
Information Systems 26 (2001) 537–561

Arktos: towards the modeling, design, control and
execution of ETL processes

Panos Vassiliadis*, Zografoula Vagena, Spiros Skiadopoulos, Nikos Karayannidis,
Timos Sellis

Knowledge and Database Systems Laboratory, Department of Electrical and Computer Engineering, Computer Science Division,

National Technical University of Athens, Iroon Polytechniou 9, 157 73 Athens, Greece

Abstract

Extraction-Transformation-loading (ETL) tools are pieces of software responsible for the extraction of data from
several sources, their cleansing, customization and insertion into a data warehouse. Literature and personal experience

have guided us to conclude that the problems concerning the ETL tools are primarily problems of complexity, usability
and price. To deal with these problems we provide a uniform metamodel for ETL processes, covering the aspects of
data warehouse architecture, activity modeling, contingency treatment and quality management. The ETL tool we have

developed, namely Arktos, is capable of modeling and executing practical ETL scenarios by providing explicit
primitives for the capturing of common tasks. Arktos provides three ways to describe an ETL scenario: a graphical
point-and-click front end and two declarative languages: XADL (an XML variant), which is more verbose and easy to
read and SADL (an SQL-like language) which has a quite compact syntax and is, thus, easier for authoring. r 2001

Elsevier Science Ltd. All rights reserved.

Keywords: Data warehousing; Data quality; Extraction-Transformation-loading tools

1. Introduction

It has been argued in the literature [1] that
viewing the data warehouse as a set of layered,
materialized views is a very simplistic view. For
example, the data warehouse refreshment process
can already consist of many different subprocesses,
like data cleaning, archiving, transformations and
aggregations, interconnected through a complex

schedule [2]. The reasons for such a structure of
processes are both technological and qualitative.

The technological reasons are basically summar-
ized by the observation that a data warehouse is a
heterogeneous environment where data must be
integrated both at the schema and at the instance
level [3–6]. The schema integration alone is a
painful procedure involving resolution for various
types of conflicts, schema conforming and restruc-
turing [4,7]. Still, even if the schema integration
process results in a unified schema, the physical
properties of data, along with timelines con-
straints, impose a complex process structure for
the loading of the warehouse with data from the
sources. To give an idea of this complexity, let us

*Corresponding author. Tel.: +30-1-772-1402; fax: +30-1-

772-1442.

E-mail addresses: pvassil@dbnet.ece.ntua.gr (P. Vassiliadis),

zvagena@dbnet.ece.ntua.gr (Z. Vagena), spiros@dbnet.ece.

ntua.gr (S. Skiadopoulos), nikos@dbnet.ece.ntua.gr

(N. Karayannidis), timos@dbnet.ece.ntua.gr (T. Sellis) .

0306-4379/01/$ - see front matter r 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 3 0 6 - 4 3 7 9 (0 1) 0 0 0 3 9 - 4

mention a case study from our practical experi-
ence, where a small part of the loading process for
a certain data source involved detecting relevant
data from a COBOL file, converting EBCDIC to
ASCII format, unpacking the packed numbers,
reducing all address fields to a standard format
and loading the result into a table in the data
warehouse.

At the same time, practice has shown that
neither the accumulation nor the storage of the
information seem to be completely credible. Errors
in databases have been reported to be up to 10%
range and even higher in a variety of applications
[8]. Ref. [9] reports that more than $2 billion of US
federal loan money had been lost because of poor
data quality at a single agency; manufacturing
companies spent over 25% of their sales on
wasteful practices. The number came up to 40%
for service companies. Clearly, being a decision
support information system, a data warehouse
must provide high-level quality of data and
services. In various vertical markets (e.g., the
public sector) data quality is not an option but a
constraint for the proper operation of the data
warehouse. Thus, data quality problems seem to
introduce even more complexity and computa-
tional burden to the loading of the data ware-
house.

To deal with the complexity of the data
warehouse loading process, specialized tools are
already available in the market, under the general
title extraction-Transformation-loading (ETL)
tools. To give a general idea of the functionality
of these tools we mention their most prominent
tasks, which include:

* the identification of relevant information at the
source side;

* the extraction of this information;
* the customization and integration of the in-

formation coming from multiple sources into a
common format;

* the cleaning of the resulting data set, on the
basis of database and business rules and

* the propagation of the data to the data ware-
house and/or data marts.

In the sequel, we will not discriminate be-
tween the tasks of ETL and data cleaning and

adopt the name ETL for both these kinds of
activities.

A study for Merrill Lynch [10] reports some very
interesting facts about the situation in the area of
ETL and data cleaning tools, by the end of 1998.
These tools cover a labor-intensive and complex
part of the data warehouse processes, which are
estimated to cost at least one third of effort and
expenses in the budget of the data warehouse.
Ref. [11] mentions that this number can rise up to
80% of the development time in a data warehouse
project. Still, due to the complexity and the long
learning curve of these tools, many organizations
prefer to turn to in-house development to perform
ETL and data cleaning tasks. Ref. [10] sounds
optimistic though, in the sense that it is expected
that ETL and data cleaning tools will mature
enough to outweigh their disadvantages with
concrete solutions for data of high quality.

Ref. [10] discriminates between the tasks of ETL
and cleaning, although it acknowledges that data
cleaning is just another instance of data transfor-
mation. The involved tools, possibly due to their
nature, do not always combine these functional-
ities. As already mentioned, most companies spend
more than one third of their data warehouse
budget to ETL software which is usually built in-
house. The reasons for not choosing the solution
of a commercial tool are the following, according
to [10]:

* many of the earlier ETL tools were complex,
difficult to use and expensive;

* companies have already been involved in this
kind of development for their legacy systems for
years and;

* many in-house developers enjoy working on
this intriguing problem, which is clearly hard to
solve.

Ref. [10] estimates that around the year 2000 the
ETL tools would be mature enough to revert the
tendency of in-house development and to reach a
compound annual growth rate (CAGR) of 20%
until 2002 (Fig. 1).

As for data cleaning tools, [10] is underlying
their ‘‘paramount’’ importance to organizations
that are moving towards a service-oriented profile.
This is because accurate, timely and consistent

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561538

information on customers can potentially produce
vast cut-offs in budget expenses. The major
problems with data cleaning tools are again
complexity and price. Another problem is that
due to the nature of the IT departments, which are
constrained in time and budget, tools for off-line
tasks like data cleaning are pushed aside from the
list of products to purchase Fig. (1).

Our personal experience in the data warehouse
field adds as a witness to the problems indicated by
[10]. We will mention a couple of projects to show
the particular problems we encountered during the
construction of data warehouses. The first project
involved loading data from all the health centers
(i.e., hospitals, provincial medical centers and
other special kinds of centers) of Greece into an
enterprise data warehouse. The loading of data
was performed annually and the querying was
supposed to be performed mostly by pre-canned
reports. The users were enabled to perform
standard on-line analytical processing (OLAP)
operations like filtering, roll-up, drill-down and
drill-through of the data. The data warehouse was
rather small and its construction took around 12
months. Still, the development of the software for
the loading of the warehouse was delayed due (a)
to communication problems with the administra-
tion team of the source system, (b) data quality
problems and (c) evolution reasons. It was quite
common a phenomenon that data were incomplete
and unreliable. Moreover, sudden changes in the
requirements of the users would result in the
evolution of the warehouse, causing extra delays.
In a second occasion, we had to build a data
warehouse with pension data. The data were to be
updated monthly and used by pre-canned reports.
The size of data involved a few million rows per
month. The source data resided again in a
COBOL-based legacy system. The project lasted
9 months and could be characterized more as
the construction of a data mart rather than
the construction of a full data warehouse. The

problems we encountered were of two kinds:
(a) problems of political nature (which we will
not discuss in this context, but refer the reader
to [11,12]) and (b) the construction of the
extraction and cleaning software. We discovered
that the extraction of data from the legacy
systems is a highly complex, error-prone and
tiring procedure, of which we have already given
an example some paragraphs ahead. The tool
offered by Oracle for these purposes (SQL*Loa-
der) was good enough only for the loading of the
warehouse from ASCII files; the rest of the
cleaning and transformation tasks had to be
hard-coded by us.

As it has already been demonstrated, both the
relevant literature and our personal experience
suggest that the problems concerning the ETL
tools are not only performance issues (as one
would normally expect), but also issues of com-
plexity, usability and price. To this end, the
contribution of this paper is towards the presenta-
tion (a) of a uniform model covering all the aspects
of an ETL environment and (b) of a platform
capable to support practical ETL scenarios with
particular focus on issues of complexity, usability
and maintainability. Various aspects of our ap-
proach are contributing to the achievement of
these goals. First of all, we provide a uniform
metamodel for ETL processes, covering the
aspects of data warehouse architecture, activity
modeling, contingency treatment and quality
management. Building on previous research results
[1,13,14], we pay particular attention to the
modeling and management of quality within the
ETL process. The ETL tool we have developed,
namely Arktos, is based on the described
metamodel to show the feasibility of the proposal.
Arktos is capable of modeling and executing
practical ETL scenarios by providing explicit
primitives for the capturing of common tasks (like
data cleaning, scheduling and data transforma-
tions). To enhance the usability of the tool, we

Fig. 1. Estimated sales in $Millions [10].

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 539

provide three ways to describe an ETL scenario:
a graphical point-and-click front end and two
declarative languages: XADL (an XML variant),
which is more verbose and easy to read and SADL
(an SQL-like language) which has a quite compact
syntax and is, thus, easier for constructing ETL
scenarios. As far as the maintainability and
extensibility of the tool is concerned, our system
is characterized by a modular, easily customizable
architecture based on the modularity of the
metamodel. We anticipate that the modularity
of the software architecture will enable us to
easily experiment on alternative propagation,
transformation and cleaning algorithms in the
future, in order to achieve better response times
from Arktos.

The structure of this paper is as follows.
In Section 2, we present background research
work which has influenced the definition of
proposed metamodel for ETL processes, along
with the metamodel itself. In Section 3, the
architecture and functionality of Arktos are
presented. In Section 4, we describe declarative
languages for the definition of ETL processes. We
discuss related work in Section 5 and conclude our
results along with the presentation of future work
in Section 6.

2. Background and metamodel for ETL processes

2.1. Background

The model for ETL activities lies on top of the
basic ideas of the European basic research project
‘‘Foundations on Data Warehouse Quality’’
(DWQ) [15,16]. The DWQ approach assumes the
existence of a metadata repository, where the
definitions of data warehouse objects, processes
and quality factors are stored. The set of basic
assumptions, which have been used to describe the
schema of the metadata repository, form the
DWQ metadata framework (Fig. 2). These assump-
tions include:

1. A clear distinction between different layers of
instantiation. Thus, for all the models describing
different aspects of the data warehouse, there
exists a generic metamodel layer, which deals
abstractly with entities applicable to any data
warehouse; also a metadata layer dealing with
the schemata of a specific data warehouse under
examination; and finally an instance layer
representing the real world (as an instance of
the previous layers). Out of the three layers of
instantiation, at least the two first should be

Fig. 2. Framework for data warehouse architecture [1].

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561540

clearly captured by the metadata repository.
The instance layer, though, is optional as far as
the metadata repository is concerned, since it
deals with the actual information (and not its
‘‘meta’’ description).

2. A clear distinction between perspectives. Fol-
lowing a classical categorization scheme in the
field of information systems, the metadata
framework relies on the separation of (a) the
conceptual perspective that captures the world in
a vocabulary close to the one of the final user;
(b) the physical perspective that covers the data
warehouse environment in terms of real-world,
computer-oriented components or events and
finally, (c) the logical perspective which acts
as an intermediate between these two extremes
in order to provide a concrete vocabulary of
the data warehouse environment, being inde-
pendent, though, from strict implementation
details.

In [1], the authors have presented a metadata
modeling approach which enables the capturing of
the static parts of the architecture of a data
warehouse, along with information over different
quality dimensions of these components. Apart
from the respect of the metadata framework, a
classical data warehouse separation between
sources, central warehouse and clients is also
introduced. In [14], this architecture model was
complemented with the metamodeling for the
dynamic part of the data warehouse environment:
the processes. The paper extends traditional work-
flow modeling with a conceptual perspective to
processes, quality management, and exploitation
of a metadata repository.

The DWQ approach has focused on the
management of data warehouse quality, based on
the goal-Question-metric approach (GQM) de-
scribed in [17]. The metamodel for the relationship
between architecture objects and quality factors is
presented in [18]. Each object in the data ware-
house architecture is linked to a set of quality goals
and a set of quality factors. A quality goal is a
high-level user requirement, defined on data ware-
house objects, and documented by a purpose and
the stakeholder interested in it. For example,
‘‘improve the usability of the produced data

cleaning software with respect to the data ware-
house administrator’’ is a quality goal defined on
the object ‘‘data cleaning software’’ with the
purpose of ‘‘improvement’’ and a particular class
of stakeholders involved. Quality dimensions
(e.g., ‘‘availability’’) constitute the users’ vocabu-
lary to formulate quality goals. At the same time,
quality dimensions act as classifiers of quality
factors into different categories. A quality factor
represents a quantitative assessment of a particular
aspect of a data warehouse object, i.e., it relates
quality aspects both to actual measurements and
expected ranges for these quality values.

The bridge between the abstract, subjective
quality goals and the specific, objective quality
factors is determined through a set of quality
queries (or questions), to which quality factor
values are provided as possible answers. Quality
questions are the outcome of the methodological
approach described in [13]. The methodology
exploits ‘‘template’’ quality factors and dimensions
defined at the metadata level and instantiates them
for the specific data warehouse architecture under
examination. As a result of the goal evaluation
process, a set of improvements (e.g., design
decisions) can be proposed, in order to achieve
the expected quality.

2.2. The metamodel of Arktos

In Fig. 3, we can see the basic types involved in
the Arktos metamodel. On the upper side of the
picture, one can see the metamodel layer, where all
the generic entities are found. The entities belong-
ing to the process model are colored white, the
entities of the architecture model are colored gray
and the entities of the quality model are colored
black. The entity activity is the main process type.
An activity is an atomic unit of work and a
discrete step in the chain of data processing in an
ETL environment. Since an activity in an ETL
context is supposed to process data in a data flow,
each activity is linked to input and output tables of
one or more databases. An SQL statement gives
the logical, declarative description of the work
performed by each activity (without obligatorily
being identical to actual, physical code that
performs the execution of the activity). A scenario

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 541

is a set of processes to be executed all together. A
scenario can be considered as the outcome of a
design process, where the designer tailors the set of
ETL processes that will populate the data ware-
house. Each activity is accompanied by an error
type and a policy. Since data are likely to
encounter quality problems, we assume that a
large part of the activities of a scenario are
dedicated to the elimination of these problems
(e.g., the violation of constraints, like the primary
or the foreign key constraint). The error type of an
activity identifies which kind of problem the
process is concerned with. The policy, on the
other hand, signifies the way the offending data are
going to be treated. Each activity is a fixed point in

the chain of computations of the overall ETL
process. Around each activity, several quality
factors can be defined. The quality factors
are measurements performed in order to charac-
terize the status of the underlying information.
For the moment, quality factors in Arktos

are implemented through the use of SQL queries.
On the right side of the metamodel layer, we
depict the objects belonging to the architecture
model: each connection refers to a set of data-
bases, which comprise tables (and their columns).
A driver determines the physical properties of the
connection.

Each of the metamodel entities is generic
enough to capture the majority of ETL tasks.

Fig. 3. The metamodel of Arktos.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561542

Still, Arktos is enriched with a set of ‘‘template’’
generic entities that correspond to the most
popular ETL tasks. In the middle of Fig. 3, one
can observe this specialization layer involving error
types like primary key violation, foreign key
violation, etc. and policies like delete offending
rows, output offending rows to a report, etc.
Clearly, the specialization layer is a subset of the
metamodel layer.

The lower part of Fig. 3 presents the metadata
layer. The metadata layer involves the particular
scenarios applicable to a specific data warehouse
(i.e., specific tables, activities and quality factors).
In Fig. 3 we can see the case where we define an
activity to delete from table Emp all the rows
having a NULL value in the Name attribute. For
clarity we use upper case letters for the entities of
the metamodel layer and lower case letters for the
entities of the metadata layer. Thus, the object
no null names for the employees is an instance
of the ACTIVITY entity in the metamodel layer,
whereas the entity null existence(Name) is an
instance of the NULL EXISTENCE entity. The
entity delete is an instance of the entity DELETE

in the metamodel layer. The quality factor
count null names is an instance of the entity
QUALITY FACTOR and is locally characterized by the
SQL statement SELECT * FROM EMP WHERE NAME IS

NULL. We can observe that all the entities of the
metadata layer are instances of the metamodel
layer. The instances of the metadata layer are
the traces of the execution of the activity
no null names for the employees in the real
world.

Formally, an activity can be defined in terms of
the following elements:

* Input table(s). One or more input tables,
belonging to a certain database.

* ErrorType. A characterization of the function-
ality of the activity. The implemented domain
is {PUSH, UNIQUESS VIOLATION, NULL EXIS-

TENCE, DOMAIN MISMATCH, PRIMARY KEY VIO-

LATION, REFERENCE VIOLATION, FORMAT

MISMATCH} (with the obvious semantics). All
these different alternatives are modeled as sub-
classes in the metamodel and the implementa-
tion of Arktos.

* Policy. A declaration of the treatment of
detected tuples. The implemented domain is
{IGNORE, DELETE, REPORT TO FILE, REPORT TO

TABLE}. Again, all these different alternatives
are modeled as subclasses in the metamodel and
the implementation of Arktos.

* Output table. A single output table towards
which the data are propagated. The field is
optional for several kinds of activities.

* Quality factor(s). A set of quality factors related
to the activity, each of which is characterized
from an SQL statement.

For reasons of brevity, we omit the formal
definition of the rest of the entities of the
metamodel of Arktos (scenario, connection,
etc.). Still, it is straightforward to derive it from
the UML definition in Fig. 3.

3. Architecture and functionality of ARKTOS

3.1. The architecture of Arktos

Arktos comprises several cooperating modules,
namely the SADL and XADL parsers, the
graphical scenario builder and the scheduler. The
architecture of Arktos in terms of software
modules is depicted in Fig. 4.

The graphical scenario builder is the front-end
module of the application, i.e., the module
employed by the user to graphically sketch the
logical structure of an ETL process. The scenario
builder equips the designer with a palette of
primitive transformations and data stores. The
user graphically constructs the architecture of the
data flow within the system. The primitive
processes are instantiated with concrete values
for the particular characteristics of the data stores
to which they are related, as well as to the
characteristics of each particular execution. The
graphical user interface (GUI) consists of a
number of visual objects which guide the user in
the process of sketching the sequence of the
transformation steps: rectangle shapes represent
data stores, oval shapes represent transformation
activities, rounded-corner rectangles represent
user-defined quality factors. The priority of

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 543

activities and the linkage of activities to data stores
are depicted with links between them. To complete
the description of the software architecture of the
scenario builder we also mention a number of
windows (JFrames in Java terminology) that
provide the ability both to have a view of the
already performed activities (for example, dialog
boxes that show the generated SQL) and to fill in
the necessary parameters.

The XADL and SADL parsers are the declara-
tive equivalent of the graphical scenario builder.
The structure of the parsers is classic (including
lexical and structural analysis); thus, we do not
provide any more details on these modules.

The central Arktos module performs three
typical tasks: (a) it interprets a submitted scenario
to a set of Java objects, (b) it places these objects
into a sequence of executable steps and (c) it
performs all the consistency checks to ensure the
correctness of the design process. The interpreta-
tion of the graphical entities/declared commands
within a scenario to Java objects is performed
straightforwardly. It is important to note that the
activities appear in linear sequence in the scenario
and are similarly represented in the main memory:
thus, their mapping to Java objects is performed in
an one-way pass. The creation of the execution
sequence is performed by placing each object in its
proper place within a linear object placeholder
such as vector, provided by the Java language. The
consistency checking involves (a) the detection of
possible cycles in the definition of a process flow,

(b) the identification of isolated activities in the
scenario and (c) the proper definition of all the
activities within a scenario, with respect to input/
output attributes, scripts and policies.

The classes used for the internal representation
of activities are grouped into three packages
according to their functionality. Precisely, there
exists a package named Transformtypes that
consists of the classes that model the individual
transform activities, a package named Errortypes

that consists of the classes that model the
individual cleaning primitives and a package
named Policies that consists of the classes that
model the possible treatment of the detected rows
from an activity. It is important to note that each
instance of a class belonging to the first package is
sufficient to hold all the necessary information for
the successful performance of an individual
transformation step (i.e., the involved source and
target data stores as well as the information on the
functionality of the activity are all captured by this
particular instance). As a general rule, each of the
aforementioned packages includes an abstract
class that groups the shared attributes and
methods together, acting as a base class for the
rest of the classes that actually support the
functionality of the tool. Thus, the metamodel of
Fig. 3 is directly represented in the software
architecture of Arktos. The result is enhanced
modularity and extensibility without significant
overhead due to the late binding of methods at
run-time (remember, that in an ETL environment

Fig. 4. The architecture of Arktos.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561544

this overhead is only a tiny fraction of the time
necessary to process millions of rows). Addition-
ally, there exists a package named Connections

which provides the classes to implement all the
connections to the data sources, the mapping of
the metadata of the underlying data stores to Java
objects in the Arktos environment (e.g., data-
bases, tables, data types of columns, etc.), as well
as the extraction of actual data from them.

The scheduler is the module that is used to
schedule the execution of previously created and
saved scenarios. The scheduling is performed with
the help of a commercial tool called jTask [19]
which is used to schedule the execution of Java
classes (something like a cron utility for Java
classes). Precisely, jTask schedules the execution of
a particular Java class of Arktos, which is
responsible for the loading of the saved scenarios
in the background and their execution in the
sequel. Naturally, the whole process is completely
transparent to the user.

The development of Arktos was performed
exclusively in Java2, using several API’s (SWING,
Java2D, JDBC) that the JDK 1.2.2 environment
provides.

3.2. Motivating example

In the sequel, we will present a motivating
example upon which we will base the presentation
of Arktos. The example is based on the former
TPC-D standard (now evolved into the TPC-R
and TPC-H standards [20]). We assume the
existence of three source databases S1, S2 and S3
as well as a central data warehouse under the
schema of the TPC-D standard. The schemata of
the sources and the data warehouse are depicted in
Fig. 5.

Each of the sources populates a certain table of
the central warehouse. Table LINEITEM, though, is
populated from more than one sources. We choose
to construct a different scenario for each of the

Fig. 5. The schemata of the source databases and of the central data warehouse.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 545

sources, involving the propagation of data from
the source to the warehouse as well as in some
cleaning and transformation activities:

* The first scenario involves the propagation of
data for table PARTSUPP (suppliers of parts)
from source S1 to the warehouse. This scenario
includes some testing of NULL values for the
attribute AVAILQTY of this table.

* The second scenario involves the loading of
data from tables ORDER and LINEITEM of source
S2 to the central warehouse. The propagated
data are checked for foreign key violation on
customers. In Fig. 6, one can observe the data
flow by following the vertical arrows (from the
sources to the targets) and the sequence of the
activities of the scenario (in oval shapes), by
following the horizontal arrows.

* The third scenario loads S3: LINEITEMS from
sources S3. Redundancy (i.e., primary key
violation) as well as foreign key violations are
present during this loading and are detected
from the Arktos primitives.

One can observe that we choose to construct
small-size scenarios dealing with portions of the
overall loading processes and coordinate them

later, through the scheduler. This reflects a broad-
er problem that we faced in the making of our
design choices both for the functionality and the
architecture of Arktos. Actually, in the design of
Arktos, we had to face a dilemma between two
conflicting approaches. On the one hand, our
practical experience indicated that the loading of
the warehouse involves several small-size scenar-
ios, possibly performed at different time instances
(i.e., not fully synchronized). On the other hand,
one could possibly envision complex lengthy
scenarios coordinating all the possible loads. We
believe that the dual nature of the programming
facilities of Arktos that we chose, can serve both
categories of ETL scenarios. Still, in the context of
complex scenarios, the testing of the efficiency and
the usability of Arktos is not yet fully explored.

3.3. Functionality of arktos

The construction of the scenario of the ETL
process is supported by several functionalities
offered by Arktos.
Connectivity. Arktos is based on the JDBC

protocol to perform its connections to the under-
lying data stores. All relational databases that

Fig. 6. Scenario for the propagation of data from sources S2 to the data warehouse.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561546

provide a JDBC driver of Types 3 and 4 can be
used as input or output data stores for the ETL
process. In order to connect to a data store, a
number of parameters must be provided, i.e., the
name of the driver to be used, the URL of the
database server, the name of the target database as
well as additional parameters about the driver and
the employed protocols. The connection process is
presented in Fig. 7.

The tool automatically retains the provided
information so that the latter can be reused in
subsequent scenario builds.
Transformation and cleaning primitives. Arktos

offers a rich variety of primitive operations to
support the ETL process. More specifically, the
cleaning primitives include: (a) primary key viola-
tion checking, (b) reference violation checking,
(c) NULL value existence checking, (d) uniqueness
violation checking, and (e) domain mismatch
checking. Moreover, Arktos offers propagation
and transformation primitive operations. The
propagation primitive simply pushes data to the
next layer of storage and the transformation
primitive transforms the data in to the desired
format, according to some pattern (which can be
either built-in or user-defined). For example, a
transformation primitive can be used to transform
a date field from dd/mm/yy into dd/mm/yyyy

format.
These primitives are customized by the user

(graphically or declaratively). The customization
includes the specification of input and output
(if necessary) data stores, contingency policy and

quality factors. Each operation is mapped to an
SQL statement; still it is not obligatory that its
execution is performed the same way. For
example, in the current version of Arktos, the
format transformation functions are performed
programmatically using a freely available Java
Package [21] that simulates the functionality of
Perl regular expressions. Below follows a descrip-
tion of the steps required to customize each
primitive operation of Arktos.

To clean the rows violating a primary key
constraint, the user has to provide the columns
that should be checked as well as the columns to be
retrieved. It should be pointed out that the tool
takes care of the correctness of the derived SQL
statement (i.e., that the columns checked should
also exist in the select part of the statement). To
detect the rows with a reference violation the user
has to provide the column to be checked, as well as
the database, table and column being referenced.
If a primary key exists at the target table, then the
tool points it out to the user by displaying it as a
default selection. To check for rows having NULL

values in a particular column, the user has to
provide the column that should be checked and the
set of columns to be retrieved (i.e., the schema of
the output of the activity). Since the set of columns
to be reported or propagated may be different
from the set which is checked for NULL values, the
user has to explicitly specify which of them he is
interested in. Similar parameters should be pro-
vided in the case of checking values that present a
distinct value violation. Again the tool helps the

Fig. 7. Connecting to a relational database.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 547

user by displaying the primary key of the target
table, if one exists. In the case of domain checking
the tool searches for rows on a particular column
whose type is numeric. Specifically, the user
specifies the range of permissible numeric values
for the data of the examined column. For example,
he has the ability to restrict the integer values of a
column to just the integers greater than a given
value.

In the case of a format transformation a specified
column is checked against a provided string
pattern. Arktos supports a number of commonly
encountered formats for dates, addresses and
primary names, along with other predefined or
ad hoc formats. The user has to provide the
column to be checked, the columns to be retrieved,
as well as the pattern against which the check is to
be performed. Let us take Fig. 8 as an example of
the functionality of format transformation. In this
case, the user wants to detect the rows from table
Order, having their o orderdate attribute in the
form yyyy-mm-dd and transform them in the form
of dd/mm/yyyy. On the left side of Fig. 8, one can
observe that the user has chosen the appropriate
filter for the input rows. The policy for the output
rows is shown on the right side of Fig. 8: the user
specifies that the output is transformed into a row
with its o orderdate field in dd/mm/yyyy format.
As already mentioned, Arktos also gives the

ability to the users to define a new pattern by
providing an ad hoc regular expression or to use
previously defined formats.
Contingency policy. Once a primitive filter is

defined in the context of a scenario, it is possible
that several rows fulfill its criteria at runtime. For
example, a particular row might violate the foreign
key constraint for one of its attributes. For each
such filter the user is able to specify a policy for the
treatment of the violating rows. For the moment,
the policies supported by Arktos are as follows:

* Ignore (i.e., do not react to the error and let the
row pass)

* Delete (from the source data store)
* Report to a contingency file
* Report to a contingency table
* Transformation from one format into another

(in the case of format matching).

Within the tool, the user specifies the desired
treatment for the rows identified by the error type
of the activity, by selecting one of the aforemen-
tioned policies. It is possible that the user is
requested to supply some additional parameters
(for example, the name of the file where the rows
should be reported, or the format to which the
values should be changedFsee Fig. 8b).
Trace management. As mentioned in [14,22,23],

there are different perspectives to view a process:

Fig. 8. Specifying the check for format transformation.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561548

what elements it consists of (logical perspective),
why these elements exist (conceptual perspective)
and how these elements perform during the
execution of their functionality (physical perspec-
tive). Although Arktos is not currently covering
the conceptual part of this triplet, it fully covers
the logical and physical perspectives. The physical
properties of the execution of the data warehouse
ETL processes are captured by detailed log
information reporting the individual steps of the
whole process. In order to provide a clear idea on
the functionality of each element the status,
initialization, commit or abort information for
each execution of an activity is traced, as shown
in Fig. 9.
Scheduling. Arktos uses a freely available Java

package [19] to schedule the execution of scenarios
that have already been created and saved by the
user. To perform this task, the user has to specify,
in the correct order, the name(s) of the files where
the appropriate scenarios reside. Each of the
scenarios participating in a schedule can be
executed either once, at a specific time point, or
on the basis of a specified repetition frequency

(e.g., every Monday, or every 23rd day of each
month, at 11:30 a.m.). In Fig. 10 we see (a) the
main window, where the user specifies a composite
scenario, comprising of the three scenarios of our
motivating example, to be executed in serial order;
(b) the way this composition is performed and
(c) the options for the time scheduling of the
composite scenario.

4. Declarative languages for ETL processes

As we have already pointed out, the major
obstacles the ETL tools have to overcome are the
issues of user-friendliness and complexity. To this
end, Arktos offers two possible ways for the
definition of activities: graphically and declara-
tively. The graphical definition is supported from a
palette with all the possible activities currently
provided by Arktos. The user composes the
scenario from these primitives, links them in a
serial list and resolves any pending issues of their
definition. Since we have already elaborated on the
facilities for the graphical definition of a scenario,

Fig. 9. A log for the execution of Scenario 1.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 549

in the rest of this section we will focus on the
facilities for the declarative definition of data
warehouse scenarios within the Arktos environ-
ment.

There is a classical problem with declarative
languages and formal specifications: the languages
which are easy to read are hard to write and vice
versa. To overcome the problem we resort to two
declarative definition languages:

* XML-based Activity Definition Language,
(XADL) an XML description language for
data warehouse processes, on the basis of a
well-defined DTD and

* Simple Activity Definition Language (SADL), a
declarative definition language motivated from
the SQL paradigm.

The former language is rather verbose and
complex to write; yet it is more comprehensible

since it is quite detailed in its appearance and
produces programs which is easily understandable
even for a non-expert. The latter is more compact
and resembles SQL; thus it is mostly suitable for a
trained designer. We find SADL easier to write
than the XML variant.

In order to explain the internals and the
functionality of the two languages we will employ
a subset of our motivating scenario. In Fig. 11 we
depict the activities for the loading of data from
source S3, as composed in a scenario, namely
Scenario 3. The examples of the two next
subsections will show the implementation of this
scenario in SADL and XADL.

4.1. SADL

The SADL language is composed of four
definition statements: the CREATE SCENARIO,

Fig. 10. Basic screens for the scheduler.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561550

CREATE CONNECTION, CREATE ACTIVITY and CRE-

ATE QUALITY FACTOR statements. A CREATE CON-

NECTION statement specifies the details of each
database connection. A CREATE ACTIVITY state-
ment specifies an activity and a CREATE QUALITY

FACTOR statement specifies a quality factor for a
particular activity. The CREATE SCENARIO state-
ment ties all the elements of a scenario together. In
Fig. 12 we depict the syntax of these four
statements.

Connections and activities are the first-class
citizens within the context of a scenario. Thus, to
declare a CREATE SCENARIO statement one has
simply to provide the names of the respective
connections and the activities of the scenario. The
definition of a connection, through the CREATE

CONNECTION statement is equally simple: the
database URL and the class name of the respective
driver are required. Since the database URL is
quite big in size for the user to write down, an
ALIAS clause is introduced. All table names are
required to be in the form otable-

name4@odatabase alias4 to distinguish be-
tween synonym tables in different databases. The
username and password are optional (in order to
avoid storing them in the file). CREATE QUALITY

FACTOR is also a simple statement: one has to

specify the activity in the context of which a
quality factor is defined, the report to which the
value of the quality factor will be saved and the
semantics of the quality factor, expressed by an
SQL statement (in practice any SQL statement
that the database driver and JDBC can support).

The CREATE ACTIVITY statement is somewhat
more complex. One has to specify first the
functionality of the activity in the TYPE clause.
The oerror type4 placeholder can take values
from the set {PUSH, UNIQUESS VIOLATION, NULL

EXISTENCE, DOMAIN MISMATCH, PRIMARY KEY

VIOLATION, REFERENCE VIOLATION, FORMAT MIS-

MATCH}. The POLICY clause determines the treat-
ment of the rows affected by the activity. The
opolicy type4 belongs to the set {IGNORE,
DELETE, REPORT TO FILE,REPORT TO TABLE} and
the ooutput name4 variable defines the name of
the output file or table (wherever appropriate).
The OUTPUT clause specifies the target table or file
(if there exists one). If a table is to be populated,
all the relevant attributes are specified too. The
order of the attributes is important (they must be
in one-to-one correspondence with the attributes
of the input tables as specified in the SQL query,
which will be described later). The SEMANTICS

clause is filled with an arbitrary SQL query.

Fig. 12. The syntax of SADL for the CREATE SCENARIO, CONNECTION, ACTIVITY, QUALITY FACTOR statements.

Fig. 11. Description of Scenario 3 of the motivating example.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 551

Several issues should be noted for this clause:

* the order of the attributes in the OUTPUT
clause should be in accordance with the order of
the attributes in the SELECT clause of the SQL
query;

* the input tables are described in the FROM
clause of the SQL statement and

* the order of the activities in the CREATE
SCENARIO statement is important, because it
denotes the flow of the activities.

There are standard CREATE ACTIVITY statements
for all the primitives (i.e., the specialized activities)
offered by Arktos. In Fig. 13 we list them along
with syntactic sugar shortcuts which make the life
of the designer much easier (remember that the
type of the operation is given in the TYPE clause of
the CREATE ACTIVITY statement). Note again that
in XADL and SADL we refer only to the logical
semantics of the activities and not to the way they
are actually executed, which is hard-coded in the
subclasses of the Arktos architecture.

Returning to our motivating example, let us
observe Fig. 14. In lines 1–4 we define our
scenario, which consists of three activities. The
order of the activities appearing in the figure is in
descending execution priority. The connection
characteristics for connecting to the data ware-
house are declared in lines 6–9. An example of the
SADL description of an activity can be seen in

lines 11–16 for the reference violation checking
activity. Finally, in lines 18–22 we depict the
declaration of a quality factor, which counts the
number of the rows which do not pass the foreign
key violation check. The quality factor is traced
into a log file.

4.2. XADL

For any valid scenario that we load in Arktos,
its XADL description can be automatically
generated by the tool. In Fig. 15, we illustrate a
subset of the XADL definition for the scenario of
Fig. 11, as it is exported by Arktos. In lines 3–10
the connection instructions are given for the
source database S3 (the data warehouse database
is described similarly). Line 4 describes the URL of
the source database (remember that Arktos uses
the JDBC protocol which assigns a particular
URL to every service of a DBMS instance).
Naturally, the username and passwords are not
depicted. Line 8 gives the class name for the
employed JDBC driver (JDBC communicates with
an instance of a DBMS through a driver,
particular to this given DBMSFin our case, since
the source database is an informix instance, we
employ the respective driver).

Lines 67–102 describe the second activity of
Scenario 3. First, in lines 68–85 the structure of the
input table is given. Lines 86–92 describe the error

Fig. 13. The SADL specification for the basic primitives offered by Arktos.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561552

type (i.e., the functionality) of the activity: we
declare that all rows that violate the foreign key
constraint should be deleted. The target column
and table are specifically described. Lines 93–95
deal with the policy followed for the identified
records and declare that in this case, we simply
delete them. A quality factor returning the
absolute number of violating rows is described in
lines 96–98. This quality factor is characterized by
the SQL query of line 97, which computes its value
and the report file where this value should be
stored. For lack of space, the full DTD for the
XADL language is given in the Appendix A.

5. Related work

In this section, we discuss the state of art and
practice for some commercial ETL tools and
standards. We also refer to research prototypes
and solutions given in the academic community.

5.1. Standards and commercial tools

Standards. The Metadata Coalition (MDC), is
an industrial, non-profitable consortium with aim
to provide a standard definition for enterprise

metadata shared between databases, CASE tools
and similar applications. The Open Information
Model (OIM) [24] is a proposal (led by Microsoft)
for the core metadata types found in the opera-
tional and data warehousing environment of
enterprises. The MDC OIM uses UML both as a
modeling language and as the basis for its core
model. The OIM is divided into submodels, or
packages, which extend UML in order to address
different areas of information management. The
Database and Warehousing Model is composed
from the Database Schema Elements package, the
Data Transformations Elements package, the
OLAP Schema Elements package and the Record
Oriented Legacy Databases package. The Data
Transformations Elements package covers basic
transformations for relational-to-relational trans-
lations. The package is not a data warehouse
process modeling package (covering data propa-
gation, cleaning rules, or the querying process),
but covers in detail the sequence of steps, the
functions and mappings employed and the execu-
tion traces of data transformations in a data
warehouse environment.
Ardent Software. Ardent Software [25] provides

a tool suite for extract-transform-load processes in
a data warehouse environment, under the general

Fig. 14. Part of Scenario 3 expressed in SADL.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 553

name Datastage Suite. Datastage is a client server
tool for designing, controlling and engineering the
ETL process. The Datastage Server, is the engine
that accepts a series of transformation requests
and takes over their execution. On the client side,
there is a set of tools that enable the graphical
design and deployment of the ETL applications.
The Datastage Manager is a tool supporting the
importing/exporting/sharing of the environment
metadata. The datastage server is the central
engine responsible for executing a sequence of
transformation operations. Its capabilities include

combining rows from heterogeneous data sources,
division, enrichment and merging of rows, sorting
and aggregation, parallelism, invocation of exter-
nal tools and many other features. The Datastage
Manager catalogues and organizes the compo-
nents of a Datastage Project. The tool presents
relational catalogs via standard RDBMS API’s
and exports these metadata using the technology
of Microsoft repository [26].
DataMirror. DataMirror’s Transformation Ser-

ver (TS) [27] is an engine-based data transforma-
tion and replication tool that enables users to

Fig. 15. XADL definition of Scenario 3 as exported by Arktos.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561554

easily and seamlessly move and share data in real
time among mixed system environments. The main
features of TS include bi-directional, real time,
periodic or asynchronous replication, the full
replication of databases and the support of a
publish/subscribe model to distribute data. All the
metadata necessary to implement this replication
process are stored in the native databases (sources
and targets), where also the replication engine
runs. TS can track changes in the source databases
and extract only them.
ETI. ETI [28] provides a tool suite, named

ETI �EXTRACT FX, which is a code generating
software product that automates data transforma-
tion, reorganization and integration. The
ETI �EXTRACT generates all the codes and
necessary scripts to extract data from source
systems, transform them as required and load
them into the target systems. To perform these
tasks, the software relies on ETI’s Data System
Libraries with information on individual data
storage systems. Users specify the integration of
the data using ETI’s editors. The program
analyzes the integration project and generates
the actual code in the Generation Engine. This
code is transferred to the source and target
systems. For metadata acquisition and storage
ETI �EXTRACT uses the Metastore component
which is a centralized, object-oriented database
that captures a full audit trail of the information
ETI �EXTRACT acquires in the process of auto-
matic data consolidation.
Microsoft. The tool offered by Microsoft to

implement its proposal for the Open Information
Model is presented under the name of Data
Transformation Services [29]. Data transformation
services (DTS) are the data-manipulation utility
services in SQL server version 7.0 that provide
import, export, and data-manipulating services
between OLE DB [30], ODBC and ASCII data
stores. The software modules that support DTS
are packaged with MS SQL server. These packages
include (a) DTS Designer, which is a GUI used to
interactively design and execute DTS packages;
(b) DTS Export and Import Wizards, i.e., wizards
that ease the process of defining DTS packages for
the import, export and transformation of data and
(c) DTS Programming Interfaces, which include a

set of OLE automation and a set of COM
interfaces to create customized transformation
applications for any system supporting OLE
automation or COM.

In an overall assessment we could say that
commercial ETL tools are responsible for the
implementation of the data flow in a data ware-
house environment. Most of the commercial ETL
tools are of two flavors: engine-based, or code-
generation based. The former assume that all data
have to go through an engine for transformation
and processing. Moreover, quite often the engine
takes over also the extraction and loading pro-
cesses, making the Extract-Transform-Load pro-
cesses one big process, where the intermediate
steps are transparent to the user. On the other
hand, in code-generating tools all processing takes
place only at the target or source systems. The
tools offered by Ardent, DataMirror and Micro-
soft are engine based, while the tool from ETI is
code-generation based. In Arktos we have fol-
lowed the code-generation approach, which en-
ables greater flexibility and customization to the
user. Compared to the commercial tools, Arktos

is based on a concrete meta-model specific for ETL
processes. Although one could argue that Arktos

includes a limited set of operations compared to a
full-blown commercial product, it is the generality
along with the clarity of the meta-model which
gives it the advantage of extensibility and simpli-
city. Moreover, we believe that providing alter-
native, declarative ways to describe ETL scenarios,
as we have done in Arktos, instead of just a
point-and-click front-end, considerably enhances
the usability of an ETL tool.

5.2. Research efforts

Research on the general problem of ETL. The
AJAX system [31] is a data cleaning tool developed
at INRIA France. It deals with typical data quality
problems, such as the object identity problem [32],
errors due to mistyping and data inconsistencies
between matching records. This tool can be
used either for a single source or for integrating
multiple data sources. AJAX provides a frame-
work wherein the logic of a data cleaning
program is modeled as a directed graph of data

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 555

transformations that start from some input source
data. Four types of data transformations are
supported: (a) mapping transformations that stan-
dardize data formats (e.g., date format) or simply
merge or split columns in order to produce more
suitable formats; (b) matching transformations that
find pairs of records which most probably refer to
same object. These pairs are called matching pairs
and each such pair is assigned a similarity value;
(c) clustering transformations which group together
matching pairs with a high similarity value by
applying given grouping criteria (e.g., by transitive
closure) and (d) merging transformations which are
applied to each individual cluster in order to
eliminate duplicates or produce new records for
the resulting integrated data source. AJAX also
provides a declarative language for specifying
data cleaning programs, which consists of SQL
statements enriched with a set of specific primi-
tives to express mapping, matching, clustering
and merging transformations. Finally, an inter-
active environment is supplied to the user in
order to resolve errors and inconsistencies
that cannot be automatically handled and support
a stepwise refinement design of data cleaning
programs. The theoretical foundations of this
tool can be found in [33], where apart from the
presentation of a general framework for the
data cleaning process, specific optimization
techniques tailored for data cleaning applications
are discussed.

Ref. [34] presents the Potter’s wheel system,
which is targeted to provide interactive data
cleaning to its users. The system offers the
possibility of performing several algebraic opera-
tions over an underlying data set, including format
(application of a function), drop, copy, add a
column, merge delimited columns, split a column
on the basis of a regular expression or a position in
a string, divide a column on the basis of a predicate
(resulting in two columns, the first involving the
rows satisfying the condition of the predicate and
the second involving the rest), selection of rows on
the basis of a condition, folding columns (where a
set of attributes of a record is split into several
rows) and unfolding. Optimization algorithms are
also provided for the CPU usage for certain classes
of operators.

Research on data transformations. In [35] the
authors present WOL, a Horn-clause language, to
specify transformations between complex types.
The transformations are specified as rules in a
Horn-clause language. An interesting idea behind
this approach is that a transformation of an
element can be decomposed into a set of rules
for its elements, thus avoiding the difficulty of
employing complex definitions. In [36] the authors
discuss the general setting for schema and data
integration. The Garlic system is used as the
paradigm for mediator/wrapper architectures, to
explore the issues of (a) transformations in the
wrapper side; (b) view definitions in the wrapper
and (c) data integration. A prototype under
construction is also sketched. The paper is also
characterized by an informative revision of the
relevant literature in each of these areas. In [37],
the authors discuss several issues around ETL
tools in the data warehousing context. The authors
conclude that a language respecting logical and
physical independence is needed as a definition
language for the ETL process. Another basic
observation is that ad hoc querying and pre-
canned definition should ideally use the same
language. All these observations sum up to the
proposal of SQL99 (which supports function
definition and invocation) as the proper language
for this task. The authors go on to present the
Cohera System, which is a federated DBMS and
supports SQL99 as the mapping language between
the relations of a set of federated databases.
Research on data cleaning. Data cleaning is

another step in the ETL process, which unfortu-
nately has not caught the attention of the research
community. Still, [38] provides an extensive over-
view of the field, along with research issues and a
review of some commercial tools. Ref. [39]
discusses a special case of the data cleaning
process, namely the detection of duplicate records
and extends previous algorithms on the issue. Ref.
[40] focuses on another subproblem, namely the
one of breaking address fields into different
elements and suggests the training of a Hidden
Markov Model to solve the problem.
Workflow and process modeling. Modeling ETL

scenarios can be considered as a special case of the
general problem of workflow and process model-

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561556

ing. Although beyond the scope of this paper,
we mention several research efforts in the field
[3,41–47] as well as a widely accepted standard
proposed by the Workflow Management Coalition
(WfMC) [48]. As far as process modeling is
concerned, we reference the interested reader to
[49] for a recent overview of the field.

In another line of research, [2] is the first attempt
to clearly separate the data warehouse refreshment
process from its traditional treatment as a view
maintenance or bulk loading process. The authors
provide a conceptual model of the process, which
is treated as a composite workflow.

6. Conclusions and future work

In this paper, we have presented a uniform
model covering all the aspects of an ETL environ-
ment as well as a platform capable to support
practical ETL scenarios with particular focus on
issues of complexity, usability and maintainability.
The proposed metamodel covers the aspects of
data warehouse architecture, activity modeling,
contingency treatment and quality management.
The ETL tool we have developed, namely Ark-

tos, is capable of modeling and executing practical
ETL scenarios by providing explicit primitives for
the capturing of common tasks (like data cleaning,
scheduling and data transformations). Further-
more, we provide three ways to describe an ETL
scenario: a graphical point-and-click front end and
two declarative languages: XADL (an XML
variant), which is more verbose and easy to read
and SADL (an SQL-like language) which has a
quite compact syntax and is, thus, easier for
authoring.

In the future we plan to integrate even more
functionality in our ETL tool, in order to provide
the users with richer transformation primitives.
From the viewpoint of research, several issues
remain open and we discuss them in the sequel.
The impact analyzer. An important aspect in the

data warehouse lifecycle is the issue of data
warehouse evolution. Different user requirements
may impose the evolution of schema, functionality
and data of the warehouse. Due to the complexity
of the data warehouse architecture, evolution is

hard, since it is possible that several objects are
affected due to a simple change. In [14] we have
already suggested algorithms that exploit the
logical description of a process to perform impact
analysis in the presence of evolution intentions.
We are currently working on implementing these
algorithms and incorporating these results in
Arktos.
Linkage to a metadata repository. It is quite

common practice to use a meta-database as a
repository for meta-information on the compo-
nents of a data warehouse. Metadata repositories
offer the possibility of exploring crucial meta-
information on the structure and content of the
information system either through interactive
polling or querying APIs. In our case, the storage
of scenarios inside a metadata repository will give
us the flexibility of complex querying to retrieve
interesting information (e.g., possibly hidden
interrelationships, linkage to the conceptual per-
spective for data warehouse processes [14] and
other). In all our background work, the architec-
ture, quality and process models have been
represented in Telos [50], a conceptual modeling
language for representing knowledge about infor-
mation systems, and implemented in the object-
oriented deductive database system ConceptBase
[51], that provides query facilities, and a language
for constraints and deductive rules. ConceptBase
offers Java and C APIs to external applications
to query and retrieve stored objects, which we plan
to exploit in order to link it to Arktos.
The optimizer. We have argued that a primary

concern with ETL tools is usability and function-
ality. Having said that, we do not advocate
though, that performance is not a crucial issue,
especially as the size of data warehouses grows.
For us, the optimization problem of ETL pro-
cesses is posed as follows:

* Identification of a small set of algebraic
operators, capable enough to support the
efficient execution of the primitives we have
defined at the user level. A mapping from the
declarative specification of activities to these
algebraic operators is also required.

* Local optimization of ETL activities. Each
logical activity may be mapped to different

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 557

combinations of physical activities (in the same
fashion that there are more than one way to
execute a relational join). For example, check-
ing for distinct values might be performed
by sorting, hashing, self-join and possibly
other techniques. To determine which is the
most efficient local plan is an open research
issue.

* Global (multiple) optimization of ETL activ-
ities. The execution of a whole scenario (or a set
of scenarios) with the optimal way, might
require to employ different plans than
simply optimizing each of the activities
in isolation [52]. Producing, thus the optimal

plan for a scenario is not a straightforward
operation.

Acknowledgements

This research has been partially funded by the
European Union’s Information Society Technolo-
gies Programme (IST) under project EDITH (IST-
1999-20722). Many thanks are also due to the
anonymous reviewers of previous versions of this
paper for their fruitful comments and suggestions.

Appendix A. The DTD of XADL

o?xml version=‘‘1.0’’ encoding=‘‘UTF-8’’?4
o!– –DTD that species the structure of the xml description of the scenario– –4
o!ELEMENT scenario (connection+,transformtype+)4
o!ATTLIST scenario name CDATA #REQUIRED4
o!ELEMENT connection (database,jdbc driver)4
o!ATTLIST connection name CDATA #REQUIRED4
o!ELEMENT database (user name,password)4
o!ATTLIST database database url CDATA #REQUIRED4
o!ELEMENT user name EMPTY4
o!ELEMENT password EMPTY4
o!ELEMENT jdbc driver EMPTY4
o!ATTLIST jdbc driver class name CDATA #REQUIRED4
o!ELEMENT transformtype (input table, errortype,policy, output table?, quality+factor*)4
o!ATTLIST input table table name CDATA #REQUIRED database url CDATA #REQUIRED4
o!ELEMENT input table (column+)4
o!ELEMENT column (#PCDATA)4
o!ELEMENT quality factor (sql query+)4
o!ATTLIST quality factor qf name CDATA #REQUIRED qf report file CDATA #REQUIRED4
o!ELEMENT sql query (#PCDATA)4
o!ELEMENT errortype (push to table|uniquness violation|null existence|domain mismatch|

primary key violation|reference violation|format mismatch)4
o!ELEMENT push to table EMPTY4
o!ELEMENT uniqueness violation EMPTY4
o!ATTLIST uniquness violation target column name CDATA #REQUIRED4
o!ELEMENT null existence EMPTY4
o!ATTLIST null existence target column name CDATA #REQUIRED4
o!ELEMENT domain mismatch (target column name, specication string)4
o!ELEMENT target column name (#PCDATA)4
o!ELEMENT specication string (#PCDATA)4
o!ELEMENT primary key violation (target column name)+4
o!ELEMENT reference violation (target column name, referenced table name, referenced

column name)4

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561558

References

[1] M. Jarke, M.A. Jeusfeld, C. Quix, P. Vassiliadis, Archi-

tecture and quality in data warehouses: an extended

repository approach, Inform. Systems 24 (3) (1999)

229–253. (A previous version appeared in: Proceedings

of the 10th Conference of Advanced Information Systems

Engineering (CAiSE’98), Pisa, Italy, 1998.

[2] M. Bouzeghoub, F. Fabret, M. Matulovic, Modeling data

warehouse refreshment process as a workflow application.

Proceedings of the International Workshop on Design and

Management of Data Warehouse, Heidelberg, Germany,

June 1999.

[3] F. Casati, S. Ceri, Barbara Pernici, Giuseppe Pozzi,

Workflow evolution, DKE 24 (3) (1998) 211–238.

[4] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,

R. Rosati, Information integration: conceptual modeling

and reasoning support, Proceedings of the Sixth Interna-

tional Conference on Cooperative Information Systems,

1998, pp. 280–291.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,

R. Rosati, Data integration in Data Warehousing, Int.

J. Cooperative Inform. Systems 10 (13) (2001) 237–271.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R.

Rosati, A principled approach to data integration and

reconciliation in data warehousing, Proceedings of the

International Workshop on Design and Management of

Data Warehouses (DMDW’99), available at http://sun-

site.informatik.rwth-aachen.de/Publications/CEUR-WS/

Vol-19/.

[7] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis (Eds.),

Fundamentals of Data Warehouses, Springer, Berlin,

2000.

[8] R.Y. Wang, M.P. Reddy, H.B. Kon, Towards quality

data: an attribute-based approach, Decision Support

Systems 13 (1995) 349–372.

[9] R.Y. Wang, V.C. Storey, C.P. Firth, A framework for

analysis of data quality research, IEEE Trans. Knowledge

Data Engi. 7(4) (1995) 623–640.

[10] C. Shilakes, J. Tylman, Enterprise information portals,

Enterprise Software Team, November 1998; available at

www.sagemaker.com/company/downloads/eip/indepth.pdf.

[11] M. Demarest; The politics of data warehousing, available

at http://www.hevanet.com/demarest/marc/dwpol.html.

[12] P. Vassiliadis, Gulliver in the land of data warehousing:

practical experiences and observations of a researcher,

Proceedings of Design and Management of Data Ware-

houses (DMDW’2000) Second International Workshop (in

conjunction with the 12th Conference on Advanced

Information Systems EngineeringFCAiSE’00), Stock-

holm, Sweden, 2000, pp. 12.1–12.16.

[13] P. Vassiliadis, M. Bouzeghoub, C. Quix, Towards quality-

oriented data warehouse usage and evolution, Inform.

Systems, 25 (2) 89–115 2000. (A previous version appeared

in Proceedings of the 11th Conference of Advanced

Information Systems Engineering (CAiSE’99), Heidelberg,

Germany, 1999, pp. 164–179).

[14] P. Vassiliadis, C. Quix, Y. Vassiliou, M. Jarke, A model

for data warehouse operational processes. Proceedings

of the 12th Conference on Advanced Information

Systems Engineering (CAiSE’00), Stockholm, Sweden,

2000.

[15] M. Jarke, Y. Vassiliou, Foundations of data warehouse

qualityFa review of the DWQ project, Proceedings of the

Second International Conference on Information Quality

(IQ-97), Cambridge, MA, 1997; available at http:/

www.dbnet.ece.ntua.gr/Bdwq.

[16] M. Jarke, C. Quix, D. Calvanese, M. Lenzerini, E.

Franconi, S. Ligoudistianos, P. Vasiliadis, Y. Vassiliou,

Concept based design of data warehouses: the DWQ

demonstrators, Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data,

o!ELEMENT referenced table name (#PCDATA)4
o!ELEMENT referenced column name (#PCDATA)4
o!ELEMENT format mismatch (target column name, pattern match string)4
o!ELEMENT pattern match string (#PCDATA)4
o!ELEMENT policy (ignore|delete|report to file|insert to table|transform format)4
o!ELEMENT ignore EMPTY4
o!ELEMENT delete EMPTY4
o!ELEMENT report to file EMPTY4
o!ATTLIST report to file lename CDATA #REQUIRED4
o!ELEMENT insert to table EMPTY4
o!ATTLIST output table table name CDATA #REQUIRED database url CDATA #REQUIRED4
o!ELEMENT transform format EMPTY4
o!ATTLIST transform format transform string CDATA #REQUIRED4
o!ELEMENT output table (column+)4

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 559

Vol. 29, Dallas, USA, 14–19 May 2000 (Demonstration),

ACM 2000, ISBN 1-58113-218-2, p. 591.

[17] M. Oivo, V. Basili, Representing software engineering

models: the TAME goal-oriented approach, IEEE Trans.

Software Eng. 18 (10) (1992) 886–898.

[18] M.A. Jeusfeld, C. Quix, M. Jarke, Design and analysis

of quality information for data warehouses, Proceedings of

the 17th International Conference on the Entity Relation-

ship Approach, Singapore, 1998.

[19] Branch Cut Software, Jtask: Java Task Scheduler, avail-

able at http://www.branchcut.com/jTask/.

[20] Transaction Processing Performance Council, TPC-H and

TPC-R, 2000, available at www.tcp.org.

[21] ORO, Inc. PerlTools 1.2., available at http://www.savar

ese.org/oro/.

[22] M. Jarke, M.A. Jeusfeld, T. Rose, A software process data

model for knowledge engineering in information systems,

Inform. Systems 15 (1) (1990) 85–116.

[23] E. Yu, J. Mylopoulos, Understanding ‘why’ in software

process modelling, analysis and design, Proceedings of

the 16th International Conference Software Engineering,

1994.

[24] MetaData Coalition, Open information model. version

1.0, 1999, available at www.MDCinfo.com.

[25] Ardent Software. DataStage Suite, available at http://

www.ardentsoftware.com/.

[26] P.A. Bernstein, Th. Bergstraesser, J. Carlson, S. Pal,

P. Sanders, D. Shutt, Microsoft repository version 2 and

the open information model, Inform. Systems 24 (2) (1999)

78–93.

[27] DataMirror Corporation, Transformation server, avail-

able at http://www.datamirror.com.

[28] Evolutionary Technologies International, ETI*EX-

TRACT, available at http://www.eti.com/.

[29] Microsoft Corp., MS Data transformation services, avail-

able at www.microsoft.com/sq.

[30] Microsoft Corp., OLEDB specification, available at

www.microsoft.com/data/oledb.

[31] H. Galhardas, D. Florescu, D. Shasha, E. Simon, Ajax:

an extensible data cleaning tool. Proceedings of the ACM

SIGMOD International Conference on the Management

of Data, Dallas, TX, 2000, 590.

[32] W. Cohen, Some practical observations on integration of

Web information, WebDB’99 Workshop in conj. with

ACM SIGMOD, 1999.

[33] H. Galhardas, D. Florescu, D. Shasha, E. Simon, An

Extensible Framework for Data Cleaning, Technical

Report, INRIA, 1999, RR-3742.

[34] V. Raman, J. Hellerstein, Potters wheel: an interactive

framework for data cleaning and transformation, Techni-

cal Report, University of California at Berkeley, Computer

Science Division, 2000; available at http://www.cs.berke-

ley.edu/Brshankar/papers/pwheel.pdf.

[35] S.B. Davidson, A.S. Kosky, Specifying Database Trans-

formations in WOL, Bulle. Techn. Committee Data Eng.

22 (1) (1999) 25–30.

[36] L. Haas, R. Miller, B. Niswonger, M. Tork Roth,

P. Schwarz, E. Wimmers. Transforming hetero-

geneous data with database middleware: beyond

integration, Bull. Tech. Committee Data Eng. 22 (1)

(1999) 43–49.

[37] J.M. Hellerstein, M. Stonebraker, R. Caccia, Independent,

open enterprise data integration. Bull. Techn. Committee

Data Eng. 22 (1) (1999) 31–36.

[38] E. Rahm, H. Hai Do, Data cleaning: problems and current

approaches, Bull. Tech. Committee Data Eng. 23 (4)

(2000) 3–13.

[39] A. Monge, Matching algorithms within a duplicate

detection system. Bull. Tech. Committee Data Eng. 23

(4) (2000) 14–20.

[40] V. Borkar, K. Deshmuk, S. Sarawagi, Automatically

extracting structure form free text addresses, Bull. Techn.

Committee Data Eng. 23 (4) (2000) 27–32.

[41] F. Casati, M. Fugini, I. Mirbel, An environment for

designing exceptions in workflows, Inform. Systems 24 (3)

(1999) 255–273.

[42] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Conceptual

modeling of workflows, Proceedings of the 14th Interna-

tional Conference on Object-Oriented and Entity-Rela-

tionship Modelling (ER’95), Gold Coast, Australia, 1995,

pp. 341–354.

[43] P. Dadam, M. Reichert (Eds.), Enterprise-wide and Cross-

enterprise Workflow Management: Concepts, Systems,

Applications, GI Workshop Informatik’99, 1999; available

at http://www.informatik.uni-ulm.de/dbis/veranstaltun-

gen/Workshop-Informatik99-Proceedings. pdf.

[44] R. Klamma, Readings in workflow management;

annotated and linked internet bibliography, RWTH

Aachen; available at http://sunsite.informatik.rwth-aa-

chen.de/WFBib/.

[45] D. Kuo, M. Lawley, C. Liu, M. Orlowska, A general

model for nested transactional workflows, Proceedings of

the International Workshop on Advanced Transaction

Models and Architecture, India, 1996.

[46] O. Marjanovic, M. Orlowska, On modeling and

verification of temporal constraints in production

workflows, Knowledge Inform. Systems 1 (2) (1999)

157–192.

[47] W. Sadiq, M. Orlowska, Applying graph reduction

techniques for identifying structural conflicts in process

models. Proceedings of the 11th International Conference

on CAiSE’99, Heidelberg, Germany, 1999.

[48] Workflow Management Coalition, Interface 1: process

definition interchange process model, Document

number WfMC TC-1016-P, 1998; available at www.

wfmc.org.

[49] C. Rolland, A comprehensive view of process engineering,

Proceedings of the 10th International Conference on

Advanced Information Systems Engineering, Pisa, Italy,

pp. 1–25.

[50] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis,

TelosFa language for representing knowledge about

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561560

information systems, ACM Trans. Inform. Systems 8 (4)

(1990) 325–362.

[51] M. Jarke, R. Gallersd.orfer, M.A. Jeusfeld, M. Staudt,

S. Eherer, ConceptBaseFa deductive objectbase for meta

data management, J. Intelli. Inform. Systems (Special Issue

on Advances in Deductive Object-Oriented Databases) 4

(1995) 167–192.

[52] T. Sellis, Multiple-query optimization, TODS 13 (1) (1988)

23–52.

P. Vassiliadis et al. / Information Systems 26 (2001) 537–561 561

