
1

Modeling and Language Support for the
Management of Pattern-Bases

Manolis Terrovitis1 Panos Vassiliadis2 Spiros Skiadopoulos1 Elisa Bertino3 Barbara Catania4 Anna Maddalena4

Abstract— Information overloading is today a serious concern
that may hinder the potential of modern web-based information
systems. A promising approach to deal with such problem is
represented by knowledge extraction methods able to produce
artifacts (also called patterns) that concisely represent data.
Patterns are usually quite heterogeneous and require ad-hoc
processing techniques. So far, little emphasis has been posed
on developing an overall integrated environment for uniformly
representing and querying different types of patterns. Within
the larger context of modelling, storing, and querying patterns,
in this paper, we: (a) formally define the logical foundations
for the global setting of pattern management through a model
that covers data, patterns and their intermediate mappings; (b)
present a pattern specification language for pattern management
along with safety restrictions; and (c) introduce queries and query
operators and identify interesting query classes.

I. I NTRODUCTION

Nowadays, we are experiencing a phenomenon of informa-
tion overload, which escalates beyond any of our traditional
beliefs. As a recent survey states [1], the world produces
between 1 and 2 exabytes of unique information per year, 90%
of which is digital and with a 50% annual growth rate. Clearly,
this sheer volume of collected data in digital form calls for
novel information extraction, management and querying tech-
niques, thus posing the need for novel Database Management
Systems (DBMSs). Still, even novel DBMS architectures are
insufficient to cover the gap between the exponential growth of
data and the slow growth of our understanding [2], due to our
methodological bottlenecks and simple human limitations. To
compensate for these shortcomings, we reduce the available
data toknowledge artifacts(e.g., clusters, association rules)
through data processing methods (pattern recognition, data
mining, knowledge extraction) that reduce their number and
size (so that they are manageable by humans), while preserving
as much as possible from their hidden/interesting/available
information. Again, the volume, diversity and complexity
of these knowledge artifacts make their management by a
DBMS-like environment imperative. In the remainder of this
document, we will refer to all these knowledge artifacts as
patterns.

So far, patterns have not been adequately treated as persis-
tent objects that can be stored, retrieved and queried. Thus, the

This work was supported by the PANDA IST Thematic Network.
1 School of Electrical and Computer Engineering, Nat’l Technical Univ. of

Athens, Zographou 157 73 Athens, Hellas,{mter,spiros}@dblab.ntua.gr
2 Dept. of Computer Science, Univ. of Ioannina, Ioannina, Hellas, pvas-

sil@cs.uoi.gr
3 DICO, Univ. of Milan, Italy, bertino@dico.unimi.it
4 Dept. of Computer and Information Science, Univ. of Genoa, Italy,

{catania,maddalena}@disi.unige.it

challenge of integration between patterns and data seems to be
achievable by designing fundamental approaches for providing
database support to pattern management. In particular, since
patterns represent relevant knowledge, often very large in size,
it is important that such knowledge is handled as first-class
citizens. This means that patterns should be modelled, stored,
processed, and queried, in a fashion analogous to data in
traditional DBMSs.

To this end, our research is focused mainly towards provid-
ing a generic and extensible model for patterns, along with the
necessary languages for their definition and manipulation. In
this context, there is already a first attempt towards a model
for pattern management [3], [4], which is able to support
different forms of patterns (constraints, functions, etc.) as the
new data types of the PBMS. In this paper, we provide formal
foundations for the above issues by the following means:

• First, we formally define the logical foundations for the
global setting of PBMS management through a model
that covers data, patterns, and intermediate mappings.

• Second, we discuss language issues in the context of
pattern definition and management. In particular, we
present a pattern specification calculus that enables us
to specify pattern semantics in a rich and concise way.
Safety issues are also discussed in this context.

• Finally, we introduce queries and identify interesting
query classes for the problem. We introduce query oper-
ators for patterns and discuss their usage and semantics.

The rest of this paper is organized as follows. In SectionII
we introduce the notion of Pattern-Base Management system.
SectionIII presents a generic model for the coexistence of data
and patterns. In SectionIV we present the Pattern Specification
Language, that enables us to specify pattern semantics. In
Section V we explain how patterns can be queried and
introduce query classes and operators. Finally, in SectionVI
we present related work. SectionVII offers conclusions and
topics of future work.

II. PATTERNS AND PATTERN-BASE MANAGEMENT

SYSTEMS (PBMS’S)

To effectively describe what patterns are in our context and
why they are so useful, we present an exemplary scenario,
summarized in Fig.1. On the left hand side of Fig.1, one
can observe the transactions made in a particular store. An
algorithm for the extraction of association rules of the form
body ⇒ head has been applied over these data and the results
are depicted in the right-hand side of Fig.1. We choose a
2D representation of the association rules, with each axis



2

{Books, TV, Speakers}


{Books, TV, Speakers}


{EarPhones, CD Player, CD’s}


{EarPhones, SEGA, CD Player, CD’s}


{TV, Speakers}


{Books}
{Earphones}


{CD Player, Cd’s}


Data Space
 Pattern Space


Fig. 1. Patterns (association rules) and their mapping to raw data

representing the head or the body of the rule and the rules
being points in the 2-dimensional space (e.g., the association
rule {TV, Speakers} ⇒ Books is defined by the respective
points in theBody andHead axes).

Thus, patterns can be regarded as artifacts, which describe
(a subset of) raw data with similar properties and/or behavior,
providing a compact and rich in semantics representation of
data. Based on this observation, we can base the discussion
on the following assumptions:

• There exists adata space(the space of raw data) and a
pattern space.

• There always existrelationshipsamong the members of
the data space and the members of the pattern space. In
general, these relationships can be of cardinalitymany-
to-many, i.e., a pattern can correspond to more than one
data item and vice versa.

Patterns can be managed by aPattern-Base Management
System(PBMS) exactly as database records are managed by
a database management system. In our setting, a PBMS can
be envisaged as a system where:

• patterns are (semi-)automatically extracted from raw data
and loaded in the PBMS;

• patterns are updated as new (existing) data are loaded
into (deleted from or updated in) the raw database.
These updates can be done in an ad-hoc, on-demand or
periodical (batch) manner [5];

• users are enabled to define the internal structure of the
PBMS through an appropriate definition language;

• users are allowed to pose queries to and retrieve answers
from the PBMS, with the results of these answers prop-
erly visualized and presented;

• an (approximate or exact) mapping between patterns and
raw data is available whenever retrieval of raw data
corresponding to patterns is needed.

The reference architecture for a PBMS is depicted in Fig.2
and consists of three major layers of information organization.
In the bottom of Fig.2, we depict thedata spaceconsisting of
data stores that contain raw data (forming thus, the Raw Data
Layer). Raw data can be either managed by a DBMS or can
be stored in files, streams or any other physical mean that is
managed outside a DBMS. At the top of Fig.2, we depict the
PBMS repository that corresponds to thepattern spaceand
contains patterns. The PBMS repository is managed by the
Pattern-Base Management System. Finally, in the middle of

PatternsOf


Experiment145


Ass. Rule


1


MyClustersOn


TableEMP


Class Layer


Type Layer


Patterns


Layer


Member of


Instance of


DB1
 DB2

Flat file


Data Mining


Algorithms


Pattern


Recognition


Algorithms


Raw Data


Layer


Ass.


Rules


Type


Cluster


Type


Dec.


Trees


Type


Cyclical


Cluster


Type


Ass. Rule


n


Ass. Rule


2


DBSCAN


Cluster 1


DBSCAN


Cluster m

DBSCAN


Cluster 2


PBMS


Intermediate


Mappings


Fig. 2. Reference architecture for the Pattern-Base Management System

Fig. 2, we can observe theintermediate mappingsthat relate
patterns to their corresponding data, forming the Intermediate
Data Layer. Intermediate mappings facilitate the justification
of any knowledge inferred at the PBMS with respect to the
raw data; for example, they could be used to retrieve the
rows that produced the association rule of Fig.1. The overall
architecture is calledIntegrated Pattern-Base Management
Architecture, or simply Pattern Warehouse.

Next, we present a brief description of all the entities that
appear in this abstract description of the PBMS:

Intermediate Mappings Layer. Ideally, we would like this
layer to be part of the PBMS, involving specialized storage
and indexing structures. In general, one can imagine that the
intermediate mappings can be either precisely traced (e.g.,
through some form of join index between patterns and data)
or imprecisely approximated. In the latter case, one can
employ different variations of these approximations through
data reduction techniques (e.g., wavelets), summaries, or even
on-line data mining algorithms. For practical purposes, though,
the PBMS should be constructed in such a way that it functions
even if intermediate results are out of its control (which we
would expect as the most possible scenario in real-world
scenarios), or even absent.To provide a solution towards this
problem, we approximate the relationship between the pattern



3

and the data space through a specific language, the Pattern
Specification Language (PSL), which will be introduced in
the sequel. PSL is applied both as a language for describing
pattern types and instances and as a means to reason over the
properties of the described patterns.

Pattern Layer. Patterns are compact and rich in semantics
representations of raw data. In the general case, although not
obligatorily, patterns are generated through the application
of knowledge extraction algorithms. In Fig.2, two such
algorithms have been applied: an algorithm for the extraction
of association rules and the DBSCAN algorithm [6] for the
extraction of clusters.

Type Layer. The PBMS Pattern Types describe the inten-
tional definition, i.e., the syntax of the patterns. Patterns of
same type share similar characteristics, therefore Pattern Types
play the role of data types in traditional DBMS’s or object
types in OODBMS’s. Normally, we anticipate the PBMS
to come with a set of built-in, popular pattern types (e.g.,
association rules, clusters, see also Fig.2). Still, the type layer
must be extensible, simply because the set of pattern types that
it incorporates must be extensible.

Class Layer. The PBMS classes are collections of patterns
which share some semantic similarity. Patterns that are mem-
bers of the same class are obligatorily required to belong to the
same type. Classes are used to create patterns with predefined
semantics given by the designer; by doing so, the designer
makes it easier for the users to work on them in a meaningful
way. For example, a class may comprise patterns that resulted
from the same experiments, like the association rules of Fig.
2.

III. M ODELING DATA AND PATTERNS

In this section, we will give the formal foundations for the
treatment of data and patterns within the unifying framework
of a pattern warehouse. First, we will quickly introduce the
notions of data types, attributes and relations (in the usual
relational sense). We will exploit the definitions already given
in [7] for this purpose. Then, we will proceed to define
formally pattern types, pattern classes, patterns as well as the
intermediate mappings. Then, we will define pattern bases and
pattern warehouses.

A. The Data Space

In this section, we will deal with the formal definition of
the entities of thedata space(Fig. 1), i.e., data types, relations
and databases.

Practically, we start with the data model proposed by
Abiteboul and Beeri in [7], and make some changes in the type
definitions. This data model is a many-sorted model which
facilitates the definition of complex values. Our minor changes
focus on insertingnamesin the types definitions, so we can
easily access the inner components of complex types. In the
data model, each constant and each variable is associated with
a type and each function and predicate with a signature. We
start by introducing simple data types.

Data types are structured types that use domain names,set
andtupleconstructors and attributes. For reasons of space and

simplicity, we focus our examples in the domains of integers
and reals, throughout the rest of the paper.

Definition 1: Data Types(or simply, types) are defined as
follows [7]:

• If D is a domain name andA is an attribute name then
A : D̂ is anatomic type.

• If T1, . . . , Tn are types andA,A1, . . . , An are distinct
attribute names thenA : [A1:T1, . . . , An:Tn] is also a
type, calledtuple type.

• If T is a type andA is an attribute name thenA : {T}
is also a type. We call these typesset types.

For a k-ary predicates the signature is ak-tuple of types
and for ak-ary function it is ak + 1-tuple of types.

Thevaluesof a specific type are defined the natural way. For
atomic types, we assume an infinite, countable set of values as
their domain, which we calldom(T). The domain of set types
is defined as the powerset of the domain of the composing
type. The domain of tuple types is defined as the product of
their constituent types.

Example 1:Let us consider the following types.

T1 = [X:real, Y :real, Z:integer]
T2 = { [Id:integer,

Disk:{ [Center:[X:real, Y :real], Rad:real] } ] }
The expressions

[X:4.1, Y :5.2, Z:3]
{ [Id:7, Disk:{ [Center:[X:2, Y :3], Rad:4] }] }

are values of typesT1 andT2 respectively.
Relations in our setting are considered to be sets of tuples

defined over a certain composite data type. We model relations
in the object-relational context and we make the following
assumptions:

• For reasons of simplicity, we assume that relations are
sets of tuples of the same type instead of just sets (in
contrast with [7] which require only that relations are
sets).

• At least one of the tuple components, by default named
RID, is atomic and all its values are unique. Intuitively,
we want each relation tuple to have a row identifier,
according to classical (object-) relational terminology.
This enables us to use just sets instead ofbags. We
considerRID to be an implicit attribute and we do not
explicitly refer to it when we define the data schema.

Definition 2 ([7]): A database schemais a pair D̂B =
〈[D̂1, . . . , D̂k], [R̂1:T1, . . . , R̂n:Tn]〉, whereT1, . . . , Tn are set
types involving only the domain names corresponding to the
data typesD̂1, . . . , D̂k and R̂1, . . . , R̂n are relation names.

Definition 3 ([7]): An instance ofD̂B, i.e., adatabase, is
a structureDB = 〈[D1, . . . , Dk], [R1, . . . , Rn]〉, whereRi’s
are relations andDi’s are domains.

We also refer toD̂B as thedatabase type, and toDB as
the database value.

Example 2:The following expressions are valid relation
schemata:

R̂1:{[A:{}, B:[], C:{[]}]} and R̂2:{[A,B, C]}



4

whereas the following expressions are not valid:

R̂3:{A:{[]}} and R̂4:[A,B,C].

ExpressionR̂3 is invalid as a set ofsets instead of a set of
tuples. R̂4 on the other hand, is invalid as a tuple (instead of
a set of tuples). Note also that in all our examples we have
omitted domains for brevity. Using the full definition is easy;
for example,̂R2 could be:R̂2:{[A:string, B:string, C:real]}

As we will see in the following, we need to be able to
define patterns over joins, projections and selections over
database relations. To do that, we extend Definition2 with
a set ofmaterialized viewsV1, . . . , Vm which are defined over
relationsR1, . . . , Rn using relational algebra. We require that
each tuple in a materialized view has a unique identifier called
RID. Throughout the rest of the paper, we address views as
relations, unless explicitly specified otherwise.

B. The Pattern Space

Now that we have defined the constructs found at the data
space, we are ready to proceed with the definition of the
entities belonging to the pattern space. Therefore, we will
introduce pattern types, which are templates for the actual
patterns and pattern classes which are groups of semantically
similar patterns. The definition of a pattern base then comes
straightforwardly.

Patterns as defined in [3] are compact, yet rich in semantics,
representation of the raw data. This informal principle is
formally translated as a quintuple. We will intuitively define
these components here and give the definition right next.
• First, a pattern is uniquely identified by aPattern Id

(PID).
• Second, a pattern has astructure: for example, an asso-

ciation rule comprises ahead and abody, and a cyclical
cluster comprises acenter and aradius.

• Third, a pattern corresponds to some underlyingdata. The
subset of the underlying data space that is represented by
the pattern must be specified, e.g., through the appropriate
relation.

• Fourth, a pattern informs the user on its quality, i.e., how
closely does it approximate reality as compared to the
underlying data, through a set of statisticalmeasures.
For example, an association rule is characterized by a
confidence and a support measure.

• Finally, a formula provides the richness in semantics
for the pattern. Theformula demonstrates a possibly
simplified form, of the relation between the data that are
represented by the pattern and the pattern structure. In
SectionIV we present aPattern Specification Language
(PSL) in which the formula is expressed.

A Pattern Typerepresents the intentional description of a
pattern, pretty much like abstract data types do in the case
of object-relational data. In other words, a pattern type acts
as a template for the generation of patterns. Each pattern is
an instanceof specific pattern type. There are four major
components that a Pattern Type specifies.
• First, the pattern type dictates the structure of its in-

stances, through astructure schema. For example, it
obliges association rules to comprise a head and a body.

• Moreover, a pattern type specifies adata schemawhich
dictates the schema of the underlying data which have
produced the pattern type; practically this is the schema
of the relation which can be employed as the test-bed for
pattern generation/definition.

• Third, it dictates ameasure schema, i.e., which set
of statistical measures that quantify the quality of the
approximation is employed by the instances of the pattern
type.

• Finally, a template for the formula of the instances
dictates the structure of the formula. The formula
is a predicate bounding theDataSchema and the
StructureSchema, expressed in the PSL.

Definition 4: A Pattern Type is a quintuple [Name,
StructureSchema, DataSchema, MeasureSchema,
Formula] such that (a)Name is a unique identifier among
pattern types, (b)StructureSchema is a distinct complex
type (can be set, set of sets etc), (c)DataSchema is a
relation type, (d)MeasureSchema is a tuple of atomic
types and (e)Formula is a predicate expressed in the PSL
language over theStructureSchema and theDataSchema.

Definition 5: A Pattern (Instance)p over a Pattern Type
PT is a quintuple [PID, Structure, Data, Measure,
Formula] such that (a)PID is a unique identifier among all
patterns of the same class, (b)Structure and Measure are
valid values of the respective schemata ofPT , and (c)Data
and formula are expressions in the PSL language, properly
instantiating the corresponding expressions of the pattern type
PT .

Example 3:Let us now present an example of a pattern
typeCluster that defines a circular cluster and an example of
one of its instance.

Pattern TypeCluster
Name Cluster
Structure
Schema

disk:[Center: [X:real, Y :real], Rad:real]

Data
Schema

rel:{[A1:real, A2:real]}

Measure
Schema

Precision:real

Formula
Schema

(t.A1 − disk.Center.X)2 + (t.A1 −
disk.Center.Y )2 ≤ disk.Rad2 where
t ∈ rel

Pattern InstanceCustomerCluster
Pid 337
Structure disk:[Center:[X:32, Y :90], Rad:12]
Data customer:{[Age, Income]}
Measure Precision: 0.91
Formula (t.Age−32)2+(t.Income−90)2 ≤ 122 where

t ∈ customer

Intuitively we can see that the formula requires that all data
that belong to the relationcustomer must satisfy the predicate
(t.Age− 32)2 + (t.Income− 90)2 ≤ 122. Precision in this
case indicates that only 91% of them do.

In order to define Pattern Types correctly, we need to be able
to define theirDataSchema properly. Since a Pattern Type is
a generic construct, not particularly bound to a specific data
set, we employ a set ofauxiliary names, which are employed
in the definition of theDataSchema of Pattern Types for the
specification of generic relations and attributes.



5

Having said that, the instantiation procedure that generates
patterns on the basis of Pattern Types, is straightforward.
Assume that a certain Pattern TypePT is instantiated in a
new patternp. Then:

• The domains involved in theStructureSchema and the
MeasureSchema of PT are instantiated by valid values
in p.

• The auxiliary relation and attribute names in the
DataSchema of PT are replaced by regular relation and
attribute names of an underlying database.

• Both the previous instantiations apply for the
FormulaSchema, too: the attributes of the
StructureSchema are instantiated to values and
the auxiliary names of theDataSchema are replaced
by regular names. All other variable names remain the
same.

Having defined the data space and the pattern entities, we
are ready to define the notions ofPattern Classand Pattern
Pase (PB). Our final goal is to introduce the global framework,
called Pattern Warehouse, as a unified environment in the
context of which data- and pattern-bases coexist.

A Pattern Class over a pattern type is a collection of
semantically related patterns, which are instances of this
particular pattern type. Pattern classes play the role of pattern
placeholders, just like relations do for tuples in the relational
model.

Definition 6: A Pattern Class is a triplet [Name, PT ,
Extension] such that (a)Name is a unique identifier among
all classes, (b)PT is a pattern type and (c)Extension is a
finite set of patterns with pattern typePT .

Let us now define pattern bases, which are practically finite
collections of pattern classes, defined over a set of pattern
types and containing pattern instances.

Definition 7: A Pattern Base Schema defined
over a database schemâDD is defined as P̂B =
〈[D̂1, . . . , D̂n], [P̂C1:PT1, . . . , P̂Cm:PTm]〉, where PTi’s
are pattern types involving the domainŝD1, . . . , D̂n and
P̂Ci’s are pattern class names.

Definition 8: An instance of P̂B, i.e., a pattern
base, over a databaseDB is a structure PB =
〈[PT1, . . . , PTk], [PC1, . . . , PCm]〉, where PCi’s are
pattern classes defined over pattern typesPTi with patterns
whose data range over the data inDB.

C. The Pattern Warehouse

Having defined the data and the pattern space, we are ready
to introduce the global framework, in the context of which
data- and pattern-bases coexist. To this end, we formally define
the intermediate mappings between data and patterns and the
overall context of patterns, data and their mappings.

Each pattern corresponds to a set of underlying data whom
it represents. At the same time, each record in the source
database corresponds to a set of patterns that abstractly repre-
sent it. We assume a mappingΦ that relates patterns with their
corresponding data. Through this mapping, we can capture
both the relationship between a pattern and its corresponding
data and at the same time, the relationship of a record with its

corresponding patterns. Naturally, based onΦ we can compute
the mappings (a)Φpd, mapping patterns to their corresponding
data and (b)Φdp, giving all the patterns for each record in the
database. Notice that since the relationship ismany-to-many,
in the general case,Φ is a mapping and not a function.

For reasons of simplicity, we avoid defining the relationship
between data items and patterns at the level of individual rela-
tions and classes. Rather, we employ a generic representation,
by introducing the union of all data items∆ and the union of
all patternsΩ. Practically, the existence ofRID’s and PID’s
allows us to perform this union.

Definition 9: The active data spaceof all data items of a
database instanceDB = 〈[D1, . . . , Dk], [R1, . . . , Rn]〉, ∆DB ,
is the union of all relations, i.e.,∆DB = R1 ∪ · · · ∪Rn. The
active pattern spaceof all patternsΩ of a pattern base instance
PB is the union of all pattern classes, i.e.,ΩPB = PC1∪· · ·∪
PCn.

Definition 10: Given the active data- and pattern spaces
∆DB andΩPB , an intermediate pattern-data mappingΦ over
∆DB and ΩPB is a total functionΦ : ∆DB × ΩPB →
{true, false}.We say that a data itemd is representedby
a patternp and we writed ↪→ p or p ←↩ d iff Φ(d, p) = true.

It should be obvious now thatthe formula of each pattern
is an approximation of the mappingΦ. In principle, it is an
issue of implementation and mostly administration whether
the intermediate mappings will be explicitly saved (with the
storage and maintenance cost that this incurs) or simply
approximated by the pattern formula (with the respective
approximation error). In the sequel, we will demonstrate the
usage of the formula as an approximation for the intermediate
mappings.

Now, we are ready to define the notion ofPattern Warehouse
which incorporates the underlying database (or source), the
pattern bases and the intermediate mappings. Notice that
although we separate patterns from data, we need the full
environment in order to answer interesting queries, going
all the way back to the data and to support interactive user
sessions that navigate from the pattern to the data space and
vice-versa.

Definition 11: A Pattern Warehouse Schemais a pair
〈D̂B, P̂B〉, where D̂B is a database schema and̂PB is a
pattern base schema.

Definition 12: A Pattern Warehouseis an instance of a
pattern warehouse schema defined as a triplet:〈DB, PB, Φ〉,
where DB is a database instance,PB is a pattern base
instance, andΦ is an intermediate pattern-data mapping over
DB andPB.

IV. PATTERN SPECIFICATION LANGUAGE AND FORMULA

The pattern formula describes the relation between the
patterns, which are described in the structure field, and the
raw data which are described in the source field. It is evident
that we need a common language to describe all these fields.
Therefore, in this section, we present the Pattern Specification
Language (PSL), with particular focus on the following as-
pects: (a) language requirements, (b) language syntax, (c) the
treatment of functions and predicates by PSL and (d) safety
considerations.



6

Requirements. Given the complexity of the relation that
may exist between the data and the patterns, as well as the
various complicated structures of data we may face, several
requirements arise for the pattern specification language:

• The easy and safe handling of (new)functionsandpred-
icates, in order to describe complex relations between
patterns and data.

• Queries must be able toreasonfor patterns and data based
on the formula. This means that the formula must be
expressed in a generic language that facilitates reasoning
methods.

• The formula must beinformative to the user, i.e., the
user must be able to intuitively understand the abstraction
provided by the pattern through simple inspection.

Syntax.Considering the previous requirements, we chose
as Pattern Specification Language the complex value calculus,
presented in [7] by Abiteboul and Beeri. This calculus is a
many-sorted calculus. The sorts are types as defined previ-
ously. Each constant and each variable is associated with a
type and each function and predicate with a signature. The
signature of ak-ary predicate the signature is ak-tuple of
types. The signature of ak-ary function is ak + 1-tuple of
types, involving the types of the parameters and the result of
the function. The terms of the language is the smallest set that
contains the atomic constants and variables, and it is closed
under the application of functions. Simple formulae consist of
predicates applied to terms and formulae are combinations of
atomic formulae through the combination of the connectives
∧,∨,¬, and the quantifiers∀,∃.

Functions and Predicates. Functions and predicates are
quite important in the PBMS setting, since the approximation
of the data to patterns mapping, usually needs complex func-
tions to be expressed. Functions and predicates can possibly
appear both in the formula field and in queries, associating
relation names with the pattern structure. We believe that
having interpreted functions is the best approach for the
PBMS, since we would like the formula to be informative
to the user and we would like to be able to reason on it. Fixed
semantics thus, become necessary if everyone should be able
to understand what a function name stands for.

Safety and Range Restriction. The formula is a predicate that
we would ideally like to be true for all the data that are mapped
to a pattern. Notice that the formula by itself does not contain
a logical expression involving the pattern structure schema and
the data schema, i.e., it is not a query on the relations of the
raw data. The formula is merely apredicate to be used in
queries. We would like for example to use it in queries that
navigate between the the data and the pattern space like the
following:

{x | fp(x) ∧ x ∈ R}
wherefp is a formula predicate andR is a relation appearing
in the Data component. We require thatfp is defined in
such a way that we can construct queries like the previous,
which are “safe”. Safety is considered in terms ofdomain
independence. Still, we cannot adopt the classical notion of
domain independence (which restricts values to the active
domain of the database), since even the simple functions

can create new values (not belonging to the domain of the
database). Therefore, we should consider a broader sense of
domain independence similar to the one presented in [7],
[8], [9], which allows the finite application of functions. For
example, then-depth domain independence as suggested in
[7] considers domain independence with respect to the active
domain closed undern application of functions. This means
that the active domain and all the values that can be produced
by applying the database functionsn times, wheren some
finite integer.

The easiest way to ensure safety in these terms is to
range restrictall variables appearing in a query. To this end,
we introduce thewhere keyword in theformula, which
facilitates the mapping of the formula predicate free variables
to the relation schema that appears in theDataSchema or
Data component. More specifically, we require thatthere are
no free variables in thefp that are not mapped to the relation
of theData component by the use of thewhere keyword. This
restriction, guarantees that all the variables appearing infp are
either range restricted or that the system knows how to range
restrict them to a finite set of values whenfp is used in a
query.

Now we can formally define the well-formedformula for
the pattern-type:

Definition 13: A pattern typeformula is of the form:

fp(dv, pv), where dv ∈ ds (1)

where fp (formula predicate) is a PSL predicate,dv are
variable names mapped by thewherekeyword to the relation
in DataSchema andpv are variable names that appear in the
StructureSchema.

At instantiation timepv is assigned values of theStructure
component anddv is mapped to the relation appearing in
Data component. The definition for the pattern well-formed
formula is now straightforward:

Definition 14: A patternformula is of the form:

fp(dv), where dv ∈ ds (2)

where fp (formula predicate) is a PSL predicate,dv are
variables mapped by thewhere keyword to the relation
appearing inData component.

From the previous definitions the semantics of thewhere
keyword become evident: we impose that the variables of
the formula will take values from specific relations when the
formula predicate is employed in queries.

Example 4:Let us consider the following formulas.
1) f(x) wherex ∈ R(x)
2) f(g(x), y) wherex ∈ R(x)

In the first formula variablex is mapped toR using thewhere
keyword, thus theformula is well formed. Keep in mind that
the formula predicate by itself is just the partf(x), which is
not range restricted. The second formula is not well-formed
sincey is not mapped viawhereto any relation, or otherwise
range restricted.

V. QUERYING THE PATTERN WAREHOUSE

As already mentioned before, in our approach, data and
patterns are distinct entities, stored in different ways (data-



7

vs. pattern-bases). This is justified mainly for performance,
maintenance and administration issues (e.g., we anticipate that
the PBMS will employ different data structures and query
processing for the management of patterns; the back-stage
synchronization of patterns and evolving data is also more effi-
cient in a multi-tier, load balanced architecture). Nevertheless,
all these do not imply that the querying process is restricted
simply to patterns or data. More precisely, we define queries to
be posed over the pattern warehouse and not individually over
its data- or pattern-base components. Through this approach,
we are able to sustain queries traversing from the pattern to the
data space and vice-versa. At the same time, the consistency
of the results is guaranteed by the pattern-data mappingΦ.

Definition 15: Let PW the set of all possible Pattern Ware-
houses. A query is a function with signaturePW → PW .
Given a queryq and a pattern warehousepw = (DB, PB, Φ),
with p̂w = (D̂B, P̂B), q(pw) = (DB′, PB′, Φ′), D̂B′ =
〈[D̂1, ...D̂k], [R̂1:T1]〉, P̂B′ = 〈[D̂1, ..., D̂m], [P̂C1:PT1]〉.
We assume that∀tr, tp(tr ∈ R1 ∧ tp ∈ PC1) ⇒ Φ′(tr, tp).

Note that, similarly to the relational case, the result of
a query is always a pattern warehouse containing just one
relation and one pattern class. It is also important to point
out that, in practice, even if a query always involve both the
data and pattern space, operations over patterns are executed
in isolation, locally at the PBMS. The reference to the un-
derlying data is activated only on-demand (whenever the user
specifically requests so) and efficiently enabled through the
stored intermediate mappings or the formula approximation.

An important point where thePW queries differ from the
relational queries is the existence of the formula component
and the reasoning options that it offers. Notice that we do not
consider the extraction of new patterns from the data itself,
i.e., the creation of a formula from the system, given only the
data. This work cannot be done automatically, without some
semantic knowledge from the user, and it cannot be done with
simple queries.

A. Classification of Queries

In the sequel, we present a fundamental classification of the
queries. The classification is based on the type of the results
generated by the query. Indeed, even if queries are defined over
pattern warehouses, they may deal either with data, patterns or
both. In the following,∅PB represents an empty pattern base
and∅DB an empty database.

1) Q1: Queries whose results are data:Queries of this type
always return a pattern warehouse with an empty pattern base,
i.e., q(〈DB, PB, Φ〉) = 〈DB′, ∅PB ,−〉, where− represents
no function (since the domain is empty). These queries may
ask for data that comply to some expression, or to a com-
bination of pattern formulas and other restrictions given in
the query. The queries of this type are thus very close to the
queries we ask in a DBMS although here we use the pattern
formulas, i.e, both the database and the pattern base of the
input warehouse must be accessed to answer the query.

For example, suppose you want to determine data belonging
to two different classes (thus, data classified in two differ-
ent ways) obtained as result of a classification process and

represented by two different patterns with formulaf1 andf2

respectively. In this case, the query condition corresponds to
the conjunction betweenf1 andf2.

2) Q2: Queries that have as results patterns:Queries
of this type always return a pattern warehouse containing
patterns of the input warehouse that satisfy some conditions
or new patterns created from existing ones. In all cases,
the database of the output pattern warehouse is empty, i.e.,
q(〈DB, PB, Φ〉) = 〈∅DB , PB′,−〉.

Queries of the first type are very close to queries belonging
to classQ1, i.e., they select patterns already contained in the
input pattern base. For example, the query selecting patterns
satisfying conditionx ∈ PC ∧ φ(x) is an example of query
belonging toQ2, returning all patterns belonging to classPC
and satisfyingφ. Queries of this type do not require the usage
of the input database for their computation.

The second type of queries are more interesting and support
the generation of new patterns (of possibly new pattern types)
from the ones contained in the input warehouse. To these
patterns, new PIDs are assigned automatically and a (re)-
computation of the measures is required. Note that, differently
from the first type of queries, in this case, due to the measure
(re)-computation, both the input database and pattern base are
used to answer this type of queries.

One of the main important questions that arises in this
case is how the formula of the new patterns is created. In
general, new formulas can be created by applying well defined
operators (for example conjunction) to the formulas of some
input patterns. Of course, in this case, the data source of the
output pattern has to be changed accordingly from the data
source of the input ones.

3) Q3: Queries that have as a result both patterns and
data: These queries are combinations of the queries of the
previous categories. They return a pattern warehouse where
both the database and pattern base may not be empty. For the
computation of this kind of queries, both the input database
and pattern base are required. For example, a query of this
type, might involve asking the system to display the pattern
that had the most data mapped to it, as well as the data
themselves, ranging over the patterns of the intersection of two
pattern classes (in order to find the most important patterns –
practically the ones generated by two different data mining
algorithms).

B. Query operators

The classification of the queries implies the existence of
some basic operators that provide data/pattern base manipu-
lations. In particular, queries belonging to each class rely on
different types of operators, depending on the result we want
to obtain. More precisely, we consider the following groups
of operators:1

• Database operators: they can be applied locally to the
DBMS. op : DB → DB. We denote the set of database
operators withOD.

1In the following we denote withDB the set of all possible database
instances and withPB the set of all possible pattern bases.



8

• Pattern base operators: they can be applied locally to the
PBMS. op : PB → PB. We denote the set of database
operators withOP .

• Cross-over database operators: they involve evaluation
on both the DBMS and the PBMS, the result is a
database.op : DB × PB → DB. We denote the set of
database operators withOCD.

• Cross-over pattern base operators: they involve evalua-
tion on both the DBMS and the PBMS, the result is a
pattern base.op : DB × PB → PB. We denote the set
of database operators withOCP .

Cross-over operators correlate patterns with raw data, provid-
ing a way for navigating from the pattern layer to the raw data
layer and vice versa. Their execution requires querying the
raw data repository, thus they can be considered asexpensive
operations.

Queries presented in SectionV-A rely on the previous
operators. In particular, for queries of typeQ1, the new
database can be generated by using some database or cross-
over database operators. On the other hand, for queries of
type Q2, the new pattern base can be generated by using
pattern base or cross-over pattern base operators. Queries of
type Q3 can use all the considered operators to generate the
new database and/or the new pattern base.

Note that, similarly to the relational case, operators ma-
nipulate relations and/or classes. Relation schemas, pattern
types, functions and predicate sets can be implicitly computed
from them. Thus, in the following, according to the relational
case, operators are defined over relations and classes, and the
corresponding data/pattern bases are implicitly computed.

In the following, we present examples of the last three
classes of operators (database operators coincide with usual
relational operators). Before presenting such operators, we
introduce some examples of predicates defined over patterns.

1) Pattern predicates:We identify two main classes of
atomic predicates: predicates over patterns and predicates over
pattern components. From those atomic predicates we can
then construct complex predicates. In the following, we denote
pattern components by using the dot notation. For example, the
measure component of a patternp is denoted byp.Measure.
Predicates over pattern components.They check properties of
specific pattern components. Letp1 and p2 be two patterns,
possibly selected by some queries. The general form of a
predicate over pattern components ist1θt2, wheret1 and t2
are path expressions that must define components of patterns
p1 and p2, of compatible type andθ must be an operator,
defined for the type oft1 and t2. For example, ift1 and t2
are integer expressions, thenθ can be a disequality operator
(e.g. one of<,>). We consider the following special cases:
• If t1 and t2 are pattern data for patternsp1 andp2, then

θ ∈ {=,⊆}. t1 = t2 is true if and only if∀x x ↪→ p1 ⇔
x ↪→ p2 and t1 ⊆ t2 is true if and only if∀x x ↪→ p1 ⇒
x ↪→ p2.

• If t1 and t2 are pattern formulas for patternsp1 andp2,
then θ ∈ {=,¹}. t1 = t2 is true if and only ift1 ≡ t2
and t1 ¹ t2 is true if and only ift1 logically implies t2.

Predicates over patterns.We consider the following set of
predicates:

• Identity (=). Two patternsp1 andp2 are identical if they
have the samePID, i.e. p1.P ID = p2.P ID.

• Shallow equality (=s). Two patternsp1 and p2 are
shallow equal if their corresponding components (except
for the PID component) are equal, i.e.p1.Structure =
p2.Structure, p1.Source = p2.Source, p1.Measure =
p2.Measure, and p1.formula = p2.formula. Note
that, to check the equality for each component pair, the
basic equality operator for the specific component type
is used.

• Deep equality(=d). Two patternsp1 and p2 are deep
equal if their corresponding data are identical, i.e.,
∀x x ↪→ p1 ⇔ x ↪→ p2.

• Subsumption(¹). A pattern p1 subsumes a pattern
p2 (p1 ¹ p2) if they have the same structure
but p2 represents a smaller set of raw data, i.e.
p1.Structure = p2.Structure, p1.Source ⊆ p2.Source
andp1.formula ¹ p2.formula.

Complex predicates.They are defined by applying usual
logical connectives to atomic predicates. Thus, ifF1 and F2

are predicates, thenF1 ∧ F2,F1 ∨ F2,¬F1 are predicates. We
make aclosed worldassumption, thus the calculation of¬F
is always finite.

2) Pattern base operatorsOP .: In this subsection, we
introduce several operators defined over patterns. Some of
them, like set-based operators, renaming and selection are
quite close to their relational counterparts; nevertheless, some
others, like join and projection have significant differences.
Set-based operators. Since classes are sets, usual operators
such as union, difference and intersection are defined for pairs
of classes of the same pattern type.
Renaming. Similarly to the relational context, we consider a
renaming operatorρ that takes a class and a renaming function
and changes the names of the pattern attributes according to
the specified function.
Projection The projection operator allows one to reduce the
structure and the measures of the input patterns by projecting
out some components. The new expression is obtained by pro-
jecting the formula defining the expression over the remaining
attributes [10]. Note that no projection is defined over the data
source, since in this case the structure and the measures would
have to be recomputed.

Let c be a class of pattern typept. Let ls be a non empty
list of attributes appearing inpt.Structure and lm a list
of attributes appearing inpt.Measure. Then, the projection
operator is defined as follows:

π(ls,lm)(c) = {(id(), πs
ls(s), d, πm

lm(m), πls∪lm(e))| ∃p ∈
c, p = (pid, s, d,m, e)}

In the previous definition,id() is a function returning new
pids for patterns,πm

lm(m) is the usual relational projection of
the measure component andπs

ls(s) is defined as follows: (i) if
s is a tuple type, thenπs

ls(s) is the usual relational projection;
(ii) if s is a set type, thenπs

ls(s) is obtained by keeping the
projected components and removing the rest from set elements.
The last componentπls∪lm(e) is the new formula. This can
only be computed in certain cases, when the theory over which
the formula is constructed admits projection. This happens for
example for the polynomial constraint theory [10].



9

Selection. The selection operator allows one to select the
patterns belonging to one class that satisfy a certain predicate,
involving any possible pattern component, chosen among the
ones presented in SectionV-B.1. Let c be a class of pattern
type pt. Let pr be a predicate. Then, the selection operator is
defined as follows:

σpr(c) = {p|p ∈ c ∧ pr(p) = true}
Join. The join operation provides a way to combine patterns
belonging to two different classes according to a join predicate
and a composition function specified by the user.

Let c1 and c2 be two classes over two pattern types
pt1 and pt2. A join predicateF is any predicate defined
over a component of patterns inc1 and a component
of patterns in c2. A composition function c() for
pattern typespt1 and pt2 is a 4-tuple of functionsc =
(cStructureSchema, cDataSchema, cMeasureSchema, cFormula),
one for each pattern component. For example, function
cStructureSchema takes as input two structure values of
the right type and returns a new structure value, for a
possible new pattern type, generated by the join. Functions
for the other pattern components are similarly defined.
Given two patternsp1 = (pid1, s1, d1,m1, f1) ∈ c1 and
p2 = (pid2, s2, d2,m2, f2) ∈ c2, c(p1, p2) is defined as the
patternp with the following components:
Structure : cStructureSchema(s1, s2)
Data : cDataSchema(d1, d2)
Measure : cMeasureSchema(m1,m2)
Formula : cformula(f1, f2).

The join of c1 and c2 with respect to the join predicateF
and the composition functionc, denoted byc1 onF,c c2, is now
defined as follows:

c1 onF,c c2 =

{c(p1, p2)|p1 ∈ c1 ∧ p2 ∈ c2 ∧ F (p1, p2) = true}.
Similarly to the relational context, theNatural Joincan be

defined as a special type of join. We assume it can be applied
only to pairs of patterns having the same data source, which is
also assigned to the output pattern. The natural join is defined
asc1 onF,c c2, whereF is the predicate requiring the equality
for attributes with the same name and type in the structure
components andc() is the following composition function:
c = (c<,>, ↓d,∪null,∧), where:
• c<,> returns a record with two components, one for each

input structure value;
• ↓d is a function that takes two patterns with the same

data source and returns it;
• ∪null returns a record with one component for each input

measure and assign a “null” to all of them (thus, measures
are not recomputed for the new dataset);

• ∧ is the logical conjunction.
3) Cross-over database operatorsOCD:

Drill-Through. The drill-through operator allows one to nav-
igate from the pattern layer to the raw data layer. Thus it
takes as input a pattern class and it returns a raw data set.
More formally, let c be a class of pattern typept and letd
be an instance of the data schemads of pt. Then, the drill-
through operator is denoted byγ(c) and it is formally defined
as follows:

γ(c) = {d|∃p, p ∈ c ∧ d ↪→ p}
Data covering. Given a patternp and a datasetD, sometimes
it is important to determine whether the pattern represents
it or not. In other words, we wish to determine the subset
S of D represented byp (p can also be selected by some
query). To determineS, we use the formula as a query on
the dataset. Letp be a pattern, possibly selected by using
query language operators, andD a dataset with schema
(a1, ..., an), compatible with the source schema ofp. The
datacovering operator, denoted byθd(p,D), returns a new
dataset corresponding to all tuples inD represented byp. More
formally,

θd(p,D) = {t|t ∈ D, p.formula(t.a1, ..., t.an) = true}
In the previous expression,t.ai denotes a specific compo-

nent of tuplet belonging toD andp.formula(t.a1, ..., t.an)
is the formula predicate ofp instantiated by replacing each
variable corresponding to a pattern data component with values
of the considered tuplet.

Note that, since the drill-though operator uses the interme-
diate mapping and the data covering operator uses the formula,
the coveringθ(p,D) of the data setD = γ(p) returned by the
drill through operator, might not be true. This is due to the
approximating nature of the pattern formula.

4) Cross-over pattern base operatorsOCP :
Pattern covering. Sometimes it can be useful to have an
operator that, given a class of patterns and a dataset, returns all
patterns in the class representing that dataset (a sort of inverse
datacovering operation). Letc be a pattern class andD a
dataset with schema(a1, ..., an), compatible with the source
schema of thec pattern type. The patterncovering operator,
denoted asθp(c,D), returns a set of patterns corresponding to
all patterns inc representingD. More formally:

θp(c,D) = {p|p ∈ c, ∀t ∈ D p.formula(t.a1, ..., t.an) =
true}.

Note that:
θp(c,D) = {p|p ∈ c, θd(p,D) = D}

VI. RELATED WORK

Although significant effort has been invested in extending
database models to deal with patterns, no coherent approach
has been proposed and convincingly implemented for a generic
model.

There exist several standardization efforts for modeling
patterns, like the Predictive Model Markup Language (PMML)
[11], which is an XML-based modeling approach, the ISO
SQL/MM standard [12], which is SQL-based, and the Com-
mon Warehouse Model (CWM) framework [13], which is a
more generic modeling effort. Also, the Java Data Mining
API (JDMAPI) [14] addresses the need for a language-based
management of patterns. Although these approaches try to
represent a wide range of data mining result, the theoretical
background of these frameworks is not clear. Most importantly,
though, they do not provide a generic model capable of
handling arbitrary cases of pattern types; on the contrary, only
a given list of predefined pattern types is supported.

To our knowledge, research has not dealt with the issue
of pattern management per se, but, at best, with peripheral



10

proximate problems. For example, the paper by Ganti et. al.
[15] deals with the measurement of similarity (or deviation,
in the authors’ vocabulary) between decision trees, frequent
itemsets and clusters. Although this is already a powerful
approach, it is not generic enough for our purpose. The most
relevant research effort in the literature, concerning pattern
management is found in the field of inductive databases, meant
as databases that, in addition to data, also contain patterns
[16], [17]. Our approach differs from the inductive database
one mainly in two ways. Firstly, while only association rules
and string patterns are usually considered there and no attempt
is made towards a general pattern model, in our approach no
predefined pattern types are considered and the main focus
lies in devising a general and extensible model for patterns.
Secondly, differently from [16], we claim that the peculiarities
of patterns in terms of structure and behavior, together with
the characteristic of the expected workload on them, call for a
logical separation between the database and the pattern-base in
order to ensure efficient handling of both raw data and patterns
through dedicated management systems.

Finally, we remark that even if some languages have been
proposed for pattern generation and retrieval [18], [19], they
mainly deal with specific types of patterns (in general, associ-
ation rules) and do not consider the more general problem of
defining safe and sufficiently expressive language for querying
heterogeneous patterns.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have dealt with the issue of modelling and
managing patterns in a database-like setting. Our approach is
enabled through a Pattern-Base Management System, enabling
the storage, querying and management of interesting abstrac-
tions of data which we call patterns. In this paper, we have (a)
formally defined the logical foundations for the global setting
of PBMS management through a model that covers data,
patterns and intermediate mappings and (b) discussed language
issues for PBMS management. To this end we presented a
pattern specification language for pattern management along
with safety constraints for its usage and introduced queries
and query operators and identified interesting query classes.

Several research issues remain open. First, it is an interesting
topic to incorporate the notion of type and class hierarchies in
the model [3]. Second, we have intentionally avoided a deep
discussion of statistical measures in this paper: it is more than a
trivial task to define a generic ontology of statistical measures
for any kind of patterns out of the various methodologies
that exist (general probabilities, Dempster-Schafer, Bayesian
Networks, etc. [20]). Finally, pattern-base management is
not a mature technology: as a recent survey shows [21], it
is quite cumbersome to leverage their functionality through
object-relational technology and therefore, their design and
engineering is an interesting topic of research.

REFERENCES

[1] P. Lyman and H. R. Varian, “How much information,”
http://www.sims.berkeley.edu/how-much-info, 2000.

[2] J. Gray, “The information avalanche: Reducing information overload,”
http://research.microsoft.com/ Gray/Talks/, 2002.

[3] S. Rizzi, E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, M. Terrovitis,
P. Vassiliadis, M. Vazirgiannis, and E. Vrachnos, “Towards a logical
model for patterns,” inProceedings of ER 2003, 2003.

[4] S. Rizzi, E. Bertino, B. Catania, and M. Golfarelli, “A logical framework
for pattern representation,” inProceedings of the PANDA Workshop on
Pattern-Base Management Systems, 2003, pp. 31–38.

[5] J. Widom, “Research problems in data warehousing,” inProceedings of
CIKM ’95, Baltimore, Maryland, USA. ACM, 1995, pp. 25–30.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” inProc.
2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD), 1996,
pp. 226–231.

[7] S. Abiteboul and C. Beeri, “The power of languages for the
manipulation of complex values,”VLDB Journal: Very Large Data
Bases, vol. 4, no. 4, pp. 727–794, 1995. [Online]. Available:
citeseer.nj.nec.com/abiteboul95power.html

[8] D. Suciu, “Domain-independent queries on databases with external
functions,” inProceedings of Database Theory - ICDT’95,Prague, Czech
Republic, January 11-13, 1995, ser. Lecture Notes in Computer Science,
G. Gottlob and M. Y. Vardi, Eds., vol. 893. Springer, 1995, pp. 177–
190.

[9] M. Escobar-Molano, R. Hull, and D. Jacobs, “Safety and translation
of calculus queries with scalar functions,” inProceedings of PODS’93,
May 25-28, 1993,Washington,DC. ACM Press, 1993, pp. 253–264.

[10] P. Kanellakis, G. Kuper, and P. Revesz, “Constraint Query Languages,”
Journal of Computer and System Sciences, vol. 51, no. 1, pp. 25–52,
1995.

[11] “Predictive Model Markup Language (PMML),” http://www.dmg.org/
pmmlspecsv2/pmml v2 0.html, 2003.

[12] “ISO SQL/MM Part 6,” http://www.sql-
99.org/SC32/WG4/ProgressionDocuments/FCD/fcd-datamining-
2001-05.pdf, 2001.

[13] “Common Warehouse Metamodel (CWM),” http://www.omg.org/cwm,
2001.

[14] “Java Data Mining API,” http://www.jcp.org/jsr/detail/73.prt, 2003.
[15] V. Ganti, R. Ramakrishnan, J. Gehrke, and W.-Y. Loh, “A framework

for measuring distances in data characteristics,”PODS, 1999.
[16] T. Imielinski and H. Mannila, “A database perspective on knowledge

discovery,”Communications of the ACM, vol. 39(11), pp. 58–64, 1996.
[17] L. De Raedt, “A perspective on inductive databases,”SIGKDD Explo-

rations, vol. 4(2), pp. 69–77, 2002.
[18] R. Meo, G. Psaila, and S. Ceri, “An Extension to SQL for Mining

Association Rules,”Data Mining and Knowledge DiscoveryM, vol. 2,
no. 2, pp. 195–224, 1999.

[19] T. Imielinski and A. Virmani, “MSQL: A Query Language for Database
Mining,” Data Mining and Knowledge DiscoveryM, vol. 2, no. 4, pp.
373–408, 1999.

[20] A. Siblerschatz and A. Tuzhillin, “What makes patterns interesting in
knowledge discovery systems,”IEEE Transactions on Knowledge and
Data Engineering, vol. 8, no. 6, pp. 970–974, 1996.

[21] B. Catania, A. Maddalena, E. Bertino, I. Duci, and Y. Theodoridis, “To-
wards a benchmark for pattern bases,” http://dke.cti.gr/panda/index.htm,
2003.

citeseer.nj.nec.com/abiteboul95power.html�

