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Abstract— Information overloading is today a serious concern challenge of integration between patterns and data seems to be
that may hinder the potential of modern web-based information  achievable by designing fundamental approaches for providing
systems. A promising approach to deal with such problem is yatahase support to pattern management. In particular, since
represented by knowledge extraction methods able to produce tt t rel tk led ft | .
artifacts (also called patterns) that concisely represent data. pa grns represent relevant knowie g(.e, often very arge In size,
Patterns are usua”y quite heterogeneous and require ad-hoc |t IS ImpOftant that SUCh kn0W|edge IS handled as fII’St-C|aSS
processing techniques. So far, littte emphasis has been posectitizens. This means that patterns should be modelled, stored,

on developing an overall integrated environment for uniformly processed, and queried, in a fashion analogous to data in
representing and querying different types of patterns. Within traditional DBMSs.

the larger context of modelling, storing, and querying patterns, . . . .
in this paper, we: (a) formally define the logical foundations To this end, our research is focused mainly towards provid-

for the global setting of pattern management through a model iNg @ generic and extensible model for patterns, along with the
that covers data, patterns and their intermediate mappings; (b) necessary languages for their definition and manipulation. In
present a pattern specification language for pattern management this context, there is already a first attempt towards a model
along with safet_y restrictions; a_nd (c) introduce queries and query for pattern management [3], [4], which is able to support
operators and identify interesting query classes. different forms of patterns (constraints, functions, etc.) as the
new data types of the PBMS. In this paper, we provide formal

I. INTRODUCTION foundations for the above issues by the following means:

Nowadays, we are experiencing a phenomenon of informa-, First, we formally define the logical foundations for the
tion overload, which escalates beyond any of our traditional global setting of PBMS management through a model
beliefs. As a recent survey states [1], the world produces that covers data, patterns, and intermediate mappings.
between 1 and 2 exabytes of unique information per year, 90% Second, we discuss language issues in the context of
of which is digital and with a 50% annual growth rate. Clearly,  pattern definiton and management. In particular, we
this sheer volume of collected data in digital form calls for  present a pattern specification calculus that enables us
novel information extraction, management and querying tech- to specify pattern semantics in a rich and concise way.
niques, thus posing the need for novel Database Management Safety issues are also discussed in this context.
Systems (DBMSs). Still, even novel DBMS architectures are Finally, we introduce queries and identify interesting
insufficient to cover the gap between the exponential growth of  query classes for the problem. We introduce query oper-
data and the slow growth of our understanding [2], due to our ators for patterns and discuss their usage and semantics.
methodological bottlenecks and simple human limitations. To The rest of this paper is organized as follows. In Sedtion

compensate for these shortcomings, we reduce the availajlentroduce the notion of Pattern-Base Management system.
data toknowledge artifacte.g., clusters, association rulesksectiori[i[| presents a generic model for the coexistence of data
through data processing methods (pattern recognition, dgidj patterns. In Sectidi/we present the Pattern Specification
mining, knowledge extraction) that reduce their number arl‘_%nguage, that enables us to specify pattern semantics. In
size (so that they are manageable by humans), while presernvdgtion v we explain how patterns can be queried and
as much as possible from their hidden/interesting/availallg,oquce query classes and operators. Finally, in Seation

information. Again, the volume, diversity and complexityye present related work. Sectidfill offers conclusions and
of these knowledge artifacts make their management bytd'bics of future work.

DBMS-like environment imperative. In the remainder of this
document, we will refer to all these knowledge artifacts as
[l. PATTERNS AND PATTERN-BASE MANAGEMENT
patterns SYSTEMS (PBMS'’S)
So far, patterns have not been adequately treated as persis-
tent objects that can be stored, retrieved and queried. Thus, thelo effectively describe what patterns are in our context and
why they are so useful, we present an exemplary scenario,
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representing the head or the body of the rule and the rules
being points in the 2-dimensional space (e.g., the associatjon
rule {T'V, Speakers} = Books is defined by the respective
points in theBody and Head axes).
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providing a compact and rich in semantics representation of
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on the following assumptions: I | | | | | |
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to-many i.e., a pattern can correspond to more than one Raw Data m

. . Layer
data item and vice versa. g et pee

Flat file

Patterns can be managed byPattern-Base Management
System(PBMS) exactly as database records are managedHixy 2. Reference architecture for the Pattern-Base Management System
a database management system. In our setting, a PBMS can
be envisaged as a system where:

« patterns are (semi-)automatically extracted from raw dafdg. [2, we can observe thimtermediate mappingthat relate
and loaded in the PBMS; patterns to their corresponding data, forming the Intermediate

« patterns are updated as new (existing) data are loadedta Layer. Intermediate mappings facilitate the justification
into (deleted from or updated in) the raw databasef any knowledge inferred at the PBMS with respect to the
These updates can be done in an ad-hoc, on-demandaw data; for example, they could be used to retrieve the
periodical (batch) manner [5]; rows that produced the association rule of HigThe overall

. users are enabled to define the internal structure of taechitecture is calledntegrated Pattern-Base Management
PBMS through an appropriate definition language;  Architecture or simply Pattern Warehouse

« users are allowed to pose queries to and retrieve answerslext, we present a brief description of all the entities that
from the PBMS, with the results of these answers propppear in this abstract description of the PBMS:

erly visualized and presented; Intermediate Mappings Layetdeally, we would like this
« an (approximate or exact) mapping between patterns agger to be part of the PBMS, involving specialized storage
raw data is available whenever retrieval of raw datgng indexing structures. In general, one can imagine that the
corresponding to patterns is needed. intermediate mappings can be either precisely traced (e.g.,
The reference architecture for a PBMS is depicted in [Big.through some form of join index between patterns and data)
and consists of three major layers of information organizatioor imprecisely approximated. In the latter case, one can
In the bottom of Fig2, we depict thedata spaceconsisting of employ different variations of these approximations through
data stores that contain raw data (forming thus, the Raw Dalata reduction techniques (e.g., wavelets), summaries, or even
Layer). Raw data can be either managed by a DBMS or can-line data mining algorithms. For practical purposes, though,
be stored in files, streams or any other physical mean thathe PBMS should be constructed in such a way that it functions
managed outside a DBMS. At the top of Fij.we depict the even if intermediate results are out of its control (which we
PBMS repository that corresponds to thattern spaceand would expect as the most possible scenario in real-world
contains patterns. The PBMS repository is managed by theenarios), or even abseib provide a solution towards this
Pattern-Base Management System. Finally, in the middle pioblem, we approximate the relationship between the pattern



and the data space through a specific language, the Pattesimplicity, we focus our examples in the domains of integers
Specification Language (PSL), which will be introduced iand reals, throughout the rest of the paper.

the sequel. PSL is applied both as a language for describingDefinition 1: Data Types(or simply, type$ are defined as
pattern types and instances and as a means to reason overftlws [7]:

properties of the described patterns. « If D is a domain name and is an attribute name then
Pattern Layer Patterns are compact and rich in semantics 4. P is an atomic type.

representations of raw data. In the general case, although nof |t 7, . 7, are types andd, A, ..., A, are distinct

obligatorily, patterns are generated through the application atribute names themt : [Ay:Ty, ..., AT is also a

of knowledge extraction algorithms. In Fi@, two such type, calledtuple type.

algorithms have been applied: an algorithm for the extraction, |f 7 is a type andA is an attribute name thed : {T'}
of association rules and the DBSCAN algorithm [6] for the s ais0 a type. We call these typssttypes.

extraction of clusters. _ _ For a k-ary predicates the signature iskatuple of types
Type Layer The PBMS Pattern Types describe the inteng,q for ak-ary function it is ak + 1-tuple of types.

tional definition, i.e., the syntax of the patterns. Patterns OfThevaIuesofaspecific type are defined the natural way. For

same type share similar characteristics, therefore Pattern Typesnic types, we assume an infinite, countable set of values as

play the role of data types in traditional DBMS's or objeceir domain, which we cafiom(T). The domain of set types

types in OODBMS’s. Normally, we anticipate the PBMSg gefined as the powerset of the domain of the composing

to come with a set of built-in, popular pattern types (€.gyne The domain of tuple types is defined as the product of
association rules, clusters, see also B)gStill, the type layer {air constituent types.

must be extensible, simply because the set of pattern types th%xample 1:Let us consider the following types.
it incorporates must be extensible.

Class Layer The PBMS classes are collections of patternsly = [X:real, Y:real, Z:integer]
which share some semantic similarity. Patterns that are merfl> = { [Id:integer,
bers of the same class are obligatorily required to belong to the Disk:{ [Center:[X:real,Y real], Rad:real] } ] }
same type. Classes are used to create patterns with predeﬁﬂ%j expressions
semantics given by the designer; by doing so, the designer P
makes it easier for the users to work on them in a meaningful  [X:4.1, vV:5.2, Z:3]
way. For example, a class may comprise patterns that resulted { [Id:7, Disk:{ [Center:[X:2,Y:3], Rad:4] }] }

from the same experiments, like the association rules of Fig. )
5| are values of type%; andT; respectively.

Relations in our setting are considered to be sets of tuples
defined over a certain composite data type. We model relations

. ) o ) in the object-relational context and we make the following
In this section, we will give the formal foundations for the;ssymptions:

treatment of data and patterns within the unifying framework
of a pattern warehouse. First, we will quickly introduce the
notions of data types, attributes and relations (in the usual
relational sense). We will exploit the definitions already given
in [7] for this purpose. Then, we will proceed to define
formally pattern types, pattern classes, patterns as well as thé
intermediate mappings. Then, we will define pattern bases and
pattern warehouses.

IIl. M ODELING DATA AND PATTERNS

« For reasons of simplicity, we assume that relations are
sets of tuples of the same type instead of just sets (in
contrast with [7] which require only that relations are
sets).
At least one of the tuple components, by default named
RID, is atomic and all its values are unique. Intuitively,
we want each relation tuple to have a row identifier,
according to classical (object-) relational terminology.
This enables us to use just sets insteadbafis We
A. The Data Space considerRID to be an implicit attribute and we do not
In this section, we will deal with the formal definition of explicitly refer to it when we define the data schema.

the entities of thelata spacgFig.!1), i.e., data types, relations Definition 2 ([7]): A database schemi a pair DB =

and databases. ([D1,...,Dgl, [Ry:T1, ..., Ry:Ty)), whereTy, ..., T, are set
Practically, we start with the data model proposed bypes involving only the domain names corresponding to the
Abiteboul and Beeri in [7], and make some changes in the tyggia typesl/)\l, o b\k and j{\h el ]’{; are relation names.
definitions. This data model is a many-sorted model which pefinition 3 ([7]): An instance ofE\B' i.e., adatabaseis
facilitates the definition of complex values. Our minor chang&s structureD B — ([D1,...,Dyg, [Ry,...,Ry,]), whereR;’s

focus on insertingnamesin the types definitions, so we cangre relations and;’s are domains.

easily access the inner components of complex types. In th&ye also refer toDB as thedatabase typeand to DB as
data model, each constant and each variable is associated Wil\4atabase value

a type and each function and predicate with a signature. Wegyample 2: The following expressions are valid relation
start by introducing simple data types. schemata:

Data types are structured types that use domain nasees, . .
andtuple constructors and attributes. For reasons of space and  Ry:{[A:{}, B:[], C:{[]}]} and R2:{[4, B, C|}



whereas the following expressions are not valid: « Moreover, a pattern type specifiedata schemavhich

5" =~ dictates the schema of the underlying data which have

{A: dR4:[A, B, (. ) .
. AI.%?’ _{ {.H}} and Ry:[4, ’.C] produced the pattern type; practically this is the schema
ExpressionR; is invalid as a set obetsinstead of a set of of the relation which can be employed as the test-bed for

tuples R, on the other hand, is invalid as a tuple (instead of pattern generation/definition.

a setof tuples). Note also that in all our examples we have . Third, it dictates ameasure schemai.e., which set

omitted domains for brevity. Using the full definition is easy;  of statistical measures that quantify the quality of the

for example,R, could be:Ry:{[A:string, B:string, C:real]} approximation is employed by the instances of the pattern
As we will see in the following, we need to be able to  type.

define patterns over joins, projections and selections over, Finally, a template for the formula of the instances

database relations. To do that, we extend Definittowith dictates the structure of the formula. The formula
a set ofmaterialized viewd/, ..., V,, which are defined over is a predicate bounding théataSchema and the
relationsR;, ..., R, using relational algebra. We require that  StructureSchema, expressed in the PSL.

each tuple in a materialized view has a unique identifier calledpafinition 4: A Pattern Typeis a quintuple Name
RID. Throughout the rest of the paper, we address Views as., tureSchema.  DataSchema ’

. . o . MeasureSchema,
relations, unless explicitly specified otherwise.

Formula] such that (a)Name is a unique identifier among
B. The Pattern Space pattern types, (b)StructureSchema is a distinct complex
_ type (can be set, set of sets etc), (ButaSchema is a
Now that we have defined the constructs found at the daid,ion type, (d)MeasureSchema is a tuple of atomic
space, we are ready to proceed with the definition of the .s ang (e)Formula is a predicate expressed in the PSL

gntities belonging to the pa}ttern space. Therefore, we W nguage over th&tructureSchema and theDataSchema.
introduce pattern types, which are templates for the actualyafinition 5: A Pattern (Instance)p over a Pattern Type

patterns and pattern classes which are groups of semantically 5 5 quintuple PID, Structure, Data, Measure

simi_lar patterns. The definition of a pattern base then COMES,.1ula] such that (a)PID is a unique identifier among all

straightforwardly. o _patterns of the same class, (B)ructure and Measure are
Patterns as defined in [3] are compgct,_ yetrich in _ser_nantl_ fid values of the respective schemataR§¥, and (c) Data

representation of the raw data. This informal principle iShd formula are expressions in the PSL language, properly

formally translated as a qumtqple. We W,'”_ |_ntU|t!ver dm('nqnstantiating the corresponding expressions of the pattern type
these components here and give the definition right next.

o First, a pattern is uniquely identified by Rattern Id E.xample 3:Let us now present an example of a pattern

(PID). type Cluster that defines a circular cluster and an example of
. S_ecpnd, a pattern. hass#ructure for example, an asS0- yne of its instance.
ciation rule comprises aead and abody, and a cyclical Pattern TypeCluster
cluster comprises aenter and aradius. Name Cluster
« Third, a pattern corresponds to some underlyatp The Structurg| disk:[Center: [X:real,Y:real], Rad:real]
subset of the underlying data space that is represented by Schema
e . Data rel:{[Al:real, A2:real]}
the pattern must be specified, e.g., through the appropriate Schema
relation. ) ) o Measure| Precision:real
o Fourth, a pattern informs the user on its quality, i.e., how | Schema
closely does it approximate reality as compared to the| Formulal[ (t.A1 — disk.Center.X)> + gt‘Al -
underlying data, through a set of statisticakasures Schema|| disk.Center.Y)? < disk.Rad” where
For example, an association rule is characterized by a t € rel
confidence and a support measure. 5 F3>%t7tern Instanc€ ustomerCluster
. . . . . |
o Finally, a formula provides the richness in semar_ltlcs Structure| disk[Center:[X:32,Y90], Rad12]
for the pattern. Theformula demonstrates a possibly [aia customer:{[Age, Income]}
simplified form, of the relation between the data that are [ Measure]| Precision: 0.91
represented by the pattern and the pattern structure. I Formula|| (t.Age—32)%+(t.Income—90)? < 127 where
SectionlV! we present @attern Specification Language t € customer
(PSL)in which the formula is expressed. Intuitively we can see that the formula requires that all data

A Pattern Typerepresents the intentional description of ghat belong to the relatiomustomer must satisfy the predicate
pattern, pretty much like abstract data types do in the cagedge — 32)2 + (t.Income — 90)? < 122. Precision in this
of object-relational data. In other words, a pattern type aatase indicates that only 91% of them do.
as a template for the generation of patterns. Each pattern isn order to define Pattern Types correctly, we need to be able
an instance of specific pattern type. There are four majoto define theirData.Schema properly. Since a Pattern Type is
components that a Pattern Type specifies. a generic construct, not particularly bound to a specific data
o First, the pattern type dictates the structure of its irset, we employ a set @uxiliary nameswhich are employed
stances, through &tructure schemaFor example, it in the definition of theDataSchema of Pattern Types for the
obliges association rules to comprise a head and a bodpecification of generic relations and attributes.



Having said that, the instantiation procedure that generatagresponding patterns. Naturally, basedfowe can compute
patterns on the basis of Pattern Types, is straightforwattle mappings (ap,q, mapping patterns to their corresponding
Assume that a certain Pattern Typ& is instantiated in a data and (b)p4,, giving all the patterns for each record in the
new patternp. Then: database. Notice that since the relationshipnany-to-many

« The domains involved in th&tructureSchema and the in the general case} is a mapping and not a function.
MeasureSchema of PT are instantiated by valid values For reasons of simplicity, we avoid defining the relationship
in p. between data items and patterns at the level of individual rela-

. The auxiliary relation and attribute names in th&ons and classes. Rather, we employ a generic representation,
DataSchema of PT are replaced by regular relation and?y introducing the union of all data itenas and the union of
attribute names of an underlying database. all patternsQ2. Practically, the existence d®ID’s and PID’s

. Both the previous instantiations apply for thedllows us to perform this union.

FormulaSchema, too: the attributes of the Definition 9: The active data spacef all data items of a
StructureSchema are instantiated to values ano_database_ instande B :_<[D1a_' -y Di]y [Ry, ..., Ry]), ApB,
the auxiliary names of théataSchema are replaced is the union of all relations, i.eApp = R1U---URy,. The

by regular names. All other variable names remain trctive pattern spacef all patterns2 of a pattern base instance
same. PB is the union of all pattern classes, i.8pp = PC1U---U

Having defined the data space and the pattern entities, @Qﬂ o . )
are ready to define the notions Béttern Classand Pattern _ Definition 10: Given the active data- and pattern spaces
Pase (PB)Our final goal is to introduce the global frameworkﬁDB an%QPB’ an mtermelzoiclate patterr?-dAata mappibgver
called Pattern Warehouseas a unified environment in the2ps @nd £pp is a total function® : App x Qpp —
context of which data- and pattern-bases coexist. {true, false}.We say that a data iterd is representedby

A Pattern Class over a pattern type is a collection @fﬁ’attﬁmli dagd Wg \_/vr|ted;>phorhp T’ d Iﬁl (I)(fd’p) ; true.
semantically related patterns, which are instances of this't Should be o .VIOU? nhowt dhe orrlnu ao .e?C | pattern
particular pattern type. Pattern classes play the role of pattd3rf! @Pproximation of the mapping. In principle, it is an

placeholders, just like relations do for tuples in the relationkﬁlsu_e of |mp_Iementat|o_n and_ mosily aF“_“'”'S”a“O” V\_/hether
model. the intermediate mappings will be explicitly saved (with the

Definition 6: A Pattern Classis a triplet [Name, PT storage and maintenance cost that this incurs) or simply

Extension] such that (a)Name is a unique identifier among approx?matgd by the pattern formula (W.ith the respective
all classes, (b)PT is a pattern type and (Fatension is a approximation error). In the sequel, we will demonstrate the
finite set of patterns with pattern typeT usage of the formula as an approximation for the intermediate

Let us now define pattern bases, which are practically finifg2PPINGS. ) .
collections of pattern classes, defined over a set of patter Yow, we are ready to defmeth_e notionRettern Warehouse
types and containing pattern instances. which incorporates the u_nderlymg database_ (or sourge), the

Definition 7: A Pattern  Base  Schema defined Pattern bases and the intermediate mappings. Notice that
over a database schem®D is defined as PB — althpugh we .separate patterns frc_)m data_l, we negd the.fuII
<[B\1,...7B\n]7[lga:PTl,...,@:PTm]>, where PT's environment in order to answer interesting queries, going
are pattern types involving the domairB,..... D, and all th_e way back to the data and to support interactive user
15@,8 are pattern class names. Y sessions that navigate from the pattern to the data space and

Definition 8: An instance of PB, ie., a pattern ' Co versé: _ _
. ' ' Definition 11: A Pattern Warehouse Schemia a pair
base over a databaseDB is a structure PB = 5 55 _— . —
; (DB, PB), where DB is a database schema aftB is a
([PTy,...,PIy],[PCh,...,PCy]), where PC;’s are
pattern classes defined over pattern typ&g with patterns patter_n _b_ase schema. . .
whose data range over the dataliB Definition 12: A Pattern War_ehouses an instance of a
' pattern warehouse schema defined as a triple3, PB, @),
where DB is a database instancd}B is a pattern base
C. The Pattern Warehouse instance, andb is an intermediate pattern-data mapping over
Having defined the data and the pattern space, we are reét§ and PB.
to introduce the global framework, in the context of which
data- and pattern-bases coexist. To this end, we formally defid- PATTERN SPECIFICATION LANGUAGE AND FORMULA
the intermediate mappings between data and patterns and thEhe pattern formula describes the relation between the
overall context of patterns, data and their mappings. patterns, which are described in the structure field, and the
Each pattern corresponds to a set of underlying data whaoaw data which are described in the source field. It is evident
it represents. At the same time, each record in the soutbat we need a common language to describe all these fields.
database corresponds to a set of patterns that abstractly reprerefore, in this section, we present the Pattern Specification
sent it. We assume a mappifigthat relates patterns with theirLanguage (PSL), with particular focus on the following as-
corresponding data. Through this mapping, we can captyrects: (a) language requirements, (b) language syntax, (c) the
both the relationship between a pattern and its correspondingatment of functions and predicates by PSL and (d) safety
data and at the same time, the relationship of a record with isnsiderations.



RequirementsGiven the complexity of the relation thatcan create new values (not belonging to the domain of the
may exist between the data and the patterns, as well as da¢abase). Therefore, we should consider a broader sense of
various complicated structures of data we may face, sevetlamain independence similar to the one presented in [7],
requirements arise for the pattern specification language: [8], [9], which allows the finite application of functions. For

« The easy and safe handling of (nefupctionsandpred- €xample, then-depth domain independence as suggested in
icates in order to describe complex relations betweelf] considers domain independence with respect to the active
patterns and data. domain closed under application of functions. This means

« Queries must be able teasonfor patterns and data basedhat the active domain and all the values that can be produced
on the formula. This means that the formula must by applying the database functiomstimes, wheren some
expressed in a generic language that facilitates reasonffitite integer. . _
methods. The easiest way to ensure safety in these terms is to

« The formula must benformative to the user, i.e., the range restrictall variables appearing in a query. To this end,
user must be able to intuitively understand the abstracti¥f¢_introduce thewhere keyword in the formula, which
provided by the pattern through simple inspection.  facilitates the mapping of the formula predicate free variables

Syntax.Considering the previous requirements, we chod8 the relation schema that appears in etaSchema or

as Pattern Specification Language the complex value calcul{fgite component. More specifically, we require titiaére are

presented in [7] by Abiteboul and Beeri. This calculus is go’free variables in thefp that are not mapped to the relation

many-sorted calculus. The sorts are types as defined pr&fitn€Data component by the use of théiere keyword This
ously. Each constant and each variable is associated witﬁ?%”‘?“o“' guarantees that all the variables appearirfy iare
type and each function and predicate with a signature. TRENer range restrlct.ec.i or that the system knoyvs how to range
signature of ak-ary predicate the signature is fatuple of restrict them to a finite set of values whep is used in a
types. The signature of A-ary function is ak + 1-tuple of dUerY: )

types, involving the types of the parameters and the result flow we can f.ormally define the well-formegbrmula for

the function. The terms of the language is the smallest set tﬁ)& pgttgrn—type. . )
contains the atomic constants and variables, and it is closed®€nition 13: A pattern typeformula is of the form:

under the application of functions. Simple formulae consist of fp(dv,pv), where dv € ds Q)
predicates applied to terms and formulae are combinationswai

atomic formulae through the combination of the connectiv%sa r?a[gl g 1?1 a(:r?(rar:%?;\ pr:gIgatfb).e:zrskepsbrgrﬁ)dlt?\aetd&;irgn
AV,—, and the quantifiers,3. PP y yw

in DataSchema andpv are variable names that appear in the

Functions and PredicatesFunctions and predicates are
StructureSchema.

quite important in the PBMS .settmg, since the approximation At instantiation timepv is assigned values of thetructure
of the data to patterns mapping, usually needs complex func-

. ) ) mponent andiv is mapped to the relation appearing in
tions to be e>.<pressed. Funcu_ons and 'predlca}tes can p‘.’s’?ﬁ%a component. The definition for the pattern well-formed
appear both in the formula field and in queries, associati

i . . rmula iS now straightforward:
relation names with the pattern structure. We believe t o ) . )
L . . Definition 14: A pattern formula is of the form:
having interpreted functions is the best approach for the o o
PBMS, since we would like the formula to be informative fp(dv), where dv € ds @)
to the user and we would like to be able to reason on it. Fix
semantics thus, become necessary if everyone should be
to understand what a function name stands for. appearing inData component.

Safety and Range Restrictiorhe formula is a predicate that From the previous definitions the semantics of thigere

we would ideally like to be true for all the data that are mapp%yword become evident: we impose that the variables of

toa pattern. Not|_ce t_hat th_e formula by itself does not Contaife formula will take values from specific relations when the
a logical expression involving the pattern structure schema mula predicate is employed in queries

the data schema, i.e., it is not a query on the relations of t eExampIe 4:Let us consider the following formulas
raw data. The formula is merely predicateto be used in 1) f(z) wHerer € R(z) '
qgueries. We would like for example to use it in queries that 2) f(é(x) ) wﬁerex € R(z)

igate betw the the dat d th tt like th
navigate between the the data an © patiern space i eIn ﬁwe first formula variable: is mapped taR using thewhere

following: (| fpx) Az € R) keyword, thus thg‘ormula_is we.II f_ormed. Keep in mind that
the formula predicate by itself is just the pditx), which is

where fp is a formula predicate an® is a relation appearing not range restricted. The second formula is not well-formed

in the Data component. We require thafp is defined in sincey is not mapped viavhereto any relation, or otherwise

such a way that we can construct queries like the previouange restricted.

which are “safe”. Safety is considered in terms ddmain

independenceStill, we cannot adopt the classical notion of V. QUERYING THE PATTERN WAREHOUSE

domain independence (which restricts values to the activeAs already mentioned before, in our approach, data and

domain of the database), since even the simple functiopatterns are distinct entities, stored in different ways (data-

ere fp (formula predicate) is a PSL predicatéy are
lr‘?ables mapped by thevhere keyword to the relation



vs. pattern-bases). This is justified mainly for performancegpresented by two different patterns with formylaand f>
maintenance and administration issues (e.g., we anticipate tiespectively. In this case, the query condition corresponds to
the PBMS will employ different data structures and querthe conjunction betweelfi; and fs.
processing for the management of patterns; the back-stag@) Q2: Queries that have as results patternQueries
synchronization of patterns and evolving data is also more effif this type always return a pattern warehouse containing
cient in a multi-tier, load balanced architecture). Neverthelegsatterns of the input warehouse that satisfy some conditions
all these do not imply that the querying process is restrictel new patterns created from existing ones. In all cases,
simply to patterns or data. More precisely, we define queriesttte database of the output pattern warehouse is empty, i.e.,
be posed over the pattern warehouse and not individually ovg(D B, PB, ®)) = (lpg, PB’, —).
its data- or pattern-base components. Through this approachQueries of the first type are very close to queries belonging
we are able to sustain queries traversing from the pattern to theclassQl, i.e., they select patterns already contained in the
data space and vice-versa. At the same time, the consisteimgyut pattern base. For example, the query selecting patterns
of the results is guaranteed by the pattern-data mapping satisfying conditionz € PC A ¢(x) is an example of query
Definition 15: Let PW the set of all possible Pattern Warebelonging toQ2, returning all patterns belonging to claBg’
houses. A query is a function with signatu”V — PW. and satisfyingp. Queries of this type do not require the usage
Given a query; and a pattern warehoupe = (DB, PB, ®), of the input database for their computation.

with pw = (DB, P/’E),/q\(pw) = (DB, PB',?'), DB' = The second type of queries are more interesting and support
([Dy,...Dg], [R1:Th]), PB'" = ([D1,...,Dn],[PC1:PTy]). the generation of new patterns (of possibly new pattern types)
We assume thatt,,t,(t, € Ri At, € PCy) = &'(t,,t,). from the ones contained in the input warehouse. To these

Note that, similarly to the relational case, the result gfatterns, new PIDs are assigned automatically and a (re)-
a query is always a pattern warehouse containing just ocemputation of the measures is required. Note that, differently
relation and one pattern class. It is also important to poifrfbm the first type of queries, in this case, due to the measure
out that, in practice, even if a query always involve both th@e)-computation, both the input database and pattern base are
data and pattern space, operations over patterns are execused to answer this type of queries.
in isolation, locally at the PBMS. The reference to the un- One of the main important questions that arises in this
derlying data is activated only on-demand (whenever the usase is how the formula of the new patterns is created. In
specifically requests so) and efficiently enabled through theneral, new formulas can be created by applying well defined
stored intermediate mappings or the formula approximatioroperators (for example conjunction) to the formulas of some

An important point where théW queries differ from the input patterns. Of course, in this case, the data source of the
relational queries is the existence of the formula componemitput pattern has to be changed accordingly from the data
and the reasoning options that it offers. Notice that we do naburce of the input ones.
consider the extraction of new patterns from the data itself,3) Q3: Queries that have as a result both patterns and
i.e., the creation of a formula from the system, given only thgata: These queries are combinations of the queries of the
data. This work cannot be done automatically, without sonpeevious categories. They return a pattern warehouse where
semantic knowledge from the user, and it cannot be done wiibth the database and pattern base may not be empty. For the
simple queries. computation of this kind of queries, both the input database
and pattern base are required. For example, a query of this
type, might involve asking the system to display the pattern
that had the most data mapped to it, as well as the data

In the sequel, we present a fundamental classification of f}gmselves, ranging over the patterns of the intersection of two
queries. The classification is based on the type of the resiigtern classes (in order to find the most important patterns —

generated by the query. Indeed, even if queries are defined Qyg{ctically the ones generated by two different data mining
pattern warehouses, they may deal either with data, patterngjorithms).

both. In the following,dpp represents an empty pattern base
and@ppz an empty database.
1) Q1: Queries whose results are dat@ueries of this type B. Query operators

always return a pattern warehouse with an empty pattern baserhe classification of the queries implies the existence of
i.e., ¢(DB, PB,®)) = (DB',0pp, —), Where — represents some basic operators that provide data/pattern base manipu-
no function (since the domain is empty). These queries Meifions. In particular, queries belonging to each class rely on
ask for data that comply to some expression, or to a Coffifferent types of operators, depending on the result we want

bination of pattern formulas and other restrictions given ig obtain. More precisely, we consider the following groups
the query. The queries of this type are thus very close to theoperators:

gueries we ask in a DBMS although here we use the pattern  o.iohase operatorsthey can be applied locally to the

formulas, i.e, both the database and the pattern base of the g\ op : DB — DB. We denote the set of database
input warehouse must be accessed to answer the query. operat(.)rs Witmp '

For example, suppose you want to determine data belonging
to two d'ﬁerentl classes (thus, data Cla§§|f'eq in two differ- lin the following we denote withDB the set of all possible database
ent ways) obtained as result of a classification process amdances and withP5 the set of all possible pattern bases.

A. Classification of Queries



« Pattern base operatorshey can be applied locally to the « Identity (=). Two patterng; andp, are identical if they
PBMS. op : PB — PB. We denote the set of database have the samé&ID, i.e.p,.PID = p,.PID.
operators withOp. o Shallow equality(=°). Two patternsp; and p, are
o Cross-over database operatorthey involve evaluation shallow equal if their corresponding components (except
on both the DBMS and the PBMS, the result is a for the PID component) are equal, i.e;.Structure =
databaseop : DB x PB — DB. We denote the set of pa.Structure, p1.Source = py.Source, p1.Measure =
database operators with¢p. p2.Measure, and py.formula = ps.formula. Note
o Cross-over pattern base operatotthey involve evalua- that, to check the equality for each component pair, the
tion on both the DBMS and the PBMS, the result is a basic equality operator for the specific component type
pattern baseop : DB x PB — PB. We denote the set is used.
of database operators withep. « Deep equality(=?). Two patternsp; and p, are deep
Cross-over operators correlate patterns with raw data, provid- equal if their corresponding data are identical, i.e.,
ing a way for navigating from the pattern layer to the raw data Vz = — p; & x — pa.
layer and vice versa. Their execution requires querying thee Subsumption(=<). A pattern p; subsumes a pattern

raw data repository, thus they can be consideredxagensive p2 (p1 =X po) if they have the same structure
operations. but po represents a smaller set of raw data, i.e.

Queries presented in SectiotAl rely on the previous p1.Structure = py.Structure, pi.Source C py.Source
operators. In particular, for queries of typel, the new and p;. formula =< ps. formula.

database can be generated by using some database or cOsswplex predicatesThey are defined by applying usual
over database operators. On the other hand, for queries|ggfical connectives to atomic predicates. ThusFjfand F,
type @2, the new pattern base can be generated by usiag predicates, theR; A Fy,Fy V Fy,—F, are predicates. We
pattern base or cross-over pattern base operators. Queriemake aclosed worldassumption, thus the calculation ef
type @3 can use all the considered operators to generate ielways finite.
new database and/or the new pattern base. 2) Pattern base operator€)p.. In this subsection, we
Note that, similarly to the relational case, operators mintroduce several operators defined over patterns. Some of
nipulate relations and/or classes. Relation schemas, pattgiem, like set-based operators, renaming and selection are
types, functions and predicate sets can be implicitly computgdite close to their relational counterparts; nevertheless, some
from them. Thus, in the following, according to the relationagthers, like join and projection have significant differences.
case, operators are defined over relations and classes, andsétebased operatarsSince classes are sets, usual operators
corresponding data/pattern bases are implicitly computed. such as union, difference and intersection are defined for pairs
In the following, we present examples of the last threef classes of the same pattern type.
classes of operators (database operators coincide with usR@haming Similarly to the relational context, we consider a
relational operators). Before presenting such operators, vemaming operatgs that takes a class and a renaming function
introduce some examples of predicates defined over patterasd changes the names of the pattern attributes according to
1) Pattern predicates:We identify two main classes of the specified function.
atomic predicates: predicates over patterns and predicates qM@liection The projection operator allows one to reduce the
pattern components. From those atomic predicates we @afucture and the measures of the input patterns by projecting
then construct complex predicates. In the following, we denog@it some components. The new expression is obtained by pro-
pattern components by using the dot notation. For example, jBeting the formula defining the expression over the remaining
measure component of a pattgriis denoted byp.Measure.  attributes [10]. Note that no projection is defined over the data
Predicates over pattern componerithey check properties of source, since in this case the structure and the measures would
specific pattern components. Lpt and p, be two patterns, have to be recomputed.
possibly selected by some queries. The general form of a et ¢ be a class of pattern type. Let s be a non empty
predicate over pattern componentstigt,, wheret, andt; |ist of attributes appearing it.Structure and im a list
are path expressions that must define components of pattesngttributes appearing ipt.Measure. Then, the projection
p1 and po, of compatibletype andf must be an operator, operator is defined as follows:
defined for the type of; andt¢,. For example, ift; and s Tasamy(€) = {(id(), m5,(s), d, 7] (m), msuim(€))| Ip €
are integer expressions, théncan be a disequality operatore, p = (pid, s,d, m,e)}
(e.g. one of<, >). We consider the following special cases: |n the previous definitionid() is a function returning new
o If t; andt, are pattern data for patterps andp., then pids for patternsy/” (m) is the usual relational projection of
0 € {=,C}. t1 =t is true if and only ifVx 2 — p; <  the measure component angl (s) is defined as follows: (i) if
r — py andt; C ¢y is true if and only ifVx 2 — p; = s is a tuple type, them}, (s) is the usual relational projection;
T < pa. (i) if s is a set type, them},(s) is obtained by keeping the
o If ¢, andt, are pattern formulas for patterps andp., projected components and removing the rest from set elements.
thend € {=,=<}. t; =ty is true if and only ift; =t The last component;, ;,(¢) is the new formula. This can
andt; < tq is true if and only if¢; logically impliest;.  only be computed in certain cases, when the theory over which
Predicates over patterndMe consider the following set of the formula is constructed admits projection. This happens for
predicates: example for the polynomial constraint theory [10].



Selection The selection operator allows one to select the v(c¢) = {d|3p,p € c A d — p}

patterns belonging to one class that satisfy a certain predicdd@ta covering Given a patterp and a dataseb, sometimes

involving any possible pattern component, chosen among tihds important to determine whether the pattern represents

ones presented in SectidnAB.1. Let ¢ be a class of patternit or not. In other words, we wish to determine the subset

type pt. Let pr be a predicate. Then, the selection operator & of D represented by (p can also be selected by some

defined as follows: query). To determineS, we use the formula as a query on
opr(c) = {plp € c A pr(p) = true} the dataset. Lep be a pattern, possibly selected by using

Join. The join operation provides a way to combine patterrguiery language operators, and a dataset with schema

belonging to two different classes according to a join predicate, , ...,a,,), compatible with the source schema pf The

and a composition function specified by the user. datacovering operator, denoted W (p, D), returns a new
Let ¢; and c; be two classes over two pattern typeslataset corresponding to all tuplesiinrepresented by. More

pt1 and pty. A join predicate F' is any predicate defined formally,

over a component of patterns im and a component §,(p, D) = {t|t € D,p.formula(t.ay,...,t.a,) = true}

of patterns in c;. A composition function c() for In the previous expressiom,a; denotes a specific compo-

pattern typespt; and pts is a 4-tuple of functionsc = nent of tuplet belonging toD andp. formula(t.ay, ..., t.a,)

(€StructureSchemas CDataSchemas CMeasureSchemas CFormula), S the formula predicate of instantiated by replacing each

one for each pattern component. For example, functig@riable corresponding to a pattern data component with values

CStructureSchema takes as inpUt two structure values obf the considered tuple

the right type and returns a new structure value, for aNote that, since the drill-though operator uses the interme-

possible new pattern type, generated by the join. Functiogigite mapping and the data covering operator uses the formula,

for the other pattern components are similarly defineghe coveringd(p, D) of the data seD = ~(p) returned by the

Given two patterngp; = (pidl,sl,d1,ml1, f1) € ¢ and drill through operator, might not be true. This is due to the

p2 = (pid2,s2,d2,m2, f2) € ca, c(p1,p2) is defined as the approximating nature of the pattern formula.

patternp with the following components: 4) Cross-over pattern base operatafp:

Structure : csiructureSchema(s1, 52) Pattern covering Sometimes it can be useful to have an
Data : cpataschema(dl, d2) operator that, given a class of patterns and a dataset, returns all
Measure : creasureSchema(ml, m2) patterns in the class representing that dataset (a sort of inverse
Formula : ¢formuta(f1, f2). datacovering operation). Let be a pattern class anf a

The join of ¢; and ¢, with respect to the join predicat® dataset with schemgus, ..., a,,), compatible with the source
and the composition function denoted by:; x . ¢2, ISNOW  schema of the: pattern type. The pattercovering operator,

defined as follows: denoted a#,(c, D), returns a set of patterns corresponding to
€1 MFpeC2 = all patterns inc representingD. More formally:
{c(p1,p2)|p1 € 1 Apa € ca A F(p1,p2) = true}. . ap}(f’D) = {plp € ¢,Vt € D p.formula(t.a1,...,t.an) =
L . . ruerp.
Similarly to the relational context, thidatural Joincan be ote that:

defined as a special type of join. We assume it can be applie _ _
only to pairs of patterns having the same data source, which isp(c’ D) ={plp € ¢ 6a(p, D) = D}
also assigned to the output pattern. The natural join is defined
asc; M, c2, WhereF is the predicate requiring the equality VI. RELATED WORK
for attributes with the same name and type in the structureAithough significant effort has been invested in extending
components andy() is the following composition function: database models to deal with patterns, no coherent approach
¢ = (c<,> LdyUnui, N), Where: has been proposed and convincingly implemented for a generic
e c. > returns a record with two components, one for eaghodel.
input structure value; There exist several standardization efforts for modeling
o |4 is a function that takes two patterns with the sameatterns, like the Predictive Model Markup Language (PMML)
data source and returns it; [11], which is an XML-based modeling approach, the 1SO
o Upyy returns a record with one component for each inp®QL/MM standard [12], which is SQL-based, and the Com-
measure and assign aull” to all of them (thus, measuresmon Warehouse Model (CWM) framework [13], which is a

are not recomputed for the new dataset); more generic modeling effort. Also, the Java Data Mining
o A is the logical conjunction. API (JDMAPI) [14] addresses the need for a language-based
3) Cross-over database operatotd-p: management of patterns. Although these approaches try to

Drill-Through. The drill-through operator allows one to navfepresent a wide range of data mining result, the theoretical
igate from the pattern layer to the raw data layer. Thus lilackground of these frameworks is not clear. Most importantly,
takes as input a pattern class and it returns a raw data $setugh, they do not provide a generic model capable of
More formally, letc be a class of pattern typer and letd handling arbitrary cases of pattern types; on the contrary, only
be an instance of the data schemaof pt. Then, the drill- a given list of predefined pattern types is supported.

through operator is denoted by c) and it is formally defined  To our knowledge, research has not dealt with the issue
as follows: of pattern management per se, but, at best, with peripheral
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proximate problems. For example, the paper by Ganti et. aB] S. Rizzi, E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, M. Terrovitis,

[15] deals with the measurement of similarity (or deviation, P. Vassiliadis, M. \"/e_lzirgiannis_, and E. Vrachnos, “Towards a logical
in th th ) bul between decision trees. freque model for patterns,” irProceedings of ER 2002003.
In the authors’ vocabu ary) W ISI d qu I’[H] S. Rizzi, E. Bertino, B. Catania, and M. Golfarelli, “A logical framework

itemsets and clusters. Although this is already a powerful for pattern representation,” iRroceedings of the PANDA Workshop on
approach, it is not generic enough for our purpose. The most Pattern-Base Management Syste@d03, pp. 31-38. =~

| ¢ h effort in the it ¢ . it J. Widom, “Research problems in data warehousingPiioceedings of
relevant research efiort in the literature, concerning pattermn: cjkm 'gs, Baltimore, Maryland, USA ACM, 1995, pp. 25-30.
management is found in the field of inductive databases, meajat M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
as databases that, in addition to data, also contain patterns for discovering clusters in large spatial databases with noise?rat.

’ . T . 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD9Y96,

[16], [17]. Our approach differs from the inductive database ;" >56 531
one mainly in two ways. Firstly, while only association rules[7] s. Abiteboul and C. Beeri, “The power of languages for the
and string patterns are usually considered there and no attempt Manipulation of complex valuesYLDB Journal: Very Large Data
. de t d | tt del i h Bases vol. 4, no. 4, pp. 727-794, 1995. [Online]. Available:
IS ma _e owards a general patern _mo €l, In our apprpac no citeseer.nj.nec.com/abiteboul95power.html
predefined pattern types are considered and the main foc[8$ D. Suciu, “Domain-independent queries on databases with external

lies in devising a general and extensible model for patterns. functions,” inProceedings of Database Theory - ICDT'95,Prague, Czech

Secondly, differently from [16], we claim that the peculiarities Republic, January 11-13, 199Ser. Lecture Notes in Computer Science,
Y, ) y ’ . p : G. Gottlob and M. Y. Vardi, Eds., vol. 893. Springer, 1995, pp. 177-

of patterns in terms of structure and behavior, together with 190.

the characteristic of the expected workload on them, call for §] M. Escobar-Molano, R. Hull, and D. Jacobs, “Safety and translation

logical separation between the database and the pattern-base inof calculus queries W|th_ scalar functions,” Rroceedings of PODS'93,

g p p May 25-28, 1993, Washington,DCACM Press, 1993, pp. 253-264.
order to ensure efficient handling of both raw data and pattefng] P. Kanellakis, G. Kuper, and P. Revesz, “Constraint Query Languages,”

through dedicated management systems. Journal of Computer and System Scienoed. 51, no. 1, pp. 25-52,
995

: . 1995,
Finally, we remark that eve.n if some I"fmguages have be F.ﬂ] “Predictive Model Markup Language (PMML),” http://www.dmg.org/
proposed for pattern generation and retrieval [18], [19], they pmmispecss/2/pmmLv2.0.html, 2003.
mainly deal with specific types of patterns (in general, asso€i2l 1SO SQL/MM Part 6’ http:/www.sql-
. . 99.0rg/SC32/WG4/Progressidcuments/FCD/fcd-datamining-
ation rules) and do not consider the more general problem of 5401205 pdf. 2001.
defining safe and sufficiently expressive language for queryifig] “Common Warehouse Metamodel (CWM),” http://www.omg.org/cwm,
001.

heterogeneous patterns. 2
9 P [14] “Java Data Mining API,” http://www.jcp.org/jsr/detail/73.prt, 2003.

[15] V. Ganti, R. Ramakrishnan, J. Gehrke, and W.-Y. Loh, “A framework

VIl. CONCLUSIONS ANDFUTURE WORK for measuring distances in data characteristiP€DS 1999.
. . . . [16] T. Imielinski and H. Mannila, “A database perspective on knowledge
In this paper we have dealt with the issue of modelling and * discovery; Communications of the ACMol. 39(11), pp. 58-64, 1996.

managing patterns in a database-like setting. Our approachili$ L. De Raedt, "A perspective on inductive databas&GKDD Explo-
enabled through a_Pattem_Base Manageme_m Systgm, enab[lji.g]g stli?:o?loé.lllgzs)éig,l:r?d_757.’ é?acr)len Extension to SQL for Mining
the storage, querying and management of interesting abstrac- association Rules,Data Mining and Knowledge DiscoveryMol. 2,
tions of datg which we qall patterns.' In this paper, we havg (gg] $oi n?i'eﬁgls lég;r;jzi«\/ilrgn?;.ﬂ AISOL: A Query Language for Database
formally defined the logical foundations for the global setting™ o T2 S et o doe Disco)(/eryl\%ol.gz, 0. 4, pp,
of PBMS management through a model that covers data, 373-408, 1999.
patterns and intermediate mappings and (b) discussed langu&@leA. Siblerschatz and A. Tuzhillin, “What makes patterns interesting in
issues for PBMS management. To this end we presented a 'B;?;"'Eﬂgﬁ\g;fnog\%{ gf’srfg.méEpi.Egggfgiif'igsgg” Knowledge and
pattern specification language for pattern management algpig B. Catania, A. Maddalena, E. Bertino, I. Duci, and Y. Theodoridis, “To-
with safety constraints for its usage and introduced queries wards a benchmark for pattern bases,” http://dke.cti.gr/panda/index.htm,
and query operators and identified interesting query classes.

Several research issues remain open. First, it is an interesting
topic to incorporate the notion of type and class hierarchies in
the model [3]. Second, we have intentionally avoided a deep
discussion of statistical measures in this paper: it is more than a
trivial task to define a generic ontology of statistical measures
for any kind of patterns out of the various methodologies
that exist (general probabilities, Dempster-Schafer, Bayesian
Networks, etc. [20]). Finally, pattern-base management is
not a mature technology: as a recent survey shows [21], it
is quite cumbersome to leverage their functionality through
object-relational technology and therefore, their design and
engineering is an interesting topic of research.
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