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Abstract 
On-Line Analytical Processing (OL4P) is a trend in 

database technology, which was recently introduced and 

has attracted the interest of a lot of research work. OL4P 

is based on the multidimensional view of data, supported 
either by mubidimensiona~ databases (h4OL4P) or 

relational engines (ROLAPJ. 
In this paper we propose a model for 

multidimensional databases. Dimensions, dimension 
hierarchies and cubes are formally introduced. We also 

introduce cube operations (changing of levels in the 

dimension hierarchy, finction application, navigation 
etc.). The approach is based on the notion of the base 
cube, which is used for the calculation of the results of 
cube operations. We focus our approach on the support of 
series of operations on cubes (i.e. the preservation of the 
results of previous operations and the applicability of 
aggregate functions in a series of operations). 

Furthermore, we provide a mapping of the 
multidimensional model to the relational model and to 
multidimensional orrays. 

1. Introduction 

In recent database trends, data warehouses come to 
fill a gap in the field of querying large, distributed and 
frequently updated systems. Most researchers and 
developers share the same general vision of what a data 
warehouse is [19], 131. Data are extracted from several 
data sources, cleansed, customized and inserted into the 
data warehouse. The logical structure and semantics of the 
data, or else Enterprise Model, is stored in an information 

Directory. Next, the data warehouse data can be filtered, 
aggregated and stored m smaller specialized data stores, 
usually called dam marts. Users query the data marts 
and/or the data warehouse, mostly through On Line 
Anatyticat Processing (OLAP) applications. The main 
characteristics of such applications are (a) 
multidimensional view of data, and (b) data analysis, 
through interactive and/or navigational querying of data 
161. 

The multidimensional view of data considers that 
information is stored in a multi-dimensional array 
(sometimes called a Hypercube, or Cube). A Cube is a 
group of data cells arranged by the dimensions of the data 
[ 131. A dimension is defined in [ 131 as “a structural 
attribute of a cube that is a list of members, all of which 
are of a similar type in the user’s perception of the data”. 
Each dimension has an associated hierarchy of levels of 

aggregated data i.e. it can be viewed from different levels 
of detail (for example, Time can be detailed as Year, 
Month, Week, or Day). Measures (which are also known 
as variables, metrics, or facts) represent the real measured 
values (61. 

To motivate the work describing this paper, let us use 
a running example of a bookstore company. When 
considering the sales of this company, three are the major 
dimensions: Time, Geography and Item, while we 
consider Sales as the measure of the multidimensional 
cube. The dimensions, along with their dimension levels 
are depicted in Figure I, where the upper levels of each 
hierarchy point to the lower levels: 
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Figure 1. Dimensions and dimension levels 
Consider, now, the way dimension level hierarchies 

are instantiated in the real world (we consider the 
mstantiation for dimension Time, to be obvious): 

Figure 2. Item dimension 
Region 1 Country 1 City 

Europe 1 Hellas 1 Athens 
I I ah”&. 
I Fnutce I Paris 

Asia I tsmel 1 Tel Aviv 
1 Japan 1 Tokyo 

Figure 3. Geography dimension 
Navigation is a term used to describe the processes 

employed by users to explore a cube interactively, by 
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manipulating the multidimensionally viewed data 161, 
[ 131. Possible operations which can be applied are: 
Aggregation (or Consolidation, or Roil-up) which 
corresponds to summarization of data for the higher level 
of a hierarchy, Roll Down (or Drill down, or Drill 
through) which allows for navigation among levels of data 
ranging from higher level summary (up) to lower level 
summary or detailed data (down), Selection (or Screening, 
or Filtering or Dicing) whereby a criterion is evaluated 
against the data or members of a dimension in order to 
restrict the set of retrieved data, Slicing which allows for 
the selection of all data satisfying a condition along a 
particular dimension and Pivoting (or Rotation) 
throughout which one can change of the dimensional 
orientation of the cube, e.g. swapping the rows and 
columns, or moving one of the row dimensions into the 
column dimension, etc. 161, [ 131. 

Two are the basic architectures for storing data in an 
OLAP database: ROLAP and MOLAP. ROUP 
(Relational OUP) [3] is based on a relational database 
server, extended with capabilities such as extended 
aggregation and partitioning of data [8]. The schema of 
the database can be a star, snowflake, or fact constellation 
schema [3]. On the other hand, MOUP 
fMultidimensiona/ OUP) is based on “pure” 
Multidimensional Databases (MDDs), which logically 
store data in multidimensional arrays, which are heavily 
compressed and indexed, in the physical level, for space 
and performance reasons. 

The main motivation of this paper is to provide a 
formal model for multidimensional databases. Since 
multidimensional databases are defined in terms of 
dimensions (which are organized in dimension 
hierarchies), the model represents them formally. 
Furthermore, classical OLAP operations, such as roll-up, 
slice, dice etc. are also represented by the model. We also 
provide a mapping to relational databases and 
multidimensional arrays. We make a serious design 
choice: since querying is done in an interactive way, we 
give emphasis to the tracking of series of operations, 
performed in a navigational way. 

The major contribution of the paper is the modeling 
of cubes, dimensions and cube operations, in the context 
of series of operations. This formalization is currently 
used, in this paper, for a direct modeling of the usual 
OLAP operations. Instead of mapping OLAP operations 
to complex and complicated “relational”, or “calculus- 
like” queries, we directly mode1 them, in a straightforward 
fashion. To our knowledge, the modeling of the drill- 
down operation is introduced for the first time in our 
model. Since engines are based on relational technology, 
or multidimensional arrays, we also provide a direct 
mapping of cubes and their operations for each of these 
formalisms, so that both data warehouse designers and the 
engines themselves can take advantage of it. 

The rest of this paper is organized as follows: in 
section 2 we present related work in the fields of models 
and algebras for data warehouse and OLAP applications. 
In section 3 we provide a model for multidimensional 

databases and cubes. In section 4 we provide a relational 
mapping of the aforementioned model and a mapping to 
multidimensional arrays. In section 5, we present the 
conclusions of our work and possible future extensions. 

2. Related work 

Research has followed the evolution of industrial 
products in the field of OLAP. The dam-cube operator 
was introduced in [S]. There have also been efforts to 
model multidimensional databases. In [I], a model for 
multidimensional databases is introduced. The mode1 is 
characterized from its symmetric treatment of dimensions 
and measures. A set of minimal (but rather complicated) 
operators is also introduced dealing with the construction 
and destruction of cubes, join and restriction of cubes and 
merging of cubes through direct dimensions. Furthermore, 
an SQL mapping is presented. 

In [I21 a multidimensional data model is introduced 
based on relational elements. Dimensions are modeled as 
“dimension relations”, practically annotating attributes 
with dimension names. The cubes are modeled as 
functions from the Cartesian product of the dimensions to 
the measure and arc mapped to “grouping relations” 
through an applicability definition. A grouping algebra is 
presented, extending existing relational operators and 
introducing new ones, such as ordering and grouping to 
prepare cubes for aggregations. Furthermore, a 
multidimensional algebra is presented, dealing with the 
construction and modification of cubes as well as with 
aggregations and joins. 

In 191 n-dimensional tables are defined and a 
relational mapping is provided through the notion of 
completion. An algebra (and an equivalent calculus) is 
defined with classical relational operators as well as 
restructuring, classification and summarization operators, 
The expressive power of the algebra is demonstrated 
through the expression of operators like the data cube 
operator and monotone roll-up. 

In [2] multidimensional databases are considered to 
be composed from sets of tables forming denormalized 
star schemata. Attribute hierarchies are modeled through 
the introduction of functional dependencies in the 
attributes of the dimension tables. Nevertheless, this work 
is focused on the selection of an optimal set of 
materialized views, for the efficient querying and update 
of a data warehouse, and not in the modeling of cubes or 
cube operations. 

In [4], a multidimensional database is modeled 
through the notions of dimensions and f-tables. 
Dimensions are constructed from hierarchies of dimension 
levels, whereas f-tables are repositories for the factual 
data. Data are characterized from a set of roll-up 
functions, mapping the instances of a dimension level to 
instances of another dimension level. A query language is 
the focus of this work: a calculus for f-tables along with 
scalar and aggregate functions is presented, basically 
oriented to the formulation of aggregate queries. In [5] the 
focus is on the modeling of multidimensional databases: 
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the basic model remains practically the same, whereas ER 
modeling techniques are given for the conceptual 
modeling of the multidimensional database. 

In statistical databases (171, quite a lot of similar 
work has been done in the past. In [17] a comparison of 
work done in statistical and multidimensional databases is 
presented. The comparison is made with respect to 
application areas, conceptual modeling, data structure 
representation, operations, physical organization aspects 

and privacy issues. The basic conclusion of this 
comparison is that the two areas have a lot of overlap, 

with statistical databases emphasizing on conceptual 
modeling and OLAP emphasizing on physical 

organization and efficient access. 
In 1141 a data model for statistical databases is 

introduced. The model is based on “summary tables” and 
operators defined on them such as 

construction/destruction, concatenation/extraction, 
attribute splitting/merging and aggregation operators. The 
underlying algebra is a subset of the algebra described in 

[ 151. Furthermore, ,physical organization and 
implementation issues are discussed. [ 141 is very close to 

practical OLAP operations, although discussed in the 
context of summary tables. 

In [16] a functional model (“Mefisto”) is presented. 

Mefisto is based on the definition of a data structure, 
called “statistical entity” and on operations defined on it 
like summarzation, classification, restrictlon and 
enlargement. 

In all of the aforementioned approaches the 
relationship of the proposed operators to real OLAP 
operations, such as roll-up, drill-down, slice and dice 
seems to be weak: it is either discussed informally for a 
subset of operators [I], indirectly dealt through the 
introduction of aggregation [ 121, 191, or in a different 
context [14], [ 161. [2] and [S] are basically dealing with 
the modeling of cubes. The best approach seems to be 
given in [5]; yet a direct mapping lo OLAP operations is 
still not provided. Furthermore, apart for [16], series of 
operations are not directly dealt with. Finally, to our 
knowledge, no explicit modeling of the drill-down 
operation exists. 

3. A model of multidimensional space and 
cubes 

3.1. Multidimensional space 

Let Sz be the space of all dimensions. For each 
dimension D, there exist a set of /eve/s, denoted as 
levels(D3. A dimension is a lattice (H, 5) of levels. Each 
path in the lattice of a dimension hierarchy, beginning 
from its least upper bound and ending in its greatest lower 
bound is called a dimension pafh. Each dimension path is 
a linear, totally ordered list of levels, We extend the 
notion of the function levels, for dimension paths: 
levels(D,,,) is a list, where the higher a level semantlcally 
is, the higher its rank is in the dimension path. The total 
order allows us to use comparison operalors for the 

dimension levels. For instance, if we consider the 
dimension path [year, month, day], then day 5 month 2 
year, whereas for the dimension path [year, week, day], 
day 2 week 5 year holds. A dimension D consists of a set 

of dimension paths, parhs(D). In the case of linear 
dimensions, where there is a single dimension path in the 
dimension, we will use the terms dimension and 

dimension parh interchangeably. 
Let P be the space of all dimension levels. We can 

find the dimension where a dimension level belongs to, 

through the operator h: h(DL,) = D if DL, E levels(D). We 
impose the restriction that a dimension level belongs to 
exactly one dimension. Furthermore, we can find the rank 

of a dimension level in a dimension path, through the 

function level(&). level(DL,) = k, when DLi = 
levels(D,,)[k] (in other words, DLi is the k-th level of the 
dimension path D,i, starting the enumeration from the 

lowest levels). 
For each dimension level there is a set of values 

belonging to it (e.g. dimension level “city” has “Athens”, 
“Paris”, “Rome”... as values). We define dom(DLJ as the 

set of all the values of a dimension level DL;. Let V be the 
space of all values. A dimension level IS atomic if its 
domain is a subset of V. If the domain of a dimension 
level is a subset of P(V) (the power set of V) then the 
dimension level is m&i-valued. We use bag semantics for 

multi-valued dimension levels. As in (151, we use the 

prefix “*” for multi-valued attributes. 
A value x, can have ancesfors and descendunrs. Let x 

belong to a specific dimension level Lo; then, there are 
specific instances related to x, at higher (lower) dimension 
levels, corresponding to more general (detailed) terms, 
that is 
ancestotfx, DL) = y, y E dom(DL), DL,, 5 DL and 
descendanrs(x, DL) = (xi, XI, . . . . ~1, XI. x2, . . . . q E 

dom(DL), DL 5 DLo. 
For example, if we consider the dimension path 

[year, month, day] then anceslor(FEB 1997, year) = 1997 
and descendants(FEB 1997, day) = (I FEB 1997, 2 FEB 
1997, _._, 28 FEB 1997). We will assume the following 
properties for the ancestor relationship: 

I ancestotfx, DL) = CC’, if x E dom(DLj 
2. if x = uncestorfy, DL) and )’ = ancesfor(x, DL), then x 

1 
3. if x = uncestor(y, DL,) and y = oncesrorfz, DL,), then x 

= ancestor(z, DL,) 
The third property guarantees that when more than 

possible paths exist from z to x, in the dimension level 
lattice, then all these paths are consistent. 

3.2. Cubes 

In this section we shall introduce the notion of cubes, 
basic cubes and multidimensional databases. The cubes 
are the basic entities of the model, whereas basic cubes 
are cubes with the most detailed data. A multidimensionul 
database is a set of dimensions, dimension levels and a 
basic cube. 
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We define a basic-cube Cb as a 3-tuple 6),, Lb, Rb>, 
where 

Db = <Dr. D!, D,, M> is a list of dimensions (D,, M 
E Q). M is a dimension that represents the measure of 
the cube. 

Lb = <DLt,l, DLr,?, . DLb,, *ML> is a list of 
drmension levels (DLb,, *ML E Y). ML is the 
dimension level of the measure of the cube. We 

demand that all the dimension levels are at the lowest 
level of their respective dimensions (V DLb E 4, 
level(l) = I). We also demand that ML is multi-valued. 
Rb is a set of cell dam -i.e. a set of tuples of the form 

x = Ix,, x2, . ..1 x,, *ml, where ‘v’ i in [I, ..nb X, E 
dom(DLhi) and *m E dom(*ML). 

We define a Cube C as a 4-tuple <D, L, Cb, R>, 

D = <D,, Dz, . . . D., M> is a list of dimensions (D,, M 
E Q). M is a dimension that represents the measure of 
the cube. We will denote M as measure-dimension(C). 
L = <DLr, DLz, DL,, *ML> is a list of dimension 
levels (DLi, *ML E Y). *ML is the dimension level of 

the measure of the cube. We will denote *ML as 
measure-dimension-level(C). We demand that V DL, 

E L, DL, E leve/s(D,J. As it will be shown from the 
cube operations, we also demand that *ML is multi- 
valued. 

Cb is a basic-cube. We will call Cb. the base-cube of 
C (C, = base-cube(CJ). The data of Cb can be used for 
the calculation of the contents of C. Furthermore, we 
impose the restriction, that ‘V d E CD 3 d’ E Ch.D : d 

= d’. In other words, all the dimensions of a cube must 
exist in its base-cube. 
R is a set of cell data -i.e. a set of tuples of the form as 
a tuple x = [x,, xz, . . . . x,, *ml* where Vi in [I. AI], x, 
E dom(DL,) and *m E dom(*ML). 

We can consider basic cubes as cubes. WC extend the 
definition of a basic cube Cb to be a 4-tuple <Dh, 4, Cb, 
Rb> -i.e. we define a basic cube to be the base-cube of 
itself. 

We define a Muftidimensionul Database as a couple 
<o, c>. D is a set of dimensions and C is a basic cube, 
the dimensions of which belong to D. 

Cell data are the data of a cube. Each cell is defined 

by a set of values and a measure, which is also a value. 
Thus, a cell x is a tuple x = [xl, x2, .,,, x,,, *ml. We 

mtroduce the following shortcut notations: 
dimensions(x) = <I,, x2, ,.,, x.>, 
measure(x) = *m, 
dimensions(x)(i) = x,, where C = CD, L, C,,, R> A (x E 

RI, 
dimensions(x)(d) = x,, where C = <D, L, C,,, R> A d E D 

Ed = D(i) A (x E R). 
In our running example, let us consider that a 

basic-cube for the bookstore company is instantiated as 
shown in Figure 4. 

Intuitively, it might strike the reader as strange the 
fact that we define a cube in terms of another cube and 
that we practically provide two data sets (R and Ch.Rh) for 
the instantiation of a single cube. Nevertheless, there are 

two major reasons for which we choose to follow this 
specific approach: 

Figure 4. Basic-Cube = <DO, LO, Basic-Cube, R@, DO 
= <Time, Item, Geography, Sales>, LO = <Day, Product, 

Region, Sales>, RO is shown in the above table 
First, the definition of the data of a cube in terms of 

its base-cube enables the direct and correct evaluation of 

its contents. A specific example will help us clarify this 
statement. Suppose, that we summarize the sales of Figure 

4 at the month level. Suppose then, that we would like to 
see the average sales at the year level. This result cannot 
be directly calculated from the result of the previous cube. 

The existing algebras that we know of [I], [12], [LR97] 
would not take this problem into account, or would 
assume that the operation will be disallowed by the system 

] 161. Since this kind of sequences of operattons is typical 
for OLAP applications, the correctness of the result of the 
operations of the cube can be guaranteed, by referring IO 
the relevant data of the most basic granularity. 

Secondly, all the aforementioned algebras cannot 
deal directly with drill-down operations (i.e. with 
navigation to lower levels of dimension hierarchies). This 
IS obvious, since a sum cannot be analyzed to Its 
components unless a join operatton with a cube of the 
required granularity takes place. As it can easily be 
anticipated, the dctinition of a cube in terms of a basic 
cube enables the drilling-down without possibly costly 

join operattons with other cubes. As it will be shown in 
the sequel, in the case of the relational mapping of our 
model (which can be used for ROLAP), joins actually take 
place: yet they are made between a fact table and the 

tables representing the dimensions of the cube. 

Techniques like star-join [7] can be employed to optimize 

this kind of operations. 

3.3. Cube operations 

The definition of a cube is accompanied with the 

defimtion of cube operatrons. We categorrze cube 
operations into simple ones, such as level-climbing, 
packing, function-application, projection, dicing and 
complex ones, such as navigation and slicing, which are 
defined on top of the simple ones. We do not deal with 
pivoting smce we consider tt to be just a reorganization of 
the presentation of the data, rather than a modification of 
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their value or structure. Each one of the operations results 
in a new cube, when applied to an existing cube. Slicing 
and navigation apply aggregate functions to the data of 
the cube. The set of allowed aggregate functions is (sum, 
avg, count, min, rank(n), no-operation). All of them are 
the well known relational aggregate functions, except for 
no-operation which means that no function is applied on 
the data of the cube and rank(n) which returns the first n- 
components of an aggregated set of values which can be 
ordered. In the sequel we will suppose that the original 

cube C = CD, L, Cb, R>, D = CD,, D*, I.., D,, M>, L = 
CDL,, DL?, . . . . DL,, *ML>, Cb = <Db, Lb, Cb. Rb> and that 
the new cube c’, which is the result of the operations is C 
= CD’, L’, c;, R’>. 

Level-Climbing. Let 4 be a set of dimensions 

belonging lo C and a the set of the corresponding 
dimension levels of C. Without loss of generality we 

assume that d consists of the last k dimensions of D. Let 
also d& be the original dimension levels of C, belonging 
to d : aold = (DLn.Ltl, .,., DL,,). Then, C’ = 
Level-Climbing(C, 4 d,) = LC(C, d dJJ is defined as 

follows: 

D’=D,L’=L-~~oldudl.Cb’=Cband 
R’ =(x I 3 y E R: dimensions(x)(D,) = dimensions(y)(D,) 

t’ D, e d h dimensions(x)(D,) = 

ancesror(dimensions(y)(Di), dl,), V D, E d, dlj E 4, 

dl, E levels(D,) n measure(x) = measure(y), if M L 

dl 
We impose the restrictions that d, a are consistent 

with each other and that for all the dimension levels of a, 
the respective dimension levels of d& belong to the same 
dimension path and are of lower or equal level (for 
example, one cannot perform Level-Climbing between 
months and weeks). Intuitively, LevelClimbing is the 
replacement of all values of a set of dimensions with 

values of dimension levels of higher level. In Figure 5, an 
example of the Level-Climbing operation is presented: 

Figure 5. Cl = LC(Baric-Cube, {Geography, Time), 
{Region, Year}), Cl q 41, Li, &I, RT>, Di q <Time, 

Item, Geography, Sales>, Lf = <Year, Product, Region, 
Sales>, Cbl q Basic-Cube, RI is shown in the above 

table 

Packing. We define C’ = Packing(C) = P(C) as 
follows: 

D’=D,L’=L,C<=&,and 
R’ =(x I 3 y E R: dimensions(x)(D,) = dimensions(y)(r),) 

V i E 1, . . . . nAmeosure(x)= (Il3tE R, 
dimensions(y) = dimensions(t) A I = measure(t)) ) 

Intuitively, packing is the consolidation of the cube, 
through the merging of multiple instances having the same 
dimension values into one. Packing has bag semantics. In 
Figure 6, an example of the Packing operation is 
presented: 

Figure 6. C2 q P(Cl), C2 q <D2, L2, Cb2, RP, D2 q 

<Time, Item, Geography, Sales>, L2 q <Year, Product, 
Region, Sales>, Ct.2 = Basic-Cube, R2 is shown in the 

above table 

Function-Application. Let f be a function 
belonging to (sum, avg. count, min, rank(n), no- 

operafion). Then, C’ = Functiotl-Applicarion(C, f) = 
F(C,f) 1s defined as follows: 
D’=D.L’=L,C{=&and 
R’ =(x I 3 y E R: dimensions(x) = dimensions(y) ,Y 

measure(x) = f(measure(y)) ) 

Intuitively, Funcrion-applicarior1 is the application 
of a specific function to the measure of a cube. 

Projection. Let d be a projected dimension. C’ = 
ProjectionfC, d) = n(C, d) is then defined, as follows: 
D’ = D d, L’ = L - DL, DL E levels(d), DL E L, 
Cb( = CD;, 4: Cb(, R;>, where, 

D;=D*-d, 

L; = L, - leve!s(d)(l), and 

Rb’ = (x I V y E Rb, dimensions(x)(D;) = 
dimensions(y)(D,), V D, fd, i E I, . . . . n A 
measure(x) = measure(y)) 

R’ =(x I 3 y E R: dimensions(x)(D,) = dimensions(y)(D,), 

V Di #d, i E 1, ., n A measure(x) = measure(y) ) 
Intuitively, projection is the deletion of a dimension 

both from the cube and its base-cube. 
Navigation. Let d be the dimension over which we 

navigate, dl the target level of the navigation and f the 
applied aggregate function. Suppose that the dimension d 
is the i-h element of D. Then, we define C’ = 

Navigation(C, d, dl, f) as follows: 

C’ = Navigation(C, d, dl, f) = F(P(LC(Ch {D,, D2, . . . . d, 

. . . . D,), fDL,, 04, ...a dl, . . . . DL,I )IJl 
The purpose of the navigation operator is to take a 

cube from a specific state, change the level of a specific 
dimension, pack the result and produce a new cube with a 

new state, through the use of an aggregate function. The 
dimensions of the new cube are the dimensions of the old 
one. The dlmenston levels are also the same, except for 
the one of the chmension where we change level. Notice 
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that the restrictions imposed by Level-Climbing, 
regarding the position of the respective dimension levels 
in the dimension lattice, still hold. Furthermore, the 

base-cube remains the same. The Navigatran is 
performed at the level of the base-cube, for reasons that 
will be best illustrated in the following example: 

C3 = Novi,qare(Basic-Cube, Geo,yaphy, Region, 
no-operation) 

C4 = Nnvigate(C3, Time, Year, sum) 
C5= Navigate(C4, Time, Month, avg) 

In 1 G 

997-03-28 1 “Symposium” 1 Europe 1 5 1 

1996-10-12 1 “Report 10 El Greco” 1 Europe 1 7 

1996-05-06 I “PieceofMind” I Asia 1 IO 

1996-09-07 I “Pweof Mind” I Europe I 7 
I 9%.03-28 1 “Kuamazofbrothrrs” 1 Asia I 12 I 

) 1996~01-01 I “Karamazofbrothed‘ I Aria 1 40 ] 

Fiours 7. C3 = NavioationlBasic Cube. Geoaraohv. 
Region, no-opera&), Ci q CD< 13, db3, R3>, bi= 
<Time, Item, Geography, Sales,, 13 q <Day, Product, 

Region, Sales>, Cb3 = Basic-Cube, R3 is shown in the 
above table 

1996 I “Karamazofbrothers” I Asia I 52 

Figure 8. C4 = NavioationlC3. Time. Year. sum\. C4 q ,, 
204, 14, Cb4, R4>, D4 =;Tme, Item, Geography, 

Sales>, L4 q <Year, Product, Region, Sales>, Cb4 q 

Basic-Cube. R4 is shown in the above table 

Figure 9. C5= Navigation(C4, Time, Month, avg), CS = 
CDS, 15, C&, RS, D5 = <Time, Item, Geography, 

Sales>, LS q <Month, Product, Region, Sales>, Cb5 q 

Basic-Cube, R5 is shown in the above table 
This example shows that the basic contribution of the 

navigation operator is that it can allow any sequence of 
operations along the dimension hierarchies. The 

navigation from the Basic-Cube lo cube C5, is 
characterized by three features: 

it preserved the previous navigations -e.g. the 
naqation 10 the dimension level of Geography 

(Region), 
it allowed the application of the average function over 

a cube whose data was previously produced through 
the application of a sum function. If the definition of 
the navigation was done on the result of the actual 
cube, the correct calculation of the result would not be 

possible, 
it allowed the drilling down at the Time dimension 
(i.e. moving directly from “Year” to “Month” level) 

without having lo join cubes directly. The drill-down 
operation was mapped 10 Level-Climbing upwards in 
the Time dimension. The consinstency of the values 

between different levels in the dimension lattice 

guarantees a correct result. 
Dicing. Let d be the dimension over which we 

perform the dicing, (r a formula consisting of a dimension, 
an operator and a value v. We assume that v belongs to 
the values of the dimension level of d in C and that 0 is 

applicable to d (in the sense presented in [IS]) -i.e. that 
{<, =) are applied to atomic dimension levels and (P, c, 

E ) to multi-valued ones). Let U(V) be of the form d op v. 
Then, C’ = Dicing(C, d, u(v)) is defined as follows: 
D’=D,L=L’, 

Cb’ = <Dir Lb’, C{, Rb’>, where 
&’ = C,.&, L,’ = Cb.Lb. and 

R~‘=(xIx~C~.R~~x[d]opy=true,y~ 
descendants(v, levels(d)(l))) 

Intuitively, dicing is a simple form of selection. Yet, 
it has its impact both on the cube itself and its base-cube. 
We are allowed to check for descendants of Y in the 
base-cube, since each dimension path ends at a dimension 
level of the lowest granularity and the base-cube is in the 
lowest possible granularity for all levels. 

Slicing. Let d be the dimension which we slice and f 
the applied aggregate function. We define Slicing as 
follows: 

C’ = Slicing(C, d, f) = F(P(x(LC(Ch {D), D2, .._, d, ,,., 

D.1, /DL/, DLz, . . . . dl, . ..I &I 1, di)f) 
The purpose of the slicing operator is to take a cube 

from a specific state, cut out a specified dimension and 

aggregate over the rest of the dimensions, using an 

aggregation function. Notice that all the restrictions of 
Level-Climbing implicitly hold, without realy affecting 

the Slicing operation. In Figures IO, 11, an example of the 
Slicing operation is presented. 

In this section we have defined cubes and cube 
operations for a multidimensional model. Since in 

practice, the multidimensional view of data is supported 
from multidimensional (MOLAP) or relational (ROLAP) 
engines, in the following section WC will provide a 

mapping of the structures and the operations of the 
multidimensional model, to the relational model and to 
multidimensional arrays. 
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Figure 10. C6 = Slicing(C4, Time, avg), C6 q <D6, L6, 
Ct.6, I%>, D6 q <Item, Geography, Sales>, L6 = < 

Product, Region, Sales>, R6 is shown in the above 
table 

“Kammazof bmtben” Rhodes 4 
“Karamarof brothers” Athens IO 

“Symposium” Rhodes 5 
“Report to El &co” PXIS 7 

“Piece of Mind” 1 Tokyo I IO 
“Piecr of Mmd” 1 Rhnllec 7 

“Kxamazof brothers” 1 Tel AVIV 1 I? 
“Knmmuof brothers” 1 Tel AVIV 1 40 

Figure 11. C6 = Slicing(C4, Time, avg), Cb6 q c&b, Lbb, 
Cb6, I?@, &6 q <Item, Geography, Sales>, Lb6 = c 

Product, City, Sales>, Rb6 is shown in the above table 

4. A mapping of the multidimensional model 
to an extended relational data model 

In this section we map multidimensional cubes, 
defined in Section 3, IO relational tables. For this purpose 
we will base our approach on the extended relational 
model and algebra proposed in 1151. Atomic vs. XI-ducd 
atdmres’ (with bag semantics) are introduced. Apart 
from the classical relational operations, operations such as 
packing (Px(r)) (merging tuples with the same values for 
several attributes into one tuple) and fun&x-appkation 
(r(*X, jl) (application of a function J to a multi-valued 
attribute *X) are introduced. A more detailed presentation 

for the employed model can be found in [ 181. 
The motivation for the relational mapping is double: 

on the one hand, the engine performing ROLAP must be 
able to map multidimensional 10 relational entities and on 
the other hand, the data warehouse administrator can be 
helped to check out whether a relational database fulfills 
the requirements to model a cube (and vice versa -what 
kind of database one needs to construct in order to be able 
to map a cube to relational tables). 

At the end of the section a mappmg of our 
multidimensional model to multidimensional arrays (used 
as logical structures in engines performing MOLAP) is 
also presented. 

’ Thn requwx~~ent does not consninr the applicability of the algrbra, 
since existing DBMSs already suppon NF’ charactenstics. The ObJecl 
exten~mn~ of the upcommg SQL3 standard will formalize this kind of 

SUPpofl IlO1 

4.1. Mapping of cubes to relations 

To map multidimensional cubes lo relations we need 

as prerequisite, the existence of two mapping functions a 
and 1. The function a maps a dimension level to an 
attribute of a relation, whereas 1 is its inverse and maps an 

attribute to a dimension level. We say that a dimension 
level DL represenrs an attribute A, and vice versa, if 

a(DL) = A, and consequently A(A) = DL. 
A dimension level can be mapped to more than one 

attributes. The reason for this is that in both star and 
snowflake schemata, which are common for data 
warehousing and ROLAP applications, two columns - 

possibly related by foreign key constraints- in two 
different tables, may represent the same entity, due to 

normalization. Furthermore, we make the assumption that 
an attribute and a dimension level which can be mapped to 
one another, have the same structure (simple vs. set- 
valued) and domain. 

Definition 1. A relation r, defined over a relation 

scheme R(A,, AL, ., A,), represents a dimension path D, 
(denoted also as r = Rn(D,,) ) iff 
1. V DLi E /evels(D,) 3 A, E R: a(DLi) = Aj 
2. ‘V Aj E R 3 DLi E levels(D,): I(A,) = DL, 
3. If DL, is the lowest level of D,, V 6 E dom(DL,). VA, 

E R, 3 exactly one 1, t E r: t[A,] = ancesror(&1(A;)), 

4. V t E r, V A; E R, 3 6, 6 E dom(DL,): t[A,] = 
ancesror(S, L(A,)), 

Intuitively, for a table to represent a dimension path, 
there must be a one to one mapping between the table 
columns and the dimension levels of the dimension path 
(items (I), (2) in definition 1). The instantiation of the 
table is such, so that for every value of the lowest 
granularity there is a tuple with all its ancestors (item 3). 
Furthermore, we require that the table contains no more 
tuples than those needed to represent the values (item 4). 
The tables representing dimension paths are denormalized 

structures. commonly employed in star schemara in data 
warehouses; they are usually encountered with the name 
dimensiorr tables. For example, the dimension Geography, 
which comprises of a single dimension path, can be 
represented using the table in Figure 12. 

Figure 12. Geography dimension as a table 
From the definition of the ancestor operator, and its 

transitivity property it follows easily that if we consider 

the values of two attributes of the same tuple, they are 
characterized from an ancestor relatlonship between them. 

Definition 2. A relation r, defined over a relation 
scheme R = (A,, A?, _.., Ak), is the base-cube-rob/e of a 
cube C = <D, L, Cbure, Rs (denoted also as r = R,(C)) iff 
I. V DL E Cb,,,.L, 3 A, E R: DL = I(A,) 
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2. v x = <x,, x2, ., Xk~,, *x,> E Cbarc.Rbare, 3 I E r: x[x,] 
= t[a(DL,)], where x, E dom(DL,) 

3. V t E r. t = <a,, a?. ., ak.,, *g>, 3 x, x E Cbarc.Rbrc, : 
t[A,] = x[,l(AJl, where a, E A,. 

Definition 3. A relation r defined over a relation 
scheme R = (A,, A?, . . . . Ak) is the cube-fable of acube C 

= <D, L, Cbaw, R> (denoted also as r = Rc(C)) iff 
I. VDLE C.L,~A,E R:DL=L(A,) 
2. v x = <x,, x2, .._) Xk.,, *x,> E CR, 3 t E T: x[x;] = 

l[a(DL,)], where x, E dom(DLi) 

3. V t E r, t = <a,, a2. . . . . ak.,, *a,,,>, 3 x, x E CR, : t[Ai] 
= x[l(A,)], where a, E A,. 

Intuitively, we define a table to be a cube-tab/e of a 
cube if the dimension levels of the cube can be mapped to 

attributes of the table. The measure -which is also a 
dimension- is included in this definition (item 1 in 
definition 3). The contents of a table should be such, that 

all cells in the result of the cube have an equivalent tuple 
in the table (item 2 in definition 3). Furthermore, no tuples 
should exist tn the table, where no equivalent cell exists tn 
the result of the cube (item 3 in definition 3). A 
base-cube-table differs from a cube-ruble in the fact that 
its attributes and data can be mapped to the base-cube of 
a specific cube. 

Definition 4. A database cl defined over a database 
scheme S represents a cube C = <D, L, C&, R> iff: 
I. V di t D - measure-dimension(C), V d,, E paths(d,). 3 

r, E d : r, = RD(d,,) 
2. 3 ra E d : ra = R&) 
3. 3 rc E d : rc = R&Z) 

A set of relations is the dimenx’un rubles of a cube, if 
for every cube dimension and for every dimension path of 
these dimensions (except for its measure) thcrc is a 

rclcvant table in this set, representing the dimension path 
(item 1 in definition 4). If the base-cube-table of the cube 
also exists, then all the cube operations can be applied, by 

using the base-cube-tab/e (item 2 in definition 4); 
remember that several operations in the mulridimensional 
model have been defined with respect to the base cube. 
Furthermore, if there is a table in the set, being the 

cube-table of the specific cube, then the data of the cube 
can be directly accessed through the cube-table (item 3 in 
definition 4). in that case we say that the database 
represents the cube. Since we have required that the 

values of the dimension paths of different paths in the 

same dimension, are consistent with each other, then the 

consistency between the values of the dimension tables for 
the same dimension, comes natural. 

The full schema for the bookstore database of our 
running example would be: 

TIME MfYEAR, MONTH, DAY) 
TIME; W (YEAR, WEEK, DAY) 
GEOGRAPHY(REGION, COUNTRY, CITY) 
ITEMICATEGORY, TYPE, PRODUCT) 
DETAILED SALES(DAY, PRODUCT, 
CITY, SALES) 

Supposing that the instantiantions are performed correctly, 

the TIME-M. TIME-W. GEOGRAPHY, ITEM relations 
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are the dimension tables, whereas the DETAILED-SALES 
relation is the cube-table for the Basic-Cube. 

An interesting issue is that although our definition of 
dimension tables is based on the notion of denormalized 
star schemata our mapping is also applicable to fully 
normalized snowflake schemata, since that the dimension 

table of a star schema can be considered as a view defined 
on the respective tables of the snowflake schema. This is 

formally proved in [ 181. The result is dual: one can map 
snowflake schemata to cubes and vice versa. Furthermore, 

cube operations can be mapped to relational operations 
for a snowflake schema. 

For the rest of this paper, we assume that we have a 

cube C = -zD, L, Cbarcr R>, D = <d,, dZ, . . . . d,. M>, L = 

CDL,, DLL, . . . . DL., *ML>. We also assume a database dl 
deIined over the database scheme S = (Rc, Ra, Rol, Ro2, 
. . . . Ro,). an instantiation of S, s = (rc, ra, ro,, ro?. . . . . To,,), 
where rc = R,(C), where rc is defined over Rc = (AC,, k2, 

. . . . AC., AcM), ra = R&Z), defined over Ra = (Aa,, Aal, . . . . 
Aan, ABM) and V d, E D, roI = Rr,(di), defined over Roi = 

(41, Ai2, .,,s Ad, 

4.2. Relational mapping of cube operations 

In this subsection we will provide the relatIonal 
mappmgs for the cube operations which were introduced 
in Section 3. For each operation we will provide a 
relational expression for both the cube-rob/e and the 
base-cube-table of the resulting cube. In other words, we 

examine the impact a cube operation has on the cell data 
of both the base-cube and the cube Itself and present 
tables that represent them. All formulas are fully proved in 

I181. 
In Table I, one can see the relation definitions for the 

base-cube-table for the results of the cube operations, 
where the base-cube-table changes. Level-Climbing, 

Packing, Function-Application and Navigation do not 
change the base-cube of a cube. Consequently, one would 
normally expect that the base-cube-tab/e will not change 
either. 

The relational mapping of the result of Projection 

and Slicing with respect to the base-cube of a cube, is the 
performance of a projection operation on the relevant 
attribute of its base-cube-table. 

The mapping of Dicing is somewhat more complex 
than the mappings of other operations. With respect to the 

base-cube, what must be done is the mapping of the 
parameter value Y to its descendants, which are found at 
the base-cube-ruble. Consequently, we join the 

base-cube with the proper dimension table, representing a 
dimension path which includes the respective dimension 
level of the diced cube, perform the selection at the result 
and then project the attributes of the buse-cube-table. 

As far as the cube-rabies are concerned, we also 

provide a set of formulas, one for each operation. The 
cube-tables represent the actual result of an operation, 
expressed m a relation Instance. For Level-Climbing, first 
we project the dimension tables to the columns 
corresponding to the dimension levels of the new cube 



and the columns of the old cube. The relational mapping 
of the result of Level-Umbing is the join of its 
cube-table .with all the dimension fables involved in the 
changing of levels and the performance of a projectIon, in 
order to keep just the attributes representing the correct 
dimension levels. 

c’= &K? = QIABI, AH, . . . . ABM, &+I, 

Projection(C, d) . . . . As., ABM], defined over Ra’ = (Aa,, 

An?, ...I AELI> &a+,, . . . . AB,ABM), 

where &I = 4DL3, DLk E CbarcLbsrc, 

DLk E levels(d), d is the k-th 
dimension of C. 

C’ = WC’) = ((w%DI=ADI rd[oT(v), 
Dicing(C, d, ADI)[ABI, ABZ, . . . . AB” Aaw] defined 

o(v)) 

C’ = 

Slicing(C, d, fl 

over RB’ = CABI, &2. . . . . AB”. ABM), 

and Au = a(DL& DLk E C.L, DLk E 
levels(4, ro represents d,, d, E 

paW4, DLk E d,, TD’ = (rdI.h ADI 

and An, = a(levels(d)( 1)) 

RB(CO = r&b, Aw. . . . . ABt+ ABk+lr 
. . . . Aan ABM], defined over Rs’ = (Aa,, 

An?> . . . . &k-l, Ank+l, . . . . As,,A&, and 
b.Bk = cl(&), DLI, E c&,, DLk E 

Ilevels(dl.1 
Table 1. Base-cube-table for the results of cube 

operations 

The relational mapping of the result of Packing in a 
cube, is the performance of a packing operation on its 
cube-table, on the attribute representmg the measure of 
the cube. The relational mapping of the result of 
Funcrionepplication, is the performance of a 
fun&w-application operation on the attribute of its 
cube-table representing the measure of the cube. A 
projection on the cube-fable can model the results of the 
Projection of a cube with respect to its cell data. 

Since Navigation and Slicing have been defined as 
complex operations, based on other atomic operations, the 
application of the relational mappings of the cube 
operations which participate at their definition, produces 
the formula for the calculation of the cube-ruble of the 

product of these operations. Notice that the restrictions 
imposed by Level-Climbing still hold. The mapping of 

Dicing is just the performance of a selecrion on its 
cube-table. All formulas are presented in table 2. 

4.3 A mapping of the multidimensional model to 
multidimensional arrays 

The multidimensional model can trivially be mapped 
to mullidimensional arrays, practically in the same way it 
is done in [5]. We assume that there exists a mapping 
function enurn between a value d of a dimenston level I 
and the set of integers. In other words, for each dimension 
level, we assign a unique integer to each one of its values. 
The assignment is done in a contiguous fashion. As a 
result, each value x = IX,, x2, . . . . x,, *ml, belonging to the 
cell data of a cube can be considered to be as the 

conjunction of coordinates [enurn( enurn( . . . . 
enurn( with value *m. 

The cube can still be considered to be a 4-tuple C = 

a L, Cbm R>. We do not need to change the cube 
operations either: the only thmg that changes is that we 
now have an additional way to refer to the cell data of the 

cube. 

-, -= 
Level-Climbing(C 

d, ii!) 

2’ = Puck(C) 

-1 
“= 

Function-Applica 
h(C, 0 

c’= 

Prujection(C, d) 

c’= 

Navigatinn(C, d, 

dL fl 

C’ = 

Dicirrg(C, d, o(v)) 

C’ = 

Slicing(C, d, f 

Table 2. Cube-ta 

WY = rc’ = (rc wACn.k+I = ACn.k+I rm.. 
‘+I w ~0.~~2 = AC~-L+~ rDcn.l+l w w 

AC” = AC” bn’)[ &I. AC?, Ac..k, A’c.. 
k++l. A’c., ACM] defined over Rc’ = 

(Aus Acz, ., &n-k, Acn.kr,‘,..., Acn’, 
ACM), where 4 consists of the k last 

dimensions ofD, rD,’ = (rn,)[a(DLi), 

AC;]. V i, k < i < n, defined over Rdi -- 
= (Aci’, A,,). 

UC’) = rc’ = P.&r& defined over 

Rc’ = (ACID Ac2, , AC., ACM’), 

where AcM’ = 
a(mensure-dimension-level(C)) 

it,(C) = rc’ = r,[*ACM, fl defined 

over Rc’ = &I, ACZ, ., AC., ACM’), 
where ACM’ = 
a(measure_dimensio,l_leveI(C’)). 

R,(C’) = rc’ = r,[Ac,, Ac?, . . . . Act.,, 
A Ck++I> ...I AC”. &MI 
defined over R,’ = (AC,, AC?, .__, A, 

I> &+I. ..o Acn. ACM), 

where Ark = a(DLk), DLk E L, DLL 
E levels(d). 

R,(C ) = rc’ = (PABM((rB wAsI = ABI 

b w Atl2 = ABE rDzl w w ABn = Aen 

r~.‘)Lb. ACL . . . . A,,, .h.d)X*A~M~ 
fl, where ru,‘= (r&As,, AcJV i, I 5 
i<n,Aa,‘= 
a(measuredimension_leve/(~). 

R,(C ) = rc’ = r,[o(v), An] defined 

over Rc’ = (AU, AC?, . . . . AC.. ACM), 

and An = u(DLI), DLk E C.L, DLk E 
levels(& 

R,(C) = rc’ = (P&(ra wAsI =ARI 

rDI’ w A82 = As2 rD?’ w . w ABn = ,@” 

an’) [ ACl% AC2, .., .bl, .kktl. . . . . 
AC., ABMI))[*ABM, fl, where b,’ = 

(roJ[Aa,. Ac,]V i, 1 5 i 5 n, d is in k- 
th position of the cube, and AaM’ = 
a(measure_dimension_level(C’). 
‘e for the results of cube operations 

In the following section, we will conclude our results 
and present topics for future work. 

5. Conclusions and future work 

In this paper we have proposed a model for 
multidimensional databases. Dimensions, dimension 
herarchies and cubes are formally introduced in our 
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model. We have also introduced simple cube operations, 
such as levelclimbing, packing. function-application. 
projecrion, dicing and complex ones, such as navigafion 
and slicing. Our approach is based on the notion of the 
base-cube. which can be used in the complex operations 
for the calculation of the results of the cube operations. A 
major motivation for our approach was the support of 
series of operations on the cubes (for example, the 
preservation of the results of previous operations and the 
applicability of aggregate functions in a series of 
operations). Efficiency is also targeted, so that 
information refinement operations (such as drill-down) are 
directly performed. 

Furthermore, we have provided mappings of the 
multidimensional model (a) to the relational model, where 
cubes and dimensions are mapped to relations and cube 
operations to relational algebra operations and (b) to 
multidimensional arrays, through a mapping function. 

Apart from the applicability to both MOLAP and 
ROLAP engines, a basic contribution of our approach for 
ROLAP engines is that although a cube is defined in terms 
of another cube, in its relational mapping, only the 
relational expressions are necessary. For example, if an 
OLAP tool is to perform a navigation operation, it is not 
obligatory that the result is always temporarily stored; the 
definition of a view over the base-cube-table is 
sufficient. 

Yet, there are still issues which have not been dealt 
with. The relaxatton of several constramts imposed 
throughout the definitions of the paper is a possible topic 
of future research (for example, the relaxation of the 
constraint that the dimension levels of the base-cube must 
be of level 1). The applicability of existing results of 
research on view usability (1 I] can also be investigated in 
the framework we have set (especially since a relational 
mapping is provided), in order to optimize the execution 
of the operations. For example, if Navigation is to be 
performed in a roll-up fashion, one could possibly use the 
cell data of the cube itself, rather than calculating the new 
result from the basic cube. Finally, it is not at all certain, 
that the set of cube operations that we provide is 
exhaustive, so extensions and new operators are a topic of 
future research. 
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