
Recent Developments in Graph Matching

Horst Bunke
Department of Computer Science

University of Bern
Neubrückstr. 10, CH-3012 Bern, Switzerland

bunke@iam.unibe.ch

Abstract

Graphs are a powerful and versatile tool useful in var-
ious subfields of science and engineering. In many appli-
cations, for example, in pattern recognition and computer
vision, it is required to measure the similarity of objects.
When graphs are used for the representation of structured
objects, then the problem of measuring object similarity
turns into the problem of computing the similarity of graphs,
which is also known as graph matching. In this paper, simi-
larity measures on graphs and related algorithms will be re-
viewed. Also theoretical work showing various relations be-
tween different similarity measures will be discussed. Other
topics to be addressed include graph clustering and efficient
indexing of large databases of graphs.

1 Introduction

Graphs are a powerful data structure useful for object
representation in structural pattern recognition. Typically,
the parts of a complex object are represented by nodes, and
relations between the parts by edges. These relations can be
of various nature, for example, geometric, spatial, temporal,
conceptual, a.s.o. Labels and attributes for the nodes and
edges are used to incorporate further information in a graph
representation. For example, labels or attributes often repre-
sent quantities such as the length of a line segment, the size
or the color of a region, the angle enclosed between two
straight lines, or the spatial distance between two points.
In addition to a high representational power, graphs have a
number of interesting invariance properties. For instance, if
a graph is translated, rotated or transformed into its mirror
image, it is still the same graph in the mathematical sense.
Due to these properties, graphs have become a very popular
representation formalism.

In many applications in pattern recognition and related
areas, object similarity is a key issue. Given a database of
known objects and some input to be classified, the task is

to retrieve one or several objects from the database that are
similar to the input. If graphs are used for object represen-
tation, this problem turns into determining the similarity of
graphs, which is generally referred to asgraph matching.

Early approaches to graph matching were restricted
to finding graph or subgraph isomorphisms between two
graphs [55]. A graph isomorphism is a bijective mapping
between the nodes of two graphs that have the same number
of nodes, identical labels, and an identical edge structure.
Similarly, a subgraph isomorphism between two graphsg1
and g2 is an isomorphism betweeng1 and a subgraph of
g2. Graph and subgraph isomorphism are useful to find out
if two objects are the same or if one object is present in
a group of several objects, up to the invariance properties
inherent to the underlying graph representation. However,
both graph and subgraph isomorphism are limited in their
applicability because real world objects are usually affected
by noise such that the graph representations of identical ob-
jects may not exactly match. Therefore, it is necessary to
integrate some degree of error tolerance into the matching
process.

One way to cope with errors and distortions is to use the
maximum common subgraph of two graphs as a similarity
measure [24, 29]. The maximum common subgraphg of
two graphsg1 andg2 is a subgraph of bothg1 andg2 and
has, among all those subgraphs, the maximum number of
nodes. Clearly, the more similarg1 andg2 are, the larger is
their maximum common subgraph. A powerful alternative
to maximum common subgraph is error tolerant matching
using graph edit distance [6, 54]. Graph edit distance is an
extension of the well-known concept of string edit distance
[57] to the domain of graphs. In graph edit distance com-
putation one introduces a set of graph edit operations. The
purpose of these edit operations is to correct the errors that
may have corrupted the graphs under consideration. In its
most general form, a graphedit operation is either a dele-
tion, insertion, or substitution (i.e. label change). Edit oper-
ations can be applied to nodes as well as to edges. The edit
distance of two graphs,g andg0, is defined as the shortest

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

sequence of edit operations that transformg into g0. Obvi-
ously, the shorter this sequence is the more similar are the
two graphs. Thus edit distance is suitable to measure the
similarity of graphs. The shortest sequence of edit opera-
tions that transform a graphg1 into another graphg2 is not
only a measure of the similarity ofg1 andg2, but also im-
plies a mapping from the nodes ofg1 to the nodes ofg2.
This mapping corresponds to a transformation that corrects
all distortions in the graphs with minimum effort. In prac-
tical applications, some edit operations may have more im-
portance than others. Hence, very often acost is assigned to
each individual edit operation. Typically the more likely an
edit operation is to occur the smaller is its cost. An assign-
ment of costs to the individual edit operations is often called
a cost function. Given a set of edit operations together with
their costs, graph edit distance computation in its most gen-
eral form means to find a sequence of edit operations that
transform, with minimum cost, one of the given graphs into
the other.

Numerous applications of graph matching have been re-
ported in the literature. They include case-based reasoning
[2, 39], machine learning [11, 17, 31], planning [44], se-
mantic networks [13], conceptual graph [28], monitoring
of computer networks [52]. Furthermore it was used in
the context of visual languages and programming by graph
transformations [41, 43]. Numerous applications from the
areas of pattern recognition and machine vision have been
reported. They include recognition of graphical symbols
[19, 23], character recognition [26, 42], shape analysis
[9, 25, 38], three-dimensional object recognition [64] and
video indexing [50, 51].

In this paper we review recent developments in the area
of graph matching. Basic concepts and theoretical foun-
dations are presented in Section 2. Then in Section 3 an
overview of graph matching algorithms is given. Recent
work in graph clustering is described in Section 4. The par-
ticular problem of efficiently accessing a large database of
graphs is addressed in Section 5. Finally, a discussion and
conclusions are presented in Section 6.

2 Fundamental Concepts and Theoretical
Advancements

The graphs typically found in pattern recognition and
computer vision are characterized by a finite number of
nodes and a finite number of directed edges. Each node and
each edge usually has one or more (symbolic) labels and/or
(numerical) attributes associated with it. These nodes and
attributes come from a finite or an infinite domain. Typ-
ically, all nodes and all edges typically have the same at-
tributes and labels, respectively. The most important con-
cepts in graph matching are graph isomorphism, subgraph
isomorphism, maximum common subgraph detection, and

error-tolerant graph matching using graph edit distance. For
formal definitions see [4].

In some recent papers, relationships between graph edit
distance and other, well established concepts from graph
theory were studied. Although the results of these studies
may not be directly applicable to practical problems, they
are certainly useful to gain a better theoretical understand-
ing of graph matching. In [3] it was shown that maximum
common subgraph and graph edit distance computation are
equivalent to each other under a special class of cost func-
tions. This class of cost functions is characterized by the
constraint that the cost of deletion and insertion of any item
(i.e. any node or edge) is no more than the cost of sub-
stituting the same item. Consequently, there won’t be any
substitution operation in a minimum cost sequence of edit
operations, and the only edit operations actually applied are
insertions and deletions. Under this class of cost functions
the maximum common subgraph g of two graphsg andg0

and their edit distance are related to each other through the
simple equation

Æ(g; g0) = 1�
jmcs(g; g0)j

max(jgj; jg0j)
(1)

In this equationmcs(g; g0) denotes the maximum common
subgraph ofg andg0 andjgj stands for the number of nodes
of g. This similarity measure is a metric. Thus it may be
useful for applications where properties such as reflexivity
or triangular inequality are desired.

An in-depth study of the influence of the underlying cost
function on graph edit distance computation was presented
in [5]. The main result of this study is that, for any cost
function, there exist infinitely many other, equivalent cost
functions that lead to the same optimal sequence of edit op-
erations for transforming two given graphs into each other.
Moreover, given the edit distanced(g; g0) under one partic-
ular cost function, the edit distanced0(g; g0) under any other
cost function from the same equivalence class is just a lin-
ear function ofd(g; g0). From the practical point of view,
this result tells us that any particular graph matching algo-
rithm designed for a special cost function can be used for
infinitely many other cost functions as well, i.e., all other
cost functions from the same equivalence class.

A novel concept, the minimum common supergraph of
two graphs, was recently introduced [7]. A supergraphg

of two graphs,g0 andg00, is a graph that contains bothg0

andg00 as subgraphs. The minimum common supergraph of
g0 andg00 is a graph that is a supergraph of bothg0 andg00

and has, among all those supergraphs, the minimum num-
ber of nodes and edges. It has been shown that the compu-
tation of the minimum common supergraph can be solved
through computation of the maximum common subgraph.
Similarly to eq.(1) there is a relation between the minimum
common supergraph of two graphs and their edit distance

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

[7]. While maximum common subgraph can be regarded a
kind of intersection operator on graphs, minimum common
supergraph can be interpreted as graph union. This obser-
vation may be an interesting starting point for investigating
graph operators with algebraic properties.

3 Graph Matching Algorithms

A wide spectrum of algorithms with different character-
istics have become available for graph matching. The stan-
dard algorithm for graph and subgraph isomorphism detec-
tion is the one by Ullman [55]. Maximum common sub-
graph detection has been addressed in [24, 29, 37]. Classi-
cal methods for error-tolerant graph matching can be found
in [15, 45, 48, 54, 63]. Most of these algorithms are par-
ticular versions of the A* search procedure, i.e., they rely
on some kind of tree search incorporating various heuristic
lookahead techniques in order to prune the search space.

These methods are guaranteed to find the optimal solu-
tion but require exponential time and space due to the NP-
completeness of the problem. Suboptimal, or approxima-
tive methods, on the other hand, are polynomially bounded
in the number of computation steps but may fail to find the
optimal solution. For example, in [10, 62] probabilistic re-
laxation schemes are described. Other approaches are based
on neural networks such as the Hopfield network [16], the
Kohonen map [65] or the Potts MFT neural net [53]. Also
genetic algorithms have been proposed recently [12, 60].
In [58] an approximate method based on maximum flow is
introduced and in [18] and [61] graduate assignment and
Tabu search are investigated, respectively. However, all of
these approximate methods may get tracked in local minima
and miss the optimal solution. Approaches to the weighted
graph matching problem using Eigenvalues and linear pro-
gramming, have been proposed in [56] and [1], respectively.
As a special case, the matching of trees has been addressed
in a series of papers recently [9, 36, 38, 59].

In the remainder of this section we briefly review three
optimal graph matching methods that were proposed re-
cently. In [30, 33] a new method is described for matching
a graphg against a database of model graphsg1; : : : ; gn in
order to find the modelgi with the smallest edit distance
d(g; gi) to g. The basic assumption is that the models in the
database are not completely dissimilar. Instead, it is sup-
posed that there are graphssj 0s that occur simultaneously
as subgraphs in several of thegi0s, or multiple times in the
samegi. Under a naive procedure, we will matchg sequen-
tially with each of thegi0s. However, because of common
subgraphssj shared by several modelsgi, thesj 0s will be
matched withg multiple times. This clearly implies some
redundancy.

In the approach described in [30, 33] the model graphs
g1; : : : ; gn are preprocessed generating a symbolic data

structure, called network of models. This network is a com-
pact representation of the models in the sense that multiple
occurrences of the same subgraphsj are represented only
once. Consequently, such subgraphs will be matched only
once with the input. Hence the computational effort will
be reduced. A further enhancement of the computational
efficiency of the method is achieved by a lookahead pro-
cedure. This lookahead procedure returns an estimation of
the future matching cost. It is precise and can be efficiently
computed based on the network. In [30, 35] the same proce-
dure is applied not to graph edit distance computation, but
subgraph and graph isomorphism detection.

In [30, 34] an even faster algorithm for graph and sub-
graph isomorphism detection is described. It is based on an
intensive preprocessing step in which a database of model
graphs is converted into a decision tree. At run time, the
input graph is classified by the decision tree and all model
graphs for which there exists a subgraph isomorphism from
the input are detected. If we neglect the time needed for pre-
processing, the computational complexity of the new sub-
graph isomorphism algorithm is only quadratic in the num-
ber of input graph vertices. In particular, it is independent
of the number of model graphs and the number of nodes in
any of the model graphs. However, the decision tree that is
constructed in the preprocessing step is of exponential size
in terms of the number of vertices of the model graphs. The
actual implementation described by the authors is able to
cope with a single graph in the database of up to 22 nodes,
or up to 30 models in the database consisting of up to 11
nodes each.

Recently the decision tree method was extended from
exact graph and subgraph isomorphism detection to error-
tolerant graph matching [32]. Actually, there are different
approaches possible. In one approach, error correction is
considered at the time of the creation of the decision tree.
That is, for each model graph a set of distorted copies are
created and compiled into the decision tree. The number
of distorted copies depends on the maximal admissible er-
ror. At run time, the decision tree is used to classify the
unknown input graph in the same way as in case of exact
subgraph isomorphism detection. The time complexity of
this procedure at run time is only quadratic in the number
of input graph nodes. However, the size of the decision
tree is exponential in the number of vertices of the model
graphs and in the degree of distortion that is to be consid-
ered. Therefore, this approach is limited to (very) small
graphs.

In the second approach, the error corrections are con-
sidered at run time only. That is, the decision tree for a
set of model graphs does not incorporate any information
about possible errors. Hence, the decision tree compilation
step is identical to the original preprocessing step and, con-
sequently, the size of the decision tree is exponential only

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

in the size of the model graphs. At run time, a set of dis-
torted copies of the input graph are constructed such that
all possible error corrections up to a certain error threshold
are considered. Each graph in this set is then classified by
the decision tree. The run time complexity of this method
is O(#n2(#+1)) wheren is the number of nodes in the in-
put graph and# is a threshold that defines the maximum
number of admissible edit operations.

4 Graph Clustering

Clustering is a key concept in pattern recognition. While
a large number of clustering algorithms have become avail-
able in the domain of statistical pattern recognition, rel-
atively little attention has been payed to the clustering
of symbolic structures, such as strings, trees, or graphs
[14, 27, 47]. In principle, however, given a suitable simi-
larity (or dissimilarity) measure, for example, edit distance
or the measure defined in eq. (1), many of the clustering
algorithms originally developed in the context of statistical
pattern recognition, can be applied in the symbolic domain.

In this section we review work on a particular problem
in graph clustering, namely, the representation of a set of
similar graphs through just a single prototype [20]. This
problem typically occurs after a set of graphs has been par-
titioned into clusters. Rather than storing all members of a
cluster, only one, or a few, representative elements are being
retained.

Assume that we are given a setG = fg1; � � � ; gng of
graphs and some distance functiond(g1; g2) to measure the
dissimilarity between graphsg1 andg2. A straightforward
approach to capture the essential information in setG is to
find a graph�g that minimizes the average distance to all
graphs inG, i.e.,

�g = arg ming
1

n

nX

i=1

d(g; gi) (2)

Let’s call graph�g the generalized median of G. If we
constraing to be a member of the given setG, then the
resultant graph

ĝ = arg ming2G
1

n

nX

i=1

d(g; gi) (3)

is called theset median of G.
Given setG, the computation of the set median is a

straightforward task. It requires just O(n2) distance com-
putations. (Notice, however, that each of these distance
computations will have a high computational complexity,
in general.) But the set median is restricted in the sense
that it can’t really generalize from the given patterns repre-
sented by set G. Therefore, generalized median is the more

powerful and interesting concept. However, the actual com-
putational procedure for finding a generalized median of a
given set of graphs is no longer obvious.

It was theoretically shown that for the particular cost
function mentioned in Section 2 and the case where G con-
sists of only two elements, any maximum common sub-
graph of the two graphs under consideration is a generalized
median [8]. Similarly, any minimum common supergraph is
a generalized median as well [7]. Further theoretical prop-
erties of the generalized median have been derived in [21].
These properties are useful to restrict the search space for
generalized median graph computation, which was shown
to be exponential in the number of graphs in setG and their
size.

A practical procedure for generalized median graph
computation using a genetic search algorithm was proposed
in [20]. An interesting feature of this algorithm is the chro-
mosome representation. This representation encodes both,
a generalized median graph candidate, and the optimal map-
ping of the nodes of this candidate to the nodes of the given
graphs. Hence, the computationally expensive step of com-
puting the optimal mapping for each candidate arising dur-
ing the genetic search is avoided. Nevertheless, because of
the high computational complexity inherent to the problem,
the applicability of this procedure is still limited to rather
small sets of graphs consisting of a few nodes each.

Concrete application examples of generalized median
graph computation involving graphical elements and hand-
printed isolated characters have been given in [19]. In Fig.
1 another application example is shown. Each of the im-
ages in this figure consists of a number of geometric prim-
itives (circle, triangle, square). Certain relations between
these geometric primitives are considered (right, below).
Using the geometric primitives and the spatial relations, it
is straightforward to derive a graph representation of each
image. For example, the graph corresponding to the image
in the second column in row d) is given in Fig.2.

In Fig. 1, the graphs representing the images in the first
two columns in each row correspond to the given graphs
in set G, while the images in the third column represent
the generalized median, respectively. In this example, the
cost function was chosen such that the generalized median
is a maximum common subgraph of the two given graphs
[8]. In other words, the generalized median graph consists
of exactly those geometric primitives and relations that are
common to the two given images in the first two columns
of each row. For example, in row a) the two given images
have nothing in common and the corresponding generalized
median is empty. In row b) the geometric primitives circle
and square together with their spatial relation right is com-
mon to both given images. In the third column in row c), the
symbol X denotes a wild card label that can be substituted
with low cost by any other node label. In this example, it is

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

a)

b)

c)

X

d)

Figure 1. An application of generalized me-
dian graph (see text)

cheaper to maintain a node with the wild card label than to
delete this node and the relationright.

Is is desirable to make generalized median graph compu-
tation applicable to larger graphs and sets of graphs. Once
this goal has been reached, a number of other tools from sta-
tistical pattern recognition can be adapted to the domain of
graphs. Examples include standard deviation and distance
measures such as Mahalanobis distance.

5 Filtering Large Databases of Graphs

Graph matching is particularly challenging in presence
of large databases. If a database holds many graphs, the se-
quential comparison of an input graph with each graph in
the database becomes infeasible. Consequently, various in-
dexing and preprocessing mechanisms have been proposed
to reduce the computational effort [46, 49]. Recently, a new
approach to the retrieval of graphs from large databases us-
ing machine learning techniques was proposed [22]. For
the purpose of simplicity, only the problem of graph iso-
morphism was addressed.

The main idea of the proposed approach is to use simple
features, which can be efficiently extracted from a graph, to
reduce the number of possible candidates in the database.
Examples of such features are the number of nodes or edges

circletriangle

square

r
b

r

b r=right
b=below

Figure 2. Graph representation of one of the
images in Fig. 1

in a graph, the number of nodes or edges with a certain la-
bel, the number of edges (with a certain labell) incident to a
node (with a certain labell0), a.s.o. Obviously, a necessary
condition for a graph in the database being isomorphic to
the input graph is that these features have identical values
in both graphs. Therefore, it can be expected that certain
graphs in the database can be ruled out by a few fast tests
using only these simple features. Consequently, the num-
ber of candidates that have to undergo an expensive test for
isomorphism can be reduced.

A potential problem with this approach is that there may
exist a large number of simple features. Hence the question
arises which of these features are most suitable to rule out
as many candidates from the database as quickly as possi-
ble. To find the best feature set, the application of machine
learning techniques, in particular decision tree induction by
means of the C4.5 algorithm [40] was proposed.

In the experiments reported in [22] only three types of
features were used, namely the number of vertices with a
given label, the number of vertices with a given number of
incoming edges, and the number of vertices with a given
number of outgoing edges. Obviously, these features are
easy and computationally inexpensive to extract. On the
other hand, as it was experimentally demonstrated, they are
efficient in ruling out a large number of potential candidate
graphs.

Given a database with a number of graphs, the features
of each graph are extracted and passed on to C4.5, which
builds a decision tree. These steps are done off-line. In the
on-line phase, the task is to decide whether there is a graph,
which is isomorphic to the input, in the database. To solve
this task, the features of the input graph are extracted and
used to traverse the decision tree. There are only two possi-
ble outcomes of this decision tree traversal procedure. The
first outcome is that we don’t reach a leave node. In this
case it is guaranteed that there is no graph in the database
isomorphic to the input. The second outcome is that we do
reach a leave node. In this case all graphs associated with
that leave node are possibly isomorphic to the input. Hence

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

each of these graphs is tested, using a conventional algo-
rithm, for example, the one reported in [55]. Obviously, fea-
ture extraction and decision tree traversal are inexpensive
operations when compared to isomorphism test. Therefore,
substantial savings in computation time can be expected if
the average number of graphs associated with a leaf node is
small, and the depth of the decision tree is bounded.

The efficiency of the proposed algorithm was experimen-
tally evaluated using randomly generated graphs. In one se-
ries of experiments, a database of 1000 graphs withn nodes
each was generated. The parametern was continuously in-
creased from 5 to 50. The average number of graphs associ-
ated with a leaf node in the decision tree was only 2 in this
experiment, independent of the parametern and the number
of node labels, which was varied from 5 to 100. The depth
of the tree is shown in Fig. 3. As both the depth of the tree
and the average number of graphs associated with a leaf
node are small, the proposed approach seems very appro-
priate for efficient retrieval of graphs from large databases.

0
5

10
15
20
25
30
35
40

0 10 20 30 40 50D
e
p
t
h

o
f

D
e
c
i
s
i
o
n

T
r
e
e

Number of Vertices

5 labels
10 labels
30 labels
50 labels
70 labels

100 labels

Figure 3. Depth of decision tree as a function
of graph size

Future work in this area will address more general re-
trieval paradigms, i.e., subgraph isomorphism and error-
tolerant matching, and more complex graph features.

6 Discussion and Conclusions

In this paper we have reviewed recent developments in
graph matching. It can be concluded that graphs are a ver-
satile and flexible representation formalism suitable for a
wide range of problems in intelligent information process-
ing, including the areas of pattern recognition and computer
vision. A wide spectrum of graph matching algorithms have
become available meanwhile. They range from determin-
istic approaches, suitable for finding optimal solutions to
problems involving graphs with a limited number of nodes
and edges, to approximate methods that are applicable to
large-scale problems.

The graph matching algorithms reviewed in this paper
are very general. In fact, there are no problem dependent

assumptions included. The nodes and edges of a graph may
represent anything, and there are no restrictions on the node
and edge labels. The distortion model used in graph edit
distance computation includes the deletion, insertion, and
substitution of both nodes and edges. Hence it is powerful
enough to model any type of error that may be introduced
to a graph.

Adapting a graph matching algorithm to a particular task
requires the solution of two concrete problems. First, a suit-
able graph representation of the objects of the problem do-
main has to be found. Secondly, appropriate error correc-
tion, i.e. edit, operations together with their costs have to be
defined. For the solution of both problems, domain specific
knowledge must be utilized whenever it is meaningful.

There are a number of open problems in graph match-
ing that deserve further attention. An example is the ex-
tension of generalized median graph computation to larger
graphs and sets of graphs. More generally, the introduction
of concepts that are well established in the area of statis-
tical pattern recognition to the structural domain is a great
challenge. Particular examples include self organizing fea-
ture maps, vector quantization, and automatic parameter
learning. Another topic of interest is the extension of the
database indexing method described in Section 5 to error-
tolerant matching.

Acknowledgement

The author wants to thank Dr. X. Jiang for continuous
collaboration and intensive exchange of ideas.

References

[1] H. Almohamed. A linear programming approach for the
weighted graph matching problem.IEEE Trans. PAMI,
15:522–525, 1993.

[2] K. Börner, E. Pippig, E. Tammer, and C. Coulon. Structural
similarity and adaption. In I.Smith and B.Faltings, editors,
Advances in Case-based Reasoning, LNCS 1168, pages 58–
75. Springer, 1996.

[3] H. Bunke. On a relation between graph edit distance and
maximum common subgraph.Pattern Recognition Letters,
18:689–694, 1997.

[4] H. Bunke. Error-tolerant graph matching: a formal frame-
work and algorithms. In A. Amin, D. Dori, B. Pudil, and
H. Freeman, editors,Advances in Pattern Recognition, pages
1–14. Springer Verlag, 1998.

[5] H. Bunke. Error correcting graph matching: On the influ-
ence of the underlying cost function.IEEE Trans. PAMI,
21:917–922, 1999.

[6] H. Bunke and G. Allerman. A metric on graphs for struc-
tural pattern recognition. In H.W.Sch¨ussler, editor,Signal
Processing II: Theories and Applications, pages 257–260.
Elsevier Science Publishers B.V. (North-Holland), 1983.

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

[7] H. Bunke, X. Jiang, and A. Kandel. On the minimum com-
mon supergraph of two graphs.To appear in Computing,
2000.

[8] H. Bunke and A. Kandel. Mean and maximum common sub-
graph of two graphs.Pattern Recognition Letters, 21:163–
168, 2000.

[9] V. Cantoni, L. Cinque, C. Guerra, S. Levialdi, and L. Lom-
bardi. 2-d object recognition by multiscale tree matching.
Pattern Recognition, 31:1443–1455, 1998.

[10] W. Christmas, J. Kittler, and M. Petrou. Structural match-
ing in computer vision using probabilistic relaxation.IEEE
Trans. PAMI, 8:749–764, 1995.

[11] D. Cook and L. Holder. Substructure discovery using min-
imum description length and background knowledge.Jour-
nal of Artificial Intelligence Research, pages 231–255, 1994.

[12] A. Cross, R. Wilson, and E. Hancock. Genetic search for
structural matching. In B. Buxton and R. Cipolla, editors,
Computer Vision - ECCV ’96, LNCS 1064, pages 514–525.
Springer Verlag, 1996.

[13] H. Ehrig. Introduction to graph grammars with applications
to semantic networks.Computers and Mathematics with Ap-
plications, 23:557–572, 1992.

[14] R. Englert and R. Glanz. Towards the clustering of graphs.
In Proc. 2nd IAPR-TC-15 Workshop on Graph Based Rep-
resentations, pages 125–133, 2000.

[15] M. Eshera and K. Fu. A graph distance measure for image
analysis.IEEE Trans. SMC, 14:398–408, 1984.

[16] J. Feng, M. Laumy, and M. Dhome. Inexact matching us-
ing neural networks. In E. Gelsema and L. Kanal, editors,
Pattern Recognition in Practice IV: Multiple Paradigms,
Comparative Studies and Hybrid Systems, pages 177–184.
North-Holland, 1994.

[17] D. Fisher. Knowledge acquisition via incremental concep-
tual clustering. In J.W.Shavlik and T.G.Dietterich, editors,
Readings in Machine Learning, pages 267–283. Morgan
Kaufmann, 1990.

[18] S. Gold and A. Rangarajan. A graduate assignment algo-
rithm for graph matching.IEEE Trans. PAMI, 18:377–388,
1996.

[19] X. Jiang, A. Münger, and H. Bunke. Synthesis of repre-
sentative symbols by computing generalized median graphs.
In Proc. Int. Workshop on Graphics Recognition GREC ’99,
pages 187–194, Jaipur, 1999.

[20] X. Jiang, A. Münger, and H. Bunke. Computing the gener-
alized median of a set of graphs. InProc. 2nd IAPR-TC-15
Workshop on Graph Based Representations, pages 115–124,
2000.

[21] X. Jiang, A. Münger, and H. Bunke. On median graphs:
Properties, algorithms, and applications.Submitted, 2000.

[22] M. Lazarescu, H. Bunke, and S. Venkatesh. Graph match-
ing: Fast candidate elimination using machine learning tech-
niques.Submitted, 2000.

[23] S. Lee, J. Kim, and F. Groen. Translation- rotation- and scale
invariant recognition of hand-drawn symbols in schematic
diagrams.Int. Journal of Pattern Recognition and Artificial
Intelligence, 4:1–15, 1990.

[24] G. Levi. A note on the derivation of maximal common
subgraphs of two directed or undirected graphs.Calcolo,
9:341–354, 1972.

[25] T. Lourens.A biologically plausible model for corner-based
object recognition from color images. PhD thesis, University
of Groningen, The Netherlands, 1998.

[26] S. Lu, Y. Ren, and C. Suen. Hierarchical attributed graph
representation and recognition of handwritten chinese char-
acters.Pattern Recognition, 24:617–632, 1991.

[27] S.-Y. Lu. A tree-to-tree distance and its application to cluster
analysis.IEEE Trans. PAMI, 1:219–224, 1979.

[28] P. Maher. A similarity measure for conceptual graphs.Int.
Journal of Intelligent Systems, 8:819–837, 1993.

[29] J. McGregor. Backtrack search algorithms and the maximal
common subgraph problem.Software-Practice and Experi-
ence, 12:23–34, 1982.

[30] B. Messmer. Efficient graph matching algorithms for pre-
processed model graphs. PhD thesis, University of Bern,
Switzerland, 1995.

[31] B. Messmer and H. Bunke. Automatic learning and recog-
nition of graphical symboles in engineering drawings. In
K.Tombre and R.Kasturi, editors,Graphics Recognition,
LNCS 1072, pages 123–134. Springer Verlag, 1996.

[32] B. Messmer and H. Bunke. Error-correcting graph isomor-
phism using decision trees.Int. Journal of Pattern Recogni-
tion and Art. Intelligence, 12:721–742, 1998.

[33] B. Messmer and H. Bunke. A new algorithm for error toler-
ant subgraph isomorphism.IEEE Trans. PAMI, 20:493–505,
1998.

[34] B. Messmer and H. Bunke. A decision tree approach to
graph and subgraph isomorphism detection.Pattern Recog-
nition, 32:1979–1998, 1999.

[35] B. Messmer and H. Bunke. Efficient subgraph isomorphism
detection - a decompostion approach.To appear in IEEE
Trans. on DKE, 2000.

[36] K. Oflazer. Error-tolerant retrieval of trees.IEEE Trans.
PAMI, 19:1376–1380, 1997.

[37] M. Pelillo. A unifying framework for relational structure
matching. InProc. 14th ICPR, pages 1316–1319, Brisbane,
1998.

[38] M. Pelillo, K. Siddiqi, and S. Zucker. Matching hierarchi-
cal structures using associated graphs.IEEE Trans. PAMI,
21:1105–1120, 1999.

[39] J. Poole. Similarity in legal case based reasoning as degree
of matching in conceptual graphs. In M.Richter, S.Wess,
K.-D.Althoff, and F.Maurer, editors,Preproceedings: First
European Workshop on Case-Based Reasoning, pages 54–
58, 1993.

[40] J. R. Quinlan.C4.5 : Programs for Machine Learning. Mor-
gan Kaufmann Publishers, 1993.

[41] J. Rekers and A. Sch¨urr. Defining and parsing visual lan-
guages with layered graph grammars.Journal of Visual Lan-
guages and Computing, 8:27–55, 1997.

[42] J. Rocha and T. Pavlidis. A shape analysis model with ap-
plications to a character recognition system.IEEE Trans.
PAMI, pages 393–404, 1994.

[43] P. Rodgers and P. King. A graph - rewriting visual language
for database programming.Journal of Visual Languages and
Computing, 8:641–674, 1997.

[44] K. Sanders, B. Kettler, and J. Hendler. The case for graph-
structured representations. In D.Leake and E.Plaza, editors,
Case-Based Reasoning Research and Development, LNCS
1266, pages 245–254. Springer, 1997.

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

[45] A. Sanfeliu and K. Fu. A distance measure between at-
tributed relational graphs for pattern recognition.IEEE
Trans. SMC, 13:353–363, 1983.

[46] K. Sengupta and K. Boyer. Organizing large structural mod-
elbases.IEEE Trans. PAMI, 17:321–332, 1995.

[47] D. Seong, H. Kim, and K. Park. Incremental clustering of
attributed graphs.IEEE Trans. SMC, 23:1399–1411, 1993.

[48] L. Shapiro and R. Haralick. Structural descriptions and in-
exact matching.IEEE Trans. PAMI, 3:504–519, 1981.

[49] L. Shapiro and R. Haralick. Organization of relational mod-
els for scene analysis.IEEE Trans. PAMI, 3:595–602, 1982.

[50] K. Shearer.Indexing and retrieval of video using spatial rea-
soning techniques. PhD thesis, Curtin University of Tech-
nology, Perth, Australia, 1998.

[51] K. Shearer, H. Bunke, and S. Venkatesh. Video indexing and
similarity retrieval by largest common subgraph detection
using decision trees.to appear in Pattern Recognition, 2000.

[52] P. Shoubridge, M. Krarne, and D. Ray. Detection of abnor-
mal change in dynamic networks.Proc. of IDC’99, Ade-
laide, pages 557–562, 1999.

[53] P. Suganthan, E. Tesh, and D. Mital. Pattern recognition by
graph matching using Potts MFT neural networks.Pattern
Recognition, 28:997–1009, 1995.

[54] W. Tsai and K. Fu. Error-correcting isomorphisms of at-
tributed relational graphs for pattern recognition.IEEE
Trans. SMC, 9:757–768, 1979.

[55] J. Ullman. An algorithm for subgraph isomorphism.Journal
of the Association for Computing Machinery, 23(1):31–42,
1976.

[56] S. Umeyama. An eigendecomposition approach to weighted
graph matching problems.IEEE Trans. PAMI, 10:695–703,
1988.

[57] R. Wagner and M. Fischer. The string-to-string correction
problem.Journal of the Association for Computing Machin-
ery, 21(1):168–173, 1974.

[58] I. Wang, K. Zhang, and G. Chirn. The approximate graph
matching problem. InProc. of 12th ICPR, pages 284–288,
Jerusalem, 1994.

[59] J. Wang. An algorithm for finding the largest approximately
commen substructure of two trees.IEEE Trans. PAMI,
20:889–895, 1998.

[60] Y.-K. Wang, K.-C. Fan, and J.-T. Horng. Genetic-based
search for error-correcting graph isomorphism.IEEE Trans.
SMC, 27(4):588–597, 1997.

[61] M. Williams, R. Wilson, and E. Hancock. Deterministic
search for relational graph matching.Pattern Recognition,
32:1255–1271, 1999.

[62] R. Wilson and E. Hancock. Graph matching by discrete
relaxation. In E. Gelsema and L. Kanal, editors,Pattern
Recognition in Practice IV: Multiple Paradigms, Compar-
ative Studies and Hybrid Systems, pages 165–176. North-
Holland, 1994.

[63] E. Wong. Three-dimensional object recognition by at-
tributed graphs. In H.Bunke and A.Sanfeliu, editors,Syn-
tactic and Structural Pattern Recognition- Theory and Ap-
plications, pages 381–414. World Scientific, 1990.

[64] E. Wong. Model matching in robot vision by subgraph iso-
morphism.Pattern Recognition, 25:287–304, 1992.

[65] L. Xu and E. Oja. Improved simulated annealing, Boltzmann
machine, and attributed graph matching. In L.Almeida, edi-
tor, LNCS 412, pages 151–161. Springer Verlag, 1990.

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE

