
Modeling Multidimensional Databases, Cubes and Cube Operations

Panos Vassiliadis
National Technical University of Athens

Abstract
On-Line Analytical Processing (OL4P) is a trend in

database technology, which was recently introduced and

has attracted the interest of a lot of research work. OL4P

is based on the multidimensional view of data, supported
either by mubidimensiona~ databases (h4OL4P) or

relational engines (ROLAPJ.
In this paper we propose a model for

multidimensional databases. Dimensions, dimension
hierarchies and cubes are formally introduced. We also

introduce cube operations (changing of levels in the

dimension hierarchy, finction application, navigation
etc.). The approach is based on the notion of the base
cube, which is used for the calculation of the results of
cube operations. We focus our approach on the support of
series of operations on cubes (i.e. the preservation of the
results of previous operations and the applicability of
aggregate functions in a series of operations).

Furthermore, we provide a mapping of the
multidimensional model to the relational model and to
multidimensional orrays.

1. Introduction

In recent database trends, data warehouses come to
fill a gap in the field of querying large, distributed and
frequently updated systems. Most researchers and
developers share the same general vision of what a data
warehouse is [19], 131. Data are extracted from several
data sources, cleansed, customized and inserted into the
data warehouse. The logical structure and semantics of the
data, or else Enterprise Model, is stored in an information

Directory. Next, the data warehouse data can be filtered,
aggregated and stored m smaller specialized data stores,
usually called dam marts. Users query the data marts
and/or the data warehouse, mostly through On Line
Anatyticat Processing (OLAP) applications. The main
characteristics of such applications are (a)
multidimensional view of data, and (b) data analysis,
through interactive and/or navigational querying of data
161.

The multidimensional view of data considers that
information is stored in a multi-dimensional array
(sometimes called a Hypercube, or Cube). A Cube is a
group of data cells arranged by the dimensions of the data
[131. A dimension is defined in [131 as “a structural
attribute of a cube that is a list of members, all of which
are of a similar type in the user’s perception of the data”.
Each dimension has an associated hierarchy of levels of

aggregated data i.e. it can be viewed from different levels
of detail (for example, Time can be detailed as Year,
Month, Week, or Day). Measures (which are also known
as variables, metrics, or facts) represent the real measured
values (61.

To motivate the work describing this paper, let us use
a running example of a bookstore company. When
considering the sales of this company, three are the major
dimensions: Time, Geography and Item, while we
consider Sales as the measure of the multidimensional
cube. The dimensions, along with their dimension levels
are depicted in Figure I, where the upper levels of each
hierarchy point to the lower levels:

I.2

Tiie
I

)I l-l Sales
I I

Figure 1. Dimensions and dimension levels
Consider, now, the way dimension level hierarchies

are instantiated in the real world (we consider the
mstantiation for dimension Time, to be obvious):

Figure 2. Item dimension
Region 1 Country 1 City

Europe 1 Hellas 1 Athens
I I ah”&.
I Fnutce I Paris

Asia I tsmel 1 Tel Aviv
1 Japan 1 Tokyo

Figure 3. Geography dimension
Navigation is a term used to describe the processes

employed by users to explore a cube interactively, by

O-8186-8575-1/98 $10.00 0 1998 IEEE

-

53

manipulating the multidimensionally viewed data 161,
[131. Possible operations which can be applied are:
Aggregation (or Consolidation, or Roil-up) which
corresponds to summarization of data for the higher level
of a hierarchy, Roll Down (or Drill down, or Drill
through) which allows for navigation among levels of data
ranging from higher level summary (up) to lower level
summary or detailed data (down), Selection (or Screening,
or Filtering or Dicing) whereby a criterion is evaluated
against the data or members of a dimension in order to
restrict the set of retrieved data, Slicing which allows for
the selection of all data satisfying a condition along a
particular dimension and Pivoting (or Rotation)
throughout which one can change of the dimensional
orientation of the cube, e.g. swapping the rows and
columns, or moving one of the row dimensions into the
column dimension, etc. 161, [131.

Two are the basic architectures for storing data in an
OLAP database: ROLAP and MOLAP. ROUP
(Relational OUP) [3] is based on a relational database
server, extended with capabilities such as extended
aggregation and partitioning of data [8]. The schema of
the database can be a star, snowflake, or fact constellation
schema [3]. On the other hand, MOUP
fMultidimensiona/ OUP) is based on “pure”
Multidimensional Databases (MDDs), which logically
store data in multidimensional arrays, which are heavily
compressed and indexed, in the physical level, for space
and performance reasons.

The main motivation of this paper is to provide a
formal model for multidimensional databases. Since
multidimensional databases are defined in terms of
dimensions (which are organized in dimension
hierarchies), the model represents them formally.
Furthermore, classical OLAP operations, such as roll-up,
slice, dice etc. are also represented by the model. We also
provide a mapping to relational databases and
multidimensional arrays. We make a serious design
choice: since querying is done in an interactive way, we
give emphasis to the tracking of series of operations,
performed in a navigational way.

The major contribution of the paper is the modeling
of cubes, dimensions and cube operations, in the context
of series of operations. This formalization is currently
used, in this paper, for a direct modeling of the usual
OLAP operations. Instead of mapping OLAP operations
to complex and complicated “relational”, or “calculus-
like” queries, we directly mode1 them, in a straightforward
fashion. To our knowledge, the modeling of the drill-
down operation is introduced for the first time in our
model. Since engines are based on relational technology,
or multidimensional arrays, we also provide a direct
mapping of cubes and their operations for each of these
formalisms, so that both data warehouse designers and the
engines themselves can take advantage of it.

The rest of this paper is organized as follows: in
section 2 we present related work in the fields of models
and algebras for data warehouse and OLAP applications.
In section 3 we provide a model for multidimensional

databases and cubes. In section 4 we provide a relational
mapping of the aforementioned model and a mapping to
multidimensional arrays. In section 5, we present the
conclusions of our work and possible future extensions.

2. Related work

Research has followed the evolution of industrial
products in the field of OLAP. The dam-cube operator
was introduced in [S]. There have also been efforts to
model multidimensional databases. In [I], a model for
multidimensional databases is introduced. The mode1 is
characterized from its symmetric treatment of dimensions
and measures. A set of minimal (but rather complicated)
operators is also introduced dealing with the construction
and destruction of cubes, join and restriction of cubes and
merging of cubes through direct dimensions. Furthermore,
an SQL mapping is presented.

In [I21 a multidimensional data model is introduced
based on relational elements. Dimensions are modeled as
“dimension relations”, practically annotating attributes
with dimension names. The cubes are modeled as
functions from the Cartesian product of the dimensions to
the measure and arc mapped to “grouping relations”
through an applicability definition. A grouping algebra is
presented, extending existing relational operators and
introducing new ones, such as ordering and grouping to
prepare cubes for aggregations. Furthermore, a
multidimensional algebra is presented, dealing with the
construction and modification of cubes as well as with
aggregations and joins.

In 191 n-dimensional tables are defined and a
relational mapping is provided through the notion of
completion. An algebra (and an equivalent calculus) is
defined with classical relational operators as well as
restructuring, classification and summarization operators,
The expressive power of the algebra is demonstrated
through the expression of operators like the data cube
operator and monotone roll-up.

In [2] multidimensional databases are considered to
be composed from sets of tables forming denormalized
star schemata. Attribute hierarchies are modeled through
the introduction of functional dependencies in the
attributes of the dimension tables. Nevertheless, this work
is focused on the selection of an optimal set of
materialized views, for the efficient querying and update
of a data warehouse, and not in the modeling of cubes or
cube operations.

In [4], a multidimensional database is modeled
through the notions of dimensions and f-tables.
Dimensions are constructed from hierarchies of dimension
levels, whereas f-tables are repositories for the factual
data. Data are characterized from a set of roll-up
functions, mapping the instances of a dimension level to
instances of another dimension level. A query language is
the focus of this work: a calculus for f-tables along with
scalar and aggregate functions is presented, basically
oriented to the formulation of aggregate queries. In [5] the
focus is on the modeling of multidimensional databases:

54

the basic model remains practically the same, whereas ER
modeling techniques are given for the conceptual
modeling of the multidimensional database.

In statistical databases (171, quite a lot of similar
work has been done in the past. In [17] a comparison of
work done in statistical and multidimensional databases is
presented. The comparison is made with respect to
application areas, conceptual modeling, data structure
representation, operations, physical organization aspects

and privacy issues. The basic conclusion of this
comparison is that the two areas have a lot of overlap,

with statistical databases emphasizing on conceptual
modeling and OLAP emphasizing on physical

organization and efficient access.
In 1141 a data model for statistical databases is

introduced. The model is based on “summary tables” and
operators defined on them such as

construction/destruction, concatenation/extraction,
attribute splitting/merging and aggregation operators. The
underlying algebra is a subset of the algebra described in

[151. Furthermore, ,physical organization and
implementation issues are discussed. [141 is very close to

practical OLAP operations, although discussed in the
context of summary tables.

In [16] a functional model (“Mefisto”) is presented.

Mefisto is based on the definition of a data structure,
called “statistical entity” and on operations defined on it
like summarzation, classification, restrictlon and
enlargement.

In all of the aforementioned approaches the
relationship of the proposed operators to real OLAP
operations, such as roll-up, drill-down, slice and dice
seems to be weak: it is either discussed informally for a
subset of operators [I], indirectly dealt through the
introduction of aggregation [121, 191, or in a different
context [14], [161. [2] and [S] are basically dealing with
the modeling of cubes. The best approach seems to be
given in [5]; yet a direct mapping lo OLAP operations is
still not provided. Furthermore, apart for [16], series of
operations are not directly dealt with. Finally, to our
knowledge, no explicit modeling of the drill-down
operation exists.

3. A model of multidimensional space and
cubes

3.1. Multidimensional space

Let Sz be the space of all dimensions. For each
dimension D, there exist a set of /eve/s, denoted as
levels(D3. A dimension is a lattice (H, 5) of levels. Each
path in the lattice of a dimension hierarchy, beginning
from its least upper bound and ending in its greatest lower
bound is called a dimension pafh. Each dimension path is
a linear, totally ordered list of levels, We extend the
notion of the function levels, for dimension paths:
levels(D,,,) is a list, where the higher a level semantlcally
is, the higher its rank is in the dimension path. The total
order allows us to use comparison operalors for the

dimension levels. For instance, if we consider the
dimension path [year, month, day], then day 5 month 2
year, whereas for the dimension path [year, week, day],
day 2 week 5 year holds. A dimension D consists of a set

of dimension paths, parhs(D). In the case of linear
dimensions, where there is a single dimension path in the
dimension, we will use the terms dimension and

dimension parh interchangeably.
Let P be the space of all dimension levels. We can

find the dimension where a dimension level belongs to,

through the operator h: h(DL,) = D if DL, E levels(D). We
impose the restriction that a dimension level belongs to
exactly one dimension. Furthermore, we can find the rank

of a dimension level in a dimension path, through the

function level(&). level(DL,) = k, when DLi =
levels(D,,)[k] (in other words, DLi is the k-th level of the
dimension path D,i, starting the enumeration from the

lowest levels).
For each dimension level there is a set of values

belonging to it (e.g. dimension level “city” has “Athens”,
“Paris”, “Rome”... as values). We define dom(DLJ as the

set of all the values of a dimension level DL;. Let V be the
space of all values. A dimension level IS atomic if its
domain is a subset of V. If the domain of a dimension
level is a subset of P(V) (the power set of V) then the
dimension level is m&i-valued. We use bag semantics for

multi-valued dimension levels. As in (151, we use the

prefix “*” for multi-valued attributes.
A value x, can have ancesfors and descendunrs. Let x

belong to a specific dimension level Lo; then, there are
specific instances related to x, at higher (lower) dimension
levels, corresponding to more general (detailed) terms,
that is
ancestotfx, DL) = y, y E dom(DL), DL,, 5 DL and
descendanrs(x, DL) = (xi, XI, ~1, XI. x2, q E

dom(DL), DL 5 DLo.
For example, if we consider the dimension path

[year, month, day] then anceslor(FEB 1997, year) = 1997
and descendants(FEB 1997, day) = (I FEB 1997, 2 FEB
1997, _._, 28 FEB 1997). We will assume the following
properties for the ancestor relationship:

I ancestotfx, DL) = CC’, if x E dom(DLj
2. if x = uncestorfy, DL) and)’ = ancesfor(x, DL), then x

1
3. if x = uncestor(y, DL,) and y = oncesrorfz, DL,), then x

= ancestor(z, DL,)
The third property guarantees that when more than

possible paths exist from z to x, in the dimension level
lattice, then all these paths are consistent.

3.2. Cubes

In this section we shall introduce the notion of cubes,
basic cubes and multidimensional databases. The cubes
are the basic entities of the model, whereas basic cubes
are cubes with the most detailed data. A multidimensionul
database is a set of dimensions, dimension levels and a
basic cube.

55

We define a basic-cube Cb as a 3-tuple 6),, Lb, Rb>,
where

Db = <Dr. D!, D,, M> is a list of dimensions (D,, M
E Q). M is a dimension that represents the measure of
the cube.

Lb = <DLt,l, DLr,?, . DLb,, *ML> is a list of
drmension levels (DLb,, *ML E Y). ML is the
dimension level of the measure of the cube. We

demand that all the dimension levels are at the lowest
level of their respective dimensions (V DLb E 4,
level(l) = I). We also demand that ML is multi-valued.
Rb is a set of cell dam -i.e. a set of tuples of the form

x = Ix,, x2, . ..1 x,, *ml, where ‘v’ i in [I, ..nb X, E
dom(DLhi) and *m E dom(*ML).

We define a Cube C as a 4-tuple <D, L, Cb, R>,

D = <D,, Dz, . . . D., M> is a list of dimensions (D,, M
E Q). M is a dimension that represents the measure of
the cube. We will denote M as measure-dimension(C).
L = <DLr, DLz, DL,, *ML> is a list of dimension
levels (DLi, *ML E Y). *ML is the dimension level of

the measure of the cube. We will denote *ML as
measure-dimension-level(C). We demand that V DL,

E L, DL, E leve/s(D,J. As it will be shown from the
cube operations, we also demand that *ML is multi-
valued.

Cb is a basic-cube. We will call Cb. the base-cube of
C (C, = base-cube(CJ). The data of Cb can be used for
the calculation of the contents of C. Furthermore, we
impose the restriction, that ‘V d E CD 3 d’ E Ch.D : d

= d’. In other words, all the dimensions of a cube must
exist in its base-cube.
R is a set of cell data -i.e. a set of tuples of the form as
a tuple x = [x,, xz, x,, *ml* where Vi in [I. AI], x,
E dom(DL,) and *m E dom(*ML).

We can consider basic cubes as cubes. WC extend the
definition of a basic cube Cb to be a 4-tuple <Dh, 4, Cb,
Rb> -i.e. we define a basic cube to be the base-cube of
itself.

We define a Muftidimensionul Database as a couple
<o, c>. D is a set of dimensions and C is a basic cube,
the dimensions of which belong to D.

Cell data are the data of a cube. Each cell is defined

by a set of values and a measure, which is also a value.
Thus, a cell x is a tuple x = [xl, x2, .,,, x,,, *ml. We

mtroduce the following shortcut notations:
dimensions(x) = <I,, x2, ,.,, x.>,
measure(x) = *m,
dimensions(x)(i) = x,, where C = CD, L, C,,, R> A (x E

RI,
dimensions(x)(d) = x,, where C = <D, L, C,,, R> A d E D

Ed = D(i) A (x E R).
In our running example, let us consider that a

basic-cube for the bookstore company is instantiated as
shown in Figure 4.

Intuitively, it might strike the reader as strange the
fact that we define a cube in terms of another cube and
that we practically provide two data sets (R and Ch.Rh) for
the instantiation of a single cube. Nevertheless, there are

two major reasons for which we choose to follow this
specific approach:

Figure 4. Basic-Cube = <DO, LO, Basic-Cube, R@, DO
= <Time, Item, Geography, Sales>, LO = <Day, Product,

Region, Sales>, RO is shown in the above table
First, the definition of the data of a cube in terms of

its base-cube enables the direct and correct evaluation of

its contents. A specific example will help us clarify this
statement. Suppose, that we summarize the sales of Figure

4 at the month level. Suppose then, that we would like to
see the average sales at the year level. This result cannot
be directly calculated from the result of the previous cube.

The existing algebras that we know of [I], [12], [LR97]
would not take this problem into account, or would
assume that the operation will be disallowed by the system

] 161. Since this kind of sequences of operattons is typical
for OLAP applications, the correctness of the result of the
operations of the cube can be guaranteed, by referring IO
the relevant data of the most basic granularity.

Secondly, all the aforementioned algebras cannot
deal directly with drill-down operations (i.e. with
navigation to lower levels of dimension hierarchies). This
IS obvious, since a sum cannot be analyzed to Its
components unless a join operatton with a cube of the
required granularity takes place. As it can easily be
anticipated, the dctinition of a cube in terms of a basic
cube enables the drilling-down without possibly costly

join operattons with other cubes. As it will be shown in
the sequel, in the case of the relational mapping of our
model (which can be used for ROLAP), joins actually take
place: yet they are made between a fact table and the

tables representing the dimensions of the cube.

Techniques like star-join [7] can be employed to optimize

this kind of operations.

3.3. Cube operations

The definition of a cube is accompanied with the

defimtion of cube operatrons. We categorrze cube
operations into simple ones, such as level-climbing,
packing, function-application, projection, dicing and
complex ones, such as navigation and slicing, which are
defined on top of the simple ones. We do not deal with
pivoting smce we consider tt to be just a reorganization of
the presentation of the data, rather than a modification of

56

their value or structure. Each one of the operations results
in a new cube, when applied to an existing cube. Slicing
and navigation apply aggregate functions to the data of
the cube. The set of allowed aggregate functions is (sum,
avg, count, min, rank(n), no-operation). All of them are
the well known relational aggregate functions, except for
no-operation which means that no function is applied on
the data of the cube and rank(n) which returns the first n-
components of an aggregated set of values which can be
ordered. In the sequel we will suppose that the original

cube C = CD, L, Cb, R>, D = CD,, D*, I.., D,, M>, L =
CDL,, DL?, DL,, *ML>, Cb = <Db, Lb, Cb. Rb> and that
the new cube c’, which is the result of the operations is C
= CD’, L’, c;, R’>.

Level-Climbing. Let 4 be a set of dimensions

belonging lo C and a the set of the corresponding
dimension levels of C. Without loss of generality we

assume that d consists of the last k dimensions of D. Let
also d& be the original dimension levels of C, belonging
to d : aold = (DLn.Ltl, .,., DL,,). Then, C’ =
Level-Climbing(C, 4 d,) = LC(C, d dJJ is defined as

follows:

D’=D,L’=L-~~oldudl.Cb’=Cband
R’ =(x I 3 y E R: dimensions(x)(D,) = dimensions(y)(D,)

t’ D, e d h dimensions(x)(D,) =

ancesror(dimensions(y)(Di), dl,), V D, E d, dlj E 4,

dl, E levels(D,) n measure(x) = measure(y), if M L

dl
We impose the restrictions that d, a are consistent

with each other and that for all the dimension levels of a,
the respective dimension levels of d& belong to the same
dimension path and are of lower or equal level (for
example, one cannot perform Level-Climbing between
months and weeks). Intuitively, LevelClimbing is the
replacement of all values of a set of dimensions with

values of dimension levels of higher level. In Figure 5, an
example of the Level-Climbing operation is presented:

Figure 5. Cl = LC(Baric-Cube, {Geography, Time),
{Region, Year}), Cl q 41, Li, &I, RT>, Di q <Time,

Item, Geography, Sales>, Lf = <Year, Product, Region,
Sales>, Cbl q Basic-Cube, RI is shown in the above

table

Packing. We define C’ = Packing(C) = P(C) as
follows:

D’=D,L’=L,C<=&,and
R’ =(x I 3 y E R: dimensions(x)(D,) = dimensions(y)(r),)

V i E 1, nAmeosure(x)= (Il3tE R,
dimensions(y) = dimensions(t) A I = measure(t)))

Intuitively, packing is the consolidation of the cube,
through the merging of multiple instances having the same
dimension values into one. Packing has bag semantics. In
Figure 6, an example of the Packing operation is
presented:

Figure 6. C2 q P(Cl), C2 q <D2, L2, Cb2, RP, D2 q

<Time, Item, Geography, Sales>, L2 q <Year, Product,
Region, Sales>, Ct.2 = Basic-Cube, R2 is shown in the

above table

Function-Application. Let f be a function
belonging to (sum, avg. count, min, rank(n), no-

operafion). Then, C’ = Functiotl-Applicarion(C, f) =
F(C,f) 1s defined as follows:
D’=D.L’=L,C{=&and
R’ =(x I 3 y E R: dimensions(x) = dimensions(y) ,Y

measure(x) = f(measure(y)))

Intuitively, Funcrion-applicarior1 is the application
of a specific function to the measure of a cube.

Projection. Let d be a projected dimension. C’ =
ProjectionfC, d) = n(C, d) is then defined, as follows:
D’ = D d, L’ = L - DL, DL E levels(d), DL E L,
Cb(= CD;, 4: Cb(, R;>, where,

D;=D*-d,

L; = L, - leve!s(d)(l), and

Rb’ = (x I V y E Rb, dimensions(x)(D;) =
dimensions(y)(D,), V D, fd, i E I, n A
measure(x) = measure(y))

R’ =(x I 3 y E R: dimensions(x)(D,) = dimensions(y)(D,),

V Di #d, i E 1, ., n A measure(x) = measure(y))
Intuitively, projection is the deletion of a dimension

both from the cube and its base-cube.
Navigation. Let d be the dimension over which we

navigate, dl the target level of the navigation and f the
applied aggregate function. Suppose that the dimension d
is the i-h element of D. Then, we define C’ =

Navigation(C, d, dl, f) as follows:

C’ = Navigation(C, d, dl, f) = F(P(LC(Ch {D,, D2, d,

. . . . D,), fDL,, 04, ...a dl, DL,I)IJl
The purpose of the navigation operator is to take a

cube from a specific state, change the level of a specific
dimension, pack the result and produce a new cube with a

new state, through the use of an aggregate function. The
dimensions of the new cube are the dimensions of the old
one. The dlmenston levels are also the same, except for
the one of the chmension where we change level. Notice

57

that the restrictions imposed by Level-Climbing,
regarding the position of the respective dimension levels
in the dimension lattice, still hold. Furthermore, the

base-cube remains the same. The Navigatran is
performed at the level of the base-cube, for reasons that
will be best illustrated in the following example:

C3 = Novi,qare(Basic-Cube, Geo,yaphy, Region,
no-operation)

C4 = Nnvigate(C3, Time, Year, sum)
C5= Navigate(C4, Time, Month, avg)

In 1 G

997-03-28 1 “Symposium” 1 Europe 1 5 1

1996-10-12 1 “Report 10 El Greco” 1 Europe 1 7

1996-05-06 I “PieceofMind” I Asia 1 IO

1996-09-07 I “Pweof Mind” I Europe I 7
I 9%.03-28 1 “Kuamazofbrothrrs” 1 Asia I 12 I

) 1996~01-01 I “Karamazofbrothed‘ I Aria 1 40]

Fiours 7. C3 = NavioationlBasic Cube. Geoaraohv.
Region, no-opera&), Ci q CD< 13, db3, R3>, bi=
<Time, Item, Geography, Sales,, 13 q <Day, Product,

Region, Sales>, Cb3 = Basic-Cube, R3 is shown in the
above table

1996 I “Karamazofbrothers” I Asia I 52

Figure 8. C4 = NavioationlC3. Time. Year. sum\. C4 q ,,
204, 14, Cb4, R4>, D4 =;Tme, Item, Geography,

Sales>, L4 q <Year, Product, Region, Sales>, Cb4 q

Basic-Cube. R4 is shown in the above table

Figure 9. C5= Navigation(C4, Time, Month, avg), CS =
CDS, 15, C&, RS, D5 = <Time, Item, Geography,

Sales>, LS q <Month, Product, Region, Sales>, Cb5 q

Basic-Cube, R5 is shown in the above table
This example shows that the basic contribution of the

navigation operator is that it can allow any sequence of
operations along the dimension hierarchies. The

navigation from the Basic-Cube lo cube C5, is
characterized by three features:

it preserved the previous navigations -e.g. the
naqation 10 the dimension level of Geography

(Region),
it allowed the application of the average function over

a cube whose data was previously produced through
the application of a sum function. If the definition of
the navigation was done on the result of the actual
cube, the correct calculation of the result would not be

possible,
it allowed the drilling down at the Time dimension
(i.e. moving directly from “Year” to “Month” level)

without having lo join cubes directly. The drill-down
operation was mapped 10 Level-Climbing upwards in
the Time dimension. The consinstency of the values

between different levels in the dimension lattice

guarantees a correct result.
Dicing. Let d be the dimension over which we

perform the dicing, (r a formula consisting of a dimension,
an operator and a value v. We assume that v belongs to
the values of the dimension level of d in C and that 0 is

applicable to d (in the sense presented in [IS]) -i.e. that
{<, =) are applied to atomic dimension levels and (P, c,

E) to multi-valued ones). Let U(V) be of the form d op v.
Then, C’ = Dicing(C, d, u(v)) is defined as follows:
D’=D,L=L’,

Cb’ = <Dir Lb’, C{, Rb’>, where
&’ = C,.&, L,’ = Cb.Lb. and

R~‘=(xIx~C~.R~~x[d]opy=true,y~
descendants(v, levels(d)(l)))

Intuitively, dicing is a simple form of selection. Yet,
it has its impact both on the cube itself and its base-cube.
We are allowed to check for descendants of Y in the
base-cube, since each dimension path ends at a dimension
level of the lowest granularity and the base-cube is in the
lowest possible granularity for all levels.

Slicing. Let d be the dimension which we slice and f
the applied aggregate function. We define Slicing as
follows:

C’ = Slicing(C, d, f) = F(P(x(LC(Ch {D), D2, .._, d, ,,.,

D.1, /DL/, DLz, dl, . ..I &I 1, di)f)
The purpose of the slicing operator is to take a cube

from a specific state, cut out a specified dimension and

aggregate over the rest of the dimensions, using an

aggregation function. Notice that all the restrictions of
Level-Climbing implicitly hold, without realy affecting

the Slicing operation. In Figures IO, 11, an example of the
Slicing operation is presented.

In this section we have defined cubes and cube
operations for a multidimensional model. Since in

practice, the multidimensional view of data is supported
from multidimensional (MOLAP) or relational (ROLAP)
engines, in the following section WC will provide a

mapping of the structures and the operations of the
multidimensional model, to the relational model and to
multidimensional arrays.

58

Figure 10. C6 = Slicing(C4, Time, avg), C6 q <D6, L6,
Ct.6, I%>, D6 q <Item, Geography, Sales>, L6 = <

Product, Region, Sales>, R6 is shown in the above
table

“Kammazof bmtben” Rhodes 4
“Karamarof brothers” Athens IO

“Symposium” Rhodes 5
“Report to El &co” PXIS 7

“Piece of Mind” 1 Tokyo I IO
“Piecr of Mmd” 1 Rhnllec 7

“Kxamazof brothers” 1 Tel AVIV 1 I?
“Knmmuof brothers” 1 Tel AVIV 1 40

Figure 11. C6 = Slicing(C4, Time, avg), Cb6 q c&b, Lbb,
Cb6, I?@, &6 q <Item, Geography, Sales>, Lb6 = c

Product, City, Sales>, Rb6 is shown in the above table

4. A mapping of the multidimensional model
to an extended relational data model

In this section we map multidimensional cubes,
defined in Section 3, IO relational tables. For this purpose
we will base our approach on the extended relational
model and algebra proposed in 1151. Atomic vs. XI-ducd
atdmres’ (with bag semantics) are introduced. Apart
from the classical relational operations, operations such as
packing (Px(r)) (merging tuples with the same values for
several attributes into one tuple) and fun&x-appkation
(r(*X, jl) (application of a function J to a multi-valued
attribute *X) are introduced. A more detailed presentation

for the employed model can be found in [181.
The motivation for the relational mapping is double:

on the one hand, the engine performing ROLAP must be
able to map multidimensional 10 relational entities and on
the other hand, the data warehouse administrator can be
helped to check out whether a relational database fulfills
the requirements to model a cube (and vice versa -what
kind of database one needs to construct in order to be able
to map a cube to relational tables).

At the end of the section a mappmg of our
multidimensional model to multidimensional arrays (used
as logical structures in engines performing MOLAP) is
also presented.

’ Thn requwx~~ent does not consninr the applicability of the algrbra,
since existing DBMSs already suppon NF’ charactenstics. The ObJecl
exten~mn~ of the upcommg SQL3 standard will formalize this kind of

SUPpofl IlO1

4.1. Mapping of cubes to relations

To map multidimensional cubes lo relations we need

as prerequisite, the existence of two mapping functions a
and 1. The function a maps a dimension level to an
attribute of a relation, whereas 1 is its inverse and maps an

attribute to a dimension level. We say that a dimension
level DL represenrs an attribute A, and vice versa, if

a(DL) = A, and consequently A(A) = DL.
A dimension level can be mapped to more than one

attributes. The reason for this is that in both star and
snowflake schemata, which are common for data
warehousing and ROLAP applications, two columns -

possibly related by foreign key constraints- in two
different tables, may represent the same entity, due to

normalization. Furthermore, we make the assumption that
an attribute and a dimension level which can be mapped to
one another, have the same structure (simple vs. set-
valued) and domain.

Definition 1. A relation r, defined over a relation

scheme R(A,, AL, ., A,), represents a dimension path D,
(denoted also as r = Rn(D,,)) iff
1. V DLi E /evels(D,) 3 A, E R: a(DLi) = Aj
2. ‘V Aj E R 3 DLi E levels(D,): I(A,) = DL,
3. If DL, is the lowest level of D,, V 6 E dom(DL,). VA,

E R, 3 exactly one 1, t E r: t[A,] = ancesror(&1(A;)),

4. V t E r, V A; E R, 3 6, 6 E dom(DL,): t[A,] =
ancesror(S, L(A,)),

Intuitively, for a table to represent a dimension path,
there must be a one to one mapping between the table
columns and the dimension levels of the dimension path
(items (I), (2) in definition 1). The instantiation of the
table is such, so that for every value of the lowest
granularity there is a tuple with all its ancestors (item 3).
Furthermore, we require that the table contains no more
tuples than those needed to represent the values (item 4).
The tables representing dimension paths are denormalized

structures. commonly employed in star schemara in data
warehouses; they are usually encountered with the name
dimensiorr tables. For example, the dimension Geography,
which comprises of a single dimension path, can be
represented using the table in Figure 12.

Figure 12. Geography dimension as a table
From the definition of the ancestor operator, and its

transitivity property it follows easily that if we consider

the values of two attributes of the same tuple, they are
characterized from an ancestor relatlonship between them.

Definition 2. A relation r, defined over a relation
scheme R = (A,, A?, _.., Ak), is the base-cube-rob/e of a
cube C = <D, L, Cbure, Rs (denoted also as r = R,(C)) iff
I. V DL E Cb,,,.L, 3 A, E R: DL = I(A,)

59

2. v x = <x,, x2, ., Xk~,, *x,> E Cbarc.Rbare, 3 I E r: x[x,]
= t[a(DL,)], where x, E dom(DL,)

3. V t E r. t = <a,, a?. ., ak.,, *g>, 3 x, x E Cbarc.Rbrc, :
t[A,] = x[,l(AJl, where a, E A,.

Definition 3. A relation r defined over a relation
scheme R = (A,, A?, Ak) is the cube-fable of acube C

= <D, L, Cbaw, R> (denoted also as r = Rc(C)) iff
I. VDLE C.L,~A,E R:DL=L(A,)
2. v x = <x,, x2, .._) Xk.,, *x,> E CR, 3 t E T: x[x;] =

l[a(DL,)], where x, E dom(DLi)

3. V t E r, t = <a,, a2. ak.,, *a,,,>, 3 x, x E CR, : t[Ai]
= x[l(A,)], where a, E A,.

Intuitively, we define a table to be a cube-tab/e of a
cube if the dimension levels of the cube can be mapped to

attributes of the table. The measure -which is also a
dimension- is included in this definition (item 1 in
definition 3). The contents of a table should be such, that

all cells in the result of the cube have an equivalent tuple
in the table (item 2 in definition 3). Furthermore, no tuples
should exist tn the table, where no equivalent cell exists tn
the result of the cube (item 3 in definition 3). A
base-cube-table differs from a cube-ruble in the fact that
its attributes and data can be mapped to the base-cube of
a specific cube.

Definition 4. A database cl defined over a database
scheme S represents a cube C = <D, L, C&, R> iff:
I. V di t D - measure-dimension(C), V d,, E paths(d,). 3

r, E d : r, = RD(d,,)
2. 3 ra E d : ra = R&)
3. 3 rc E d : rc = R&Z)

A set of relations is the dimenx’un rubles of a cube, if
for every cube dimension and for every dimension path of
these dimensions (except for its measure) thcrc is a

rclcvant table in this set, representing the dimension path
(item 1 in definition 4). If the base-cube-table of the cube
also exists, then all the cube operations can be applied, by

using the base-cube-tab/e (item 2 in definition 4);
remember that several operations in the mulridimensional
model have been defined with respect to the base cube.
Furthermore, if there is a table in the set, being the

cube-table of the specific cube, then the data of the cube
can be directly accessed through the cube-table (item 3 in
definition 4). in that case we say that the database
represents the cube. Since we have required that the

values of the dimension paths of different paths in the

same dimension, are consistent with each other, then the

consistency between the values of the dimension tables for
the same dimension, comes natural.

The full schema for the bookstore database of our
running example would be:

TIME MfYEAR, MONTH, DAY)
TIME; W (YEAR, WEEK, DAY)
GEOGRAPHY(REGION, COUNTRY, CITY)
ITEMICATEGORY, TYPE, PRODUCT)
DETAILED SALES(DAY, PRODUCT,
CITY, SALES)

Supposing that the instantiantions are performed correctly,

the TIME-M. TIME-W. GEOGRAPHY, ITEM relations

60

are the dimension tables, whereas the DETAILED-SALES
relation is the cube-table for the Basic-Cube.

An interesting issue is that although our definition of
dimension tables is based on the notion of denormalized
star schemata our mapping is also applicable to fully
normalized snowflake schemata, since that the dimension

table of a star schema can be considered as a view defined
on the respective tables of the snowflake schema. This is

formally proved in [181. The result is dual: one can map
snowflake schemata to cubes and vice versa. Furthermore,

cube operations can be mapped to relational operations
for a snowflake schema.

For the rest of this paper, we assume that we have a

cube C = -zD, L, Cbarcr R>, D = <d,, dZ, d,. M>, L =

CDL,, DLL, DL., *ML>. We also assume a database dl
deIined over the database scheme S = (Rc, Ra, Rol, Ro2,
. . . . Ro,). an instantiation of S, s = (rc, ra, ro,, ro?. To,,),
where rc = R,(C), where rc is defined over Rc = (AC,, k2,

. . . . AC., AcM), ra = R&Z), defined over Ra = (Aa,, Aal,
Aan, ABM) and V d, E D, roI = Rr,(di), defined over Roi =

(41, Ai2, .,,s Ad,

4.2. Relational mapping of cube operations

In this subsection we will provide the relatIonal
mappmgs for the cube operations which were introduced
in Section 3. For each operation we will provide a
relational expression for both the cube-rob/e and the
base-cube-table of the resulting cube. In other words, we

examine the impact a cube operation has on the cell data
of both the base-cube and the cube Itself and present
tables that represent them. All formulas are fully proved in

I181.
In Table I, one can see the relation definitions for the

base-cube-table for the results of the cube operations,
where the base-cube-table changes. Level-Climbing,

Packing, Function-Application and Navigation do not
change the base-cube of a cube. Consequently, one would
normally expect that the base-cube-tab/e will not change
either.

The relational mapping of the result of Projection

and Slicing with respect to the base-cube of a cube, is the
performance of a projection operation on the relevant
attribute of its base-cube-table.

The mapping of Dicing is somewhat more complex
than the mappings of other operations. With respect to the

base-cube, what must be done is the mapping of the
parameter value Y to its descendants, which are found at
the base-cube-ruble. Consequently, we join the

base-cube with the proper dimension table, representing a
dimension path which includes the respective dimension
level of the diced cube, perform the selection at the result
and then project the attributes of the buse-cube-table.

As far as the cube-rabies are concerned, we also

provide a set of formulas, one for each operation. The
cube-tables represent the actual result of an operation,
expressed m a relation Instance. For Level-Climbing, first
we project the dimension tables to the columns
corresponding to the dimension levels of the new cube

and the columns of the old cube. The relational mapping
of the result of Level-Umbing is the join of its
cube-table .with all the dimension fables involved in the
changing of levels and the performance of a projectIon, in
order to keep just the attributes representing the correct
dimension levels.

c’= &K? = QIABI, AH, ABM, &+I,

Projection(C, d) As., ABM], defined over Ra’ = (Aa,,

An?, ...I AELI> &a+,, AB,ABM),

where &I = 4DL3, DLk E CbarcLbsrc,

DLk E levels(d), d is the k-th
dimension of C.

C’ = WC’) = ((w%DI=ADI rd[oT(v),
Dicing(C, d, ADI)[ABI, ABZ, AB” Aaw] defined

o(v))

C’ =

Slicing(C, d, fl

over RB’ = CABI, &2. AB”. ABM),

and Au = a(DL& DLk E C.L, DLk E
levels(4, ro represents d,, d, E

paW4, DLk E d,, TD’ = (rdI.h ADI

and An, = a(levels(d)(1))

RB(CO = r&b, Aw. ABt+ ABk+lr
. . . . Aan ABM], defined over Rs’ = (Aa,,

An?> &k-l, Ank+l, As,,A&, and
b.Bk = cl(&), DLI, E c&,, DLk E

Ilevels(dl.1
Table 1. Base-cube-table for the results of cube

operations

The relational mapping of the result of Packing in a
cube, is the performance of a packing operation on its
cube-table, on the attribute representmg the measure of
the cube. The relational mapping of the result of
Funcrionepplication, is the performance of a
fun&w-application operation on the attribute of its
cube-table representing the measure of the cube. A
projection on the cube-fable can model the results of the
Projection of a cube with respect to its cell data.

Since Navigation and Slicing have been defined as
complex operations, based on other atomic operations, the
application of the relational mappings of the cube
operations which participate at their definition, produces
the formula for the calculation of the cube-ruble of the

product of these operations. Notice that the restrictions
imposed by Level-Climbing still hold. The mapping of

Dicing is just the performance of a selecrion on its
cube-table. All formulas are presented in table 2.

4.3 A mapping of the multidimensional model to
multidimensional arrays

The multidimensional model can trivially be mapped
to mullidimensional arrays, practically in the same way it
is done in [5]. We assume that there exists a mapping
function enurn between a value d of a dimenston level I
and the set of integers. In other words, for each dimension
level, we assign a unique integer to each one of its values.
The assignment is done in a contiguous fashion. As a
result, each value x = IX,, x2, x,, *ml, belonging to the
cell data of a cube can be considered to be as the

conjunction of coordinates [enurn(enurn(. . . .
enurn(with value *m.

The cube can still be considered to be a 4-tuple C =

a L, Cbm R>. We do not need to change the cube
operations either: the only thmg that changes is that we
now have an additional way to refer to the cell data of the

cube.

-, -=
Level-Climbing(C

d, ii!)

2’ = Puck(C)

-1
“=

Function-Applica
h(C, 0

c’=

Prujection(C, d)

c’=

Navigatinn(C, d,

dL fl

C’ =

Dicirrg(C, d, o(v))

C’ =

Slicing(C, d, f

Table 2. Cube-ta

WY = rc’ = (rc wACn.k+I = ACn.k+I rm..
‘+I w ~0.~~2 = AC~-L+~ rDcn.l+l w w

AC” = AC” bn’)[&I. AC?, Ac..k, A’c..
k++l. A’c., ACM] defined over Rc’ =

(Aus Acz, ., &n-k, Acn.kr,‘,..., Acn’,
ACM), where 4 consists of the k last

dimensions ofD, rD,’ = (rn,)[a(DLi),

AC;]. V i, k < i < n, defined over Rdi --
= (Aci’, A,,).

UC’) = rc’ = P.&r& defined over

Rc’ = (ACID Ac2, , AC., ACM’),

where AcM’ =
a(mensure-dimension-level(C))

it,(C) = rc’ = r,[*ACM, fl defined

over Rc’ = &I, ACZ, ., AC., ACM’),
where ACM’ =
a(measure_dimensio,l_leveI(C’)).

R,(C’) = rc’ = r,[Ac,, Ac?, Act.,,
A Ck++I> ...I AC”. &MI
defined over R,’ = (AC,, AC?, .__, A,

I> &+I. ..o Acn. ACM),

where Ark = a(DLk), DLk E L, DLL
E levels(d).

R,(C) = rc’ = (PABM((rB wAsI = ABI

b w Atl2 = ABE rDzl w w ABn = Aen

r~.‘)Lb. ACL A,,, .h.d)X*A~M~
fl, where ru,‘= (r&As,, AcJV i, I 5
i<n,Aa,‘=
a(measuredimension_leve/(~).

R,(C) = rc’ = r,[o(v), An] defined

over Rc’ = (AU, AC?, AC.. ACM),

and An = u(DLI), DLk E C.L, DLk E
levels(&

R,(C) = rc’ = (P&(ra wAsI =ARI

rDI’ w A82 = As2 rD?’ w . w ABn = ,@”

an’) [ACl% AC2, .., .bl, .kktl.
AC., ABMI))[*ABM, fl, where b,’ =

(roJ[Aa,. Ac,]V i, 1 5 i 5 n, d is in k-
th position of the cube, and AaM’ =
a(measure_dimension_level(C’).
‘e for the results of cube operations

In the following section, we will conclude our results
and present topics for future work.

5. Conclusions and future work

In this paper we have proposed a model for
multidimensional databases. Dimensions, dimension
herarchies and cubes are formally introduced in our

61

model. We have also introduced simple cube operations,
such as levelclimbing, packing. function-application.
projecrion, dicing and complex ones, such as navigafion
and slicing. Our approach is based on the notion of the
base-cube. which can be used in the complex operations
for the calculation of the results of the cube operations. A
major motivation for our approach was the support of
series of operations on the cubes (for example, the
preservation of the results of previous operations and the
applicability of aggregate functions in a series of
operations). Efficiency is also targeted, so that
information refinement operations (such as drill-down) are
directly performed.

Furthermore, we have provided mappings of the
multidimensional model (a) to the relational model, where
cubes and dimensions are mapped to relations and cube
operations to relational algebra operations and (b) to
multidimensional arrays, through a mapping function.

Apart from the applicability to both MOLAP and
ROLAP engines, a basic contribution of our approach for
ROLAP engines is that although a cube is defined in terms
of another cube, in its relational mapping, only the
relational expressions are necessary. For example, if an
OLAP tool is to perform a navigation operation, it is not
obligatory that the result is always temporarily stored; the
definition of a view over the base-cube-table is
sufficient.

Yet, there are still issues which have not been dealt
with. The relaxatton of several constramts imposed
throughout the definitions of the paper is a possible topic
of future research (for example, the relaxation of the
constraint that the dimension levels of the base-cube must
be of level 1). The applicability of existing results of
research on view usability (1 I] can also be investigated in
the framework we have set (especially since a relational
mapping is provided), in order to optimize the execution
of the operations. For example, if Navigation is to be
performed in a roll-up fashion, one could possibly use the
cell data of the cube itself, rather than calculating the new
result from the basic cube. Finally, it is not at all certain,
that the set of cube operations that we provide is
exhaustive, so extensions and new operators are a topic of
future research.

Acknowledgment

The author wishes to thank Prof. Timos Sellis for
many helpful and detailed comments which enabled the
improvement of this paper. This research was partially
supported by the European Commission funded LTR
ESPRIT project “DWQ: Foundations on Data Warehouse
Quality”, Project No. 22469 and by the General
Secretariat of Research and Technology (Greece) under
the PENED program.

6. References

[l] R. Agrawal, A. Gupta, S. Sarawagi, “Modeling
Multidimensional Databases”, IBM Research

Report, IBM Almaden Research Center, September
1995.

[2] E. Baralis, S. Paraboschi, E. Teniente, “Mareriulized
View Selection in a Multidimensional Database”,
Proceedings of the 231d VLDB Conference, 1997.

[3] S. Chaudhuri, U.Dayal, “Dam warehousing and
OLAP for Decision Support”, Tutorials of 22”d
VLDB Conference, 1996.

[4] L. Cabbibo, R. Torlone, “Querying Mulridimesional
Databases”, 6th International Workshop on Database
Programming Languages (DBPL6), 1997.

[5] L. Cabbibo, R. Torlone, “A Logical Approach to

Multidimensional Databases”, EDBT 1998.
[6] DWQ, “Deliverable Dl.1, Data Warehouse Qualit)

Requiremenrs and Framework”, NTUA, RWTH,
INRIA, DFKI, UNIROMA, IRST, DWQ TR DWQ -
NTUA - 1001, 1997, available at
http:llwww.dbnet.ece.ntua.gr/-dwql

[7] C.G. Erickson, “Mulfidimensionalism and the data
warehouse”, in the Data Warehousing Conference
(Orlando FL, February 1995).

[8] J. Gray, A. Bosworth, A. Layman, H. Pirahesh.
“‘Data Cube: A Relational Aggregation Operator
Generalizing Group-l?\, Cross-Tabs, and Sub-
Totals”, Proceedings of ICDE ‘96, New Orleans,
February 1996.

[9] M. Gyssens, L.V.S. Lakshmanan, “A Foundationfor
Multi-Dimensional D&abases”, Proceedings of the
23’d VLDB Conference, 1997.

[IO] K. Kulkarni, N. Mattos, A. Nori, “Objecr-Relational
Database Systems Principles, Products and
Chailenges”, Tutorials of the 23d International
VLDB Conference, 1997.

[1 l] A. Levy, A. 0. Mendelzon, Y. Sagiv, D. Srivastava,
“Answering Queries using Views”, In. PODS, 1995.

[121 C. Li, X. Sean Wang, ‘.A Data Modelfor Supporfing
On-Line Analyrical Processing”, CIKM 1996.

[13] OLAP Council, “The OL‘AP glossary”.
http://www.olapcouncil.org, The OL4P Council,

1997.
[14] G. Ozsoyoglu, M. Ozsoyoglu, F. Mata, “A Language

and a Physical Organization Technique for

Sumrnq Tables”, Proceedings of the ACM
SICMOD Conference, 1985.

[151 G. Ozsoyoglu, M. Ozsoyoglu, V. Matos, “Extending

Relational AIgebru and Relarional Calculus wirh
Se!-Valued Attributes and Aggregation Functions”,

ACM TODS 12(4), 1987.
[161 M. Rafanelli, F.L. Ricci, ‘A funcrional model for

macro-durubnses”, SIGMOD Record, 20(l), March
1991.

[17] A. Shoshani, “OLAP and Statistical Databases:
Similarities and DifJerences”, Tutorials of PODS
1997.

[18] P. Vassiliadis, “Formal Foundations for
Mulridimensional Dambases” (extended version) -
NTUA Technical Report, January 1998.

[19] J. Widom, “Research Problems in Data
Warehousing”, Proc, of 4’s CIKM Conference, 1995

62

