
Pergamon
Information S.wtems Vol. 24. No. 3, pp. 229-253. 1999

0 1999 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

PII: SO306-4379(99)00017-4 0306-4379/99 $20.00 + 0.00

ARCHITECTURE AND QUALITY IN DATA WAREHOUSES: AN
EXTENDED REPOSITORY APPROACH+

MATTHIAS JARKE’, MANFRED A. JEUSFELD*, CHRISTOPH QUIX’, AND PANOS VASSILIADIS’

‘Informatik V, RWTH Aachen, 52056 Aachen, Germany

21nfolab, KUB University, Postbus 90153, 5000 LE Tilburg, The Netherlands

3Computer Science Division, NTUA Athens, Zographou 15773 Athens, Greece

(Received 26 October 1998; rn final revisedform 29 March 1999)

Abstract - Most database researchers have studied data warehouses (DW) in their role as buffers of materialized
views, mediating between update-intensive OLTP systems and query-intensive decision support. This neglects the
organizational role of data warehousing ins a means of centralized information flow control. As a consequence, a
large number of quality aspects relevant for data warehousing cannot be expressed with the current DW meta
models. This paper makes two contributions towards solving these problems. Firstly, we enrich the meta data
about DW architectures by explicit enterprise models. Secondly, many very different mathematical techniques for

measuring or optimizing certain aspects of DW quality m being developed. We adapt the Goal-Question-Metric
approach from software quality management to a meta data management environment in order to link these
special techniques to a generic conceptual framework of DW quality. The approach has been implemented in full
on top of the ConceptBase repository system and has undergone some validation by applying it to the support of
specific quality-oriented methods, tools, and application projects in data warehousing.

0 1999 Elsevier Science Ltd. All rights reserved

Key words: Data Warehouses. Meta Data Management, Data Quality, Conceptual Models, Repository

1. INTRODUCTION

Data warehouses provide large-scale caches of historic data. They sit between information sources
gained externally or through online transaction processing systems (OLTP), and decision support or data
mining queries following the vision of online analytic processing (OLAP). Three main arguments have
been put forward in favor of this caching approach:

1. Performance and safety considerations: The concurrency control methods of most DBMSs do not
react well to a mix of short update transactions (as in OLTP) and OLAP queries that typically
search a large portion of the database. Moreover, the OLTP systems are often critical for the
operation of the organization and must not be under danger of corruption of other applications.

2. Logical interpretability problems: Inspired by the success of spreadsheet techniques, OLAP users
tend to think in terms of highly structured multi-dimensional data models, whereas information
sources offer at best relational, often just semi-structured data models.

3. Temporal and granularity mismatch: OLTP systems focus on current operational support in great
detail, whereas OLAP often considers historical developments at a somewhat less detailed
granularity.

Thus, quality considerations have accompanied data warehouse research from the beginning. A large

body of literature has evolved over the past few years in addressing the problems introduced by the DW
approach, such as the trade-off between freshness of DW data and disturbance of OLTP work during data
extraction; the minimization of data transfer through incremental view maintenance; and a theory of
computation with multi-dimensional data models.

However, the heavy use of highly qualified consultants in data warehouse applications indicates that
we are far from a systematic understanding and usage of the interplay between quality factors and design

IRecommended by Barbara Pemici and Costantino Thanos

229

230 MAITHIAS JARKE et al

options in data warehousing. The goal of the European DWQ project [26] is to address these issues by
developing, prototyping and evaluating comprehensive Foundations for Data Warehouse Quality,
delivered through enriched meta data management facilities in which specific analysis and optimization
techniques are embedded.

This paper develops the DWQ architecture and quality management framework, and describes its
implementation in a meta database. The main contributions include an extension of the standard DW

architecture used in the literature by enterprise modeling aspects, and a strategy for embedding special-
purpose mathematical reasoning tools in a repository model of the architecture. Our goal is to enable a
computationally tractable yet very rich quality analysis, and a quality-driven design process.

Interaction with DW tool vendors, DW application developers and administrators has shown that the
standard framework used in the DW literature is insufficient to capture in particular the business role of
data warehousing. A DW is a major investment made to satisfy some business goal of the enterprise;
quality model and DW design should reflect this business goal as well as its subsequent evolution over
time. In Section 2, we discuss this problem in detail. Our new architectural framework separates (and
links) explicitly the concerns of conceptual enterprise perspectives, logical data modeling (the main
emphasis of DW research to date), and physical information flow (the main concern of commercial DW

products to date).
In Section 3, we first build on the literature for data and software quality to come up with a suitable set

of DW quality goals, as perceived by different groups of stakeholders. We then adapt a variant of the so-
called Goal-Question-Metric approach used in software quality management, in order to link these
conceptual goals to specific techniques developed in DW research and practice, and to enable trade-off
between heterogeneous quality goals. Technically, this is accomplished through materialized quality
views, i.e. using the DW approach to describe its own quality. Some experiences with a prototypical
implementation of the resulting meta database using the ConceptBase repository manager have been
gained in cooperation with industrial case studies. Section 4 relates our approach to other work in data
warehousing, data and software quality, while Section 5 provides a summary and conclusions.

Administration

Fig. 1: Traditional Data Warehouse Architecture

Architecture and Quality in Data Warehouses: An Extended Repository Approach 231

2. AN EXTENDED DATA WAREHOUSE ARCHITECTURE

The traditional data warehouse architecture, advocated both in research and in the commercial trade
press, is shown in Figure 1. Physically, a data warehouse system consists of databases (source databases,
materialized views in the data warehouse), data transport agents that ship data from one database to
another, and a repository which stores meta data about the system and its evolution. In this architecture,
heterogeneous information sources are first made accessible in a uniform way through extraction
mechanisms called wrappers, then mediators [47] take on the task of information integration and conflict
resolution. The resulting standardized and integrated data are stored as materialized views in the data
warehouse. The DW base views are usually just slightly aggregated; to customize them better for different
groups of analyst users, data marts with more aggregated data about specific domains of interest are
frequently constructed as second-level caches which are then accessed by data analysis tools ranging from
query facilities through spreadsheet tools to full-fledge data mining systems based on knowledge-based or
neural network techniques.

The content of the repository determines to a large extent the way how the data warehouse system can
be used and evolved. The main goal of our approach is therefore to define a meta database schema which
can capture and link all relevant aspects of DW architecture and quality.

We shall tackle this very difficult undertaking in several steps. First, we discuss the shortcomings of
the traditional architecture and propose a conceptual enterprise perspective to solve some of these
shortcomings. Then, we elaborate the extended metamodel resulting from our approach, and show how it
can be implemented in a repository. Finally, the application of these repository concepts is illustrated with
a more detailed description of a specific submodel developed and validated in the DWQ project.

2.1. Adding a Conceptual Perspective to Data Warehousing

Almost all current research and practice understand a data warehouse architecture as a stepwise
information flow from information sources through materialized views towards analyst clients, as shown
in Figure 1. For example, projects such as TSIMMIS [IO], Squirrel [18], or WHIPS [16] all focus on the
integration of heterogeneous data via wrappers and mediators, using different logical formalisms and
technical implementation techniques. The Information Manifold project at AT&T Research [33] is the
only one providing a conceptual domain model as a basis for integration.

Our key observation is that the architecture in Figure 1 covers only partially the tasks faced in data
warehousing and is therefore unable to even express, let alone support, a large number of important
quality problems and management strategies.

Analyst Multidim.
Data Mart

Mart
Quality,.....“‘s’

,,,.... ..I.’

L ../’
_/...,“.

Aggregation/
Customization

,,...’

_./’

,,.,.-”
. ..”

DW

Enterprise

Observation

k...
---... ---.. ,.., Source

“‘-..$uality
‘1.. “....,,

Operational
Department

Data
Warehouse

Wrapper/
Loader

Information
Source

Fig. 2: Data Warehousing in the Context of an Enterprise

232 MAITHIAS JARKE et al

The main argument we wish to make is the need for a conceptual enterprise perspective. To explain,
consider Figure 2. In this Figure, the flow of information in Figure 1 is stylized on the right-hand side,
whereas the process of creating and using the information is shown on the left. Suppose an analyst wants

to know something about the business - the question mark in the figure. She does not have the time to

observe the business directly but must rely on existing information gained by operational departments, and
documented as a side effect of OLTP systems. This way of gathering information implies already a bias
which needs to be compensated when selecting OLTP data for uploading and cleaning into a DW where it
is then further pre-processed and aggregated in data marts for certain analysis tasks. Considering the long
path the data has taken, it is obvious that also the last step, the formulation of conceptually adequate
queries and the conceptually adequate interpretation of the answers present a major problem to the
analyst.

The traditional DW literature only covers two of the five steps in Figure 2. Thus, it has no answers to
typical practitioner questions such as “how come my operational departments put so much money in their
data quality, and still the quality of my DW is terrible” (answer: the enterprise views of the operational
departments are not easily compatible with each other or with the analysts view), or “what is the effort
required to analyze problem X for which the DW currently offers no information” (could simply be a
problem of wrong aggregation in the materialized views, could require access to not-yet-integrated OLTP
sources, or even involve setting up new OLTP sensors in the organization).

An adequate answer to such questions requires an explicit model of the conceptual relationships
between an enterprise model, the information captured by OLTP departments, and the OLAP clients
whose task is the decision analysis. We have argued that a DW is a major investment undertaken for a
particular business purpose. We therefore do not just introduce the enterprise model as a minor part of the
environment, but demand that all other models are defined as views on this enterprise model. Perhaps

surprisingly, even information source schemas define views on the enterprise model - not vice versa as

suggested by Figure I !

Conceptual
Perspective

Logical
Perspective

Physical
Perspective

Fig. 3: The Proposed Data Warehouse Meta Data Framework

2.2. A Repository Modelfor the Extended Data Warehouse Architecture

By introducing an explicit business perspective as in Figure 2, the wrapping and aggregation
transformations performed in the traditional data warehouse literature can thus all be checked for

interpretability, consistency or completeness with respect to the enterprise model - provided an
adequately powerful representation and reasoning mechanism is available.

Architecture and Quality in Data Warehouses: An Extended Repository Approach 233

At the same time, the logical transformations need to be implemented safely and efficiently by physical

data storage and transportation - the third perspective in our approach. It is clear that these physical

quality aspects require completely different modeling formalisms from the conceptual ones, typical
techniques stemming from queuing theory and combinatorial optimization.

As a consequence, the data warehouse meta framework we propose clearly separates three
perspectives as shown in Figure 3: a conceptual enterprise perspective, a logical data modeling
perspective, and a physical data flow perspective.

There is no single decidable formalism that could cover the handling of all these aspects uniformly in a
meta database. We have therefore decided to capture the architectural framework in a deductive object
data model in a comprehensive but relatively shallow manner. Special-purpose reasoning mechanisms
such as the ones mentioned above can be linked to the architectural framework as discussed in Section 3,
below.

We use the meta database to store an abstract representation of data warehouse applications in terms of
the three-perspective scheme. The architecture and quality models are represented in Telos [35], an
extensible meta modeling language which has both a graphical syntax and a frame syntax, mapped to an
underlying formal semantics based on standard deductive databases. Using this formal semantics, the
Telos implementation in the ConceptBase system [22] provides query facilities, and definition of
constraints and deductive rules. Telos is well suited because it allows to formalize specialized modeling
notations (including the adaptation of graphical representations [27]) by means of meta classes. Since
ConceptBase treats all concepts including meta classes as first-class objects, it is well suited to manage
abstract representations of the DW objects to be measured [28].

A condensed ConceptBase model of the architecture notation is given in Figure 4, using the graph
syntax of Telos. Bold arrows denote specialization links. The top level object is A4eczsurabZeObject. It
classifies objects at any perspective (conceptual, logical, or physical) and at any level (source, data
warehouse, or client). Within each perspective, we distinguish between the modules it offers (e.g. client
model) and the kinds of information found within these modules (e.g. concepts and their subsumption
relationships). The horizontal links hasSchema and isViewOn establish the way how the horizontal links in
Figure 2 are interpreted: the types of a schema (i.e., relational or multidimensional structures) are defined
as logical views on the concepts in the conceptual perspectives. On the other hand, the components of the
physical perspective get a schema from the logical perspective.

Each object can have an associated set of materialized views called QualityMeasurements. These

materialized views (which can also be specialized to the different perspectives - not in the figure)

constitute the bridge to the quality model discussed in Section 3.

tsSubsumedEIy
relatesTo

Fig. 4: Structure of the Repository Meta Model

234 MATTHIAS J!.FCKE et al,

The horizontal levels of the objects are coded by the three subclasses attached to Model, Schema, and
DataStore. We have experimented with this notation and were able to represent physical data warehouse
architectures of commercial applications, such as the SourcePoint tool marketed by Software AG [41], the
DW architecture underlying a data mining project at Swiss Life [42], and a DW project in Telecom Italia
(cf. Section 2.6). The logical perspective currently supports relational schema definitions whereas the
conceptual perspective supports the family of extended entity-relationship and similar semantic data
modeling languages. Note that all objects in Figure 4 are meta classes: actual conceptual models, logical
schemas, and data warehouse components are represented as instances of them in the meta database.

In the following subsections, we elaborate on the purpose of representing each of the three
perspectives, then demonstrate how the architecture above can be refined for particular purposes.

2.3. Conceptual Perspective

The conceptual perspective offers a business model of the information systems of an enterprise. The
central role is played by the enterprise model, which gives an integrative overview of the conceptual
objects of an enterprise. The models of the client and source information systems are views on the
enterprise model, i.e. their contents are described in terms of the enterprise model. One goal of the
conceptual perspective is to have a model of the information independent from physical organization of
the data, so that relationships between concepts can be analyzed by intelligent tools, e.g. to simplify the
integration of the information sources. On the client side, the interests of user groups can also be
described as views on the enterprise model.

In the implementation of the conceptual perspective in the meta database, the central class is Model. A
model is related to a source, a client or the relevant section of the enterprise, and it represents the concepts
which are available in the corresponding source, client or enterprise. The classes ClientModel,
SourceModel and EnterpriseModel are needed, to distinguish the models of several sources, clients and
the enterprise itself. A model consists of Concepts, each representing a concept of the real world, i.e. the
business world. If the user provides some information about the relationship between concepts in a formal
language like description logic, a reasoner can check for subsumption of concepts [7].

The results of the reasoning process are stored in the model as attribute isSubsumedBy of the
corresponding concepts. Essentially, the repository can serve as a cache for reasoning results. Any tool
can ask the repository for containment of concepts. If the result has already been computed, it can directly
be answered by the repository. Otherwise, a reasoner is invoked by the repository to compute the result.

2.4. Logical Perspective

The logical perspective conceives a data warehouse from the view point of the actual data models
involved, i.e. the data model of the logical schema is given by the corresponding physical component,
which implements the logical schema. The central point in the logical perspective is Schema. As a model
consists of concepts a schema consists of Types. We have implemented the relational model as an example
for a logical data model; other data models such as the multi-dimensional or the object-oriented data
model are also being integrated in this framework [14,451.

Like in the conceptual perspective, we distinguish in the logical perspective between ClientSchema,
DWSchema and SourceSchema for the schemata of clients, the data warehouse and the sources. For each
client or source model, there is one corresponding schema. This restriction is guaranteed by a constraint in
the architecture model. The link to the conceptual model is implemented through the relationship between
concepts and types: each type is expressed as a view on concepts.

2.5. Physical Perspective

Data warehouse industry has mostly explored the physical perspective, so that many aspects in the
physical perspective are taken from the analysis of commercial data warehouse solutions such as Software
AG’s SourcePoint tool 1411, the data warehouse system of RedBrick, Informix’s MetaCube [193, Essbase
of Arbor Software [2] or the product suite of MicroStrategy [38].We have observed that the basic physical

Architecture and Quality in Data Warehouses: An Extended Repository Approach 235

components in a data warehouse architecture are agents and data stores. Agents are programs that control
other components or transport data from one physical location to another. Data stores are databases which
store the data that is delivered by other components.

The basic class in the physical perspective is DW_Component. A data warehouse component may be
composed out of other components. This fact is expressed by the attribute hasPart. Furthermore, a
component deliversTo another component a Type, which is part of the logical perspective. Another link to
the logical model is the attribute hasschema of DW_Component. Note that a component may have a
schema, i.e. a set of several types, but it can only deliver a type to another component. This is due to the
observation that agents usually transport only “one tuple at a time” of a source relation rather than a
complex object.

There are two types of agents: ControlAgent which controls other components and agents, e.g. it
notifies another agent to start the update process, and TransportationAgent which transports data from one
component to another component. An Agent may also notify other agents about errors or termination of its

process.
A DataStore physically stores the data which is described by models and schemata in the conceptual

and logical perspective. As in the other perspectives, we distinguish between ClientDataStore.

DWDataStore and SourceDataStore for data stores of clients, the data warehouse and the sources.

2.6. Applying the Architecture Model: The Example of Source and Data Integration

The metadata framework shown in Figure 4 defines the basic metamodel of the products in the
repository, and their interrelationships. As shown in Figure 5, this framework can be instantiated by
information models (conceptual, logical, and physical schemas) of particular data warehousing strategies
which can then be used to design and administer the instances of these data warehouses - the main role of
the administration system and meta database in Figure 1.

However, quality cannot just be assessed on the network of nine perspectives, but is largeiy
determined by the processes how these are constructed [24]. The process meta model defines a way how
such processes can be defined, the process models define plans how data warehouse construction and
administration is to be done, and the traces of such processes are captured at the lowest level; this process
hierarchy accompanying the DW product model is shown on the right of Figure 5.

Conceptual Logical Physical
Perspective Perspective Perspective

I 7 /I

Meta Model
Level

Process
Meta

Model

Models1
Meta Data

Level

Process
Model

Processes

Fig. 5: Repository Structure for Capturing Product and Process of Data Warehousing

236 MAITHIAS JARKE et al.

In DWQ, we are still experimenting with suitable process modeling formalisms, based on our earlier
work on software process modeling and management [24]. For the purposes of this paper, we can safely
assume that the impact of such process models on the repository is some kind of query plan, a partiallv
ordered set of queries defined over the meta database (and stored in the meta database). This is, tar
example, also the strategy followed in the new version of the Microsoft Repository [3].

Figure 4 only gives a rough overview of the actual model structure in the DWQ repository meta
model. In reality, each perspective offers a much richer meta model structure reflecting the approach taken
in addressing the tasks in this perspective.

In this subsection, we describe one of the specific DWQ methodologies, the one for source and data
integration [8], in order to illustrate this refinement of models as well as the interplay between the
different perspectives in our approach. While Source integration means designing the relationships
between information sources and the views in the data warehouse, data integration means the construction
of acquisition plans by which these views are actually materialized.

In the context of Figure 4, the example is concerned with the enterprise and source models at the
conceptual perspective and with the source schemas (and possibly DW schemas) in the logical

perspective.
Conceptual Perspective: According to the DWQ approach, one conceptual model is constructed for

each source and one for the enterprise. These models rely on an extended entity-relationship model in
which both the entities and the relationships can be interpreted as concepts formalized in a description
logic, and additional logical assertions can be formulated to express generic domain knowledge
(DomainAssertions), properties and limitations of a source (ZntraModeZAbsertions), and relationships
between the sources, such as containment, consistency, etc. (InterModelAssertions).

In the ConceptBase repository, this leads to an elaboration of. the Concept node from Figure 4, as
shown in Figure 6. On the one hand, this refinement structurally describes the basic structure of the
extended ER model, i.e. Concepts, Relationships, and complex objects constructed from them. On the
other hand, it describes the linkage of the different kinds of assertions to the objects. Despite its
expressiveness, this data model allows decidable subsumption reasoning [7] between concepts. Thus,
through inheritance from the central ConceptRelationship object, both the assertions and the subsumption
relationships computed by an external description logic reasoner on this structure can be applied to all
subtypes of the meta schema.

Fig. 6: Refining the Conceptual Perspective for Sours : Screendump)

Architecture and Quality in Data Warehouses: An Extended Repository Approach 231

The conceptual model is not restricted for the use in source integration. We can specialize the meta
model to handle also the client side of a data warehouse, i.e. multidimensional data models. In the
conceptual client model, it is important how aggregations are defined and which attributes are aggregated
of a concept [131. Figure 7 shows the client level of the meta model for the conceptual perspective.

Comta/exAggmgation

Fig. 7: Client Level of the Conceptual Perspective (ConceptBase Screendump)

Aggregations aggregate concepts with respect to a specific dimension level, which is defined by a
dimension attribute, and a level. For example, if customers are aggregated by cities, the dimension
attribute is ‘address’ and the level is ‘city’. Furthermore, we need to know, which attributes are aggregated
and which aggregation function is used for the aggregation.

Logical Perspective: As stated earlier, the present implementation of the logical perspective is limited
to relational databases. In line with our basic philosophy concerning the central role of the enterprise
model, the DWQ approach considers the (relational) schema of an information source to be integrated as a
view on the conceptual enterprise model. As the DW schema itself consists of (possibly cleaned and
merged) views over the sources, it naturally becomes also an (indirect) view over the enterprise model.

These views are, as usual, defined by conjunctive Queries over the enterprise model. In the merging of
sources, also disjunctive queries are possible. These queries are defined at the time of source (schema)
integration. For the actual data integration, i.e. to load the data warehouse schema from the sources, an
AcquistionPZan is constructed from these queries (possibly taking into account the physical perspective).
However, to capture the semantics correctly, the assertions of the conceptuai model must be taken into
account; this is accomplished by adding them as adorrnments to the view definition queries. From the
acquisition plan and the AdornedQueries, a query rewriting can then be performed automatically which
defines the extraction queries from the sources as well as the MergingClauses that need to be executed
when data from more than one source need to be merged into a data warehouse relation.

Figure 8 shows how this approach is captured quite naturally in the ConceptBase repository, refining
the Type object in Figure 4. This structure also provides a suitable memory for the integration process,
thus allowing reuse of specific integration techniques as well as re-loading of the DW. Of course, the
latter is usually done incrementally by view maintenance techniques but their description goes beyond the
scope of this paper.

The DWQ source and data integration approach is described in more detail in [8]. A validation case
study involving the integration of four complex Telecom databases, reported in [9], demonstrates that this
information structure is suitable for the incremental modeling of data warehouse architectures;
“incremental” is meant here both in the sense of gradually refining the models of a specific information
source or the enterprise as a whole and in the sense of adding a new information source, possibly
overlapping in concepts with the existing enterprise model.

238 MATTHIAS JARKE et al.

Fig. 8: Refining the Logical Perspective for (Relational) Source and Data Integration (ConceptBase Screendump)

3. MANAGING DATA WAREHOUSE QUALITY

In this section, we discuss how to extend the DW architecture model to support explicit quality

models. There are two basic issues to be resolved. On the one hand, quality is a subjective phenomenon so
we must organize quality goals according to the stakeholder groups that pursue these goals. On the other
hand, quality goals are highly diverse in nature. They can be neither assessed nor achieved directly but
require complex measurement, prediction, and design techniques, often in the form of an interactive
process. The overall problem of introducing quality models in meta data is therefore to achieve breadth of
coverage without giving up the detailed knowledge available for certain criteria. Only this combination
enables systematic quality management.

In the following subsections, we first categorize the relevant data warehouse quality dimensions
according to the stakeholders that are typically interested in them. We also present some tables mapping
these quality criteria to the DW perspectives introduced in the previous section, by giving examples of
types of measurements which could help to establish the quality of a particular DW component with
respect to a particular quality dimension. Then, we show how this basic structure can be formally captured
in an extension to the Goal-Question-Metric approach from software engineering, and how this extension
can be implemented and used in the DW meta database.

Architecture and Quality in Data Warehouses: An Extended Repository Approach 239

3.1. Stakeholders and Data Warehouse Quality Dimensions

There exist different roles of users in a data warehouse environment. The Decision Maker usually

employs an OLAP query tool to get answers interesting to him. A decision maker is usually concerned
with the quality of the stored data, their timeliness and the ease of querying them through the OLAP tools.
The Data Warehouse Administrator needs facilities like error reporting, meta data accessibility and
knowledge of the timeliness of the data, in order to detect changes and reasons for them, or problems in
the stored information. The Data Warehouse Designer needs to measure the quality of the schemata of the
data warehouse environment (both existing or newly produced) and the quality of the meta data as well.
Furthermore, he needs software evaluation standards to test the software packages he considers for
purchasing. The Programmers of Data Warehouse Components can make good use of software
implementation standards in order to evaluate their work. Meta data reporting can also facilitate their job
since they can avoid mistakes related to schema information.

Based on this analysis, we can safely argue that different roles imply a different collection of quality

dimensions, which a quality model should be able to address in a consistent and meaningful way. In the
following, we summarize the quality dimensions of three stakeholders, the data warehouse administrator,
the programmer, and the decision maker. A more detailed presentation of quality dimensions for different
stakeholder types is included in [111.

administration

Fig. 9: Design and Administration Quality Dimensions

Design and Administration Quality. The design and administration quality can be analyzed into more
detailed dimensions, as depicted in Figure 9. The schema and data quality refers to the ability of a schema
or model to represent adequately and efficiently the information; the same criteria also apply at the data
instance level. The correctness dimension is concerned with the proper comprehension of the entities of
the real world, the schemata of the sources (models) and the user needs. The completeness dimension is
concerned with the preservation of all the crucial knowledge in the data warehouse schema (model). The
minimal@ dimension describes the degree up to which undesired redundancy is avoided during the source
integration process. The traceability dimension is concerned with the fact that all kinds of requirements of
users, designers, administrators and managers should be traceable to the data warehouse schema. The
interpretability dimension ensures that all components of the data warehouse are well described, so as to
be administered easily. The meta data evolution dimension is concerned with the way the schema evolves
during the data warehouse operation. Table I relates the quality dimensions to data warehouse objects and
shows how the quality of these objects can be measured.

240 MATTHIAS JARKE et al.

Design and Conceptual Perspective
Administration Model Concept

Logical Perspective
Schema Type

Quality
Correctness Number of conflicts Correctness of the Correctness of Correctness of the

to other models/real description wrt. real mapping of the mapping of the
world world entity conceptual model to concept to a type

logical schema

Completeness Level of covering, Number of missing Number of missing Number of missing
number of attributes; Are the entities wrt. attributes wrt.
represented business assertions related to the conceptual model conceptual model
rules concept complete?

Minimality Number of redundant Equivalence of the Number of redundant Number of redundant
entities/relationships description with that of relations attributes
in a model other concepts in the

same model

Traceability Are the designer’s Are the designer’s Are the designer’s Are the designer’s
requirements and requirements and requirements and requirements and
changes recorded? changes recorded? changes recorded? changes recorded?

Interpretability Quality of Quality of Quality of Quality of
documentation documentation documentation documentation

Metadata Is the evolution of Is the evolution of the Is the evolution of Is the evolution of

Evolution the model concept documented? the schema the type
documented? documented? documented?

Table I : Examples for Measurement Types for Design and Administration Quality Dimensions

Software Implementation Quality. Software implementation and/or evaluation is not a task with specific
data warehouse characteristics. We are not actually going to propose a new model for this task, but adopt
the IS0 9126 standard [20]. The quality dimensions of IS0 9126 are Function&y (Suitability, Accuracy,
Interoperability, Compliance, Security), Reliability (Maturity, Fault tolerance, Recoverability), Usability

(Understandability, Learnability, Operability), Sofhvare Eficiency (Time behavior, Resource Behavior),
Maintainability (Analyzability, Changeability, Stability, Testability), Portability (Adaptability,
Installability, Conformance, Replaceability).

These quality dimensions apply only to the physical perspective of the architectural, where the

software (agents and data stores) are represented. Table 2 gives some examples how these quality
dimensions can be measured for specific components.

Software Physical Perspective
Implementation DW Component
Quality
Functionality Number of functions not appropriate for specified tasks, number of modules unable to

interact with specified systems

Reliability Frequency of failures, Fault tolerance

Usability Acceptance of the users

Software Efficiency Performance, response time, processing time

Maintainability Man-hours needed for maintaining and testing this software

Portability Number of cases where the software failed to adopt to new environments; man-hours
needed to install software in new environments

Table 2: Examples for Measurement Types for Software. Implementation Quality Dimensions

Data Usage Quality. Since databases and - in our case - data warehouses are built in order to be queried,
the most basic process of the warehouse is the usage and querying of its data. In Figure 10 the hierarchy of
quality dimensions related to data usage is depicted.

The accessibility dimension is related to the possibility of accessing the data for querying. The security
dimension describes the authorization policy and the privileges each user has for the querying of the data.
System availability describes the percentage of time the source or data warehouse system is available (i.e.

Architecture and Quality in Data Warehouses: An Extended Repository Approach 141

the system is up and no backups take place, etc.). The transactional availability dimension, as already

mentioned, describes the percentage of time the information in the warehouse or the source is available
due to the absence of update processes which write-lock the data.

Fig. IO: Data Usage Quality Dimensions

The usefulness dimension describes the temporal characteristics (timeliness) of the data as well as the
responsiveness of the system. The responsiveness is concerned with the interaction of a process with the
user (e.g. a query tool which is self reporting on the time a query might take to be answered). The
currency dimension describes when the information was entered in the sources or/and the data warehouse.
The volatility dimension describes the time period for which the information is valid in the real world. The
interpretability dimension, as already mentioned, describes the extent to which the data warehouse is
modeled efficiently in the information repository. The better the explanation is, the easier the queries can
be posed. In Table 3, some examples are shown how data usage quality can be measured.

Are there physical
access restrictions?

Is the store able to
revent unauthorized

the destination store?

Interpretability Is the schema Is the type Is the data delivered Is the data stored
understandable? understandable? understandable? understandable?

Table 3: Examples for Measurement Types for Data Usage Quality Dimensions

Data Quality. The quality of the data which are stored in the warehouse, is obviously not a process by

itself; yet it is influenced by all the processes which take place in the warehouse environment. We define
data quality as a small subset of the dimensions proposed in other models. For example, in [48] our notion
of data quality, in its greater part, is treated as a second level dimension, namely believability. The basic
quality dimensions we introduce are shown in Figure 11.

242 MAITHIAS JARKE ef al.

Fig. 11: Data Quality Dimensions

The data quality dimension does not cover a data warehouse process: it refers directly to properties of
the stored data (i.e. not of the schemata or the models). Consequently, it is related to the physical
perspective of the the architecture representing data stores and agents at all levels.

The completeness dimension describes the percentage of the real-world information entered in the
sources and/or the warehouse. For example, completeness could rate the extent to which a string
describing an address did actually fit in the size of the attribute which represents the address. The
credibility dimension describes the credibility of the source that provided the information. The accuracy
dimension describes the accuracy of the data entry process which happened at the sources. The
consistency dimension describes the logical coherence of the information. The data interpretability
dimension is concerned with data description (i.e. data layout for legacy systems and external data, table
description for relational databases, primary and foreign keys, aliases, defaults, domains, explanation of
coded values, etc.). Some metrics for data quality are given in Table 4.

Data Quality Physical Perspective
Agent Data Store

Completeness Number of tuples delivered wrt. expected Number of stored null values where there are not
number expected

Credibility Believability in the process that delivers Number of tuples with default values
the values

Accuracy Number of delivered accurate tuples Level of preciseness; Number of accurate tuples

Consistency Is the delivered data consistent with other Number of tuples violating constraints,
data number of coding differences

Data Number of tuples with interpretable data, Number of tuples with interpretable data,
Interpretability documentation for key values, is the documentation for key values, is the format

format understandable? understandable?

Table 4: Examples for Measurement Types for Data Quality Dimensions

3.2. The Problem of Heterogeneous Multi-Criteria Quality Assessment

We now turn to the formal handling and repository-based management of DW quality goals such as
the ones described in the previous section.

A first formalization could be based on a qualitative analysis of relationships between the quality
factors themselves, e.g. positive or negative goal-subgoal relationships or goal-means relationships. The
stakeholders could then enter their subjective evaluation of individual goals as well as possible weightings
of goals and be supported in identifying good trade-offs. The entered as well as computed evaluations are
used as quality measurements in the architecture model of Figure 3, thus enabling a very simple
integration of architecture and quality model.

Such an approach is widely used in industrial engineering under the label of Quality Function
Deployment, using a special kind of matrix representation called the House of Quality [I 1. Formal
reasoning in such a structure has been investigated in works about the handling of non-functional
requirements in software engineering, e.g. [36]. Visual tools have shown a potential for negotiation
support under multiple quality criteria [141.

Architecture and Quality in Data Warehouses: An Extended Repository Approach 243

However, while this simple approach certainly has a useful role in cross-criteria decision making,
using it alone would throw away the richness of work created by research in measuring, predicting, or
optimizing individual data warehouse quality factors. In the DWQ project, such methods are
systematically adopted or newly developed for all quality factors found important in the literature or our
own empirical work. To give an impression of the richness of techniques to be considered, we use a single

quality factor - responsiveness in the sense of good query performance - for which the DWQ project has

studied three different approaches, one each from the conceptual, logical, and physical perspective.
We start with the logical perspective [43]. Here, the quality measurement associated with

responsiveness is taken to be a weighted average of query and update “costs” for a given query mix and
given information sources. A combinatorial optimization technique is then proposed that selects a
collection of materialized views as to minimize the total costs. This can be considered a very simple case
of the Quality Function Deployment approach, but with the advantage of automated design of a solution.

If we include the physical perspective, the definition of query and update “costs” becomes an issue in

itself: what do we mean by costs - response time, throughput, or a combination of both (e.g. minimize

query response time and maximize update throughput)? what actually produces these costs - is database

access or the network traffic the bottleneck? A comprehensive queuing model [39] enables the prediction
of such detailed metrics from which the designer can choose the right ones for quality measurements for
his design process. In addition, completely new design options come into play: instead of materializing

more views to improve query response time (at the cost of disturbing the OLTP systems longer at update
time), the designer could buy a faster client PC or DBMS, or provide an ISDN link rather than using slow

modems.
Yet other options come into play, when a rich logic is available for handling the conceptual

perspective. For example, the description logic developed in the DWQ project for source integration [8]
allows to state that information about all instances of one concept in the enterprise model is maintained in
a particular information source. In other words, the source is complete with respect to the domain. This
enables the DW designer to drop the materialization of all views on other sources, thus reducing the
update effort semantically without any loss in completeness of the answers.

3.3. Hierarchical Quality Assessment: An Adapted GQM Approach

It is clear (and has in fact been proven in [7]) that there can be no decidable formal framework that
even comes close to covering all of these aspects in a uniform language. When designing the meta
database extensions for quality management, we therefore had to look for another solution that still
maintains the overall picture offered by shallow quality management techniques such as QFD but is at the
same time open for the embedding of specialized assessment and design techniques.

Our solution to this problem builds on the widely used Goal-Question-Metric (GQM) approach in
software quality management [40]. The idea of GQM is that quality goals can usually not be assessed
directly. Instead, their meaning is circumscribed by questions that need to be answered when evaluating
the quality. Quality questions again can usually not be answered directly but rely on metrics applied to
either the product or process in question; techniques such as statistical process control charts are then
applied to derive the answer of a question from the measurements.

In the above example, the goal of responsiveness can be refined into questions about the trade-off
between query and update performance (logical perspective), about the present bottlenecks at the physical
level, and about the completeness or even redundancy of the utilized data sources (conceptual
perspective). These questions can then be answered using the above-mentioned metrics and algorithms.

Our repository solution uses a similar approach to bridge the gap between quality goal hierarchies on
the one hand, and very detailed metrics and reasoning techniques on the other. The bridge is defined
through the idea of quality queries as materialized views over the data warehouse; the views are defined
through generic queries over the quality measurements. Figure 12 motivates this approach by zooming in
on the repository. The stakeholder assesses the data warehouse quality by asking quality queries to the
repository. The repository answers the queries by accessing quality data obtained from measurement
agents (the black triangles in Figure 12). The agents communicate with the components of the real data
warehouse to extract measurements.

244 MAITHIAS JAFW et al.

quality data
architecture
data

Fig. 12: Quality Management via the Data Warehouse Repository

The stakeholder may re-define her quality goals at any time. This shall lead to an update of the quality
model in the repository and possibly to the configuration of new measurement agents responsible to
deliver the base quality data. Analogously, a stakeholder with .apprqpriate authorization can re-define the
architecture of the data warehouse via the repository. Such an evolutionary ‘update, e.g. the specification
of a new data source, leads to a re-configuration of the ‘real data warehouse. Ultimately, the quality
measurements will reflect such effect of the change and give evidence whether the eirolution has led to an
improvement of some quality goals.

The use of the repository for data warehouse quality management has significant advantages:

l data warehouse systems already incorporate repositories to manage meta data about the data
warehouse; extending this component for quality management is a natural step

, existing meta data about the data warehouse, e.g. source schemas, can be directly used for
formulating quality goals and measurement plans

, the quality model can be held consistent with the architecture model, i.e. the repository can
prevent the stakeholders to formulate quality goals that cannot be validated with the given
architectural data

. the stakeholder’ accesses the repository as a data source to deliver quality reports to the
stakeholders who formulate quality goals; in fact, producing such reports is the same kind of
activity that is used to deliver aggregated data to the client tools of a data warehouse

The last argument is not just a technical remark. Quality data, i.e. values of quality measurements, are

derived from DW components. The values are materialized views of properties of these components.
These values do have quality properties like timeliness and accuracy themselves. It makes a difference
whether value of a quality measurement is updated each hour or once a month. While.we do not go into
detail with this “second-level” quality, we note that the same methods that are used to maintain quality of
the DW can also be used to maintain the quality of the DW repository (hosting the quality model).

3.4. The Quality Meta Model

Quality data is derived data and is maintained by the data warehouse system. This implementation
strategy provides inore technical support than GQM implementations for general software systems. Such
system lack the built-in repository. The expressive query language offered by the ConceptBase repository
system makes a large portion of quality management tasks a matter of query formulation. In the sequel, we
elaborate how a version of GQM can be modeled by Telos meta classes in ConceptBase and then be used
for quality goal formulation and quality analysis.

Telos provides a logical representation for class membership (x in class), specialization between
classes (c isA d), and attributes (x label y). This logical representation can be mapped to a graphical layout

Architecture and Quality in Data Warehouses: An Extended Repository Approach 245

as shown for the quality model below, as well as to a frame syntax which we sometimes use for the
formulation of queries. Since all items (objects, classes, meta classes, and attributes) are uniformly treated

in the logical representation, the Telos language is used - extending the approach shown in Figure 5 - for

formulating

1. a meta model by a collection of meta classes (here for defining the architecture and quality
models),

2. a collection of classes (here the use of the architecture and quality meta models to express quality
goals, queries, and measurement types on DW components), and

3. instances of the classes (here for representing results of measurements as class instances).

Data warehouse systems are unique in the sense that they rely on a run-time meta database (or
repository) that stores information about the data and processes in the system. This opens the opportunity
to implement the GQM approach such that it directly refers to the concepts in the meta database of the

data warehouse.

\ direction descriotid

l- forPerson

dimension\ I t-mfers

\ evaluates icC, nhnimfl

reabl

/
dimension

Fig. 13: A Meta Model for Data Warehouse Quality

Figure 13 shows the Telos meta classes for managing data warehouse quality. Quality goals, e.g.
‘improve the timeliness of data set sales-per-month’, are assigned to stakeholders. The purpose attribute
for quality goals is used to specify the intended direction of quality improvement (e.g., to increase the
quality or to achieve a certain quality level at a certain time). The quality goal is imposed on measurable
data warehouse objects as classified by the architecture model of Figure 4. Qua&v goals are mapped to a
collection of quality queries which are used to decide whether a goal is achieved or not. In our version of
the GQM, these queries are queries to the DW repository. A quality goal is linked to one or more quality
dimensions according to the preferences of the stakeholder who formulates the goal (see Figures 9- 1 I).

The next key concept is the quality query. While this is just a text in the original GQM approach, we
encode a quality query as an executable query on the data warehouse repository using the expressive
deductive query language of ConceptBase. The answer to a quality query is regarded as evidence for the
fulfillment of a quality goal. The most simple kind of quality query would just evaluate whether the

246 MATTHIAS JARKE et al

current quality measurement for a data warehouse object is within the expected interval. A quality
measurement uses a metric unit, e.g. the average number of null values per tuple of a relation.

3.5 Implementation Support for the Quality Meta Model

The abstraction levels of the concepts in the quality model require a closer consideration [28]. In
standard software metrics, a quality measurement is a function that maps a real world entity to a value of a
domain, usually a number. In our case, we maintain abstract representations of all “interesting” real world
entities in the DW repository itself. Thus, quality measurements can be recorded as explicit relationships
between the abstract representations, i.e. measurable objects, and the quality values. By nature, such a
quality measurement relates objects of different abstraction levels. For example, a quality value of 0.8
could be measured for the percentage of null values of the Employee relation of some data source.
Employee is a relation (the type of instances of the Employee data structure) whereas 0.8 is just a number.
For this reason, we require a framework like Telos which is able to relate objects at different abstraction

levels.
A second remark has to be made on the use of the quality model by instantiation. Typical instances of

the MeasurableObject are items like Relation (logical perspective) or entity type (conceptual perspective).
These items are independent of the DW application domain. They are used to describe a DW architecture

but they are not components of a concrete DW architecture+. A concrete architecture consists of items like
data source for Employee, concrete wrapper agents etc. Therefore, when we instantiate the quality model
we describe types of quality goals, types of queries, and types of measurements. For example, we can
describe a completeness goal for relational data sources (instances of the Relation concept in Figure 4)
which is measured by counting the percentage of null values in the relation. Such types (or patterns) can
be reused for any concrete DW architecture. For example, the measurement for a relational source for
Employee would be instantiated from the measurement type by instantiating the expected and achieved
quality values. The quality factors listed in the Tables 1 to 4 are such measurement types and they need to
be instantiated by concrete measurements. This two-step instantiation is essential in our approach since it
allows to pre-load the repository with quality goal, query and measurement types independent of the
application domain. In other words, the repository has knowledge about quality management methods.

Quality goals - whose dimensions are organized in hierarchies such as shown in Figures 9 to 11 - are

made operational as types of queries defined over quality measurements. These queries will support the
evaluation of a specific quality goal when parameterized with a given (part of a) DW meta database. Such
a query usually compares the analysis goal to a certain expected interval in order to assess the level of
quality achieved.

As a consequence, the quality measurement must contain information about both expected and actual
values. Both could be entered into the meta database manually, or computed inductively by a given metric
through a specific reasoning mechanism. For example, for a given physical design and some basic
measurements of component and network speeds, the queuing model in [39] computes the quality
measurement response time and throughput, and it could indicate if network or database access is the
bottleneck in the given setting. This could then be combined with conceptual or logical quality
measurements at the level of optimizing the underlying quality goal.

A number of quality queries have been developed, focusing on some that turned out to be relevant
when validating the architecture against three case studies: creating a model of Software AG’s SourcePoint
DW loading environment, modeling the data quality problems hindering the application of data mining
techniques in Swiss Life, and conceptually re-constructing some design decisions underlying the
administrative data warehouses of the City of Cologne, Germany. Details about these case studies can be
found in [ll, 411.

Generally speaking, quality queries access information recorded by quality measurements. A quality
measurement stores the following information about data warehouse components:

t Formally, this is expressed by means of class instantiation in Telos. The concept Relation is represented by a tuple (Relation

in MeasurableObject). The concept Employee is introduced in Telos by a tuple (Employee in Relation). Thus, MeasurableObject is
a metn class of Employee.

Architecture and Quality in Data Warehouses: An Extended Repository Approach 247

1. an interval of expected values

2. the achieved quality measurement
3. the metric used to compute a measurement
4. causal dependencies to other quality measurements

The dependencies between quality measurements can be used to trace quality problems, i.e.
measurements that are outside the expected interval, to their causes. The following two ConceptBase
queries exemplify how quality measurements classify data warehouse components and how the
backtracing of quality problems can be done by queries to the meta database:

QualityQuery BadQuality isA QualityMeasurement
with constraint

c: $ not (this.expected contains this.current) $
end

QualityQuery CauseOfBadQuality isA DW_Object
with parameter
badobject : DW_Object

constraint
c: $ exists ql,q2/QualityMeasurement

(badobject classifiedBy ql) and
(ql in BadQuality) and
(ql dependson q2) and

(q2 in BadQuality) and
((this classifiedBy q2) or
(exists o/DW_Object (o classifiedBy q2) and
(this in CauseOfBadQuality[o/badObjectl))) $

end

3.6. Understanding, Controlling and Improving Quality with the Repository

Summarizing the discussion above, Figure 14 gives an impression how the traditional architecture of
Figure 1 is extended by our repository centred meta data management approach. The quality model forms
the basis of the implementation in ConceptBase. Quality data (i.e., values of measurements) are entered
into the ConceptBase system by external measurement agents which are specialized analysis and
optimization tools. In the DWQ project, four such tools are developed. Besides the subsumption reasoning
tools already mentioned in Section 2.6, they include a data freshness toolkit covering the physical
modeling of source integration, and tools for reasoning about multi-dimensional aggregates and query
optimization on the client side. ConceptBase can trigger these agents based on the timestamp associated to
them in the repository (see Figure 14).

The result of the analysis of the quality data can be displayed graphically, as shown in Figure 15.
Quality measurements are the long ovals in the middle. The black oval indicates that the timeliness of the
staff department data store (an item of the physical perspective) is not in its expected range (12 instead of
0 to 10). The white color of the other measurements indicate measurements that are in expected range.
The color code of the graphical view is computed by the repository based on the BadQuality query shown
above.

The graphical display is intended for controlling the quality of the data warehouse. The ‘black’ nodes
indicate locations where some ad hoc control is required, or where stakeholders have to be aware of
unexpected low quality. Each stakeholder has her own quality goals and hence has individualized views
on the quality. The repository can also be used to maintain the knowledge about causes of quality
measurements. The ‘dependson’ link in Figure 13 is exactly intended to build such a symptom-to-cause
model over the quality measures. Such a mathematical model shall be used to understand the effects of
certain measures to other (dependent) measures. As soon as the mathematical models are coded into the
repository, the can be used to forecast derived quality measures. If derived and measured values coincide
for the same parameter, then the model is validated. This issue is still under research in the data
warehouse area, however.

248 MAITHIAS JAFZKE et al.

Clients

quallty manager

wrapperw\
Loaders \\

Fig. 14: Mapping the Extending Architecture and Quality Model to the Traditional DW Architecture

Ttansac4orPmduatSom1

Fig. 15: ConceptBase Screenshot of the Graphical View on the Quality Data

The last and most advanced aspect of quality management is the improvement. Our current model does
not contain constructive knowledge about how to improve the quality of a data warehouse. The first step is
to incorporate the mathematical model mentioned above. Then, a data warehouse designer can make
incremental changes to the data warehouse architecture, measure the local effect on quality, and then
measure the effect on derived quality measures.

Architecture and Quality in Data Warehouses: An Extended Repository Approach 249

4. RELATED WORK

Our approach extends and merges results from data warehouse research and from data/software quality
research. We mention here only some of the most relevant approaches; a comprehensive survey of
research and practice in data warehousing appears in [23].

Starting with the data warehouse literature, the well-known projects have focused almost exclusively
on what we call the logical and physical perspectives of DW architecture. While the majority of early
projects have focused on source integration aspects, the recent effort has shifted towards the efficient
computation and re-computation of multi-dimensional views. The business perspective is considered at
best indirectly in these projects. The Information Manifold (IM) developed at AT&T is the only one that
employs a rich domain model for information gathering from disparate sources such as databases, SGML
documents, or unstructured files [29, 32, 331 in a manner similar to our approach (but with less powerful

reasoning mechanisms for analysis).
TSIMMIS (The Stanford-IBMManager of Multiple Information Sources) is a project with the goal of

providing tools for the integrated access to multiple and diverse information sources and repositories
[10, 441. Each information source is equipped with a wrapper that encapsulates the source, converting the
underlying data objects to a common data model - called Object Exchange A4odef (OEM). On top of
wrappers, mediators [47] can be conceptually seen as views of data found in one or more sources which
are suitably integrated and processed.

Similarly, but with slightly different implementation strategies, the Squirrel Project [18,501 provides a
framework for data integration based on the notion of integration mediator. Integration mediators are
active modules that support incrementally maintained integrated views over multiple databases. Moreover,
data quality is considered by defining formal properties of consistency and freshness for integrated views.

The WHIPS (WareHouse Information Prototype at Stanford) system [16, 461 has the goal of
developing algorithms for the collection, integration and maintenance of information from heterogeneous
and autonomous sources. The WHIPS architecture consists of a set of independent modules implemented
as CORBA objects. The central component of the system is the integrator, to which all other modules

report.
On the client side of data warehousing, numerous tools for multi-dimensional data modeling and

querying exist. In terms of our architecture model, most of them have addressed a logical perspectives,
e.g. relational algebras [45], SQL extensions by data cubes [151 or visualization techniques generalizing
the spreadsheet approach [141. However, there is also some work on logical foundations of a conceptual
level, as a basis for DW design [31] as well as DW operation [6]. In the DWQ project, a unified approach
capturing the essence of these extensions is under construction, as an extension to the repository meta
model similar to the one described in Section 2.6.

Interestingly, metadata support for multi-dimensional extensions as well as for the representation of
what we call acquisition plans is offered by the new version of the Microsoft Repository [3]. However, as
the MS Repository is based on binary-standard object-oriented program interfaces on top of relational
storage technologies, it does not offer deductive querying mechanisms or subsumption analysis techniques
that support quality management in our approach. Still, this recent commercial effort accentuates the
importance allocated by vendors to the question of repository support for data warehousing.

Turning to data quality research, Wang et al. [49] present a framework of data quality analysis, based
on the IS0 9000 standard. This framework reviews a significant part of the literature on data quality, yet
only the research and development aspects of data quality seem to be relevant to the cause of data
warehouse quality design. In [48], an attribute-based model is presented that can be used to incorporate
quality aspects of data products. As in our approach, the basis is the assumption that the quality design of
an information system should be incorporated in the overall design of the system. The model proposes the
extension of the relational model as well as the annotation of the results of a query with the appropriate
quality measurements. Further work on data quality can be found, among others, in [5, 2 1, 30, 341.

Variants of the Goal-Question-Metric (GQM) approach are widely used in software quality
management [37, 121. A structured overview of the issues and strategies for information systems quality,
embedded in a repository framework, can be found in [24]. Several hierarchies of quality dimensions have
been proposed. For example, the GE Model [37] suggests I1 criteria of software quality, while B.
Boehm’s [4] suggests 19 quality factors. IS0 9126 [20] suggests six basic quality factors which are further
analyzed to an overall of 21 quality factors. In [17] a comparative presentation of these three models is

250 MATTHIAS JARKE et al.

done and the SATC software quality model is presented, along with the metrics for the software quality
dimensions.

5. DISCUSSION AND CONCLUSIONS

The goal of our work is to enrich meta data management in data warehouses such that it can serve as a
meaningful basis for systematic quality analysis and quality-driven design. To reach this goal, we had to

overcome two limitations of current data warehouse research.
Firstly, the basic architecture in which data warehouses are typically described turned out to be too

weak to allow a meaningful quality assessment. As quality is usually detected only by its absence, quality-
oriented meta data management requires that we address the full sequence of steps from the capture of
enterprise reality in operational departments to the interpretation of DW information by the client analyst.
This in turn implied the introduction of an explicit enterprise perspective as a central feature in the
architecture. To forestall possible criticism that full enterprise modeling has proven a risky and expensive
effort, we recall from Section 2.6 that our approach to enterprise model formation is fully incremental
such that it is perfectly feasible to construct the enterprise model step by step, e.g. as a side effect of
source integration or of other business process analysis efforts.

The second major problem is the enormous richness in quality factors, each associated with its own
wealth of measurement and design techniques. Our quest for an open quality management environment
that can accommodate existing or new such techniques led us to an adaptation and repository integration
of the GQM approach where parameterized queries and materialized quality views serve as the missing
link between specialized techniques and the general quality framework.

The power of the repository modeling language determines the boundary between precise but narrow
metrics and comprehensive but shallow global repository. The deductive object base formalism of the
Telos language provides a fairly sophisticated level of global quality analysis in our prototype
implementation but is still fully adaptable and general. Once the quality framework has sufficiently
stabilized, a procedurally object-oriented approach could do even more, by encoding some metrics
directly as methods, of course at the expense of flexibility. Conversely, a simple relational meta database
could take up some of the present models with less semantics than offered in the ConceptBase system, but
with the same flexibility.

As shown throughout the paper, the approach has been fully implemented and some validation has
taken place to fine-tune the models. In part, this validation was by testing earlier versions of the model in
real-world DW projects, such as [42], or by’ reconstructing features of existing systems, such as [41];
another important strain of validation efforts is through the definition and validation of specific
methodologies within our framework, such as the source integration methodology discussed in
Section 2.6 [8].

Obviously, much remains to be done. One direction of current work therefore continues the validation
against several major case studies, in order to set priorities among the quality criteria to be explicated in
specific metrics and analysis techniques. A second overlapping strain concerns the development of these
techniques themselves, and their linkage into the overall framework through suitable quality
measurements and extensions to global design and optimization techniques. Especially when progressing
from the definition of metrics and prediction techniques to actual design methods, it is expected that these
will not be representable as closed algorithms but must take the form of interactive work processes
defined over the DW architecture.

As an example, feedback from at least two case studies suggests that, in practice, the widely studied
strategy of incremental view maintenance in the logical sense is far less often problematic than the time
management at the physical and conceptual level, associated with the question when to refresh DW views
such that data are sufficiently fresh for analysis, but neither analysts nor OLTP applications are unduly
disturbed in their work due to locks on their data. Our research therefore now focuses on extending the
conceptual level by suitable (simple) temporal representation and reasoning mechanisms for representing
freshness requirements, complemented by an array of’design and implementation methods to accomplish
these requirements and the definition of processes at the global level to use these methods in a goal-
oriented manner to fulfill the requirements.

Architecture and Quality in Data Warehouses: An Extended Repository Approach 251

As another example, one of our industrial cooperation partners - a small data warehouse application

vendor - has recognized that data quality for data analysis is not enough, because data analysis is only

meaningful if it also results in operational action. Jointly with this company, we are therefore devising a
process and repository implementation which allows to propagate the application of the data quality
techniques in the data warehouse “backwards” into the information sources [25].

While such extensions will certainly refine the approach reported here, the experiences gained so far
indicate that it is a promising way towards more systematic and computer-supported quality management
in data warehouse design and operation.

Acknowledgements - This research was partially supported by the European Commission in ESPRIT Long Term Research Project
22469 DWQ (Foundations of Data Warehouse Quality, http://www.dbnet.ece.ntua.gr/-dwq/), by the General Secretariat of
Research and Technology (Greece) under the PENED program; and by the Deutsche Forschungsgemeinschaft through
Graduiertenkolleg “Informatik und Technik”. The authors would like to thanks their project partners in DWQ, especially Maurizio
Lenzerini, Mokrane Bouzeghouh and Enrico Franconi, for fruitful discussions of the architecture and quality model.

REFERENCES

[I] Y. Akao. ed. Qua& Function Deployment. Productivity Press, Cambridge, MA. (1990).

[2] Arbor Software Corporation. Arbor Essbuse. http://www.arborsoft.com/essbase.html(l996).

[3] P.A. Bernstein, Th. Bergstraesser, J. Carlson, S. Pal, P. Sanders, and D. Shutt. Microsoft Repository Version 2 and the Open

Information Model. Inform&on Systems, 24(2):7 I-98 (1999).

[4] B. Bochm. Sofhvare Risk Management. IEEE Computer Society Press, CA (1989).

[S] D.P. Ballou, R.Y. Wang, H.L. Pazer, and K.G. Tayi, Modeling Data Manufacturing Systems To Determine Data Product
Quality, (No. TDQM-93-09) Cambridge Mass.: Total Data Qualily Management Research Program, MIT Sloan School of
Management (1993).

[6] L. Cabibbo and R. Torlone. A logical approach to multi-dimensional databases. Proc 6th Id Conf Extendrng Database

Technology (EDBT98), Avignon, France, pp. 183-197, Springer Verlag (1998).

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment in description logics with n-ary relations. In
Proc. International Workshop on Description Logics, Universite Paris-Sud, Centre d’orsay, Laboratoire de Recherche en
lnformatique LRI, URA-CNRS 410, Paris (1997).

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Schema and Data Integration Methodology for DWQ.
DWQ Deliverable 4. I, ESPRIT Project 22469 Foundations of Data Warehouse Quality, University of Rome (1998).

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Experimentation with the Incremental View
Integration. DWQ Deliverable 3.3, ESPRIT Project 22469 Foundations of Data Warehouse Quality, University of Rome

(1998).

[IO] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIMMB
project: Integration of heterogeneous information sources. In Proc. IPSI Conference, Tokyo, Japan, pp. 7- I8 (1994).

[I I] DWQ Consortium. Deliverable D2.1, Data Warehouse Architecture and Qua&v Model. Technical Report DWQ-RWTH-002
(I 997).

[121 N.E. Fenton, and S. L. Pfleeger. Sqftwure Metrics - A Rrgorous & Prucfzcal Approach. Second Edition, PWS Publ., Boston,
MA. (I 998).

[I31 E. Franconi et al. Algorithms for Reasoning over Multidimensional Aggregation. DWQ Deliverable D 6.1, ESPRIT Project
22469 Foundations of Data Warehouse Quality, DWQ Consortium (I 998).

[141 M. Gebhardt, M. Jarke, and S. Jacobs. CoDecide - a toolkit for negotiation support interfaces to multi-dimensional data. In

Proc. ACM-SIGMOD Conf Management of Data, Tucson, Arizona, pp. 348-356, ACM Press (1997).

[151 J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: a relational aggregation operator generaizing group-by, cross-
tab. and sub-totals. 20th Intl. Conf: Data Engineering, New Orleans, pp.1.52-159, IEEE Computer Society (1996).

[161 J. Hammer, H. Garcia-Molina, J. Widom, W. Labia, and Y. Zhuge. The Stanford data warehousing project. Data

Engmeering, Special Issue Materialized Views on Data Warehousing, 18(2):41-48 (1995).

1171 L. Hyatt, and L. Rosenberg. A software quality model and metrics for identifying project risks and assessing software quality.
ESA 1996 Product Assurance Symposium and So&are Product Assurance Workshop, pp. 209-2 12, European Space Agency,
ESTEC, Noordwijk, The Netherlands (1996).

[I81 R. Hull, and G. Zhou. A Framework for supporting data integration using the materialized and virtual approaches. In Proc.
ACMSIGMOD Intl. Conf Management of Data, Montreal, pp. 481-492, ACM Press (1996).

[191 Informix. Inc. The INFORMIX--h4etuCube Product Suite. Online http://www.informix.com/informix/products/
new_plo/metabro/metabro2,htm (1997).

252 MATTHIASJARKE~~CZ~.

[20] lSO/IEC 9126. Information Technology Sofiare Product Evaluation- Quality Characteristics and Guidelines for Their
Use. lnternational Organization for Standardization, http://www.iso.ch/ (1991).

1211 M. Janson. Data quality: The Achilles heel of end-user computing. Omega J. Management Science, 16(5) (1988).

[22] M. Jarke, R. Gallersdiirfer, M.A. Jeusfeld, M. Staudt, and S. Eherer. ConceptBase - a deductive objectbase for meta data
management. Journal oj’lntelligent Information Systems, 4(2):167-192 (1995).

[23] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis, editors. Fundainentals of Data Warehouse Quality. Springer-Vedag, to
appear 1999.

[24] M.Jarke, and K. Pohl. Information systems quality and quality information systems. In Kendall/Lyytinen/DeGross, editors,
Proc. IFIP 8.2 Working Conj The Impact of Computer-Supported Technologies on Information Systems Development

(Minneapolis 1992), pp. 345-375, North-Holland (1992).

[25] M. Jarke, C. Quix, G. Michalk, S. Stierl, G. Blees, and D. Lehmann. Garbage reduction in data warehousing: improving
OLTP data quality using data warehouse mechanisms. In Proc. ACM-SIGMOD Conf Management of Data, Philadelphia,
PA., ACM Press (1999).

[26] M. Jarke, and Y. Vassiliou. Foundations of data warehouse quality - a review of the DWQ project. In Proc. 2nd Intl. Conf

Information Qua& (IQ-97), Cambridge, Mass. (1997).

[27] M.A. Jeusfeld, M. Jarke, H.W. Nissen, and M. Staudt. ConceptBase - Managing conceptual models about information
systems. In P. Bemus, K. Mertins, and G. Schmidt, Handbook on Architectures of Information Systems, pp. 265-285,
Springer-Verlag (1998).

[28] M.A. Jeusfeld, C. Quix, and M. Jarke. Design and analysis of quality information for data warehouses. In Proc. 17th

fnternational Conference on Conceptual Modeling (ER’98) , Singapore, pp. 349-362, Springer Verlag (1998).

[29] T. Kirk, A.Y.‘L.evy, Y. Sagiv, and D. Srivastava. The information manifold. In Proc. AAAI 1995 Spring Symp. on Informallon

Gatheringfrom Heterogeneous, Distributed Envir,onments, pp. 85-91 (1995).

[30] C. Kriebel. Evaluating the quality of information system. Design and Implementation of Computer Based Information

Systems, N. Szyperskil E.Grochla ,editors, Sijthoff and Noordhoff (l979).

[31] W. Lehner. Modeling large scale OLAP scenarios. Proc. 6th Intl. Conj: &tending Database Technology (EDBT’98),

Valencia, Spain, pp. 153-167, Springer-Verlag (1998).

[32] A.Y. Levy, A. Rajaraman, and J. J. Ordille. Query answering algorithms for information agents. In Proc. 13th Nat. Conf on
Arttjicial Intelligence (AAAI-96), Portland, Oregon, pp. 40-47, AAAI Press/Mm Press (1996).

[33] A.Y. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global information systems. Journal of Intelligent

Information Systems, 5(2):121-143 (1995).

[34] G.E. Liepins, and V.R.R. Uppuluri. Accuracy and relevance and the quality of data. In AS. Loebl; ed., vol. 112, Marcel
Dekker (1990).

[35] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos - a language for representing knowledge about information

systems. In ACM Trans. Information Systems, 8(4):325-362 (1990).

[36] J. Mylopoulos, L. Chung, and-B. Nixon. Representing and using non-functional requirements - a process-oriented approach.

IEEE Truns. Sofmare Engineering, 18(6):483-497 (1992).

[37] J.A. McCall, P.K. Richards, and G.F. Walters. Factors in Software Quality. Technical Report, Rome Air Development Center

(1978).

[38] MicroStrategy, Inc. MicroStrategv’s 4.0 Product Line. http://www.strategy.com/launch/4_O_arcl.htm (1997).

[39] M. Nicola, and M. Jarke. Increasing the expressiveness of analytical performance models for replicated databases. To appear
in Proc. International Conference on Database Theory (ICDT ‘99), Jerusalem (1999).

[40] M. Oivo, and V. Basili. Representing software engineering models: the TAME goal-oriented approach,, IEEE Trans. Softiare

Engineering, 18(10):886-898 (1992).

[41] Software AG. SourcePoint White Paper. Software AG, Uhlandstr 12,64297 Darmstadt, Germany (1996).

[42] M. Staudt, J.U. Kietz, and U. Reimer. ADLER: An environment for mining insurance data. In Proc. 4th Workshop KRDE-97,

Athens (1997). Online hbp://sunsite.infonnatik.rwth-aachen.de/Publications/CEUR-WS/Vol-lO/.

[43] D. Theodoratos, and T. Sellis. Data warehouse configuration. In Proc. 23th VLDB Conference, Athens, Greece, pp. 126-135,
Morgan Kaufmann (1997).

[44] J.D. Ullman. Information integration using logical views. In Proc. 6th Int. Conf on Database Theory (ICDT-97). Delphi,
Greece, pp. 19-40, Springer-Verlag, LNCS 1186 (1997).

[45] P. Vassiliadis. Modeling multidimensional databases, cubes, and cube operations, Proc. 20th Intl. Conz Scientijc and
Statistical Database Management, Capri, Italy, pp. 53-62, IEEE Computer Society (1998).

[46] J. L. Wiener, H. Gupta, W. J. Labia, Y. Zhuge, H. Garcia-Molina, and J. Widom. A system prototype for warehouse view
maintenance. In Proceedings ACM Workshop on Materialised Views: Techniques and Applications, Montreal, Canada, pp.
26-33 (1996).

[47] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer, 25(3):38-49 (1992).

Architecture and Quality in Data Warehouses: An Extended Repository Approach 253

[48] R.Y. Wang, M.P. Reddy, and H.B. Kon. Towards quality data: an attribute-based approach. Decisron Support Systems,

13(3/4):349-372 (1995).

[49] R.Y. Wang, V.C. Storey, and C.P. Firth. A framework for analysis of data quality research. IEEE Trans. Knowledge and Data

Engzneering, 7(4):623-640 (1995).

[50] G. Zhou, R. Hull, and R. King. Generating Data Integration Mediators that Use Materialization. Journal of Intelligent

Information Systems, 6(2): 199-221 (1996).

