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DEFINITION
Extraction, Transformation, and Loading (ETL) processes are responsible for the operations taking place in the
back stage of a data warehouse architecture. In a high level description of an ETL process, first, the data are
extracted from the source datastores, which can be in a relational and/or a semi-structured format. In typical
cases, the source datastores can be On-Line Transactional Processing (OLTP) or legacy systems, files under any
format, web pages, various kinds of documents (e.g., spreadsheets and text documents) or even data coming in
a streaming fashion. Typically, only the data that are different from the previous execution of an ETL process
(newly inserted, updated, and deleted information) should be extracted from the sources. After this phase, the
extracted data are propagated to a special-purpose area of the warehouse, called Data Staging Area (DSA),
where their transformation, homogenization, and cleansing take place. The most frequently used transformations
include filters and checks to ensure that the data propagated to the warehouse respect business rules and integrity
constraints, as well as schema transformations that ensure that data fit the target data warehouse schema. Finally,
the data are loaded to the central data warehouse (DW) and all its counterparts (e.g., data marts and views).
In a traditional data warehouse setting, the ETL process periodically refreshes the data warehouse during idle
or low-load, periods of its operation (e.g., every night) and has a specific time-window to complete. Nowadays,
business necessities and demands require near real-time data warehouse refreshment and significant attention is
drawn to this kind of technological advancement.

HISTORICAL BACKGROUND
Despite the fact that ETL took its name and separate existence during the first decade of the 21st century,
ETL processes have been a companion to database technology for a lengthier period of time –in fact, from the
beginning of its existence. During that period, ETL software was just silently hidden as a routine programming
task without any particular name or individual importance. ETL was born on the first day that a programmer
constructed a program that takes records from a certain persistent file and populates or enriches another file with
this information. Since then, any kind of data processing software that reshapes or filters records, calculates new
values, and populates another data store than the original one is a form of an ETL program. Apart from this
low-profile programming task, research efforts have long hidden ETL tasks, although not much attention was paid
to them.
The earliest form of ETL system that we know of goes back to the EXPRESS system [13] that was intended to
act as an engine that produces data transformations given some data definition and conversion nonprocedural
statements. In later years, during the early days of data integration, the driving force behind data integration
were wrapper-mediator schemes; the construction of the wrappers is a primitive form of ETL scripting [12]. In
the mid ’90’s, data warehousing came in the central stage of database research and still, ETL was there, but
hidden behind the lines. Popular books [4] do not mention the ETL triplet at all, although the different parts
(transformation, cleansing, staging of intermediate data, and loading) are all covered - even if this is done very



Figure 1: An example ETL workflow

briefly at times (it is also noteworthy that the 3rd edition of the same book in 2003 mentions ETL, although
briefly). At the same time, early research literature treated data warehouses as collections of materialized views
since this abstraction was simple and quite convenient for the formulation of research problems.
During the ’00s, it became more and more prevalent that ETL is really important for data integration tasks
since it is costly, labor-intensive, and mission-critical – and for all these factors, important for the success of a
data warehousing project. The difficulty lies in the combination of data integration and data cleaning tasks: as
a typical integration problem, where data are moved and transferred from a certain data store to another, the
details of schema and value mappings play a great role. At the same time, the data can be in highly irregular
state (both in terms of duplicates, constraint and business rule violations, and in terms of irregularities in the
internal structure of fields – e.g., addresses). Therefore, finding effective ways for taming their non-regularity into
a typical relational structure is very hard. On top of that, there is also a variety of persisting problems: ETL
processes are hard to standardize, optimize and execute in a failure-resilient manner (and thus the problem is
hard to solve, and worth paying good money for it).

SCIENTIFIC FUNDAMENTALS
PART I. General description of an ETL Process

Intuitively, an ETL process can be thought of as a directed acyclic graph, with activities and record sets being the
nodes of the graph and input-output relationships between nodes being the edges of the graph. Observe Figure
1, where two sources are depicted in the lower left part of the figure with the names S1.PARTS and S2.PARTS.
The data from these sources must be propagated to the target data warehouse fact table DW.PARTS, depicted
at the bottom right part of the figure. Moreover, the newly inserted records must be further propagated for
the refreshment of aggregate views V1 and V2. (In fact, the views of the example can be anything among
materialized views that are populated by the ETL process, materialized views automatically refreshed by the
DBMS, convenient abstractions of data marts, reports and spreadsheets that are placed in the enterprise portal
for the end-users to download, and any other form of aggregated information that is published in some form to
the end-users of the warehouse.) The whole process of populating the fact table and any of its views is facilitated

2



by a workflow of activities that perform all the appropriate filtering, intermediate data staging, transformations
and loadings. The upper part of Figure 1 depicts how the data (which are extracted as snapshots of the sources)
are transported to a special purpose intermediate area of the warehouse, called Data Staging Area (DSA) [5],
where the transformation phase takes place. First, the snapshots are compared to their previous versions, so
that newly inserted or updated data are discovered. Then, these new data are stored in a hard disk so that we
avoid starting the whole process from scratch in the case of a failure. Then, the data pass from several filters or
transformations and they are ultimately loaded in the data warehouse. The warehouse fact or dimension tables
are not necessarily the end of the journey for the data: at the bottom right of Figure 1, a couple of materialized
views (standing as abstractions of reports, spreadsheets or data marts for the sake of the example) are also
refreshed with newly incoming data.

PART II. Individual steps

Extraction. The extraction step is conceptually the simplest task of all, with the goal of identifying the correct
subset of source data that has to be submitted to the ETL workflow for further processing. As with the rest of
the ETL process, extraction also takes place at idle times of the source system - typically at night. Practically,
the task is of considerable difficulty, due to two technical constraints:

••the source must suffer minimum overhead during the extraction, since other administrative activities also
take place during that period, and,

•both for technical and political reasons, administrators are quite reluctant to accept major interventions to
their system’s configuration; therefore, there must be minimum interference with the software configuration
at the source side.

Depending on the technological infrastructure and the nature of the source system (relational database, COBOL
file, spreadsheet, web site etc.) as well as the volume of the data that has to be processed, different policies
can be adopted for the extraction step, which usually is also called “change data capture”. The most näıve
possibility involves extracting the whole source and processing it as if the original first loading of the warehouse
was conducted. A better possibility involves the extraction of a snapshot of data, which is subsequently compared
to the previous snapshot of data (either at the source, or the DSA side) and insertions, deletions and updates are
detected. In this case, there is no need to further process the data that remain the same. The work presented
in [6] is particularly relevant in this context. Another possibility, involves the usage of triggers in the source
that are activated whenever a modification takes place in the source database. Obviously, this can be done only
if the source database is a relational system; most importantly though, both the interference with the source
system and the runtime overhead incurred are rather deterring factors with respect to this option. An interesting
possibility, though, involves the “log sniffing”, i.e., the appropriate parsing of the log file of the source. In this
case, all modifications of committed transactions are detected and they can be “replayed” at the warehouse side.
A final point in the extraction step involves the necessity of encrypting and compressing the data that are
transferred from the source to the warehouse, for security and network performance reasons, respectively.

Transformation. Depending on the application and the tool used, ETL processes may contain a plethora of
transformations. In general, the transformation and cleaning tasks deal with classes of conflicts and problems
that can be distinguished in two levels [8]: the schema and the instance level. We apply a broader classification
of the problems that includes value-level problems, too.

••Schema-level problems. The main problems with respect to the schema level are (a) naming conflicts, where
the same name is used for different objects (homonyms) or different names are used for the same object
(synonyms) and (b) structural conflicts, where one must deal with different representations of the same
object in different sources, or converting data types between sources and the warehouse.

•Record-level problems. The most typical problems at the record level concern duplicated or contradicting
records. Furthermore, consistency problems concerning the granularity or timeliness of data occur, since the
designer is faced with the problem of integrating data sets with different aggregation levels (e.g., sales per
day vs. sales per year) or reference to different points in time (e.g., current sales as of yesterday for a certain
source vs. as of last month for another source).
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S1.PRODUCTS

ProdID     Desc      Manuf
   101       IPhone    Apple
   102       IPod        Apple

S1.PRODPRIC

ProdID    PriceID    Amount
   101          10           100
   101          11             35
   101          12             15
   102          10             95
   102          11             10

S2.PRODUITS

ProdID    Desc     Fabricant
   101       IPod      Apple
   102       XBox     Microsoft

S1.PriceLookup

PriceID    Desc  
   10          Cost 
   11          Profit
   12          Sale

KeyLookup

SrcID   ProdID      SK
   S1        101       1001
   S1        102       1002
   S2        101       1002
   S2        102       1003

DW.FACT

  SK      Prod    Manuf    Cost   Profit   Sale
1001   IPhone    Apple     100        35     15
1002   IPod        Apple       95        10     null
…….

f

f ’

f ”
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Figure 2: Pivot and Surrogate Keys Assignment operators

•Value-level problems. Finally, numerous low-level technical problems may be met in different ETL scenarios.
To mention a few, there may exist problems in applying format masks, like for example, different value
representations (e.g., for sex: ‘Male’, ‘M’, ‘1’), or different interpretation of the values (e.g., date formats:
American ‘mm/dd/yy’ vs. European ‘dd/mm/yy’). Other value-level problems include assigning surrogate
key management (see next), substituting constants, setting values to NULL or DEFAULT based on a
condition, or using frequent SQL operators like UPPER, TRUNC, SUBSTR.

To deal with such issues, the integration and transformation tasks involve a wide variety of functions, such
as normalizing, denormalizing, reformatting, recalculating, summarizing, merging data from multiple sources,
modifying key structures, adding an element of time, identifying default values, supplying decision commands to
choose between multiple sources, and so forth.

To give a better picture of the problems that the designer of an ETL process usually meets, we elaborate on four
frequent problems in a data warehouse environment.

Surrogate Keys. A common technique in a data warehouse is to replace the keys of the production systems with
a uniform key, namely surrogate key. This replacement is due to a twofold reason: performance and semantic
homogeneity. The performance is impacted when the production keys in the sources follow a textual type,
which is not appropriate for indexing; then, a good policy is to replace the textual key values with numerical
values. However, the most crucial issue is the semantic homogeneity. Frequently, different production systems
use different keys for the same object (synonyms), or the same key for different objects (homonyms), resulting
in the need for a global replacement of those values in the data warehouse. To better illustrate this problem,
observe Figure 2. In that example, two sources S1 and S2 populate the fact table DW.FACT of the data
warehouse. The table S1.PRODUCTS contains the tuple 102 that describes the product IPod manufactured by
Apple. This row is in conflict with row ‘101, IPod, Apple’, in table S2.PRODUCTS, because they both represent
the same real-world entity with different ID’s. In addition, the same row has a homonym conflict with row
‘102, XBox,Microsoft’, in table S2.PRODUCTS (over attribute ProdID). A solution to such problem is to
replace the production key ProdID by a surrogate key using the lookup table KeyLookup(SrcID, ProdID, SK).
The information about the source (attribute SrcID) allows the existence of synonyms in different sources
that are mapped to different objects in the data warehouse (e.g., value 102 in tables S1.PRODUCTS and
S2.PRODUCTS). At the end of this process, the fact table DW.FACT has globally unique, reconciled keys.

Pivoting and Un-Pivoting. A basic characteristic of the data warehouse and a main difference from a relational
database is the high degree of denormalization and redundancy. This ‘problematic’ (in relational terms) design
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is proven extremely efficient for certain types of querying; e.g., aggregate queries over large volumes of data.
Consider, again, the example depicted in Figure 2. In order to estimate the total price of a product, in the
source S1 an aggregation is needed in table S1.PRODPRIC over ProdID, while in the table DW.FACT a
simple algebraic calculation suffices (Cost + Profit − Sale). The gain of this operation becomes clearer when
an aggregation over the total price of a huge number of products is required. Therefore, a very useful ETL
operation is the transformation of a schema based on attribute-value pairs to a (possibly denormalized) schema
appropriate for a data warehouse, where the coded values are mapped to named attributes. In other words,
mostly due to reporting queries, the transformation of the information organized in rows, even with the price of
denormalization, is favored over normalized information organized in columns. This type of transformation is
so called pivoting, rotation or denormalization, because, frequently, the derived values (e.g., the total price) are
also stored as columns, functionally dependent on other attributes. The reverse transformation is also applicable
to several cases; i.e., to normalize denormalized data before being loaded to the data warehouse. As a final
remark, observe in Figure 2, how the different tables at the source side (e.g., PRODUCTS, PRODPRIC,
PriceLookup) are integrated into a single warehouse table (i.e., DW.FACT ). Nowadays, several ETL tools
support this operation as a built-in function. A study on this operation can be found in [1].

Slowly Changing Dimensions. During the refreshment of data warehouses with new values, the values of the
dimension tables can change at the sources (e.g., a product’s color might change) and whenever this happens,
there are several policies to apply for their propagation to the data warehouse. The available solutions constitute
the Slowly Changing Dimensions (SCD) pattern, and the three policies of [5], concerning the management of new
and old values are: overwrite the old value (SCD Type 1), create a new dimensional record (SCD Type 2), push
down the changed value into an “old” attribute (SCD Type 3).
In the Type 1 policy, the attribute values in existing dimension table tuples are simply overwritten by update
commands. The procedure is realized as follows. Two snapshots of the dimensional data containing the current
and the previous versions of the data, respectively, are compared. The newly inserted rows are assigned a new
surrogate key and are inserted in the dimension. The updated rows are assigned a surrogate key, which is the
same as the one that their previous version had already being assigned. Next, these rows are joined with their
old versions from the dimension table, and the produced tuple is inserted in the target table (the old tuple is
deleted). This policy is used when tracking history in dimensions changes is not necessary and the correction of
values is needed.
In the Type 2 policy, the previous version of the dimension tuple is copied, if it exists, and a new tuple is created
with a new surrogate key. An extra key linking the different variants of the same real-world entity is used (possibly
in the form of a timestamp-based key). An annotation of the most recent variant as such (either through an extra,
indexed attribute, or through a different table) proves to be very useful for efficiency reasons. This policy is used
when tracking history of dimension changes is needed.
In the Type 3 policy, the attribute values in existing dimension table tuples are modified by ad-hoc update
commands. If an attribute ai is checked for updates, then a new attribute ai old is created. If a new value exist
for ai in a certain tuple, then the old value is copied to the attribute ai old and the new value is written in ai.
Hence, both values are kept in the respective tuple. This policy too is useful when tracking history of dimension
changes is needed.

String Problems. Last but not least, a crucial problem in ETL is the cleaning and the homogenization of
textual data. Such data may contain information about names, acronyms, addresses, dates, and so on. For
example, consider the following case: the same entity that represents the country ‘Greece’ may be met by the
following semantically equivalent (in real-world terms) expressions: ‘Greece’, ‘GR’, ‘Hellas’, etc. Such problems
are extremely difficult to be handled. The numerous and usually quite expensive approaches that may be
followed, include the usage of thesaurus or domain ontologies, and the application of regular expressions for the
normalization of string data to a set of reference values.

Loading. The end of the source records’ journey through the ETL workflow comes with their loading to the
appropriate table. A typical dilemma faced by inexperienced developers concerns the choice between bulk loading
data through a DBMS-specific utility or inserting data as a sequence of rows. Clear performance reasons strongly
suggest the former solution, due to the overheads of the parsing of the insert statements, the maintenance of logs
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and rollback-segments (or, the risks of their deactivation in the case of failures). A second issue has to do with
the possibility of efficiently discriminating records that are to be inserted for the first time, with records that act
as updates to previously loaded data. DBMS’s typically support some declarative way to deal with this problem
(e.g., Oracle’s MERGE command [10]). In addition, simple SQL commands are not sufficient since the ‘open-loop-
fetch’ technique, where records are inserted one by one, is extremely slow for the vast volume of data to be loaded
in the warehouse. A third performance issue that has to be taken into consideration by the administration team
has to do with the existence of indexes, materialized views, or both, defined over the warehouse relations. Every
update to these relations automatically incurs the overhead of maintaining the indexes and the materialized views.

Part III. Global picture revisited

Design and Modeling. After the above analysis, one can understand that the design of ETL processes is
crucial and complex at the same time. There exist several difficulties underneath the physical procedures already
described.

At the beginning of a data warehousing project, the design team in cooperation with the business managers have
to clarify the requirements, identify the sources and the target, and determine the appropriate transformations
for that specific project; i.e., the first goal is to construct a conceptual design of the ETL process [17, 16, 9]. The
most important part of this task is to identify the schema mappings between the source and the target schemata.
For example, in Figure 2, one should identify the mapping between S1, whose metadata are in English, and
S2, whose metadata are in French; e.g., both tables PRODUCTS and PRODUITS conceptually represent
the same kind of information. This procedure is usually done through analysis of the structure and content of
the existing data sources and their intentional mapping to the common data warehouse model. Possible data
cleaning problems can also be detected at this early part of the design. Conceptual modeling formalisms (both
ad-hoc and UML-based) have been proposed in the literature [17, 16, 9]. Also, several research approaches have
been proposed towards the automation of the schema mapping procedure [11]; here, we mention CLIO, the most
prominent one, which has also been adapted by commercial solutions proposed by IBM [3].

When this task ends, the design involves the specification of a primary data flow that describes the route of
data from the sources towards the data warehouse, as they pass through the transformations of the workflow.
The execution sequence of the workflow’s transformation is determined at this point. The data flow defines
what each process does and the execution plan defines in which order and combination. The flow for the logical
exceptions – either integrity, or business rules violations is specified, too. Control flow operations that take
care of monitoring, or failure occurrences can also be specified. Most ETL tools provide the designer with the
functionality to construct both the data and the control flow for an ETL process.

Implementation and Execution. An ETL workflow can either be built in-house, or can be specified and exe-
cuted via an ETL tool. The in-house implementation is a frequent choice, both due to the cost of ETL tools and
due to the fact that developers feel comfortable to implement the scripts that manipulate their data by themselves.
Typically, such an ETL workflow is built as the combination of scripts written in some procedural languages with
high execution speed (for example, C or Perl), or some vendor specific database language (PL\SQL, T-SQL, etc.).
Alternatively, ETL tools are employed, mainly due to the graphical programming interfaces they provide as well as
for their reporting, monitoring, recovery facilities. Currently, all major DBMS vendors provide ETL functionality;
products from other vendors are also in the market. Wikipedia provides a starting point for a list of ETL tools [18].

Optimization. A typical ETL workflow involves numerous transformations applied on large volumes of data
stemming from different sources and populating different target relations. We can construct such a workflow
in more than one manner. Observe the example of Figure 2. In this case, one has to decide (a) which of the
three transformations f , f ′ or f ′′ should precede in terms of execution order and (b) what will the physical
implementation of each of these transformations be.
Frequently, an ETL workflow must be completed in a specific time window and this task is realized periodically;
e.g., each night. In the case of a failure, the quick recovery of the workflow is also important [7]. Hence, for
performance reasons, it is necessary to optimize the workflow’s execution time. Currently, although the leading
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commercial tools provide advanced GUI’s for the design of ETL scenarios, they do not support the designer with
any optimization technique to the created scenarios. Unlike relational querying, where the user expresses a query
in a high-level language and the DBMS optimizer decides the physical execution of the query automatically, in
the case of ETL workflows it is the designer who must decide the order and physical implementation for the
individual activities.
Practical alternatives involve (a) letting the involved DBMS (in the case of DBMS-based scripts) do the
optimization and (b) treating the workflow as a big multi-query. The solution where optimization is handed
over to the DBMS for execution is simply not sufficient, since DBMS optimizers can interfere only in portions of
a scenario and not in its entirety. Concerning the latter solution, it should be stressed that ETL workflows are
not big queries, since:

••It is not possible to express all ETL operations in terms of relational algebra and then optimize the resulting
expression as usual. In addition, the cases of functions with unknown semantics - ‘black-box’ operations –
or with ‘locked’ functionality – e.g., an external call to a DLL library – are quite often.

•Failures are a critical danger for an ETL workflow. The staging of intermediate results is often imposed by
the need to resume a failed workflow as quickly as possible.

•ETL workflows may involve processes running in separate environments, usually not simultaneously and
under time constraints; thus their cost estimation in typical relational optimization terms is probably too
simplistic.

All the aforementioned reasons can be summarized by mentioning that neither the semantics of the workflow can
always be specified, nor its structure can be determined solely on these semantics; at the same time, the research
community has not come-up with an accurate cost model so far. Hence, it is more realistic to consider ETL
workflows as complex transactions rather than as complex queries. Despite the significance of such optimization,
so far the problem has not been extensively considered in research literature, with results mainly focused on the
black-box optimization at the logical level, concerning the order with which the activities are placed in the ETL
workflow [14].

KEY APPLICATIONS
ETL processes constitute the backbone of the data warehouse architecture. The population, maintenance,
evolution and freshness of the warehouse heavily depends on its backstage where all the ETL operations are taken
place. Hence, in a corporate environment there is a necessity for a team devoted to the design and maintenance
of the ETL functionality.
However, ETL is not useful only for the refreshment of large data warehouses. Nowadays, with the advent of Web
2.0 new applications has been emerged. Among them, mashups are web applications that integrate data which are
dynamically obtained via web-service invocations to more than one sources into an integrated experience. Example
applications include Yahoo Pipes (http://pipes.yahoo.com/), Google Maps (http://maps.google.com/), IBM
Damia (http://services.alphaworks.ibm.com/damia/), and Microsoft Popfly (http://www.popfly.com/). Under
the hood, the philosophy for their operation is ‘pure’ ETL. Although, the extraction phase mainly contains
functionality that allows the communication with web pages (just one more type of source), the transformations
that constitute the main flow resemble those which are already built-in in most ETL tools. Different applications
are targeting to gather data from different users, probably in different formats, and try to integrate them into a
common repository of datasets; an example application is the Swivel (http://www.swivel.com/).

FUTURE DIRECTIONS
Although, as discussed, the ETL logic is not novel in computer science, still, several issues remain open (and not
only from a research point of view). A main open problem in the so called traditional ETL is the agreement
upon a unified algebra and/or a declarative language for the formal description of ETL processes. There are
some first results in the context of the data exchange problem [2], but still, there is much work to do towards
providing ETL engines with the equivalent of what relational algebra and SQL constitute for DBMSs. As already
mentioned, the optimization of the whole ETL process, but also of any individual transformation operators pose
interesting research problems. In this context, parallel processing of ETL processes is of particular importance.
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Finally, standardization is a problem that needs an extra note of attention: although several commercial tools
already exist in the market and all major DBMS vendors provide ETL functionality, each individual effort follows
a different approach for the modeling and representation of ETL processes and individual components. The
convergence towards a globally accepted paradigm of thinking end educating computer scientists on the topic is
a clear issue for the academic community.

However, the ETL functionality expands into new areas beyond the traditional data warehouse environment,
where the ETL is executed off-line, on a regular basis.

On-Demand ETL processes are executed sporadically, and they are manually initiated by some user demand.
The process is responsible for retrieving external data and loading them in the warehouse after the appropriate
transformations. Interesting problems in this area contain: the need for specialized operators, since this process
is mostly focused towards Web data, the computation of minimum effort/time/resources for the construction
of the process; the need for efficient algorithms, due to the fact that this process is initiated by the user; the
provision of a framework easily adaptable to the changes of the external data, and so on.

Stream ETL involves the possible filtering, value conversion, and transformations of incoming streaming
information in a relational format. Although, streams cannot be stored, some patterns or snapshot aggregates
of them can be stored for subsequent querying. Several interesting issues can be identified in this area: the
provision of correctness guarantees; the necessity of cost models for the tuning of the incoming stream within
specified time window; the audit of the incoming stream data for several constraints or business rules, also with
respect to stored data (e.g., primary key violations).

Recently, the term active warehousing was coined to capture the need for a data warehouse containing data
as fresh as possible. Modern corporate necessities demand that OLAP and DSS (Decision support Systems)
should handle updated data in an on-line fashion. The implementation of workflows that transfer data from the
sources to the warehouse immediately as they are generated or modified currently seems to be impossible, due to
the overloading of both the operational sources and the warehouse. Therefore, the path towards achieving this
functionality seems to be a significant increase of the frequency with which the ETL process is performed (again,
having system loading, performance and data completeness issues in mind). Approximation and streaming
techniques should be taken into consideration too to serve user needs with approximate information. In any case,
it appears that currently (2007) active ETL is an established necessity and traditional ETL should adapt to a
new on-line environment.

Finally, with the evolution of the technology and the broader use of internet from bigger masses of users, the
interest is moved also to multiple types of data, which do not necessarily follow the traditional relational format.
Thus, modern ETL applications should also handle efficiently XML, spatial, biomedical, multimedia data and so
on.

DATA SETS
Benchmarking the ETL process is a clear problem nowadays (2007). The lack of any standard principled
experimental methodology with a clear treatment of the workflow complexity, the data volume, the amount of
necessary cleaning and the computational cost of individual activities of the ETL workflows is striking. The only
available guidelines for performing a narrow set of experiments are given in the TPC-DS standard [15].

CROSS REFERENCE
Data Cleaning, Data Warehouse
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