A Framework for the Design of ETL Scenarios

Panos Vassiliadis', Alkis Simitsis’, Panos Georgantas’, and Manolis Terrovitis’

! University of Ioannina,

Dept. of Computer Science,
Joannina, Greece

pvassil@cs.uoi.gr]|

* National Technical University of Athens,
Dept. of Electrical and Computer Eng.,
Athens, Greece
{asimi, pgeor, mter}@dbnet.ece.ntua.gr

Abstract. Extraction-Transformation-Loading (ETL) tools are pieces of
software responsible for the extraction of data from several sources, their
cleansing, customization and insertion into a data warehouse. In this paper, we
delve into the logical design of ETL scenarios. We describe a framework for the
declarative specification of ETL scenarios with two main characteristics:
genericity and customization. Moreover, we present a palette of several
templates, representing frequently used ETL activities along with their
semantics and their interconnection. Finally, we discuss implementation issues
and we present a graphical tool, ARKTOS II that facilitates the design of ETL
scenarios, based on our model.

1 Introduction

Data warehouse operational processes normally compose a labor intensive workflow,
involving data extraction, transformation, integration, cleaning and transport. To deal
with this workflow, specialized tools are already available in the market [3,4,6,8],
under the general title Extraction-Transformation-Loading (ETL) tools. To give a
general idea of the functionality of these tools we mention their most prominent tasks,
which include (a) the identification of relevant information at the source side; (b) the
extraction of this information; (c) the customization and integration of the information
coming from multiple sources into a common format; (d) the cleaning of the resulting
data set, on the basis of database and business rules, and (e) the propagation of the
data to the data warehouse and/or data marts. In the sequel, we will not discriminate
between the tasks of ETL and Data Cleaning and adopt the name ETL for both these
kinds of activities.

If we treat an ETL scenario as a composite workflow, in a traditional way, its
designer is obliged to define several of its parameters (Fig. 1). First, the designer is
responsible for defining an Execution Plan for the scenario. The definition of an
execution plan can be seen from various perspectives. The Execution Sequence
involves the specification of which activity runs first, second, and so on, which
activities run in parallel, or when a semaphore is defined so that several activities are
synchronized at a rendezvous point. ETL activities normally run in batch, so the

J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 520535, 2003.
© Springer-Verlag Berlin Heidelberg 2003

mailto:pvassil@cs.uoi.gr

A Framework for the Design of ETL Scenarios 521

designer needs to specify an Execution Schedule, i.e., the time points or events that
trigger the execution of the scenario as a whole. Finally, due to system crashes, it is
imperative that there exists a Recovery Plan, specifying the sequence of steps to be
taken in the case of failure for a certain activity (e.g., retry to execute the activity, or
undo any intermediate results produced so far). At the same time, an Administration
Plan should be specified, involving the notification of the administrator either on-line
(monitoring) or off-line (logging) for the status of an executed activity, as well as the
security and authentication management for the ETL environment.

We find that research has not dealt with the definition of data-centric workflows to
the entirety of its extent. In the ETL case, for example, due to the data centric nature
of the process, the designer must deal with the relationship of the involved activities
with the underlying data. This involves the definition of a Primary Data Flow that
describes the route of data from the sources towards their final destination in the data
warehouse, as they pass through the activities of the scenario. Also, due to possible
quality problems of the processed data, the designer is obliged to define a flow for the
problematic data, i.e., the rows that violate integrity or business rules. It is the
combination of the execution sequence and the data flow that generates the semantics
of the ETL workflow: the data flow defines what each activity does and the execution
plan defines in which order and combination.

o —@< Execution
Plan

Execution Schedul

Executi

Recovery Plan

Administration
OJ =
O

Monitoring & Logging
Security & Access Rights

- @ Relationship

with data

Primary Data Flow

Data Flow for Logical E

Fig. 1. Different perspectives for an ETL workflow

In this paper we work in the internals of the primary data flow of ETL scenarios.
We present a generic metamodel for the definition of the data-centric part of ETL
activities. Particular attention is paid to the declarative specification of the data
semantics of activities. In the pursuit of higher reusability and flexibility, we
specialize the set of our generic metamodel constructs with a palette of frequently-
used ETL activities, which we call femplates. Moreover, in order to achieve a uniform
extensibility mechanism for this library of built-ins, we have to deal with specific
language issues: thus, we also discuss the mechanics of template instantiation to
concrete activities. The design concepts that we introduce have been implemented in a
tool, ARKTOS II, which is also presented.

Our contributions can be listed as follows:

522 P. Vassiliadis et al.

— First, we define a formal logical Metamodel as a logical abstraction of ETL
processes. The data stores, activities and their constituent parts are formally
defined. An activity is defined as an entity with (possibly more than one) input
schema(ta), an output schema and a parameter schema, so that the activity is
populated each time with its proper parameter values. The flow of data from
producers towards their consumers is achieved through the usage of provider
relationships that map the attributes of the former to the respective attributes of the
latter. A serializable combination of ETL activities, provider relationships and data
stores constitutes an ETL scenario.

— Second, we provide a reusability framework that complements the genericity of the
Metamodel. Practically, this is achieved from a set of “built-in” specializations of
the entities of the Metamodel layer, specifically tailored for the most frequent
elements of ETL scenarios. This palette of template activities will be referred to as
Template layer and it is characterized by its extensibility; in fact, due to language
considerations, we provide the details of the mechanism that instantiates templates
to specific activities.

— Finally, we discuss implementation issues and we present a graphical tool, ARKTOS
II that facilitates the design of ETL scenarios, based on our model.

This paper is organized as follows. In Section 2 we present a generic model of ETL
activities. Section 3 describes the mechanism for specifying and materializing
template definitions of frequently used ETL activities. Section 4 presents ARKTOS II,
a prototype graphical tool. In Section 5, we present related work. Finally, in Section 6
we conclude our results.

2 Generic Model of ETL Activities

The purpose of this section is to present a formal logical model for the activities of an

ETL environment. This model abstracts from the technicalities of monitoring,

scheduling and logging while it concentrates on the flow of data from the sources

towards the data warehouse through the composition of activities and data stores. For
lack of space we present a condensed version of the model; the full-blown version of

the model can be found in [10].

- Data types. Each data type T is characterized by a name and a domain, i.e., a
countable set of values. The values of the domains are also referred to as
constants.

- Attributes. Attributes are characterized by their name and data type. Attributes
and constants are uniformly referred to as ferms.

- A Schema is a finite list of attributes. Each entity that is characterized by one or
more schemata will be called Structured Entity.

- RecordSets. A recordset is characterized by its name, its (logical) schema and its
(physical) extension (i.e., a finite set of records under the recordset schema). We
can treat any data structure as a “record set” provided that there are the means to
logically restructure it into a flat, typed record schema. In the rest of this paper,
we will mainly deal with the two most popular types of recordsets, namely
relational tables and record files.

A Framework for the Design of ETL Scenarios 523

Functions. A Function Type comprises a name, a finite list of parameter data
types, and a single return data type. A function is an instance of a function type.
Elementary Activities. In our framework, activities are logical abstractions
representing parts, or full modules of code. We employ an abstraction of the
source code of an activity, in the form of a LDL statement, in order to avoid
dealing with the peculiarities of a particular programming language. An
Elementary Activity is formally described by the following elements:

- Name: a unique identifier for the activity.

- Input Schemata: a finite set of one or more input schemata that receive data
from the data providers of the activity.

- Output Schema: a finite set of one or more schemata that describe the
placeholders for the rows that are processed by the elementary activity.

- Parameter List: a set of pairs which act as regulators for the functionality of
the activity (the target attribute of a foreign key check, for example). The
first component of the pair is the name of the parameter and the second is its
value, i.e., a schema, an attribute, a function or a constant.

- Output Operational Semantics: a declarative statement describing the
content passed to each of the output of the operation, with respect to its
input. This statement defines (a) the operation performed on the rows that
pass through the activity towards its corresponding output schema and (b) a
mapping between the attributes of the input schema(ta) and the respective
attributes of the output schema. In this paper, we focus on LDL [7,13] as the
formalism for the expression of this statement.

- Priority: the order of execution of the activity within the particular scenario.
In our approach we simplify the complexity of the Execution Plan (which
includes conditional paths, parallel executions, rendezvous, etc.) through a
total order of execution for the activities of the scenario.

Provider relationships. These are 1 :N relationships that involve attributes with a

provider-consumer relationship. The flow of data from the data sources towards

the data warehouse is performed through the composition of activities in a larger
scenario. In this context, the input for an activity can be either a persistent data
store, or another activity, i.e., any structured entity under a specific schema.

Provider relationships capture the mapping between the attributes of the schemata

of the involved entities. Note that a consumer attribute can also be populated by a

constant, in certain cases.

Part_of relationships. These relationships involve attributes and parameters and

relate them to their respective activity, recordset or function to which they

belong.

Instance-of relationships. These relationships are defined among a data/function

type and its instances.

Regulator relationships. These relationships are defined among the parameters of

activities and the terms that populate these activities.

Derived provider relationships. A derived provider relationship is another form

of provider relationship that occurs through the composition of provider and

regulator relationships. Formally, assume that source is a node in the

architecture graph, target is an attribute of the output schema of an activity A

and x,y are parameters in the parameter list of A. The parameters x and y need

not necessarily be different. Then, a derived provider relationship

524 P. Vassiliadis et al.

pr (source, target) exists iff the following regulator relationships (i.e., edges)
exist: rrl(source,x) and rr2(y, target). Intuitively, the case of derived
relationships models the situation where the activity computes a new attribute in
its output. In this case, the produced output depends on all the attributes that
populate the parameters of the activity, resulting in the definition of the
corresponding derived relationship.

For each of the aforementioned entities, we assume an infinitely countable,
mutually disjoint set of names (i.e., a domain) and its respective scenario-specific
finite subset, which we list in the following: o for Data Types, for Function Types, ¢
for Constants, Q for Attributes, ® for Functions, s for Schemata, rs for RecordSets, a
for Activities, pr for Provider Relationships, po for Part-Of Relationships, 1o for
Instance-Of Relationships, rr for Regulator Relationships, pr for Derived Provider
Relationships. The full layout of an ETL scenario, involving activities, recordsets and
functions can be deployed along a graph in an execution sequence that can be linearly
serialized. We call this graph, the Architecture Graph. The involved data types,
function types, constants, attributes, activities, recordsets and functions constitute the
nodes of the graph. We model the different kinds of relationships of these nodes (i.e.,
part-of, instance-of, provider, regulator and derived provider relationships) as the
edges of the graph. Formally, let G(V,E) be the Architecture Graph of an ETL
scenario. Then, v = DUFLUCUQU®US URSUA and E = PrUPoUIOURXUDEK.

B2/ ARKTOS 1l - Graph - [Scenario_2] == %]
Ik File Modes Edges Zoom Types ‘WWindow Help - B X
D E&)| k|4 3
|b"‘l mmmlu@](:} @ —o‘ |- |<>—|

General =
=
=% DS_P51_NEW.Pke D5-ES1Ple. i
Sy Lo LR, LockUp.Phey,
- o LoakUp.Source,
| DS PS1_0LD Phey e
— 51 _PARTSUPP N Ds PS1_NEW \ 5uppKey—1 !

i e ————
W -.. Add_Att_S| »» DW_PARTSUPP
DS_PS1_0OLD /
G

Drawing j

Metics || «

L=
3

Fig. 2. Bird’s-eye view of the motivating example

Motivating Example. To motivate our discussion we will present an example
involving the propagation of data from a certain source S1, towards a data warehouse
Dw through intermediate recordsets belonging to a Data Staging Area (DSA) Ds,
where all the transformations take place. The scenario involves the propagation of
data from the table PARTSUPP of source S; to the data warehouse Dw. Table
DW.PARTSUPP (PKEY, SUPPKEY, DATE, QTY, COST) stores information for the available
quantity (QTY) and cost (COST) of parts (PKEY) per supplier (SUPPKEY). The data
source S;.PARTSUPP (PKEY,DATE, QTY,CcoOST) records the supplies from a specific
geographical region, e.g., Europe. All the attributes, except for the dates are instances

A Framework for the Design of ETL Scenarios 525

of the Integer type. The scenario is graphically depicted in Fig. 2 and involves the
following transformations.

] ARKTOS Il - Graph - [Scenario_2 - Expand] [BE] =]

%Fi\e MNodes Edges Miew Zoom Types ‘Window Help = &

N ES| | &k |-I-° s
[) (| | o

[= e e e e
o M ——Dw PARTSUPP =
g _ A TEOST D ———— ST > --_.h,-m-_ 1
ad]
i O 1) o T R T N -
— e DATE > e T DATE 5 e~y ——
= S A W e
Eddges > SupKey \h_' £=5 SUPPKEY
(o SRBE L
WU Wi ol
| j
fffffff /
fffffff
| e ———=== !
Diawing |
| Melncsg P |

1

2.

Fig. 3. Architecture graph of a part of the motivating example

. First, we transfer via f£tp the snapshot from the source S,;.PARTSUPP to the file

DS.Ps1_NEW and of the DSA.

In the DSA we maintain locally two copies of the snapshot of the source. The

recordset DS.PS1_NEW (PKEY,DATE,QTY,cosT) stands for the last transferred

snapshot of s;.PARTSUPP. By detecting the difference of this snapshot with the
respective version of the previous loading, DS.PS1_OLD (PKEY, DATE, QTY, COST),
we can derive the newly inserted rows in source S;.PARTSUPP. We store these
rows in the file DS.PS; (PKEY, DATE, OTY, coST). Note that the difference activity
that we employ, namely Diff_Ps1, checks for differences only on the primary key
of the recordsets; thus we ignore any possible deletions or updates for the attributes

COST, QTY of existing rows.

. In order to keep track of the supplier of each row, we need to add a ‘flag’ attribute,
namely SUPPKEY, indicating 1 for the respective supplier. This is achieved through
the activity Add_Attr_SK.

. Next, we assign a surrogate key on PKEY. In the data warehouse context, it is
common tactics to replace the keys of the production systems with a uniform key,
which we call a surrogate key [5]. The basic reasons for this replacement are
performance and semantic homogeneity. Textual attributes are not the best
candidates for indexed keys and thus need to be replaced by integer keys. At the
same time, different production systems might use different keys for the same
object, or the same key for different objects, resulting in the need for a global
replacement of these values in the data warehouse. This replacement is performed
through a lookup table of the form L (PRODKEY,SOURCE,SKEY). The SOURCE
column is due to the fact that there can be synonyms in the different sources, which

526 P. Vassiliadis et al.

are mapped to different objects in the data warehouse. In our case, the activity that

performs the surrogate key assignment for the attribute PKEY is SK1. It uses the

lookup table LOOKUP (PKEY, SOURCE,SKEY). Finally, we populate the data
warehouse with the output of the previous activity.

In Fig. 3, which is a zoom-in in the last two activities of the scenario, we can
observe (from right to left): (i) the fact that the recordset Dw . PARTSUPP comprises the
attributes PKEY, SUPPKEY, DATE, QTY, cosT (observe the UML-like notation with the
diamond) (ii) the provider relationships (denoted as bold, solid arrows) between the
output schema of the activity Sk1 and the attributes of Dw.PARTSUPP; (iii) the
provider relationships between the input and the output schema of activity SK1; (iv)
the provider relationships between the output schema of the activity Add_Attr_SK
and the input schema of the activity SK1; (v) the population of the parameters of the
surrogate key activity from regulator relationships (denoted as dotted bold arrows) by
the attributes of table LOOKUP and some of the attribute of the input schema of SK1;
(vi) the instance-of relationships (light dotted edges) between the attributes of the
scenario and their data types (colored ovals at the bottom of the figure).

al inl(A_IN1_Al,A_IN1 A2,A IN1_A3,A_INl A4) a2_in(A_IN Al,A_IN A2,A IN_A3,A_IN Ad)<-
<- ds_psl new(A_IN1 Al,A IN1 A2,A IN1 A3, ds_psl(X1,X2,X3,X4),
A_IN1_A4). X1=A_IN_Al,
X2=A IN A2,
al_in2(A_IN2_Al,A IN2_A2,A_IN2_A3,A_IN2_A4) X3=A_IN_A3,
<- ds_psl_old(A IN2_Al,A_ IN2_A2,A IN2_A3, X4=A_IN_Ad.
A_IN2_R4).
a2_out(A_OUT_Al,A_OUT_A2,A OUT A3,
semi_join(A OUT Al,A OUT_A2,A_OUT_A3, A_OUT_A4,A_OUT A5) <-
A _OUT A4) <- a2_in(A IN Al,A_IN A2,A IN A3,A IN A4),
al_inl(A_IN1_Al,A_IN1 A2,A IN1_A3,A_IN1 A4), A_OUT Al=A IN_Al,
al_in2(A_IN2_Al, ,_,_), A_OUT_A2=A_IN_A2,
A_OUT_Al=A_IN1_Al, A_OUT_A3=A_IN_A3,
A _OUT Al=A_IN2 Al, A_OUT A4=A_IN A4,
A _OUT_A2=A_INl1 A2, A _OUT_AS5='SOURCEL'.
A OUT A3=A IN1 A3,
A_OUT_A4=A_IN1_Ad. a3_in(A_IN_Al,A_IN A2,A IN_A3,A_IN Ad,A IN_A5) <-
a2_out(A_OUT Al,A OUT_A2,A OUT_A3,A OUT A4,
al_out(A_OUT_Al,A_OUT_A2,A OUT A3,A_OUT_A4) A_OUT_25),
&- A _OUT Al=A_IN A1,
al_inl(A_IN1_Al,A_IN1 A2,A IN1_A3,A_IN1 _A4), A_OUT_A2=A_IN_A2,
~semi_join(A IN1 Al,A IN1 A2,A IN1 A3,A IN1_ A_OUT A3=A_IN A3,
a4), A_OUT_A4=A_IN_A4,
A OUT Al=A IN1 Al, A_OUT_A5=A_IN_AS5.
A_OUT_A2=A_IN1_A2,
A_OUT A3=A_IN1 A3, a3_out (A OUT Al,A OUT_A2,A OUT_A3,A OUT A4,
A_OUT_A4=A_IN1_Ad. A_OUT_A5,A OUT_A6)<-
a3_in(A_IN Al,A_IN A2,A IN A3,A IN A4,A IN_AS5),
ds_ps1(X1,6X2,X3,X4) <- lookup (A_IN A5,A_IN Al,A OUT_A6),
a_out (A_OUT Al,A OUT A2,A OUT A3,A OUT A4), A_OUT Al=A_IN Al,
X1=A_OUT_Al, A_OUT_A2=A_IN_A2,
X2=A OUT_ A2, A_OUT_A3=A_IN_A3,
X3=A_OUT_A3, A_OUT_A4=A_IN_A4,
X4=A OUT_A4. A_OUT A5=A_IN A5.
dw_partsupp (X1,X2,X3,X4,X5,X6) <-
a3_out (A_OUT_Al,A_OUT A2,A OUT A3,A_OUT A4,
A OUT A5,A OUT A6) .
LEGEND: al: Diff PS1 a2: Add_Attr_SK a3: SK1

Fig. 4. LDL specification of the motivating example

Language Issues. Originally, we used to specify the semantics of activities with
SQL statements. Still, although clear and easy to write and understand, SQL is rather
hard to use if one is to perform rewriting and composition of statements. Thus, we
have supplemented SQL with LDL [7], a logic-programming, declarative language as
the basis of our scenario definition. LDL is a Datalog variant based on a Horn-clause

A Framework for the Design of ETL Scenarios 527

logic that supports recursion, complex objects and negation. In the context of its
implementation in an actual deductive database management system, LDL++ [13], the
language has been extended to support external functions, choice, aggregation (and
even, user-defined aggregation), updates and several other features.

In general, there is a simple rule for constructing valid ETL scenarios in our
setting. For each activity, the designer must provide three kinds of provider
relationships: (a) a mapping of the activity’s data provider(s) to the activity’s input
schema(ta); (b) a mapping of the activity’s input schema(ta) to the activity’s output,
along with a specification of the semantics of the activity (i.e., the check / cleaning /
transformation / value production that the activity performs), and (c) a mapping from
the activity’s output schema towards the data consumer of the activity. Several
integrity constraints come along with this simple guideline; for lack of space we refer
the interested reader to [10] for further insight. Fig. 4 shows the LDL program for our
motivating example.

3 Templates for ETL Activities

In this section, we will present the mechanism for exploiting template definitions of
frequently used ETL activities. The general framework for the exploitation of these
templates will be accompanied with the presentation of the language-related issues for
template management and appropriate examples.

3.1 General Framework

Our philosophy during the construction of our metamodel was based on two pillars:
(a) genericity, i.e., the derivation of a simple model, powerful to capture ideally all the
cases of ETL activities and (b) extensibility, i.e., the possibility of extending the built-
in functionality of the system with new, user-specific templates.

The genericity doctrine was pursued through the definition of a rather simple
activity metamodel, as described in Section 2. Still, providing a single metaclass for
all the possible activities of an ETL environment is not really enough for the designer
of the overall process. A richer “language” should be available, in order to describe
the structure of the process and facilitate its construction. To this end, we provide a
palette of remplate activities, which are specializations of the generic metamodel
class.

Observe Fig. 5 for a further explanation of our framework. The lower layer of Fig.
5, namely Schema Layer, involves a specific ETL scenario. All the entities of the
Schema layer are instances of the classes Data Type, Function Type,
Elementary Activity, RecordSet and Relationship. Thus, as one can see on
the upper part of Fig. 5, we introduce a meta-class layer, namely Metamodel Layer
involving the aforementioned classes. The linkage between the Metamodel and the
Schema layers is achieved through instantiation (“Instance0£”) relationships. The
Metamodel layer implements the aforementioned genericity desideratum: the classes
which are involved in the Metamodel layer are generic enough to model any ETL
scenario, through the appropriate instantiation.

528 P. Vassiliadis et al.

Datatypes Functions
Elementary Activity RecordSet Relationships
N 1
Metamodel Laye, / \ M ‘.\\ \
/ \ \\ \ ~
Domain Mismatcl Source Table
Y 5z Provider Rel
NotNull AN SK Assignment /,’ Fact Table 7
v, \ > 7 X /
\ \ N
\ \ W \ /
\ \ 27N\ \ ’
\, \ d \, \ /
Template Layer \, \ - \ \ /

\/\ \ \/ InstanceOf
< S
P

Schema Layer

Fig. 5. The metamodel for the logical entities of the ETL environment

Still, we can do better than the simple provision of a meta- and an instance layer. In
order to make our metamodel truly useful for practical cases of ETL activities, we
enrich it with a set of ETL-specific constructs, which constitute a subset of the larger
metamodel layer, namely the Template Layer. The constructs in the Template layer
are also meta-classes, but they are quite customized for the regular cases of ETL
activities. Thus, the classes of the Template layer as specializations (i.e., subclasses)
of the generic classes of the Metamodel layer (depicted as “Isa” relationships in Fig.
5). Through this customization mechanism, the designer can pick the instances of the
Schema layer from a much richer palette of constructs; in this setting, the entities of
the Schema layer are instantiations, not only of the respective classes of the
Metamodel layer, but also of their subclasses in the Template layer.

In the example of Fig. 5 the concept DW.PS must be populated from a certain
source S; . PS. Several operations must intervene during the propagation: for example,
checks for null values and domain violations, as well as a surrogate key assignment
take place in the scenario. As one can observe, the recordsets that take part in this
scenario are instances of class Recordset (belonging to the metamodel layer) and
specifically of its subclasses Source Table and Fact Table. Instances and
encompassing classes are related through links of type InstanceOf. The same
mechanism applies to all the activities of the scenario, which are (a) instances of class
Elementary Activity and (b) instances of one of its subclasses, depicted in Fig. 5.
Relationships do not escape the rule either: observe how the provider links from the
concept S1.PS towards the concept Dw.PS are related to class Provider
Relationship through the appropriate InstanceOf links.

As far as the class Recordset is concerned, in the Template layer we can
specialize it to several subclasses, based on orthogonal characteristics, such as
whether it is a file or RDBMS table, or whether it is a source or target data store (as in
Fig. 5). In the case of the class Relationship, there is a clear specialization in terms

A Framework for the Design of ETL Scenarios 529

of the five classes of relationships which have already been mentioned in Section 2:
Provider, Part-0f, Instance-0f, Regulator and Derived Provider.

Following the same framework, class Elementary Activity is further
specialized to an extensible set of reoccurring patterns of ETL activities, depicted in
Fig. 6. We now present each of the aforementioned classes in more detail. As one can
see on the top side of Fig. 5, we group the template activities in five major logical
groups. We do not depict the grouping of activities in subclasses in Fig. 5, in order to
avoid overloading the figure; instead, we depict the specialization of class
Elementary Activity to three of its subclasses whose instances appear in the
employed scenario of the Schema layer.

The first group, named Filters, provides checks for the satisfaction (or not) of a
certain condition. The semantics of these filters are the obvious (starting from a
generic selection condition and proceeding to the check for null values,
primary or foreign key violation, etc.). The second group of template
activities is called Unary Operations and except for the most generic push activity
(which simply propagates data from the provider to the consumer), consists of the
classical aggregation and function application operations along with three
data warehouse specific transformations (surrogate key assignment,
normalization and denormalization). The third group consists of classical
Binary Operations, such as union, join and difference of recordsets/activities as
well as with a special case of difference involving the detection of updates.
Except for the aforementioned template activities, which mainly refer to logical
transformations, we can also consider the case of physical operators that refer to the
application of physical transformations to whole files/tables. In the ETL context, we
are mainly interested in operations like Transfer Operations (ftp, compress/
decompress, encrypt/decrypt) and File Operations (EBCDIC to ASCII, sort
file).

Filters Unary operations Binary operations
- Selection (o) - Push - Union (U)
- Not null (NN) - Aggregation (vy) - Join (p<)
- Primary key - Projection (m) - Diff (&)
violation (PK) - Function application (f) - Update Detection
- Foreign key - Surrogate key assignment (SK) (AUPD)
violation (FK) - Tuple normalization (N) .
- Unique value (UN) - Tuple denormalization (DN) Tr?gsfez‘;:r[;e)ratlons
- i . . - b
rﬁj(_)rsnr?;:ch (DM) File operations) - Compress/Decompres
- EBCDIC to ASCII conversion s (z/d4z)
(EB2AS) - Encrypt/Decrypt
- Sort file (Sort) (cr/dcr)

Fig. 6. Template activities, along with their graphical notation symbols, grouped by category

Summarizing, the Metamodel layer is a set of generic entities, able to represent any
ETL scenario. At the same time, the genericity of the Metamodel layer is
complemented with the extensibility of the Template layer, which is a set of “built-in”
specializations of the entities of the Metamodel layer, specifically tailored for the
most frequent elements of ETL scenarios. Moreover, apart from this “built-in”, ETL-
specific extension of the generic metamodel, if the designer decides that several
‘patterns’, not included in the palette of the Template layer, occur repeatedly in his

530 P. Vassiliadis et al.

data warehousing projects, he can easily fit them into the customizable Template layer
through a specialization mechanism.

3.2 Formal Definition and Usage of Template Activities

Once the template layer has been introduced, the obvious issue that is raised is its
linkage with the employed declarative language of our framework. In general, the
broader issue is the usage of the template mechanism from the user; to this end, we
will explain the substitution mechanism for templates in this subsection and refer the
interested reader to [12] for a presentation of the specific templates that we have
constructed.

A Template Activity is formally defined as follows:

— Name: a unique identifier for the template activity.

— Parameter List: a set of names which act as regulators in the expression of the
semantics of the template activity. For example, the parameters are used to
assign values to constants, create dynamic mapping at instantiation time, etc.

— Expression: a declarative statement describing the operation performed by the
instances of the template activity. As with elementary activities, our model
supports LDL as the formalism for the expression of this statement.

— Mapping: a set of bindings, mapping input to output attributes, possibly through
intermediate placeholders. In general, mappings at the template level try to
capture a default way of propagating incoming values from the input towards
the output schema. These default bindings are easily refined and possibly
rearranged at instantiation time.

The template mechanism we use is a substitution mechanism, based on macros,
that facilitates the automatic creation of LDL code. This simple notation and
instantiation mechanism permits the easy and fast registration of LDL templates. In
the rest of this section, we will elaborate on the notation, instantiation mechanisms
and template taxonomy particularities.

Notation. Our template notation is a simple language featuring four main
mechanisms for dynamic production of LDL expressions: (a) variables that are
replaced by their values at instantiation time; (b) a function that returns the arity of an
input, output or parameter schema; (c) loops, where the loop body is repeated at
instantiation time as many times as the iterator constraint defines, and (d) keywords to
simplify the creation of unique predicate and attribute names.

Variables. We have two kinds of variables in the template mechanism: parameter
variables and loop iterators. Parameter variables are marked with a @ symbol at their
beginning and they are replaced by user-defined values at instantiation time. A list of
an arbitrary length of parameters can be defined with the notation e<parameter
name>[]. For such lists the user has to explicitly or implicitly provide their length at
instantiation time. Loop iterators, on the other hand, are implicitly defined in the loop
constraint. During each loop iteration, all the properly marked appearances of the
iterator in the loop body are replaced by its current value (similarly to the way the C
preprocessor treats #DEFINE statements). Iterators that appear marked in loop body
are instantiated even when they are a part of another string or of a variable name. We
mark such appearances by enclosing them with ¢. This functionality enables

A Framework for the Design of ETL Scenarios 531

referencing all the values of a parameter list and facilitates the creation an arbitrary
number of pre-formatted strings.

Functions. We employ a built-in function, arityOf (<input/output/parameter
schema>), which returns the arity of the respective schema, mainly in order to define
upper bounds in loop iterators.

Loops. Loops are a powerful mechanism that enhances the genericity of the
templates by allowing the designer to handle templates with unknown number of
variables and with unknown arity for the input/output schemata. The general form of
IOOpS 1S [<simple constraint>] { <loop body> } where simple constraint has
the form <lower bound> <comparison operator> <iterator> <comparison
operator> <upper bound>. Upper bound and lower bound can be arithmetic
expressions involving arityof() function calls, variables and constants. Valid
arithmetic operators are +,-,/,* and valid comparison operators are <,>,=, all with
their usual semantics. If lower bound is omitted, 0 is assumed. During each iteration,
the loop body will be reproduced and the same time all the marked appearances of the
loop iterator will be replaced by its current value, as described before. Loop nesting is
permitted.

Key- Usage Example
word
a_out | A unique name for the output/input schema of | 4;fferences out
the activity. The predicate that is produced
when this template is instantiated has the form:

<unique_pred_name>_out (or, _in respectively)
A _our | A_OUT/A_IN is used for constructing the names | prFFERENCE3 OUT
of the a_out/a_in attributes. The names
produced have the form: <predicate unique
name in upper case>_OUT (or, _IN respectively)

a_in difference3_in

A_TIN DIFFERENCE3_IN

Fig. 7. Keywords for templates

Keywords. Keywords are used in order to refer to input and output schemas. They
provide two main functionalities: (a) they simplify the reference to the input
output/schema by using standard names for the predicates and their attributes, and (b)
they allow their renaming at instantiation time. This is done in such a way that no
different predicates with the same name will appear in the same program, and no
different attributes with the same name will appear in the same rule. Keywords are
recognized even if they are parts of another string, without a special notation. This
facilitates a homogenous renaming of multiple distinct input schemas at template
level, to multiple distinct schemas at instantiation, with all of them having unique
names in the LDL program scope. For example, if the template is expressed in terms
of two different input schemata a_in1 and a_in2, at instantiation time they will be
renamed to dml_inl and dml_in2 (as specified by the user) so that the produced
names will be unique throughout the scenario program. In Fig. 7 we depict the way
the renaming is performed at instantiation time.

Instantiation Mechanism. Template instantiation is the process where the user
decides to pick a certain template and create a concrete activity out of it. This
procedure requires that the user specifies the schemata of the activity and gives

532 P. Vassiliadis et al.

concrete values to the template parameters. Then, the process of producing the

respective LDL description of the activity is easily automated. Instantiation order is

important in our template creation mechanism, since, as it can easily been seen from

the notation definitions, different orders can lead to different results. The instantiation

order is as follows:

I. arityof () functions and parameter variables appearing in loop boundaries are
calculated first;

2. loop productions are done by instantiating the appearances of the iterators; this
leads to intermediate results without any loops;

3. all the rest parameter variables are instantiated;

4. keywords are recognized and renamed.

A simple example of template instantiation for the function application activity is
presented in Fig. 8. To understand the overall process better, first observe the
outcome of it, i.e., the specific activity which is produced, as depicted in the final row,
labeled Keyword renaming. The output schema of the activity, fal2_out, is the head
of the LDL rule that specifies the activity. The body of the rule says that the output
records are specified by the conjunction of the following clauses: (a) the input schema
fal_in; (b) the application of function £1 over the attributes FA12_ IN_1,
FA12_1IN_2 and the production of a value OUTFIELD, and (c) the mapping of the
input to the respective output attributes as specified in the last three conjuncts of the
rule.

The first row, Template, shows the initial template as it has been registered by the
designer. eruncTION holds the name of the function to be used, £1 in our case, and
the @PARAM[] holds the inputs of the function, which in our case are the two
attributes of the input schema. The attributes of the output schema are specified by the
expression [i<arityOf (a_in)+1]{A_OUT_i, JOUTFIELD. In a similar fashion,
the attributes of the input schema and the parameters of the function are also
specified; note that the expression for the last attribute in the list is different (to avoid
repeating an erroneous comma). The mappings between the input and the output
attributes are also shown in the last two lines of the template. In the second row,
Parameter instantiation, we can see how the parameter variables were materialized
by the user at instantiation. In the third row, Loop productions, we can see the
intermediate results after the loop expansions are done. As it can easily be seen these
expansions must be done before @PARAM[] variables are replaced by their values. In
the fourth row, Variable instantiation, the parameter variables have been instantiated
creating a default mapping between the input, the output and the function attributes.
Finally, in the last row, Keyword renaming, the output LDL code is presented after
the keywords are renamed. Keyword instantiation is done on the basis of the schemata
and the respective attributes of the activity that the user chooses.

Taxonomy. Most commonly used activities can be easily expressed by a single
predicate template; it is obvious, though, that it would be very inconvenient to restrict
activity templates to single predicate ones. Thus, we separate template activities in
two categories, Simple Templates, which cover single-predicate templates and
Program-Based Templates where many predicates are used in the template definition.

A Framework for the Design of ETL Scenarios 533

Template
a_out([i<arityOf(a_in)+1]1{A_OUT_i,} OUTFIELD) <-
a_in([i<arityOf (a_in) 1{A_IN_Si,}[i=
arityOf (a_in)]1{A_IN_$i%}),
@FUNCTION ([i< arityOf (@PARAM[i])+1]{@PARAM[SiS],} OUTFIELD),
[i<arityOf (a_in)] {A_OUT_i=A_IN_S$iS,}
[i=arityOf (a_in)] {A_OUT_i=A_IN_S$isS}.
Parameter Instantiation
@FUNCTION =f1
@PARAM[1]=A_IN_2
@PARAM[2]=A_IN_3
Loop productions
a_out(A_OUT_1, A_OUT_2, A_OUT_3, OUTFIELD)<-
a_in(A_IN_1, A_IN 2, A_IN 3),
@FUNCTION (@PARAM[1],@PARAM[2],0UTFIELD),
A_OUT _1=A_IN_1,A_OUT 2=A_IN_2,A_OUT_3=A_IN_3.
Variable Instantiation
a_out(A_OUT_1, A_OUT_2, A_OUT_3, OUTFIELD)<-
a_in(A_IN_1, A_IN_ 2, A_IN_3),
f1(A_IN_2, A_IN_3,0UTFIELD),
A_OUT _1=A_IN_1, A_OUT _2=A_IN_2, A_OUT_3=A_IN_3.
Keyword Renaming
fal2_out (FA12_OUT_1, FAl2_OUT_2, FAl2_OUT_3, OUTFIELD)<-
fal2_in(FA12_IN_1, FA12_IN_ 2, FA1l2_IN_3),
f1(FA12_IN_2, FA12_IN_3,0UTFIELD),
FA12_OUT_1=FAl12_IN_1, FA1l2_OUT 2=FAl2_IN_2,
FA1l2_OUT_3=FAl2_1IN_3.

Fig. 8. Instantiation procedure

In the case of Simple Templates, the output predicate is bound to the input through
a mapping and an expression. Each of the rules for obtaining the output is expressed
in terms of the input schemata and the parameters of the activity. In the case of
Program-Based Templates the output of the activity is expressed in terms of its
intermediate predicate schemata, as well as its input schemata and its parameters.
Program-Based Templates are used to define activities that employ constraints like
does-not-belong, or does-not-exist, which need an intermediate negated predicate to
be expressed intuitively. This predicate usually describes the conjunction of properties
we want to avoid, and then it appears negated in the output predicate. Thus, in
general, we allow the construction of a LDL program, with intermediate predicates, in
order to enhance intuition. This classification is orthogonal to logical one of Section
3.1. For more details we refer the reader to the long version of this paper [12].

4 Implementation

In the context of the aforementioned framework, we have prototypically implemented
a graphical tool, ARKTOS II, with the goal of facilitating the design of ETL scenarios,
based on our model. The task of the user is to define the activities of the scenario; in
this job, he/she is greatly assisted (a) by a friendly GUI (where all the details are
captured though forms and point-and-click operations), and (b) by a set of reusability
‘templates’. Whereas the genericity principle is supported by the fact that any activity
of our model can be tailored by the user, the customization principle is supported by

534 P. Vassiliadis et al.

the reusability templates. The notion of ‘template’ is in the heart of ARKTOS II, and
there are templates for practically every aspect of the model: data types, functions and
activities. Templates are extensible, thus providing the user with the possibility of
customizing the environment according to his/her own needs. Especially for activities,
which form the core of our model, we provide a specific menu with a set of frequently
used ETL Activities. Moreover, the system assists the user in several ways: apart from
the friendly GUI (Fig. 2), ARKTOS II offers zoom-in/zoom-out capabilities (a
particularly useful feature in the construction of the data flow of the scenario through
inter-attribute ‘provider’ mappings —see also Fig. 2 and 3) and automatic consistency
checks for the completeness and integrity of the design. A distinctive feature of
ARKTOS 1II is the computation of the scenario’s design quality by employing a set of
metrics [10] either for the whole scenario or for each activity of it.

The scenarios are stored in ARKTOS II repository (implemented in a relational
DBMYS); the system allows the user to store, retrieve and reuse existing scenarios. All
the metadata of the system involving the scenario configuration, the employed
templates and their constituents are stored in the repository. The choice of a relational
DBMS for our metadata repository allows its efficient querying as well as the smooth
integration with external systems and/or future extensions of ARKTOS II.

We have implemented ARKTOS II with Oracle 8.1.7 as basis for our repository and
Ms Visual Basic (Release 6) for developing our GUI. The connectivity to source and
target data stores is achieved through ODBC connections and the tool offers an
automatic reverse engineering of their schemata.

5 Related Work

There is a variety of ETL tools in the market; we mention a recent review [1] and
several commercial tools [3,4,6,8]. Research prototypes include the AJAX data
cleaning tool [2] and the Potter’s Wheel system [9]. These two research prototypes
are based on algebras, which we find specifically tailored for the case of
homogenizing web data. Clearly, ARKTOS II is a design tool; still, with respect to the
design capabilities of the aforementioned approaches, our technique contributes (a) by
offering an extensible framework though a uniform extensibility mechanism, and (b)
by providing formal foundations to allow the reasoning over the constructed ETL
scenarios. Finally, we should refer the interested reader to [10] for a detailed
presentation of ARKTOS II model. The model is accompanied by a set of importance
metrics where we exploit the graph structure to measure the degree to which
activities/recordsets/attributes are bound to their data providers or consumers. In [11]
we propose a complementary conceptual model for ETL scenarios.

6 Conclusions

In this paper, we have focused on the data-centric part of logical design of the ETL
scenario of a data warehouse. First, we have defined a formal logical Metamodel as a
logical abstraction of ETL processes. The data stores, activities and their constituent
parts, as well as the provider relationships that map data producers to data consumers

A Framework for the Design of ETL Scenarios 535

have formally been defined. Then, we have provided a reusability framework that
complements the genericity of the aforementioned Metamodel. Practically, this is
achieved from an extensible set of specializations of the entities of the Metamodel
layer, specifically tailored for the most frequent elements of ETL scenarios, which we
call template activities. Finally, we have presented a graphical design tool, ARKTOS II,
with the goal of facilitating the design of ETL scenarios, based on our model.

As future work, we already have preliminary results for the optimization of ETL
scenario under certain time and throughput constraints. A set of loosely coupled tools
is also under construction for the purposes of optimization of the execution of ETL
scenarios.

References

[1] Gartner. ETL Magic Quadrant Update: Market Pressure Increases. Available at
http://www.gartner.com/reprints/informatica/112769.htmi|

[2] H. Galhardas, D. Florescu, D. Shasha and E. Simon. Ajax: An Extensible Data Cleaning
Tool. In Proc. ACM SIGMOD Intl. Conf. On the Management of Data, pp. 590, Dallas,
Texas, (2000).

[3] IBM. IBM Data Warehouse Manager. Available at http://www-3.ibm.com/software/
data/db2/datawarehouse/

[4] Informatica. PowerCenter. Available at http://www.informatica.com/products/data+
integration/powercenter/default.htm

[5] R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite. The Data Warehouse Lifecycle
Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses.
John Wiley & Sons, February 1998.

[6] Microsoft. Data Transformation Services. Available at [gww.microsoft.com

[7] S. Naqgvi, S. Tsur. A Logical Language for Data and Knowledge Bases. Computer
Science Press 1989.

[8] Oracle. Oracle Warehouse Builder Product Page. Available at http://otn.oracle.com/
products/warehouse/content.html

[9] V. Raman, J. Hellerstein. Potter’s Wheel: An Interactive Data Cleaning System. In
Proceedings of 27" International Conference on Very Large Data Bases (VLDB), pp.
381-390, Roma, Italy, (2001).

[10] P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Modeling ETL Activities as Graphs. In Proc.
4™ Intl. Workshop on Design and Management of Data Warehouses (DMDW), pp. 52—
61, Toronto, Canada, (2002).

[11] P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Conceptual Modeling for ETL Processes. In
Proc. 5™ ACM Intl. Workshop on Data Warehousing and OLAP (DOLAP), pp. 14-21,
McLean, Virginia, USA (2002).

[12] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis. A Framework for the design of
ETL scenarios (long version). Available at
http://cs.uoi.gr/~pvassil/publications/caise03_long.pdf

[13] C. Zaniolo. LDL++ Tutorial. UCLA. http://pike.cs.ucla.edu/ldl/, Dec. 1998.

http://www.gartner.com/reprints/informatica/112769.html
http://www.microsoft.com/

	1 Introduction
	2 Generic Model of ETL Activities
	3 Templates for ETL Activities
	3.1 General Framework
	3.2 Formal Definition and Usage of Template Activities

	4 Implementation
	5 Related Work
	6 Conclusions
	References

