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Abstract - Most database researchers have studied data warehouses (DW) in their role as buffers of materialized 
views, mediating between update-intensive OLTP systems and query-intensive decision support. This neglects the 
organizational role of data warehousing ins a means of centralized information flow control. As a consequence, a 
large number of quality aspects relevant for data warehousing cannot be expressed with the current DW meta 
models. This paper makes two contributions towards solving these problems. Firstly, we enrich the meta data 
about DW architectures by explicit enterprise models. Secondly, many very different mathematical techniques for 

measuring or optimizing certain aspects of DW quality m being developed. We adapt the Goal-Question-Metric 
approach from software quality management to a meta data management environment in order to link these 
special techniques to a generic conceptual framework of DW quality. The approach has been implemented in full 
on top of the ConceptBase repository system and has undergone some validation by applying it to the support of 
specific quality-oriented methods, tools, and application projects in data warehousing. 
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1. INTRODUCTION 

Data warehouses provide large-scale caches of historic data. They sit between information sources 
gained externally or through online transaction processing systems (OLTP), and decision support or data 
mining queries following the vision of online analytic processing (OLAP). Three main arguments have 
been put forward in favor of this caching approach: 

1. Performance and safety considerations: The concurrency control methods of most DBMSs do not 
react well to a mix of short update transactions (as in OLTP) and OLAP queries that typically 
search a large portion of the database. Moreover, the OLTP systems are often critical for the 
operation of the organization and must not be under danger of corruption of other applications. 

2. Logical interpretability problems: Inspired by the success of spreadsheet techniques, OLAP users 
tend to think in terms of highly structured multi-dimensional data models, whereas information 
sources offer at best relational, often just semi-structured data models. 

3. Temporal and granularity mismatch: OLTP systems focus on current operational support in great 
detail, whereas OLAP often considers historical developments at a somewhat less detailed 
granularity. 

Thus, quality considerations have accompanied data warehouse research from the beginning. A large 

body of literature has evolved over the past few years in addressing the problems introduced by the DW 
approach, such as the trade-off between freshness of DW data and disturbance of OLTP work during data 
extraction; the minimization of data transfer through incremental view maintenance; and a theory of 
computation with multi-dimensional data models. 

However, the heavy use of highly qualified consultants in data warehouse applications indicates that 
we are far from a systematic understanding and usage of the interplay between quality factors and design 
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options in data warehousing. The goal of the European DWQ project [26] is to address these issues by 
developing, prototyping and evaluating comprehensive Foundations for Data Warehouse Quality, 
delivered through enriched meta data management facilities in which specific analysis and optimization 
techniques are embedded. 

This paper develops the DWQ architecture and quality management framework, and describes its 
implementation in a meta database. The main contributions include an extension of the standard DW 

architecture used in the literature by enterprise modeling aspects, and a strategy for embedding special- 
purpose mathematical reasoning tools in a repository model of the architecture. Our goal is to enable a 
computationally tractable yet very rich quality analysis, and a quality-driven design process. 

Interaction with DW tool vendors, DW application developers and administrators has shown that the 
standard framework used in the DW literature is insufficient to capture in particular the business role of 
data warehousing. A DW is a major investment made to satisfy some business goal of the enterprise; 
quality model and DW design should reflect this business goal as well as its subsequent evolution over 
time. In Section 2, we discuss this problem in detail. Our new architectural framework separates (and 
links) explicitly the concerns of conceptual enterprise perspectives, logical data modeling (the main 
emphasis of DW research to date), and physical information flow (the main concern of commercial DW 

products to date). 
In Section 3, we first build on the literature for data and software quality to come up with a suitable set 

of DW quality goals, as perceived by different groups of stakeholders. We then adapt a variant of the so- 
called Goal-Question-Metric approach used in software quality management, in order to link these 
conceptual goals to specific techniques developed in DW research and practice, and to enable trade-off 
between heterogeneous quality goals. Technically, this is accomplished through materialized quality 
views, i.e. using the DW approach to describe its own quality. Some experiences with a prototypical 
implementation of the resulting meta database using the ConceptBase repository manager have been 
gained in cooperation with industrial case studies. Section 4 relates our approach to other work in data 
warehousing, data and software quality, while Section 5 provides a summary and conclusions. 

Administration 

Fig. 1: Traditional Data Warehouse Architecture 
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2. AN EXTENDED DATA WAREHOUSE ARCHITECTURE 

The traditional data warehouse architecture, advocated both in research and in the commercial trade 
press, is shown in Figure 1. Physically, a data warehouse system consists of databases (source databases, 
materialized views in the data warehouse), data transport agents that ship data from one database to 
another, and a repository which stores meta data about the system and its evolution. In this architecture, 
heterogeneous information sources are first made accessible in a uniform way through extraction 
mechanisms called wrappers, then mediators [47] take on the task of information integration and conflict 
resolution. The resulting standardized and integrated data are stored as materialized views in the data 
warehouse. The DW base views are usually just slightly aggregated; to customize them better for different 
groups of analyst users, data marts with more aggregated data about specific domains of interest are 
frequently constructed as second-level caches which are then accessed by data analysis tools ranging from 
query facilities through spreadsheet tools to full-fledge data mining systems based on knowledge-based or 
neural network techniques. 

The content of the repository determines to a large extent the way how the data warehouse system can 
be used and evolved. The main goal of our approach is therefore to define a meta database schema which 
can capture and link all relevant aspects of DW architecture and quality. 

We shall tackle this very difficult undertaking in several steps. First, we discuss the shortcomings of 
the traditional architecture and propose a conceptual enterprise perspective to solve some of these 
shortcomings. Then, we elaborate the extended metamodel resulting from our approach, and show how it 
can be implemented in a repository. Finally, the application of these repository concepts is illustrated with 
a more detailed description of a specific submodel developed and validated in the DWQ project. 

2.1. Adding a Conceptual Perspective to Data Warehousing 

Almost all current research and practice understand a data warehouse architecture as a stepwise 
information flow from information sources through materialized views towards analyst clients, as shown 
in Figure 1. For example, projects such as TSIMMIS [IO], Squirrel [18], or WHIPS [16] all focus on the 
integration of heterogeneous data via wrappers and mediators, using different logical formalisms and 
technical implementation techniques. The Information Manifold project at AT&T Research [33] is the 
only one providing a conceptual domain model as a basis for integration. 

Our key observation is that the architecture in Figure 1 covers only partially the tasks faced in data 
warehousing and is therefore unable to even express, let alone support, a large number of important 
quality problems and management strategies. 
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Fig. 2: Data Warehousing in the Context of an Enterprise 
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The main argument we wish to make is the need for a conceptual enterprise perspective. To explain, 
consider Figure 2. In this Figure, the flow of information in Figure 1 is stylized on the right-hand side, 
whereas the process of creating and using the information is shown on the left. Suppose an analyst wants 

to know something about the business - the question mark in the figure. She does not have the time to 

observe the business directly but must rely on existing information gained by operational departments, and 
documented as a side effect of OLTP systems. This way of gathering information implies already a bias 
which needs to be compensated when selecting OLTP data for uploading and cleaning into a DW where it 
is then further pre-processed and aggregated in data marts for certain analysis tasks. Considering the long 
path the data has taken, it is obvious that also the last step, the formulation of conceptually adequate 
queries and the conceptually adequate interpretation of the answers present a major problem to the 
analyst. 

The traditional DW literature only covers two of the five steps in Figure 2. Thus, it has no answers to 
typical practitioner questions such as “how come my operational departments put so much money in their 
data quality, and still the quality of my DW is terrible” (answer: the enterprise views of the operational 
departments are not easily compatible with each other or with the analysts view), or “what is the effort 
required to analyze problem X for which the DW currently offers no information” (could simply be a 
problem of wrong aggregation in the materialized views, could require access to not-yet-integrated OLTP 
sources, or even involve setting up new OLTP sensors in the organization). 

An adequate answer to such questions requires an explicit model of the conceptual relationships 
between an enterprise model, the information captured by OLTP departments, and the OLAP clients 
whose task is the decision analysis. We have argued that a DW is a major investment undertaken for a 
particular business purpose. We therefore do not just introduce the enterprise model as a minor part of the 
environment, but demand that all other models are defined as views on this enterprise model. Perhaps 

surprisingly, even information source schemas define views on the enterprise model - not vice versa as 

suggested by Figure I ! 

Conceptual 
Perspective 

Logical 
Perspective 

Physical 
Perspective 

Fig. 3: The Proposed Data Warehouse Meta Data Framework 

2.2. A Repository Modelfor the Extended Data Warehouse Architecture 

By introducing an explicit business perspective as in Figure 2, the wrapping and aggregation 
transformations performed in the traditional data warehouse literature can thus all be checked for 

interpretability, consistency or completeness with respect to the enterprise model - provided an 
adequately powerful representation and reasoning mechanism is available. 
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At the same time, the logical transformations need to be implemented safely and efficiently by physical 

data storage and transportation - the third perspective in our approach. It is clear that these physical 

quality aspects require completely different modeling formalisms from the conceptual ones, typical 
techniques stemming from queuing theory and combinatorial optimization. 

As a consequence, the data warehouse meta framework we propose clearly separates three 
perspectives as shown in Figure 3: a conceptual enterprise perspective, a logical data modeling 
perspective, and a physical data flow perspective. 

There is no single decidable formalism that could cover the handling of all these aspects uniformly in a 
meta database. We have therefore decided to capture the architectural framework in a deductive object 
data model in a comprehensive but relatively shallow manner. Special-purpose reasoning mechanisms 
such as the ones mentioned above can be linked to the architectural framework as discussed in Section 3, 
below. 

We use the meta database to store an abstract representation of data warehouse applications in terms of 
the three-perspective scheme. The architecture and quality models are represented in Telos [35], an 
extensible meta modeling language which has both a graphical syntax and a frame syntax, mapped to an 
underlying formal semantics based on standard deductive databases. Using this formal semantics, the 
Telos implementation in the ConceptBase system [22] provides query facilities, and definition of 
constraints and deductive rules. Telos is well suited because it allows to formalize specialized modeling 
notations (including the adaptation of graphical representations [27]) by means of meta classes. Since 
ConceptBase treats all concepts including meta classes as first-class objects, it is well suited to manage 
abstract representations of the DW objects to be measured [28]. 

A condensed ConceptBase model of the architecture notation is given in Figure 4, using the graph 
syntax of Telos. Bold arrows denote specialization links. The top level object is A4eczsurabZeObject. It 
classifies objects at any perspective (conceptual, logical, or physical) and at any level (source, data 
warehouse, or client). Within each perspective, we distinguish between the modules it offers (e.g. client 
model) and the kinds of information found within these modules (e.g. concepts and their subsumption 
relationships). The horizontal links hasSchema and isViewOn establish the way how the horizontal links in 
Figure 2 are interpreted: the types of a schema (i.e., relational or multidimensional structures) are defined 
as logical views on the concepts in the conceptual perspectives. On the other hand, the components of the 
physical perspective get a schema from the logical perspective. 

Each object can have an associated set of materialized views called QualityMeasurements. These 

materialized views (which can also be specialized to the different perspectives - not in the figure) 

constitute the bridge to the quality model discussed in Section 3. 

tsSubsumedEIy 
relatesTo 

Fig. 4: Structure of the Repository Meta Model 
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The horizontal levels of the objects are coded by the three subclasses attached to Model, Schema, and 
DataStore. We have experimented with this notation and were able to represent physical data warehouse 
architectures of commercial applications, such as the SourcePoint tool marketed by Software AG [41], the 
DW architecture underlying a data mining project at Swiss Life [42], and a DW project in Telecom Italia 
(cf. Section 2.6). The logical perspective currently supports relational schema definitions whereas the 
conceptual perspective supports the family of extended entity-relationship and similar semantic data 
modeling languages. Note that all objects in Figure 4 are meta classes: actual conceptual models, logical 
schemas, and data warehouse components are represented as instances of them in the meta database. 

In the following subsections, we elaborate on the purpose of representing each of the three 
perspectives, then demonstrate how the architecture above can be refined for particular purposes. 

2.3. Conceptual Perspective 

The conceptual perspective offers a business model of the information systems of an enterprise. The 
central role is played by the enterprise model, which gives an integrative overview of the conceptual 
objects of an enterprise. The models of the client and source information systems are views on the 
enterprise model, i.e. their contents are described in terms of the enterprise model. One goal of the 
conceptual perspective is to have a model of the information independent from physical organization of 
the data, so that relationships between concepts can be analyzed by intelligent tools, e.g. to simplify the 
integration of the information sources. On the client side, the interests of user groups can also be 
described as views on the enterprise model. 

In the implementation of the conceptual perspective in the meta database, the central class is Model. A 
model is related to a source, a client or the relevant section of the enterprise, and it represents the concepts 
which are available in the corresponding source, client or enterprise. The classes ClientModel, 
SourceModel and EnterpriseModel are needed, to distinguish the models of several sources, clients and 
the enterprise itself. A model consists of Concepts, each representing a concept of the real world, i.e. the 
business world. If the user provides some information about the relationship between concepts in a formal 
language like description logic, a reasoner can check for subsumption of concepts [7]. 

The results of the reasoning process are stored in the model as attribute isSubsumedBy of the 
corresponding concepts. Essentially, the repository can serve as a cache for reasoning results. Any tool 
can ask the repository for containment of concepts. If the result has already been computed, it can directly 
be answered by the repository. Otherwise, a reasoner is invoked by the repository to compute the result. 

2.4. Logical Perspective 

The logical perspective conceives a data warehouse from the view point of the actual data models 
involved, i.e. the data model of the logical schema is given by the corresponding physical component, 
which implements the logical schema. The central point in the logical perspective is Schema. As a model 
consists of concepts a schema consists of Types. We have implemented the relational model as an example 
for a logical data model; other data models such as the multi-dimensional or the object-oriented data 
model are also being integrated in this framework [ 14,451. 

Like in the conceptual perspective, we distinguish in the logical perspective between ClientSchema, 
DWSchema and SourceSchema for the schemata of clients, the data warehouse and the sources. For each 
client or source model, there is one corresponding schema. This restriction is guaranteed by a constraint in 
the architecture model. The link to the conceptual model is implemented through the relationship between 
concepts and types: each type is expressed as a view on concepts. 

2.5. Physical Perspective 

Data warehouse industry has mostly explored the physical perspective, so that many aspects in the 
physical perspective are taken from the analysis of commercial data warehouse solutions such as Software 
AG’s SourcePoint tool 1411, the data warehouse system of RedBrick, Informix’s MetaCube [ 193, Essbase 
of Arbor Software [2] or the product suite of MicroStrategy [38].We have observed that the basic physical 
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components in a data warehouse architecture are agents and data stores. Agents are programs that control 
other components or transport data from one physical location to another. Data stores are databases which 
store the data that is delivered by other components. 

The basic class in the physical perspective is DW_Component. A data warehouse component may be 
composed out of other components. This fact is expressed by the attribute hasPart. Furthermore, a 
component deliversTo another component a Type, which is part of the logical perspective. Another link to 
the logical model is the attribute hasschema of DW_Component. Note that a component may have a 
schema, i.e. a set of several types, but it can only deliver a type to another component. This is due to the 
observation that agents usually transport only “one tuple at a time” of a source relation rather than a 
complex object. 

There are two types of agents: ControlAgent which controls other components and agents, e.g. it 
notifies another agent to start the update process, and TransportationAgent which transports data from one 
component to another component. An Agent may also notify other agents about errors or termination of its 

process. 
A DataStore physically stores the data which is described by models and schemata in the conceptual 

and logical perspective. As in the other perspectives, we distinguish between ClientDataStore. 

DWDataStore and SourceDataStore for data stores of clients, the data warehouse and the sources. 

2.6. Applying the Architecture Model: The Example of Source and Data Integration 

The metadata framework shown in Figure 4 defines the basic metamodel of the products in the 
repository, and their interrelationships. As shown in Figure 5, this framework can be instantiated by 
information models (conceptual, logical, and physical schemas) of particular data warehousing strategies 
which can then be used to design and administer the instances of these data warehouses - the main role of 
the administration system and meta database in Figure 1. 

However, quality cannot just be assessed on the network of nine perspectives, but is largeiy 
determined by the processes how these are constructed [24]. The process meta model defines a way how 
such processes can be defined, the process models define plans how data warehouse construction and 
administration is to be done, and the traces of such processes are captured at the lowest level; this process 
hierarchy accompanying the DW product model is shown on the right of Figure 5. 

Conceptual Logical Physical 
Perspective Perspective Perspective 

I 7 /I 

Meta Model 
Level 

Process 
Meta 

Model 

Models1 
Meta Data 

Level 

Process 
Model 

Processes 

Fig. 5: Repository Structure for Capturing Product and Process of Data Warehousing 
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In DWQ, we are still experimenting with suitable process modeling formalisms, based on our earlier 
work on software process modeling and management [24]. For the purposes of this paper, we can safely 
assume that the impact of such process models on the repository is some kind of query plan, a partiallv 
ordered set of queries defined over the meta database (and stored in the meta database). This is, tar 
example, also the strategy followed in the new version of the Microsoft Repository [3]. 

Figure 4 only gives a rough overview of the actual model structure in the DWQ repository meta 
model. In reality, each perspective offers a much richer meta model structure reflecting the approach taken 
in addressing the tasks in this perspective. 

In this subsection, we describe one of the specific DWQ methodologies, the one for source and data 
integration [8], in order to illustrate this refinement of models as well as the interplay between the 
different perspectives in our approach. While Source integration means designing the relationships 
between information sources and the views in the data warehouse, data integration means the construction 
of acquisition plans by which these views are actually materialized. 

In the context of Figure 4, the example is concerned with the enterprise and source models at the 
conceptual perspective and with the source schemas (and possibly DW schemas) in the logical 

perspective. 
Conceptual Perspective: According to the DWQ approach, one conceptual model is constructed for 

each source and one for the enterprise. These models rely on an extended entity-relationship model in 
which both the entities and the relationships can be interpreted as concepts formalized in a description 
logic, and additional logical assertions can be formulated to express generic domain knowledge 
(DomainAssertions), properties and limitations of a source (ZntraModeZAbsertions), and relationships 
between the sources, such as containment, consistency, etc. (InterModelAssertions). 

In the ConceptBase repository, this leads to an elaboration of. the Concept node from Figure 4, as 
shown in Figure 6. On the one hand, this refinement structurally describes the basic structure of the 
extended ER model, i.e. Concepts, Relationships, and complex objects constructed from them. On the 
other hand, it describes the linkage of the different kinds of assertions to the objects. Despite its 
expressiveness, this data model allows decidable subsumption reasoning [7] between concepts. Thus, 
through inheritance from the central ConceptRelationship object, both the assertions and the subsumption 
relationships computed by an external description logic reasoner on this structure can be applied to all 
subtypes of the meta schema. 

Fig. 6: Refining the Conceptual Perspective for Sours : Screendump) 
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The conceptual model is not restricted for the use in source integration. We can specialize the meta 
model to handle also the client side of a data warehouse, i.e. multidimensional data models. In the 
conceptual client model, it is important how aggregations are defined and which attributes are aggregated 
of a concept [ 131. Figure 7 shows the client level of the meta model for the conceptual perspective. 

Comta/exAggmgation 

Fig. 7: Client Level of the Conceptual Perspective (ConceptBase Screendump) 

Aggregations aggregate concepts with respect to a specific dimension level, which is defined by a 
dimension attribute, and a level. For example, if customers are aggregated by cities, the dimension 
attribute is ‘address’ and the level is ‘city’. Furthermore, we need to know, which attributes are aggregated 
and which aggregation function is used for the aggregation. 

Logical Perspective: As stated earlier, the present implementation of the logical perspective is limited 
to relational databases. In line with our basic philosophy concerning the central role of the enterprise 
model, the DWQ approach considers the (relational) schema of an information source to be integrated as a 
view on the conceptual enterprise model. As the DW schema itself consists of (possibly cleaned and 
merged) views over the sources, it naturally becomes also an (indirect) view over the enterprise model. 

These views are, as usual, defined by conjunctive Queries over the enterprise model. In the merging of 
sources, also disjunctive queries are possible. These queries are defined at the time of source (schema) 
integration. For the actual data integration, i.e. to load the data warehouse schema from the sources, an 
AcquistionPZan is constructed from these queries (possibly taking into account the physical perspective). 
However, to capture the semantics correctly, the assertions of the conceptuai model must be taken into 
account; this is accomplished by adding them as adorrnments to the view definition queries. From the 
acquisition plan and the AdornedQueries, a query rewriting can then be performed automatically which 
defines the extraction queries from the sources as well as the MergingClauses that need to be executed 
when data from more than one source need to be merged into a data warehouse relation. 

Figure 8 shows how this approach is captured quite naturally in the ConceptBase repository, refining 
the Type object in Figure 4. This structure also provides a suitable memory for the integration process, 
thus allowing reuse of specific integration techniques as well as re-loading of the DW. Of course, the 
latter is usually done incrementally by view maintenance techniques but their description goes beyond the 
scope of this paper. 

The DWQ source and data integration approach is described in more detail in [8]. A validation case 
study involving the integration of four complex Telecom databases, reported in [9], demonstrates that this 
information structure is suitable for the incremental modeling of data warehouse architectures; 
“incremental” is meant here both in the sense of gradually refining the models of a specific information 
source or the enterprise as a whole and in the sense of adding a new information source, possibly 
overlapping in concepts with the existing enterprise model. 
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Fig. 8: Refining the Logical Perspective for (Relational) Source and Data Integration (ConceptBase Screendump) 

3. MANAGING DATA WAREHOUSE QUALITY 

In this section, we discuss how to extend the DW architecture model to support explicit quality 

models. There are two basic issues to be resolved. On the one hand, quality is a subjective phenomenon so 
we must organize quality goals according to the stakeholder groups that pursue these goals. On the other 
hand, quality goals are highly diverse in nature. They can be neither assessed nor achieved directly but 
require complex measurement, prediction, and design techniques, often in the form of an interactive 
process. The overall problem of introducing quality models in meta data is therefore to achieve breadth of 
coverage without giving up the detailed knowledge available for certain criteria. Only this combination 
enables systematic quality management. 

In the following subsections, we first categorize the relevant data warehouse quality dimensions 
according to the stakeholders that are typically interested in them. We also present some tables mapping 
these quality criteria to the DW perspectives introduced in the previous section, by giving examples of 
types of measurements which could help to establish the quality of a particular DW component with 
respect to a particular quality dimension. Then, we show how this basic structure can be formally captured 
in an extension to the Goal-Question-Metric approach from software engineering, and how this extension 
can be implemented and used in the DW meta database. 
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3.1. Stakeholders and Data Warehouse Quality Dimensions 

There exist different roles of users in a data warehouse environment. The Decision Maker usually 

employs an OLAP query tool to get answers interesting to him. A decision maker is usually concerned 
with the quality of the stored data, their timeliness and the ease of querying them through the OLAP tools. 
The Data Warehouse Administrator needs facilities like error reporting, meta data accessibility and 
knowledge of the timeliness of the data, in order to detect changes and reasons for them, or problems in 
the stored information. The Data Warehouse Designer needs to measure the quality of the schemata of the 
data warehouse environment (both existing or newly produced) and the quality of the meta data as well. 
Furthermore, he needs software evaluation standards to test the software packages he considers for 
purchasing. The Programmers of Data Warehouse Components can make good use of software 
implementation standards in order to evaluate their work. Meta data reporting can also facilitate their job 
since they can avoid mistakes related to schema information. 

Based on this analysis, we can safely argue that different roles imply a different collection of quality 

dimensions, which a quality model should be able to address in a consistent and meaningful way. In the 
following, we summarize the quality dimensions of three stakeholders, the data warehouse administrator, 
the programmer, and the decision maker. A more detailed presentation of quality dimensions for different 
stakeholder types is included in [ 111. 

administration 

Fig. 9: Design and Administration Quality Dimensions 

Design and Administration Quality. The design and administration quality can be analyzed into more 
detailed dimensions, as depicted in Figure 9. The schema and data quality refers to the ability of a schema 
or model to represent adequately and efficiently the information; the same criteria also apply at the data 
instance level. The correctness dimension is concerned with the proper comprehension of the entities of 
the real world, the schemata of the sources (models) and the user needs. The completeness dimension is 
concerned with the preservation of all the crucial knowledge in the data warehouse schema (model). The 
minimal@ dimension describes the degree up to which undesired redundancy is avoided during the source 
integration process. The traceability dimension is concerned with the fact that all kinds of requirements of 
users, designers, administrators and managers should be traceable to the data warehouse schema. The 
interpretability dimension ensures that all components of the data warehouse are well described, so as to 
be administered easily. The meta data evolution dimension is concerned with the way the schema evolves 
during the data warehouse operation. Table I relates the quality dimensions to data warehouse objects and 
shows how the quality of these objects can be measured. 
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Design and Conceptual Perspective 
Administration Model Concept 

Logical Perspective 
Schema Type 

Quality 
Correctness Number of conflicts Correctness of the Correctness of Correctness of the 

to other models/real description wrt. real mapping of the mapping of the 
world world entity conceptual model to concept to a type 

logical schema 

Completeness Level of covering, Number of missing Number of missing Number of missing 
number of attributes; Are the entities wrt. attributes wrt. 
represented business assertions related to the conceptual model conceptual model 
rules concept complete? 

Minimality Number of redundant Equivalence of the Number of redundant Number of redundant 
entities/relationships description with that of relations attributes 
in a model other concepts in the 

same model 

Traceability Are the designer’s Are the designer’s Are the designer’s Are the designer’s 
requirements and requirements and requirements and requirements and 
changes recorded? changes recorded? changes recorded? changes recorded? 

Interpretability Quality of Quality of Quality of Quality of 
documentation documentation documentation documentation 

Metadata Is the evolution of Is the evolution of the Is the evolution of Is the evolution of 

Evolution the model concept documented? the schema the type 
documented? documented? documented? 

Table I : Examples for Measurement Types for Design and Administration Quality Dimensions 

Software Implementation Quality. Software implementation and/or evaluation is not a task with specific 
data warehouse characteristics. We are not actually going to propose a new model for this task, but adopt 
the IS0 9126 standard [20]. The quality dimensions of IS0 9126 are Function&y (Suitability, Accuracy, 
Interoperability, Compliance, Security), Reliability (Maturity, Fault tolerance, Recoverability), Usability 

(Understandability, Learnability, Operability), Sofhvare Eficiency (Time behavior, Resource Behavior), 
Maintainability (Analyzability, Changeability, Stability, Testability), Portability (Adaptability, 
Installability, Conformance, Replaceability). 

These quality dimensions apply only to the physical perspective of the architectural, where the 

software (agents and data stores) are represented. Table 2 gives some examples how these quality 
dimensions can be measured for specific components. 

Software Physical Perspective 
Implementation DW Component 
Quality 
Functionality Number of functions not appropriate for specified tasks, number of modules unable to 

interact with specified systems 

Reliability Frequency of failures, Fault tolerance 

Usability Acceptance of the users 

Software Efficiency Performance, response time, processing time 

Maintainability Man-hours needed for maintaining and testing this software 

Portability Number of cases where the software failed to adopt to new environments; man-hours 
needed to install software in new environments 

Table 2: Examples for Measurement Types for Software. Implementation Quality Dimensions 

Data Usage Quality. Since databases and - in our case - data warehouses are built in order to be queried, 
the most basic process of the warehouse is the usage and querying of its data. In Figure 10 the hierarchy of 
quality dimensions related to data usage is depicted. 

The accessibility dimension is related to the possibility of accessing the data for querying. The security 
dimension describes the authorization policy and the privileges each user has for the querying of the data. 
System availability describes the percentage of time the source or data warehouse system is available (i.e. 
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the system is up and no backups take place, etc.). The transactional availability dimension, as already 

mentioned, describes the percentage of time the information in the warehouse or the source is available 
due to the absence of update processes which write-lock the data. 

Fig. IO: Data Usage Quality Dimensions 

The usefulness dimension describes the temporal characteristics (timeliness) of the data as well as the 
responsiveness of the system. The responsiveness is concerned with the interaction of a process with the 
user (e.g. a query tool which is self reporting on the time a query might take to be answered). The 
currency dimension describes when the information was entered in the sources or/and the data warehouse. 
The volatility dimension describes the time period for which the information is valid in the real world. The 
interpretability dimension, as already mentioned, describes the extent to which the data warehouse is 
modeled efficiently in the information repository. The better the explanation is, the easier the queries can 
be posed. In Table 3, some examples are shown how data usage quality can be measured. 

Are there physical 
access restrictions? 

Is the store able to 
revent unauthorized 

the destination store? 

Interpretability Is the schema Is the type Is the data delivered Is the data stored 
understandable? understandable? understandable? understandable? 

Table 3: Examples for Measurement Types for Data Usage Quality Dimensions 

Data Quality. The quality of the data which are stored in the warehouse, is obviously not a process by 

itself; yet it is influenced by all the processes which take place in the warehouse environment. We define 
data quality as a small subset of the dimensions proposed in other models. For example, in [48] our notion 
of data quality, in its greater part, is treated as a second level dimension, namely believability. The basic 
quality dimensions we introduce are shown in Figure 11. 
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Fig. 11: Data Quality Dimensions 

The data quality dimension does not cover a data warehouse process: it refers directly to properties of 
the stored data (i.e. not of the schemata or the models). Consequently, it is related to the physical 
perspective of the the architecture representing data stores and agents at all levels. 

The completeness dimension describes the percentage of the real-world information entered in the 
sources and/or the warehouse. For example, completeness could rate the extent to which a string 
describing an address did actually fit in the size of the attribute which represents the address. The 
credibility dimension describes the credibility of the source that provided the information. The accuracy 
dimension describes the accuracy of the data entry process which happened at the sources. The 
consistency dimension describes the logical coherence of the information. The data interpretability 
dimension is concerned with data description (i.e. data layout for legacy systems and external data, table 
description for relational databases, primary and foreign keys, aliases, defaults, domains, explanation of 
coded values, etc.). Some metrics for data quality are given in Table 4. 

Data Quality Physical Perspective 
Agent Data Store 

Completeness Number of tuples delivered wrt. expected Number of stored null values where there are not 
number expected 

Credibility Believability in the process that delivers Number of tuples with default values 
the values 

Accuracy Number of delivered accurate tuples Level of preciseness; Number of accurate tuples 

Consistency Is the delivered data consistent with other Number of tuples violating constraints, 
data number of coding differences 

Data Number of tuples with interpretable data, Number of tuples with interpretable data, 
Interpretability documentation for key values, is the documentation for key values, is the format 

format understandable? understandable? 

Table 4: Examples for Measurement Types for Data Quality Dimensions 

3.2. The Problem of Heterogeneous Multi-Criteria Quality Assessment 

We now turn to the formal handling and repository-based management of DW quality goals such as 
the ones described in the previous section. 

A first formalization could be based on a qualitative analysis of relationships between the quality 
factors themselves, e.g. positive or negative goal-subgoal relationships or goal-means relationships. The 
stakeholders could then enter their subjective evaluation of individual goals as well as possible weightings 
of goals and be supported in identifying good trade-offs. The entered as well as computed evaluations are 
used as quality measurements in the architecture model of Figure 3, thus enabling a very simple 
integration of architecture and quality model. 

Such an approach is widely used in industrial engineering under the label of Quality Function 
Deployment, using a special kind of matrix representation called the House of Quality [I 1. Formal 
reasoning in such a structure has been investigated in works about the handling of non-functional 
requirements in software engineering, e.g. [36]. Visual tools have shown a potential for negotiation 
support under multiple quality criteria [ 141. 
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However, while this simple approach certainly has a useful role in cross-criteria decision making, 
using it alone would throw away the richness of work created by research in measuring, predicting, or 
optimizing individual data warehouse quality factors. In the DWQ project, such methods are 
systematically adopted or newly developed for all quality factors found important in the literature or our 
own empirical work. To give an impression of the richness of techniques to be considered, we use a single 

quality factor - responsiveness in the sense of good query performance - for which the DWQ project has 

studied three different approaches, one each from the conceptual, logical, and physical perspective. 
We start with the logical perspective [43]. Here, the quality measurement associated with 

responsiveness is taken to be a weighted average of query and update “costs” for a given query mix and 
given information sources. A combinatorial optimization technique is then proposed that selects a 
collection of materialized views as to minimize the total costs. This can be considered a very simple case 
of the Quality Function Deployment approach, but with the advantage of automated design of a solution. 

If we include the physical perspective, the definition of query and update “costs” becomes an issue in 

itself: what do we mean by costs - response time, throughput, or a combination of both (e.g. minimize 

query response time and maximize update throughput)? what actually produces these costs - is database 

access or the network traffic the bottleneck? A comprehensive queuing model [39] enables the prediction 
of such detailed metrics from which the designer can choose the right ones for quality measurements for 
his design process. In addition, completely new design options come into play: instead of materializing 

more views to improve query response time (at the cost of disturbing the OLTP systems longer at update 
time), the designer could buy a faster client PC or DBMS, or provide an ISDN link rather than using slow 

modems. 
Yet other options come into play, when a rich logic is available for handling the conceptual 

perspective. For example, the description logic developed in the DWQ project for source integration [8] 
allows to state that information about all instances of one concept in the enterprise model is maintained in 
a particular information source. In other words, the source is complete with respect to the domain. This 
enables the DW designer to drop the materialization of all views on other sources, thus reducing the 
update effort semantically without any loss in completeness of the answers. 

3.3. Hierarchical Quality Assessment: An Adapted GQM Approach 

It is clear (and has in fact been proven in [7]) that there can be no decidable formal framework that 
even comes close to covering all of these aspects in a uniform language. When designing the meta 
database extensions for quality management, we therefore had to look for another solution that still 
maintains the overall picture offered by shallow quality management techniques such as QFD but is at the 
same time open for the embedding of specialized assessment and design techniques. 

Our solution to this problem builds on the widely used Goal-Question-Metric (GQM) approach in 
software quality management [40]. The idea of GQM is that quality goals can usually not be assessed 
directly. Instead, their meaning is circumscribed by questions that need to be answered when evaluating 
the quality. Quality questions again can usually not be answered directly but rely on metrics applied to 
either the product or process in question; techniques such as statistical process control charts are then 
applied to derive the answer of a question from the measurements. 

In the above example, the goal of responsiveness can be refined into questions about the trade-off 
between query and update performance (logical perspective), about the present bottlenecks at the physical 
level, and about the completeness or even redundancy of the utilized data sources (conceptual 
perspective). These questions can then be answered using the above-mentioned metrics and algorithms. 

Our repository solution uses a similar approach to bridge the gap between quality goal hierarchies on 
the one hand, and very detailed metrics and reasoning techniques on the other. The bridge is defined 
through the idea of quality queries as materialized views over the data warehouse; the views are defined 
through generic queries over the quality measurements. Figure 12 motivates this approach by zooming in 
on the repository. The stakeholder assesses the data warehouse quality by asking quality queries to the 
repository. The repository answers the queries by accessing quality data obtained from measurement 
agents (the black triangles in Figure 12). The agents communicate with the components of the real data 
warehouse to extract measurements. 
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data 

Fig. 12: Quality Management via the Data Warehouse Repository 

The stakeholder may re-define her quality goals at any time. This shall lead to an update of the quality 
model in the repository and possibly to the configuration of new measurement agents responsible to 
deliver the base quality data. Analogously, a stakeholder with .apprqpriate authorization can re-define the 
architecture of the data warehouse via the repository. Such an evolutionary ‘update, e.g. the specification 
of a new data source, leads to a re-configuration of the ‘real data warehouse. Ultimately, the quality 
measurements will reflect such effect of the change and give evidence whether the eirolution has led to an 
improvement of some quality goals. 

The use of the repository for data warehouse quality management has significant advantages: 

l data warehouse systems already incorporate repositories to manage meta data about the data 
warehouse; extending this component for quality management is a natural step 

, existing meta data about the data warehouse, e.g. source schemas, can be directly used for 
formulating quality goals and measurement plans 

, the quality model can be held consistent with the architecture model, i.e. the repository can 
prevent the stakeholders to formulate quality goals that cannot be validated with the given 
architectural data 

. the stakeholder’ accesses the repository as a data source to deliver quality reports to the 
stakeholders who formulate quality goals; in fact, producing such reports is the same kind of 
activity that is used to deliver aggregated data to the client tools of a data warehouse 

The last argument is not just a technical remark. Quality data, i.e. values of quality measurements, are 

derived from DW components. The values are materialized views of properties of these components. 
These values do have quality properties like timeliness and accuracy themselves. It makes a difference 
whether value of a quality measurement is updated each hour or once a month. While.we do not go into 
detail with this “second-level” quality, we note that the same methods that are used to maintain quality of 
the DW can also be used to maintain the quality of the DW repository (hosting the quality model). 

3.4. The Quality Meta Model 

Quality data is derived data and is maintained by the data warehouse system. This implementation 
strategy provides inore technical support than GQM implementations for general software systems. Such 
system lack the built-in repository. The expressive query language offered by the ConceptBase repository 
system makes a large portion of quality management tasks a matter of query formulation. In the sequel, we 
elaborate how a version of GQM can be modeled by Telos meta classes in ConceptBase and then be used 
for quality goal formulation and quality analysis. 

Telos provides a logical representation for class membership (x in class), specialization between 
classes (c isA d), and attributes (x label y). This logical representation can be mapped to a graphical layout 
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as shown for the quality model below, as well as to a frame syntax which we sometimes use for the 
formulation of queries. Since all items (objects, classes, meta classes, and attributes) are uniformly treated 

in the logical representation, the Telos language is used - extending the approach shown in Figure 5 - for 

formulating 

1. a meta model by a collection of meta classes (here for defining the architecture and quality 
models), 

2. a collection of classes (here the use of the architecture and quality meta models to express quality 
goals, queries, and measurement types on DW components), and 

3. instances of the classes (here for representing results of measurements as class instances). 

Data warehouse systems are unique in the sense that they rely on a run-time meta database (or 
repository) that stores information about the data and processes in the system. This opens the opportunity 
to implement the GQM approach such that it directly refers to the concepts in the meta database of the 

data warehouse. 
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Fig. 13: A Meta Model for Data Warehouse Quality 

Figure 13 shows the Telos meta classes for managing data warehouse quality. Quality goals, e.g. 
‘improve the timeliness of data set sales-per-month’, are assigned to stakeholders. The purpose attribute 
for quality goals is used to specify the intended direction of quality improvement (e.g., to increase the 
quality or to achieve a certain quality level at a certain time). The quality goal is imposed on measurable 
data warehouse objects as classified by the architecture model of Figure 4. Qua&v goals are mapped to a 
collection of quality queries which are used to decide whether a goal is achieved or not. In our version of 
the GQM, these queries are queries to the DW repository. A quality goal is linked to one or more quality 
dimensions according to the preferences of the stakeholder who formulates the goal (see Figures 9- 1 I). 

The next key concept is the quality query. While this is just a text in the original GQM approach, we 
encode a quality query as an executable query on the data warehouse repository using the expressive 
deductive query language of ConceptBase. The answer to a quality query is regarded as evidence for the 
fulfillment of a quality goal. The most simple kind of quality query would just evaluate whether the 
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current quality measurement for a data warehouse object is within the expected interval. A quality 
measurement uses a metric unit, e.g. the average number of null values per tuple of a relation. 

3.5 Implementation Support for the Quality Meta Model 

The abstraction levels of the concepts in the quality model require a closer consideration [28]. In 
standard software metrics, a quality measurement is a function that maps a real world entity to a value of a 
domain, usually a number. In our case, we maintain abstract representations of all “interesting” real world 
entities in the DW repository itself. Thus, quality measurements can be recorded as explicit relationships 
between the abstract representations, i.e. measurable objects, and the quality values. By nature, such a 
quality measurement relates objects of different abstraction levels. For example, a quality value of 0.8 
could be measured for the percentage of null values of the Employee relation of some data source. 
Employee is a relation (the type of instances of the Employee data structure) whereas 0.8 is just a number. 
For this reason, we require a framework like Telos which is able to relate objects at different abstraction 

levels. 
A second remark has to be made on the use of the quality model by instantiation. Typical instances of 

the MeasurableObject are items like Relation (logical perspective) or entity type (conceptual perspective). 
These items are independent of the DW application domain. They are used to describe a DW architecture 

but they are not components of a concrete DW architecture+. A concrete architecture consists of items like 
data source for Employee, concrete wrapper agents etc. Therefore, when we instantiate the quality model 
we describe types of quality goals, types of queries, and types of measurements. For example, we can 
describe a completeness goal for relational data sources (instances of the Relation concept in Figure 4) 
which is measured by counting the percentage of null values in the relation. Such types (or patterns) can 
be reused for any concrete DW architecture. For example, the measurement for a relational source for 
Employee would be instantiated from the measurement type by instantiating the expected and achieved 
quality values. The quality factors listed in the Tables 1 to 4 are such measurement types and they need to 
be instantiated by concrete measurements. This two-step instantiation is essential in our approach since it 
allows to pre-load the repository with quality goal, query and measurement types independent of the 
application domain. In other words, the repository has knowledge about quality management methods. 

Quality goals - whose dimensions are organized in hierarchies such as shown in Figures 9 to 11 - are 

made operational as types of queries defined over quality measurements. These queries will support the 
evaluation of a specific quality goal when parameterized with a given (part of a) DW meta database. Such 
a query usually compares the analysis goal to a certain expected interval in order to assess the level of 
quality achieved. 

As a consequence, the quality measurement must contain information about both expected and actual 
values. Both could be entered into the meta database manually, or computed inductively by a given metric 
through a specific reasoning mechanism. For example, for a given physical design and some basic 
measurements of component and network speeds, the queuing model in [39] computes the quality 
measurement response time and throughput, and it could indicate if network or database access is the 
bottleneck in the given setting. This could then be combined with conceptual or logical quality 
measurements at the level of optimizing the underlying quality goal. 

A number of quality queries have been developed, focusing on some that turned out to be relevant 
when validating the architecture against three case studies: creating a model of Software AG’s SourcePoint 
DW loading environment, modeling the data quality problems hindering the application of data mining 
techniques in Swiss Life, and conceptually re-constructing some design decisions underlying the 
administrative data warehouses of the City of Cologne, Germany. Details about these case studies can be 
found in [ll, 411. 

Generally speaking, quality queries access information recorded by quality measurements. A quality 
measurement stores the following information about data warehouse components: 

t Formally, this is expressed by means of class instantiation in Telos. The concept Relation is represented by a tuple (Relation 

in MeasurableObject). The concept Employee is introduced in Telos by a tuple (Employee in Relation). Thus, MeasurableObject is 
a metn class of Employee. 
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1. an interval of expected values 

2. the achieved quality measurement 
3. the metric used to compute a measurement 
4. causal dependencies to other quality measurements 

The dependencies between quality measurements can be used to trace quality problems, i.e. 
measurements that are outside the expected interval, to their causes. The following two ConceptBase 
queries exemplify how quality measurements classify data warehouse components and how the 
backtracing of quality problems can be done by queries to the meta database: 

QualityQuery BadQuality isA QualityMeasurement 
with constraint 

c: $ not (this.expected contains this.current) $ 
end 

QualityQuery CauseOfBadQuality isA DW_Object 
with parameter 
badobject : DW_Object 

constraint 
c: $ exists ql,q2/QualityMeasurement 

(badobject classifiedBy ql) and 
(ql in BadQuality) and 
(ql dependson q2) and 

(q2 in BadQuality) and 
((this classifiedBy q2) or 
(exists o/DW_Object (o classifiedBy q2) and 
(this in CauseOfBadQuality[o/badObjectl))) $ 

end 

3.6. Understanding, Controlling and Improving Quality with the Repository 

Summarizing the discussion above, Figure 14 gives an impression how the traditional architecture of 
Figure 1 is extended by our repository centred meta data management approach. The quality model forms 
the basis of the implementation in ConceptBase. Quality data (i.e., values of measurements) are entered 
into the ConceptBase system by external measurement agents which are specialized analysis and 
optimization tools. In the DWQ project, four such tools are developed. Besides the subsumption reasoning 
tools already mentioned in Section 2.6, they include a data freshness toolkit covering the physical 
modeling of source integration, and tools for reasoning about multi-dimensional aggregates and query 
optimization on the client side. ConceptBase can trigger these agents based on the timestamp associated to 
them in the repository (see Figure 14). 

The result of the analysis of the quality data can be displayed graphically, as shown in Figure 15. 
Quality measurements are the long ovals in the middle. The black oval indicates that the timeliness of the 
staff department data store (an item of the physical perspective) is not in its expected range (12 instead of 
0 to 10). The white color of the other measurements indicate measurements that are in expected range. 
The color code of the graphical view is computed by the repository based on the BadQuality query shown 
above. 

The graphical display is intended for controlling the quality of the data warehouse. The ‘black’ nodes 
indicate locations where some ad hoc control is required, or where stakeholders have to be aware of 
unexpected low quality. Each stakeholder has her own quality goals and hence has individualized views 
on the quality. The repository can also be used to maintain the knowledge about causes of quality 
measurements. The ‘dependson’ link in Figure 13 is exactly intended to build such a symptom-to-cause 
model over the quality measures. Such a mathematical model shall be used to understand the effects of 
certain measures to other (dependent) measures. As soon as the mathematical models are coded into the 
repository, the can be used to forecast derived quality measures. If derived and measured values coincide 
for the same parameter, then the model is validated. This issue is still under research in the data 
warehouse area, however. 
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Fig. 14: Mapping the Extending Architecture and Quality Model to the Traditional DW Architecture 
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Fig. 15: ConceptBase Screenshot of the Graphical View on the Quality Data 

The last and most advanced aspect of quality management is the improvement. Our current model does 
not contain constructive knowledge about how to improve the quality of a data warehouse. The first step is 
to incorporate the mathematical model mentioned above. Then, a data warehouse designer can make 
incremental changes to the data warehouse architecture, measure the local effect on quality, and then 
measure the effect on derived quality measures. 
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4. RELATED WORK 

Our approach extends and merges results from data warehouse research and from data/software quality 
research. We mention here only some of the most relevant approaches; a comprehensive survey of 
research and practice in data warehousing appears in [23]. 

Starting with the data warehouse literature, the well-known projects have focused almost exclusively 
on what we call the logical and physical perspectives of DW architecture. While the majority of early 
projects have focused on source integration aspects, the recent effort has shifted towards the efficient 
computation and re-computation of multi-dimensional views. The business perspective is considered at 
best indirectly in these projects. The Information Manifold (IM) developed at AT&T is the only one that 
employs a rich domain model for information gathering from disparate sources such as databases, SGML 
documents, or unstructured files [29, 32, 331 in a manner similar to our approach (but with less powerful 

reasoning mechanisms for analysis). 
TSIMMIS (The Stanford-IBMManager of Multiple Information Sources) is a project with the goal of 

providing tools for the integrated access to multiple and diverse information sources and repositories 
[ 10, 441. Each information source is equipped with a wrapper that encapsulates the source, converting the 
underlying data objects to a common data model - called Object Exchange A4odef (OEM). On top of 
wrappers, mediators [47] can be conceptually seen as views of data found in one or more sources which 
are suitably integrated and processed. 

Similarly, but with slightly different implementation strategies, the Squirrel Project [ 18,501 provides a 
framework for data integration based on the notion of integration mediator. Integration mediators are 
active modules that support incrementally maintained integrated views over multiple databases. Moreover, 
data quality is considered by defining formal properties of consistency and freshness for integrated views. 

The WHIPS (WareHouse Information Prototype at Stanford) system [ 16, 461 has the goal of 
developing algorithms for the collection, integration and maintenance of information from heterogeneous 
and autonomous sources. The WHIPS architecture consists of a set of independent modules implemented 
as CORBA objects. The central component of the system is the integrator, to which all other modules 

report. 
On the client side of data warehousing, numerous tools for multi-dimensional data modeling and 

querying exist. In terms of our architecture model, most of them have addressed a logical perspectives, 
e.g. relational algebras [45], SQL extensions by data cubes [ 151 or visualization techniques generalizing 
the spreadsheet approach [ 141. However, there is also some work on logical foundations of a conceptual 
level, as a basis for DW design [31] as well as DW operation [6]. In the DWQ project, a unified approach 
capturing the essence of these extensions is under construction, as an extension to the repository meta 
model similar to the one described in Section 2.6. 

Interestingly, metadata support for multi-dimensional extensions as well as for the representation of 
what we call acquisition plans is offered by the new version of the Microsoft Repository [3]. However, as 
the MS Repository is based on binary-standard object-oriented program interfaces on top of relational 
storage technologies, it does not offer deductive querying mechanisms or subsumption analysis techniques 
that support quality management in our approach. Still, this recent commercial effort accentuates the 
importance allocated by vendors to the question of repository support for data warehousing. 

Turning to data quality research, Wang et al. [49] present a framework of data quality analysis, based 
on the IS0 9000 standard. This framework reviews a significant part of the literature on data quality, yet 
only the research and development aspects of data quality seem to be relevant to the cause of data 
warehouse quality design. In [48], an attribute-based model is presented that can be used to incorporate 
quality aspects of data products. As in our approach, the basis is the assumption that the quality design of 
an information system should be incorporated in the overall design of the system. The model proposes the 
extension of the relational model as well as the annotation of the results of a query with the appropriate 
quality measurements. Further work on data quality can be found, among others, in [5, 2 1, 30, 341. 

Variants of the Goal-Question-Metric (GQM) approach are widely used in software quality 
management [37, 121. A structured overview of the issues and strategies for information systems quality, 
embedded in a repository framework, can be found in [24]. Several hierarchies of quality dimensions have 
been proposed. For example, the GE Model [37] suggests I1 criteria of software quality, while B. 
Boehm’s [4] suggests 19 quality factors. IS0 9126 [20] suggests six basic quality factors which are further 
analyzed to an overall of 21 quality factors. In [17] a comparative presentation of these three models is 
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done and the SATC software quality model is presented, along with the metrics for the software quality 
dimensions. 

5. DISCUSSION AND CONCLUSIONS 

The goal of our work is to enrich meta data management in data warehouses such that it can serve as a 
meaningful basis for systematic quality analysis and quality-driven design. To reach this goal, we had to 

overcome two limitations of current data warehouse research. 
Firstly, the basic architecture in which data warehouses are typically described turned out to be too 

weak to allow a meaningful quality assessment. As quality is usually detected only by its absence, quality- 
oriented meta data management requires that we address the full sequence of steps from the capture of 
enterprise reality in operational departments to the interpretation of DW information by the client analyst. 
This in turn implied the introduction of an explicit enterprise perspective as a central feature in the 
architecture. To forestall possible criticism that full enterprise modeling has proven a risky and expensive 
effort, we recall from Section 2.6 that our approach to enterprise model formation is fully incremental 
such that it is perfectly feasible to construct the enterprise model step by step, e.g. as a side effect of 
source integration or of other business process analysis efforts. 

The second major problem is the enormous richness in quality factors, each associated with its own 
wealth of measurement and design techniques. Our quest for an open quality management environment 
that can accommodate existing or new such techniques led us to an adaptation and repository integration 
of the GQM approach where parameterized queries and materialized quality views serve as the missing 
link between specialized techniques and the general quality framework. 

The power of the repository modeling language determines the boundary between precise but narrow 
metrics and comprehensive but shallow global repository. The deductive object base formalism of the 
Telos language provides a fairly sophisticated level of global quality analysis in our prototype 
implementation but is still fully adaptable and general. Once the quality framework has sufficiently 
stabilized, a procedurally object-oriented approach could do even more, by encoding some metrics 
directly as methods, of course at the expense of flexibility. Conversely, a simple relational meta database 
could take up some of the present models with less semantics than offered in the ConceptBase system, but 
with the same flexibility. 

As shown throughout the paper, the approach has been fully implemented and some validation has 
taken place to fine-tune the models. In part, this validation was by testing earlier versions of the model in 
real-world DW projects, such as [42], or by’ reconstructing features of existing systems, such as [41]; 
another important strain of validation efforts is through the definition and validation of specific 
methodologies within our framework, such as the source integration methodology discussed in 
Section 2.6 [8]. 

Obviously, much remains to be done. One direction of current work therefore continues the validation 
against several major case studies, in order to set priorities among the quality criteria to be explicated in 
specific metrics and analysis techniques. A second overlapping strain concerns the development of these 
techniques themselves, and their linkage into the overall framework through suitable quality 
measurements and extensions to global design and optimization techniques. Especially when progressing 
from the definition of metrics and prediction techniques to actual design methods, it is expected that these 
will not be representable as closed algorithms but must take the form of interactive work processes 
defined over the DW architecture. 

As an example, feedback from at least two case studies suggests that, in practice, the widely studied 
strategy of incremental view maintenance in the logical sense is far less often problematic than the time 
management at the physical and conceptual level, associated with the question when to refresh DW views 
such that data are sufficiently fresh for analysis, but neither analysts nor OLTP applications are unduly 
disturbed in their work due to locks on their data. Our research therefore now focuses on extending the 
conceptual level by suitable (simple) temporal representation and reasoning mechanisms for representing 
freshness requirements, complemented by an array of’design and implementation methods to accomplish 
these requirements and the definition of processes at the global level to use these methods in a goal- 
oriented manner to fulfill the requirements. 
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As another example, one of our industrial cooperation partners - a small data warehouse application 

vendor - has recognized that data quality for data analysis is not enough, because data analysis is only 

meaningful if it also results in operational action. Jointly with this company, we are therefore devising a 
process and repository implementation which allows to propagate the application of the data quality 
techniques in the data warehouse “backwards” into the information sources [25]. 

While such extensions will certainly refine the approach reported here, the experiences gained so far 
indicate that it is a promising way towards more systematic and computer-supported quality management 
in data warehouse design and operation. 
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