In tHBW
PARTS(PKEY,SOURCE,DATE,COST) stores monthly
information for the cost in EurdCOST) of parts(PKEY) per
source(SOURCE). We assume that both the first supplier and the
data warehouse are European and the second is damgthus,
the data coming from the second source need tmbeeded to
European values and formats.

Figure 1. A simple ETL workflow

In Fig. 1, activities are numbered with their ex@mu priority and
tagged with the description of their functionalififhe flow for
sourceS1 is: (3) a check folNot Null values is performed on
attribute COST The flow for sourceS2 is: (4) Dollar costs
($COST) are converted to Euro€COST); (5) dates DATE are
converted from American to European form#éf} &n aggregation
for monthly supplies is performed and the unnecgsatribute
DEPT (for department) is discarded from the flow. The flows
are then unifiedq) and before being loaded to the warehouse, a
final check is performed on tFCOSTattribute 8), ensuring that
only values above a certain threshold are propédg#be the
warehouse.
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There are several interesting problems and optiioiza
opportunities in the example of Fig. 1:

= Traditional query optimization techniques should diectly
applicable. For example, it is desirable to pudect®ns all
the way to the sources, in order to avoid processin
unnecessary rows.

= |[s it possible to push the selection for valuesvaba certain
threshold early enough in the workflow? As far lees flow for
sourcePARTS1is concerned, this is straightforward (exactly
as in the relational sense). On the other handaraas the
second flow is concerned, the selection should dséopmed
after the conversion of dollars to Euros. In otherds, the
activity performing the selection cannot be pushetbre the
activity applying the conversion function.

= |s it possible to perform the aggregation, befole t
transformation of American values to Europeansgrinciple,
this should be allowed to happen, since the dategkept in
the resulting data and can be transformed latethib case,
the aggregation operations can be pushed, beferfutittion
(as opposed to the previous case).

= How can we deal with naming problenRRRTS1.COSTand

PARTS2.COSTare homonyms, but they do not correspond to

the same entity (the first is in Euros and the sdcin
Dollars). Assuming that the transformati®B€ produces the

attribute €COST how can we guarantee that corresponds to

the same real-world entity witRARTS1.COST?
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Figure2. An equivalent ETL workflow
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In Fig. 2, we can see how the workflow of Fig. 1nche

transformed in an equivalent workflow performing ttame task.
The selection on Euros has been propagated tolratiches of
the workflow so that low values are pruned earlyll, Sve can

push the selection, neither before the transfoomafi2€, nor

before the aggregation. At the same time, there avawapping
between the aggregation and tBATE conversion function
(A2E).
highlighted in this setting are (a) to determineichhoperations
over the workflow are legal and (b) to determines thest
workflow configuration in terms of performance gain

We take a novel approach to the problem by takintp i
consideration the aforementioned peculiarities. édoer, we
employ a workflow paradigm for the modeling of Eptocesses,
i.e., we do not strictly require that an activitytputs data to some
persistent data store, but rather, activities dimvad to output
data to one another. In such a context, /O miration is not the
primary problem. In this paper, we focus on theimjzation of
the process in terms of logical transformationghef workflow.
To this end, we devise a method based on the gmeoifan ETL
workflow that can reduce its execution cost by diag either the

In summary, the two main problems that can be

total number or the execution order of the procesgeur
contributions can be listed as follows:

= We set up the theoretical framework for the probldm
modeling it as a state space search problem, with state
representing a particular design of the workflowaagraph.
The nodes of the graph represent activities anal states and
the edges capture the flow of data among the nodes.

Since the problem is modeled as a state spacehseaniclem,
we define transitions from one state to anothetr ¢ktend the
traditional query optimization techniques. We prothe
correctness of the introduced transitions. We gisovide
details on how states are generated and the conslitinder
which transitions are allowed.

= Finally, we provide algorithms towards the optiniaa of
ETL processes. First, we use an exhaustive algorith
explore the search space in its entirety and w tire optimal
ETL workflow. Then we introduce greedy and heucistarch
algorithms to reduce the search space that we expénd
demonstrate the efficiency of the approach throagtet of
experimental results.

The rest of this paper is organized as followstiBe@ presents a
formal statement for our problem as a state speaecls problem.
In Section 3 we discuss design issues and coriectoé our

setting. In Section 4, we present algorithms fa ¢ptimization

the ETL processes, along with experimental resuitSection 5

we present related work. Finally, in Section 6 wadude with

our results and discuss topics of future reseadhorter version
of this paper has been presented in [23]. An exéndrsion of
the paper, with all the proofs is found at [22].

2. FORMAL STATEMENT OF THE
PROBLEM

In this section, we show how the ETL optimizatiamidem can

be modeled as a state space search problem. Wesgive a

formal definition of the constituents of an ETL Wfow and we

describe the states. Then, we define a set ofiti@ams that can be
applied to the states in order to produce the begpace. Also, we
formulate the problem of the optimization of an Efarkflow.

2.1 Formal definition of an ETL workflow

An ETL workflow is modeled as a directed acycliagh. The
nodes of the graph compriaetivities andrecordsets. A recordset
is any data store that can provide a flat recolkes@ (possibly
through a gateway/wrapper interface); in the réshis paper, we
will mainly deal with the two most popular types refcordsets,
namely relational tables and record files. The sdgfethe graph
denote data provider (or input/output) relationships: an edge
going out of a node; and into a node, denotes that, receives
data fromn, for further processing. In this setting, we wéfer to
n, as thedata provider andn, as thedata consumer. The graph
uniformly models situations where (a) both providare activities
(combined in a pipelined fashion) or (b) activitieseract with
recordsets, either as data providers or data cagrsum

Each node is characterized by one or natemata, i.e., finite

lists of attributes. Whenever a schema is acting as a data provider

for another schema, we assume a one-to-many mapgimgen
the attributes of the two schemata (i.e., one pi@vattribute can
possibly populate more than one consumers whil@resumer
attribute can only have one provider).
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Figure 3. Abstract examples of transitions

Recordsets have only one schema, whereas actikiéties at least
two (input and output). Intuitively, an activity mprises a set of
input schemata, responsible for bringing the records to th
activity for processing and one or momtput schemata
responsible for pushing the data to the next dataswmer
(activity or recordset). An activity with one inpsithema is called
unary, and an activity with two input schemata is calbéuhry.

Formally, anactivity is a quadruplé=(ld ,I ,0S), such that: (a)
Id is a unique identifier for the activity; (b)is a finite set of one
or more input schemata, receiving data from thea gabviders of
the activity; (c)Ois a finite set of one or more output schema
that describe the placeholders for the rows thatpaocessed by

the activity; and (d)S is one or more expressions in relational

algebra (extended with functions) characterizing skmantics of
the data flow for each of the output schemata. This be one
expression per output schema or a more complexession
involving intermediate results too.

In our approach, we will model an ETL workflow asgeaph.
Assume a finite list of activitied, a finite set of recordse®8S
and a finite list of provider relationships .

Formally, anETL Workflow is a directed acyclic graph (DAG),
G(V,E) such thav=AURSandE=Pr.

A subset oRS denoted bRSs, contains the sources of the grap
(i.e., the source recordsets) and another subde§adenoted by
RS, contains the sinks of the graph (representinditteg target
recordsets of the warehousd}(V,E) can be topologically
ordered, therefore a uniq@secution priority can be assigned to
each activity as its unique identifier.

Finally, all activities of the workflow should hageprovider and a
consumer (either another activity or a recordsBgch input
schema has exactly one provider (many providersttfersame
consumer are captured b\NIONactivities).

2.2 Theproblem of ETL workflow
optimization

We model the problem of ETL optimization as a stgpace
search problem.

States. Each stateS is a graph as described in Section 2.1, i.
states are ETL workflows; therefore, we will use thrms ‘state’
and ‘ETL workflow’ interchangeably.

(@)

e

(b)

(©)

by transforming the execution sequence of the iietsvof
the state, i.e., by interchanging two activitiesref workflow
in terms of their execution sequence;

by replacing common tasks in parallel flows with an
equivalent task over a flow to which these pardflelvs
converge;

by dividing tasks of a joint flow to clones appliaziparallel
flows that converge towards the joint flow.

Next, we introduce a set of logical transitionst thva can apply to

ta

a state. We use the notatign= T(S)

to denote the transitioh

from a stateS to a stateS’ . The introduced transitions include:

h

e._

Transitions. TransitionsT are used to generate new, equivalent

states. In our context, equivalent states are as$um be states
that based on the same input produce the same tout
Practically, this is achieved in the following way:

pu

Swap. This transition can be applied to a pair of unary
activitiesa; andaz and interchange their sequence, i.e., we
swap the position of the two activities in the drgsee Fig.
3a). Swap concerns only unary activities, e.g.ediEn,
checking for nulls, primary key violation, projemti, function
application, etc. We denote this transitiorS88A(a,,a »2) .

Factorize and Distribute. These operations involve the
interchange of a binary activity, e.g., union, jodifference,
etc., and at least two unary activities that have same
functionality, but are applied over different ddlaws that
converge towards the involved binary activity. This
illustrated in Fig. 3b. In the upper part, the tactivitiesai
and a; have the same functionality, but they are appted
different data flows that converge towards the byjirectivity
ap. The Factorize transition replaces the two adtivia, and
a, with a new onea, which is placed right aftex,. Factorize
and Distribute are reciprocal transitions. If wevéiawo
activities that perform the same operation to diffé data
flows, which are eventually merged, we can applgtéiéze in
order to perform the operation only to the mergathdlow.
Similarly, if we have an activity that operates 0eesingle
data flow, we can distribute it to different dalafs. One can
notice that Factorize and Distribute essentially deio
swapping between unary and binary activities. Waotke
Factorize and Distribute transitions B8C(ap,a 1,a 2) and
DIS(a p,a) respectively.

Merge and Split. We use these two transitions to “package”
and “unpackage” a pair of activities without chamgitheir
semantics. Merge indicates that some activitiese hiav be
grouped according to the constraints of the ETL kflow;
thus, for example, a third activity may not be pldetween
the two, or these two activities cannot be commutgualit
indicates that a pair of grouped activities canubgrouped;
e.g., when the application of the transitions hasstied, we



can ungroup any grouped activities. The benefithet the
search space is proactively reduced without sairgiany of
the design requirements. Merge transition is dehods
MER(a+2,a 1,2 2) and split transition is denoted as
SPL(a1+2,a 1,2 2) .

The reasoning behind the introduction of the tridoiss$ is quite
straightforward.

- Merge and split are designated by the needs ofd€Kign as
already described.

- Swapping allows highly selective activities to baesped
towards the beginning of the workflow, in a meangimilar
to the case of traditional query optimization.

- Factorization allows the exploitation of the fatat a certain
operation is performed only once (in the mergedkfiomw)
instead of twice (in the converging workflows). Fexample,
if an activity can cache data (like in the casswfogate key
assignment, where the lookup table can be cacled)) a
transformation can be beneficial. On the other
distributing an activity in two parallel brancheanc be
beneficial in the case where the activity is highkélective
and is pushed towards the beginning of the workflow
Observe Fig. 4. Consider a simple cost model Hiats into
account only the number of processed rows in eagbeps.
Also, consider an input oB rows in each flow, and
selectivities equal t®0% for processc and 100% for the
rest processes. Givarlog 2n andn as the cost formulae for
SK and o respectively (for simplicity, we ignore the cost o

U), the total costs for the three cases are:
c1=2nlog 2n+n=56, c2=2(n+(n/2)log 2(n/2))
=32, c3=2n+(n/2)log  2(n/2)=24 . Thus,DIS (case 2)

andFAC (case 3) can reduce the cost of a state.

SK; o;—>SK; [SEt

>U—>c >U >U — SK

SK; o;—>»SK; o:
(1) (2) (3)

Figure 4. Factorization benefits

Due to lack of space we omit the details regardimg formal
definitions of the above transitions. The interdsteader is
referred to the long version of the paper [22].

So far, we have demonstrated how to model each \k&dikflow

as a state and how to generate the state spaagitheo set of
appropriate transformations (transitions). Natyralh order to
choose the optimal state, the problem requires mveroent
discrimination criterion.

Such a criterion is a cost model. Given an actigitylet c(a)
denote its cost (possibly depending not only ondbst model,
but also on its position in the workflow graph).emh the total
cost of a state is obtained by summarizing thescostall its
activities. The total cosE(S) of a stateS is given by the next
formula:

c(S) = 21 c(@i)

The problem of the optimization of an ETL workflow involves the
discovery of a stat8yn, such thaC(Smin) is minimal.

hand

In the literature [9], [12], [17] there exXists ariety of cost models
for query optimization. Our approach is generahiat it is not in
particular dependent on the cost model chosen.

3. STATE GENERATION, TRANSITION
APPLICABILITY AND CORRECTNESS

In this section, we will deal with several non-talvissues in the
context of our modeling for the optimization of Epkocesses as
a state space search problem. We consider equivsiiates as
workflows that, based on the same input, produce ghme

output. To deal with this condition, we will firgiscuss in detail
how states are generated and then we will deal thidhproblem

of transition applicability.

3.1 Namingprinciple

As we have already seen in the introduction, ariausvproblem
for the optimization of ETL workflows is that diffent attribute
names do not always correspond to different entitifthe real
world and vice versa.

To handle this problem, we resort to a simple ngnmrinciple:
(a) all synonyms refer to the same entity of the veorld, and (b)
all different attribute names, at the same timérréo different
things in the real world. Since it is possible tifa¢ employed
recordsets violate this principle, we map the omdiattribute
names of the involved recordsets to a set of reterettribute
names that do not suffer from this problem. Formallve
introduce:

(a) aset of reference attribute names at the conceptual level, i.e.,
a finite set of unique attribute names, and a mapping of
each attribute of the workflow to this set of dittrie names;

(b) a simple naming principle: all synonymous attributes are
semantically related to the same attribute nang®;jmo other
mapping to the same attribute is allowed.

In the example of Fig. 1, we can employ the saniereace
attribute name for both American and European daiese we
will treat them equivalently as groupers. At thensatime,COST
attributes, expressed in Dollars and in Euros gshbelmapped to
different reference attributes (due to the preseidbe selection
predicate on Euros). In the sequel, we will emplaly reference
attribute names in our discussions.

3.2 Issuesaround activity schemata

In [20] we have presented a set of template a@#vifor the
design of ETL workflows. Each template in this &by has
predefined semantics and a set of parameters that fts
functionality: for example, when the designer ofwarkflow
materializes aNot Null template he/she must specify the
attribute over which the check is performed. Inesrth construct
a certain ETL workflow, the designer must specifg tnput and
output schemata of each activity and the respectiee of
parameters. Although this is a manual procedurthercontext of
this paper, the different states are automaticatiystructed;
therefore, the generation of the input and outghemata of the
different activities must be automated, too. Faklaf space, the
automation of this procedure is presented in tmg leersion of
the paper [22].



For the purpose of state transitions, (e.g., swapictivities),
apart from the input and output schemata, eachvityctis
characterized by the following schemata:

1. Functionality (or necessary) schema. This schema is a list of
attributes, being a subset of (the union of) theuin
schema(ta), denoting the attributes which take parthe
computation performed by the activity. For exampés
activity having as input schemnsa=[ABCD] and performing
aNot NuB) operation, has a functionality schema=[B] .

2. Generated schema. This schema involves all the output
attributes being generated due to the processinghef
activities. For example, a function-based activi§p€
converting an attributeolar_cost to Euros, i.e.euro_cost
= $2€(dollar_oost) , has a generated schemsy=
[euo cos] . Filters have an empty generated schema.

3. Projected-out schema. A list of attributes, belonging to the
input schema(ta), not to be propagated further fritva
activity. For example, once a surrogate key tramsébion is
applied, we propagate data with their new, gendrate
surrogate key (belonging to the generated schemd)vwae
project out their original production key (belongito the
projected-out schema).

These auxiliary schemata are provided at the tempével. In
other words, the designer of the template libraam dictate in
advance, (a) which are the parameters for the ictiv
(functionality schema) and (b) which are the newtlo non-
necessary attributes of the template. Then, thésibutes are
properly instantiated at the construction of the_Erkflow.

Local Groups. A local group is a subset of the graph (state), the
elements of which form a linear path of unary atiés. In the
example of Fig. 1, the local groups of the stae{@r, 456}

and{g} .

Homologous Activities. Also, we introduce the notion of
homologous activities to capture the cases of activities. Two
activities are homologous if: (a) they are foundcionverging
local groups; (b) they have the same semanticarfaalgebraic
expression); (c) they have the same functionafjgnerated and
projected-out schemata.

3.3 Transition applicability
In this subsection, we define the rules which altovprohibit the
application of a transformation to a certain state.

Swap. One would normally anticipate that swapping isadty
covered by traditional query optimization technigustill, this is
not true: on the contrary, we have observed thatstiiapping of
activities deviates from the equivalent problem “piishing
operators downwards”, as we normally do in the etien plan of
a relational query. The major reason for this désmis the
presence of functions, which potentially change samantics of
attributes. Relational algebra does not provide smgport for
functions; still, the “pushing” of activities shalbe allowed in
some cases, whereas, in some others, it shoulteberged.

Remember the two cases from the introductory exaropFig. 1
and 2. It is not allowed to push selection on Eurefore their
transformation and aggregation. On the contraryshibuld be
permitted to push the aggregation BATE before a function
transforming thddATEfrom American to European format.

Formally, we allow the swapping of two activitias anda if the
following conditions hold:

1. a; and a; are adjacent in the graph (without loss of
generality assume that is a provider fory)

2. botha; andaz have a single input and output schemata
and their output schema has exactly one consumer

3. the functionality schema a@f; anda; is a subset of their
input schema (both before and after the swapping)

4. the input schemata cd; and a, are subsets of their
providers, again both before and after the swapping

Conditions (1) and (2) are simply measures to elat@ the
complexity of the search space and the name gémerafhe
other two conditions though, cover two possiblebems. The
first problem is covered by condition (3). ObseRig. 5, where
activity $2€ transforms Dollars to Euros and has an input
attribute namedollar cost  , a functionality schema that contains
dolar_cost and an output attribute namedo _cost . Activity

o(€) , at the same time, is specifically containing iltire
euo cost  in its functionality schema (e.g., it selects adists
abovel00€). When a swapping has to be performed and activity

o(€) is put in advance of activit$2€, the swapping will be
rejected.
<
—» $2€ s Oe)
Q
&
< >
M O $2€
Q
€D

Figure 5. Necessity for swap-condition (3)

The guard of condition (3) can be easily compronhiffethe
designer uses the same name for the attributégedtihctionality
schemata of activitie$2€ ando(€) . For example, if instead of
dollar_cost and euo cost , the designer used the nammt |,
then condition (3) would not fire. To handle thisolplem, we
exploit the usage of the naming principle descrilmedubsection

Fig. 6. Necessity for swap-condition (4)



The second problem, confronted by condition (4)sispler.
Assume that activitp, is an,,, (projected-out) activity, rejecting
an attribute at its output schema (Fig. 6). Themapping will
produce an error, since after the swapping takesepthe rejected
attribute in the input schema of actividy (now a consumer of
a») will not have a provider attribute in the outgehema o#;.

Factorize/Distribute. We factorize two homologous activitiag
anday, if we replace them by a new activiaythat does the same
job to their combined flow. Formally, the condit®governing
factorization are as follows:

1. a; and a; have the same operation in terms of algebraic
expression; the only thing that differs is theipum (and
output) schemata

a; andaz have a common consumer, say which is a binary
operation (e.g., union, difference, etc.)

Obviously,a; anda, are removed from the graph and replaced by
a new activitya, following ap. In other words, each ed@ea 1)
and(x,a 2) becomegx,a ) for any nodex, edges(a 1,a )
and(az,ayp) are removed, the nodes anda, are removed, a
nodea is added, the edda »,a) is added and any ed@®»,y)

is replaced bya,y) for any nodey.

The distribution is governed by similar laws; ativaty a can be
cloned in two paths if:

1. a binary activityap is the provider ofa and two clones,
activitiesa, anda. are generated for each path leadingdo

a; and a; have the same operation in terms of algebraic
expression witka

Naturally, a is removed from the graph. The node and edge
manipulation are the inverse from the ones of féo

M erge/Split. Merge does not impose any significant problems:
the output schema of the new activity is the outgfuhe second
activity and the input schema(ta) is the union bé tinput
schemata of the involved activities, minus the ingthema of the
second activity linked to the output of the firgttiaity. Split
requires that the originating activity is a mergeae, like, for
examplea+b+c. In this case, the activity is split in two adiies

as (i)a and (ii)b+c.

3.4 Correctness of theintroduced transitions

In this section, we prove the correctness of tlaaditions we
introduce. In other words, we prove that whenever apply a
transition to a certain state of the problem, teeved state will
produce exactly the same data with the originating, at the end
of its execution.

There are more than one ways to establish the atoess of the
introduced transitions. We have decided to pursusaak-box
approach and in our setting, we annotate eachitgctiith a
predicate, set to true whenever the activity siugfolg completes
its execution (i.e., it has processed all incondatp and passed to
the following activity or recordset). Otherwisegtpredicate is set
to false. The predicate consists of a predicateenand a set of
variables. We assume fixed semantics for each gueHicate
name. In other words, given a predica#2€(COST) we
implicitly know that the outgoing data fulfill a nstraint that the
involved variable (attribut€0STY is transformed to Euros.

Once a workflow has executed correctly, all theivds’
predicates are set to true. Within this framewadtkis easy to
check whether two workflows are equivalent: (a)ythmust
produce data under the same schema and (b) theypmadiice
exactly the same records (i.e., the same predieateBue) at the
end of their execution.

An obvious consideration involves the interpretatiof the
predicate in terms of the semantics it carriesuAssthe function
$2€ of Fig. 1 that is characterized by the post-caadit
$2€(COST) . One would obviously wonder, why is it clear that
we all agree to interpret the semantic$2€ as the conversion of
Dollars costs to Euros over the parameter variéidee, COST)?

To tackle this problem, we build upon the work @8], where
template definitions are introduced for all the common categories
of ETL transformations. In this case, every tenwldtas a
“signature” (i.e., a parameter schema) and a setedffdefined
semantics in LDL. For exampl&2€(#vrbl 1) is the definition

of the post-condition fo2€ function at the template level. In
Fig. 1 this is instantiated a$2€(COST), where COST
materializes thétvrbl 1. The scheme is extensible since, for any
other, new activity, that the designer wishes tooiuce, explicit
LDL semantics can be also given. For our case, suificient to
employ the signature of the activity in a black kapproach, both
for template-based or individual activities.

A second consideration would involve the commorgsead upon
semantics of variables. We tackle this problemrtgoducing the
common scenario terminology,, and the naming principle of
Section 3.1.

Next, we give the formal definitions of the actywand workflow
post-conditions.

Activity Predicate. Each activity or recordset is characterized by
a logical post-condition, which we cadlctivity predicate or
activity post-condition, having as variables: (a) the attributes of
the functionality schema in the case of activites (b) the
attributes of the recordset schema, in the casecofdsets.

For each nodeneV of a workflow S = (V, E) there is a
predicatep that acts as post-conditi@ond ,, for noden.

p =condn(#vrbl 1,... #vrbl . #vrbl e, #vrbl
SinceneV=AURS we discern the following cases:

N)

1. nis a unary activity: the attributes of the funaotidity schema
of the activity acting as the variables of the jratb.

{#vrbl 4, ..., #vrbl N} = n.fun
2. n is a binary activity: the attributes of the fuictality
schemata of both activities acting as the varialwéghe
predicate.
{#vrbl 4, ..., #vrbl k} =n.in 1.fun
{#vrbl 1, ..., #vrbl N} = Nnin 2.fun
3. nis a recordset: the attributes of the recordsBh@as the

variables of the predicate.

Onceall activities of a workflow are computed, there ised of

post-conditions which are set to true. Therefore,can obtain an
expression describing what properties are held thy data
processed by the workflows, once the workflow ispteted.

Workflow post-condition. Each workflow is also characterized
by a workflow post-condition, Condgs, which is a Boolean



expression formulated as a conjunction of the posditions of
the workflow activities, arranged in the order béir execution
(as provided by a topological sort). For exampiethie workflow
of Fig. 1, the workflow post-conditiol€ondg is given by the
following formula:

Condg= PARTS1(PKEY,SOURCE,DATE,COST) A
PARTS2(PKEY,SOURCE,DATE,DEPT,COST)

ANN(COST) A $2€(COST) A A2E(DATE)
A vsudPKEY,SOURCE,DATE,£COST) A U()
A o(ECOST) ADW(PKEY,SOURCE,DATE,ECOST)

Now, we are ready to define when two workflows testh are
equivalent. Intuitively, this happens when (a) sohema of the
data propagated to each target recordset is idergitd (b) the
post-conditions of the two workflows are equivalent

Equivalent workflows. Two workflows (i.e., statespl and G2
are equivalent when:

a. the schema of the data propagated to each target

recordset is identical
b. Condgi=Condg;

Finally, we can express the following theorems Wwhiuarantee
that the state transitions that we have definedcareect, in the
sense that they produce equivalent workflows (states). All
proofs are found in [22].

Theorem 1. Let a stateS be a graphG=(V,E) , where all
activities have exactly one output and one consufmereach
output schema. Let also a transitibderive a new stat®’ , i.e., a
new graphG'=(V',E’) , affecting a set of activitieGacVUV' .
Then, the schemata for the activities\6{Ga are the same with
the respective schemata\6fG a.

Theorem 2. All transitions produce equivalent workflows.

Having presented the theoretical setup of the prabbf ETL
optimization, we can now present the search algostthat we
propose for this problem.

4, SEARCH ALGORITHMS

In this section, we present three algorithms towaithe
optimization of ETL processes: (a) an exhaustige@thm, (b) a
heuristic algorithm that reduces the search spadg@ a greedy
version of the heuristic algorithm. Finally, we geat our
experimental results.

4.1 Préiminaries
In order to speed up the execution of algorithms,nged to be
able to uniquely identify a state.

State Identification. During the application of the transitions, we
need to be able to discern states from one anosioethat we
avoid to generate (and compute the cost of) theesstate more
than once. In order to automatically derbaivity identifiers for
the full lifespan of the activities, we choose §sign each activity
with its priority, as it stems from the topologiaaidering of the
workflow graph, as given in its initial form. By ikiag use of
these unique identifiers, we create a string tharacterizes each
state and we name it ttsggnature of the state. For example, the
signature  of the state depicted in Fig. 1 s
((1.3)//(2.4.5.6)).7.8.9

Finally, note that the computation of the cost atle state in all
algorithms is realized in a semi-incremental wapafTis, the
variation of the cost from the staf to the stateS’ can be
determined by computing only the cost of the pattmf the
affected activities towards the target in the néstesand taking
the difference between this cost and the respecidst in the
previous state.

4.2 Exhaustive and heuristic algorithms

Exhaustive Search. In the exhaustive approach we generate all
the possible states that can be generated by apgpbil the
applicable transitions to every state. In genexal,formalize the
state space as a graph, where the nodes are atatabe edges
possible transitions from one state to another.

The Exhaustive Search algorithm (ES) employs a set ofivisited
nodes, which remain to be explored and a seisiied nodes that
have already been explored. While there are stiles to be
explored, the algorithm picks amvisited state and produces
its children to be checked in the sequel. The beapace is
obviously finite and it is straightforward that thagorithm
generates all possible states and then terminafeswards, we
search thevisited states and we choose the one with the
minimal cost as the solution of our problem. Therfal definition

of the Exhaustive algorithm can be found in [22].

Heuristic Search. In order to avoid exploring the full state space,
we employ a set of heuristics, based on simple rebsens,
common sense and on the definition of transitions.

Heurigtic 1. The definition of FAC indicates that it is not
necessary to try factorizing all the activitiesaobtate. Instead, a
new state should be generated from an old one ghratfactorize
transition FAQ that involves only homologous activities and the
respective binary one.

Heurigtic 2. The definition of DIS indicates that a new state
should be generated from an old one through a ilolisér
transition DIS) that involves only activities that could be
distributed and the respective binary one. Sudiities are those
that could be transferred in front of a binaryatyi

Heuristic 3. According to the reasons of the introduction efrge
transition, it should be used where it is applieabdefore the
application of any other transition. This heuristieduces the
search space.

Heuristic 4. Finally, we use a simple “divide and conquer”
technique to simplify the problem. A state is deddin local
groups, thus, each time optimization techniquesapraied in a
part of, instead on the whole, graph.

The input of the algorithnieuristic Search (HS) (Fig. 7) is the
initial workflow (stateSop) and a list of merge constraints that are
used at the pre-processing stage. Next, we prakenvarious
phases of this algorithm.

Pre-processing (Ln: 4-8). First, all the activities that the wéldw

constraints indicate, are merged. Such constraiight be (a) the
semantics of the individual activities, e.g., beftihhe application
of a surrogate key assignment, we must enrich tha evith

information about the respective source, and (lgr-defined
constraints, which capture the fact that a user mdicate that
some activities should be merged in order to redheesearch
space. Also, HS finds all the homologot$) (and distributable
(D) activities of the initial state and then, it dig&l the initial



state So in local groups L) (having as borders the binary
activities, e.g., join, difference, intersectiontc.eand/or the
recordsets of the state).

Algorithm Heuristic Search (HS)

1. Input: An initial stateSy, i.e., a graple=( V, E) and a
list of merge constraintserg_cons
Output: A stateSun having the minimal cost
Begin
apply all

2

3

4, MERaccording to merg_cons;
5. unvisited=

6

7

8

J; visited= ;'S mn=So;
H < FindHomologousActivities(S 0);
D < FindDistributableActivities(S 0);
. L < FindLocalGroups(S 0);
9. foreach giin L {
10. foreach pair(a i,aj)ing i {
11. S NEW & SWA(a. aj ),
12. if (c(S new<c(S mnN))S MN=S new
13. 1}
14. visited < Smn;
15. for each pair (@ i,aj)in H{
16. if ( (ShiftFrw(a i,ab)) and
(ShiftFrw(a i,abp)) {
17. S new € FAC(@apai.aj);
18. if (c(S new<c(S mn))S MN=S new
19. visited < S NEW
20. }
21. unvisited = visited;
22. for each Si in unvisited {
23. foreach a, in D {
24, if (ShiftBkw(a y,ap)) {
25. S new € DIS(a p.a u);
26. if (c(S new<c(S mnN))S MN=S new
27. visited < S NEw
28. 11}
29. for each S in visited {
30. L < FindLocalGroups(S i)
31. foreach giinL {
32. foreach pair(a ,aj)ing i {
33. S new € SWA(ai ,a j);
34. if (c(S neWy<c(S mnN))S MN=S new
35. 1
36. apply all SPLs according to spl_cons;
37. return  Swmn;
38. End.

Fig. 7. Algorithm Heuristic Search (HS)

Phase | (Ln: 9-13). In this phase, HS proceeds with ak th
possible swap transitions in each local group. rgtiene that HS
meets a state with better cost than the minimurhtbas already
exists, it assigns it t8&wn. Note, that all local groups are part of
the same stateS; thus, the output of this phase is a state with a
global minimum cost (concerning only the swap titamss).

Phase Il (Ln: 14-20). This phase checks for possible
commutations between two adjacent local groupseBoh pair of
homologous activities 0By, it tests if both activities can be
pushed to be adjacent to their next binary operéiamction
ShiftFrw() ). Then, it applies factorization over the binary
operator and the pairs of that satisfy the afor¢ioeed

condition. HS adds every new state to thsited list and

keeps record of a state with a new minimum cost.

Phase 1l (Ln: 21-28). HS searches every new state of Phdse
activities that could be distributed with binaryesgtors (function
ShiftBkw() ). Obviously, it is not eligible to distribute agai
the activities that we factorize in Phase II; hend& uses the
distributable activities of the initial stat®)( Again, HS adds
every new state to thasited list and keeps record of a state
with a new minimum cost.

Phase IV (Ln: 29-35). Intuitively, in the previous two pless HS
produces every possible local group, because inifétéme of
each local group there exist its original actiatieninus any
activities that might be distributed to other logabups union any
activities that might be factorized from other gosuln the forth
phase, HS repeats Phase | in order to get all tissilpe states
that could be produced with the application of Hveap SWA
transition in all the nodes that a local group bame. Of course,
if it is necessary, HS updat&un. After the completion of the
above phases, HS applies spBP() transitions in order to split
all the activities that were merged during the preeessing stage.
The constraints for th8PL transition are reciprocal to tidER
transition constraints. Finally, HS returns thetestavith the
minimum cost.

After each transition has taken place, the inpud autput
schemata of each activity are automatically re-geed (see
[22]). We assign a unique signature to each sthtes, the two
lists visited and unvisited do not allow the existence of
duplicate states. Obviously, due to the finiterefahe state space
and the identification of states, the algorithrmiieates.

HS-Greedy. One could argue that Phase | seems to overcharge
HS, considering its repetition in Phase IV. Experts have
shown that the existence of the first phase leadsmuch better
solution without consuming too many resources. Ascslight
change in Phase | (and respectively in Phase \§®improves

its performance. In particular, if, instead of syimg all pairs of
activities for each local group, HS swaps only thtsat lead to a
state with less cost that the existing minimumnth&S becomes a
greedy algorithmHS-Greedy.

4.3 Experimental results

In order to validate our method, we implemented pheposed
algorithms in C++ and experimented on the variabbmeasures
like time (we present it in Table 1 as the volureisited states),
volume of processed rows, improvement and qualitythe

proposed workflow. We have used a simple cost moakéhg

into consideration only the number of processedsrbased on
simple formulae [17] and assigned selectivities tfeg involved

activities. As test cases, we have used 40 diftéf@ih workflows

categorized as small, medium, and large, invohdangnge of 15
to 70 activities of various kinds. All experimentgre run on an
AthlonXP machine running at 1.4GHz with 768Mb RAM.

As expected, in all cases, the ES algorithm wasesl@ompared
to the other two, and in most cases it could nohitgate due to
the exponential size of the search space. As ahblé, in most
cases, we let ES run up to 40 hours. This is thgome for the peak
and then the decrement of the search space of gS3ithn
depicted in Figure 8, because as the number ofitéesi increases
the search space explored in a constant portiotine (40h)
decreases.



Thus, we did not get the optimal solution for Ak test cases, and  provide solutions of approximately the same qualit$-Greedy
consequently, for medium and large cases we con{gasdity of was faster at least 86% (average value was 92%).nfealium
solution) the best solution of HS and HS-Greedythtte best ETL workflows, HS finds better solution than HS-Edg (in a
solution that ES has produced when it stopped €rabland range of 13-38%). On the other hand, HS-Greedy list faster
Figure 9). Table 1 depicts the number of visiteatest for each than HS, while the solution that it provides coblkel acceptable.

algorithm, and the percentage of improvement feaheslgorithm In large test cases, HS proves that it has an aayarbecause it
compared with the cost of the initial state. returns workflows with improved cost over 70% o# ttost of the
We note that for small workflows, HS provides thptimal initial state; while HS-Greedy returns “unstableults in a low

solution according to ES. Also, although both HE kiS-Greedy ~ 2verage value of 47%.

Table 1. Execution time, number of visited states and improvement wrt initial state

type of workflow ES HS HS-Greedy
volumeof | Visited |improve time | visted |improve | time | visited |improve | time
category L states | ment % Sec states | ment % Sec states | ment % Sec
activities (avg)
(avg) | (avg) (avg) (avg) | (avg) (avg) (avg) | (avg) (avg)
small 20 28410 78 67812 978 78 297 72 76 7
medium 40 45110 52° | 144000 | 4929 74 703 538 62 87
large 70 34205 | 45 | 144000 | 14100 71 2105 1214 47 584

" The algorithm did not terminate. The depicted ealtefer to the status of the ES when it stopped.

Table 2. Quality of solution

ES HS HS-Greedy

wor kflow
. 3@ . . . .

category quality of solution % | quality of solution % | quality of solution %

(avg) (avg) (avg)
small 100 100 99
medium - 99 86
large - 98 62

" The values are compared to the best of ES whstnpped.
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The time needed for the execution of the algoritisreatisfactory
compared to the time we will earn from the exequtif the
optimized workflow, given that usual ETL workflowan into a
whole night time window. For example, the averagestvcase of
the execution of HS for large scenarios is apprexaty 35
minutes, while the gain from the execution of thepwsed
workflow outreaches a percentage of 70%. Finally, mention
that the variation of the volume of rows did notaobe the
aforementioned results. This was expected sinceapproach is
general in that it does not in particular dependt@ncost model
chosen.

5. RELATED WORK

There exists a variety of ETL tools in the markeg& mention a
recent review [7] and several commercial tools [JQ]L], [14],

[16]. Although these tools offer GUI's to the deweér, along
with other facilities, the designer is not suppdrie his task with
any optimization tools. Therefore, the design psscdeals with
this issue in an ad-hoc manner. Research effosts extist in the
ETL area, including [5], [4], [6], [13]. Also, we ention three
research prototypes: (a) AJAX [8], (b) Potter’s WhEL9], and
ARKTOS Il [20]. The first two prototypes are basenl algebras,
which we find mostly tailored for the case of horaoniging web
data; the latter concerns the modeling of ETL psees in a
customizable and extensible manner. To our knovdedg work
in the area of ETL has dealt with optimization eso far.

In a similar setting, research has provided resattshe problem
of stream management [1], [3]. Techniques usech@n drea of
stream management, which construct and optimizespta-the-
fly, come the closest that we know of to the optition style that
we discuss in the context of ETL. Neverthelesseasir
management techniques are not directly applicabtggical ETL

problems (a) due to the fact that real time refiticais not always
applicable to legacy systems and (b) pure relakigonarying, as
studied in the field of stream management is ndfickent for

ETL purposes.

Also, to our knowledge, research in stream managen®es not
provide an optimal solution to the optimizationtb& processes,
basically due to the requirement for on-the-fly paration of

results. For example, the authors of [1] verifytttieey cannot
produce a globally optimal plan, although they gplg local

optimization in an ad-hoc manner. Another technjeit of our

work concerns the derivation of the schemata of ittwlved

activities. Quite a long line of research has deith the problem
in its general context [2], [15], [21]; neverthedesie need a fully
automated solution for our particular centralizestracontrolled
setting, therefore we devised our own solutiorhegroblem.

6. CONCLUSIONS

In this paper, we have concentrated on the probleaptimizing

ETL workflows. We set up the theoretical framewddt the

problem, by modeling the problem as a state spazcls
problem, with each state representing a particdésign of the
workflow as a graph. The nodes of the graph repteaetivities

and data stores and the edges capture the flowtafainong the
nodes. Activities are characterized by input antbouschemata.
Since the problem is modeled as a state spacehsganislem, we
have defined transitions from one state to anoth&r.have also
made a thorough discussion on the issues of s¢amiergtion and
the conditions under which transitions can be &ppto states.

Finally, we have presented search algorithms. ,|Fing have
described an exhaustive approach to constructetels space in
its entirety in order to find the optimal ETL woldfv. Then, we
have introduced a heuristic algorithm and its gyeedriant to
reduce the explored search space. Experimentaltsesuggest
that the benefits of our method are significant.

Several research issues are left open as a cotitinuaf this

work, including the physical optimization of ETL viflows, the

smooth adaptation of the ETL workflow to changethiea schema
of the underlying data stores, the exploitatioc@imon tasks in
different workflows and the generalization of oesults to non-
ETL workflows. The theoretical challenge of providi a

complete set of transitions is also open.
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