
Visual Maps for Data-Intensive Ecosystems

Efthymia Kontogiannopoulou, Petros Manousis, and Panos Vassiliadis

Univ. Ioannina, Dept. of Computer Science and Engineering, Ioannina, 45110, Hellas
{ekontogi,pmanousi,pvassil}@cs.uoi.gr

Abstract. Data-intensive ecosystems are conglomerations of one or
more databases along with software applications that are built on top of
them. This paper proposes a set of methods for providing visual maps
of data-intensive ecosystems. We model the ecosystem as a graph, with
modules (tables and queries embedded in the applications) as nodes and
data provision relationships as edges. We cluster the modules of the
ecosystem in order to further highlight their interdependencies and re-
duce visual clutter. We employ three alternative, novel, circular graph
drawing methods for creating a visual map of the graph.

Keywords: Visualization, data-intensive ecosystems, clustered graphs.

1 Introduction

Developers of data-intensive ecosystems construct applications that rely on un-
derlying databases for their proper operation, as they typically represent all the
necessary information in a structured fashion in them. The symbiosis of applica-
tions and databases is not balanced, as the latter act as “dependency magnets”
in these environments: databases do not depend upon other modules although
being heavily depended upon, as database access is performed via queries specif-
ically using the structure of the underlying database in their definition.

On top of having to deal with the problem of tight coupling between code
and data, developers also have to address the disperse location of the code with
which they work, in several parts of the code base. To quote [2] (the emphasis is
ours): “Programmers spend between 60-90% of their time reading and navigating
code and other data sources . . .Programmers form working sets of one or more
fragments corresponding to places of interest . . . Perhaps as a result, programmers
may spend on average 35% of their time in IDEs actively navigating among
working set fragments . . . , since they can only easily see one or two fragments
at a time.”

The aforementioned two observations (code-data dependency and contextual-
ized focus in an area of interest) have a natural consequence: developers would
greatly benefit from the possibility of jointly exploring database constructs and
source code that are tightly related. E.g., in the development and maintenance
of a software module, the developer is interested in a specific subset of the
database tables and attributes, related to the module that is constructed, modi-
fied or studied. Similarly, when working or facing the alteration of the structure

E. Yu et al. (Eds.): ER 2014, LNCS 8824, pp. 385–392, 2014.
c© Springer International Publishing Switzerland 2014

386 E. Kontogiannopoulou, P. Manousis, and P. Vassiliadis

Fig. 1. Alternative visualizations for Drupal. Upper Left: Circular layout; Upper Right:
Concentric circles; Lower Left: Concentric Arches. Lower Right: zoom in a cluster of
Drupal.

of the database (e.g., attribute deletions or renaming, table additions, alteration
of view definitions), the developer would appreciate a quick reference to the set
of modules impacted by the change.

This locality of interest presents a clear call for the construction of a map of the
system that allows developer to understand, communicate, design and maintain
the code and its internal structure better. However, although (a) circular graph
drawing methods have been developed for the representation general purpose
graphs [11], [10], [6], and, (b) visual representations of the structure of code have
been used for many decades [7], [4], [2], [3], the representation of data-intensive
ecosystems has not been adequately addressed so far.

The research question that this paper addresses is the provision of a visual map
of the ecosystem that highlights the correlation of the developed code to the un-
derlying database in a way that supports the locality of interest in operations like
program comprehension, impact analysis (for potential changes at the database
layer), documentation etc.

Our method visualizes the ecosystem as a graph where all modules are mod-
eled as nodes of the graph and the provision of data from a database module
–e.g., a table– to a software module is denoted by an edge. To automatically

Visual Maps for Data-Intensive Ecosystems 387

detect “regions” of the graph with dense interconnections (and to visualize them
accordingly) we cluster the ecosystem’s nodes. Then, we present three circular
graph drawing methods for the visualization of the graph (see Fig. 1). Our first
method places all clusters on a embedding “cluster” circle, our second method
splits the space in layers of concentric circles and our last method employs con-
centric arcs. In all our methods, the internal visualization of each cluster involves
the placement of relations, views and queries in concentric circles, in order to
further exploit space and minimize edge crossings.

2 Graph Layout Methods for Data-Intensive Ecosystems

The fundamental modeling pillar upon which we base our approach is the Archi-
tecture Graph G(V,E) of a data-intensive ecosystem. The Architecture Graph
is a skeleton, in the form of graph, that traces the dependencies of the applica-
tion code from the underlying database. In our previous research [9], we have
employed a detailed representation of the queries and relations involved; in this
paper, however, it is sufficient to use a summary of the architecture graph as a
zoomed-out variant of the graph that comprises only of modules (relations, views
and queries) as nodes and edges denoting data provision relationships between
them. Formally, a Graph Summary is a directed acyclic graph G(V,E) with V
comprising the graph’s module nodes and E comprising relationships between
pairs of data providers and consumers.

In terms of visualization methods, the main graph layout we use is a circular
layout. Circular layouts are beneficial due to a better highlight of node similarity,
along with the possibility of minimizing the clutter that is produced by line
intersections. We place clusters of objects in the periphery of an embedding
circle or in the periphery of several concentric circles or arches. Each cluster
will again be displayed in terms of a set of concentric circles, thus producing a
simple, familiar and repetitive pattern.

Our method for visualizing the ecosystem is based on the principle of clustered
graph drawing and uses the following steps:

1. Cluster the queries, views and relations of the ecosystem, into clusters of
related modules. Formally, this means that we partition the set of graph
nodes V into a set of disjoint subsets, i.e., its clusters, C1, C2, . . . , Cn.

2. Perform some initial preprocessing of the clusters to obtain a first estimation
of the required space for the visualization of the ecosystem.

3. Position the clusters on a two-dimensional canvas in a way that minimizes
visual clutter and highlights relationships and differences.

4. For each cluster, decide the positions of its nodes and visualize it.

2.1 Clustering of Modules

In accordance with the need to highlight locality of interest and to accomplish
a successful visualization, it is often required to reduce the amount of visible

388 E. Kontogiannopoulou, P. Manousis, and P. Vassiliadis

elements being viewed by placing them in groups. This reduces visual clutter and
improves user understanding of the graph as it applies the principle of proximity:
similar nodes are placed next to each other. To this end, in our approach we use
clustering to group objects with similar semantics in advance of graph drawing.

We have implemented an average-link agglomerative clustering algorithm [5]
of the graph’s nodes, which starts with each node being a cluster on its own and
iteratively merges the most similar nodes in a new cluster until the node list is
exhausted or a sued-defined similarity threshold is reached.

The distance function used in our method evaluates node similarity on the
grounds of common neighbors. So, for nodes of the same type (e.g., two queries,
or two tables), similarity is computed via the Jaccard formula, i.e., the fraction
of the number of common neighbors over the size of the union of the neighbors of
the two modules. When it comes to assessing the similarity of nodes of different
types (like, e.g., a query and a relation), we must take into account whether
there is an edge among them. If this is the case, the nominator is increased by 2,
accounting for the two participants. Formally, the distance of two modules, i.e.,
nodes of the graph, Mi, Mj is expressed as:

dist(Mi,Mj) = 1−

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|neighborsi ∩ neighborsj|
|neighborsi ∪ neighborsj| , if � ∃ Edge(i, j)

|neighborsi ∩ neighborsj|+ 2

|neighborsi ∪ neighborsj| , if ∃ Edge(i, j)

(1)

2.2 Cluster Preprocessing

Our method requires the computation of the area that each cluster will possess
in the final drawing. In our method, each cluster is constructed around three
bands of concentric circles: an innermost circle for the relations, an intermediate
band of circles for the views (which are stratified by definition, and can thus, be
placed in strata) and the outermost band of circles for the queries that pertain to
the cluster. The latter includes two circles: a circle of relation-dedicated queries
(i.e., queries that hit a single relation) and an outer circle for the rest of the
queries. This heuristic is due to the fact that in all the studied datasets, there
was a vast majority of relation-dedicated queries; thus, the heuristic allows a
clearer visualization of how queries access relations and views.

In order to obtain an estimation of the required space for the visualization of
the ecosystem, we need to perform two computations. First, we need to determine
the circles of the drawing and the nodes that they contain (this is obtained via
a topological sort of the nodes and their assignment to strata, each of which is
assigned to a circle), and second, we need to compute the radius for each of these
circles (obtained via the formula Ri = 3 ∗ log(nodes) + nodes). Then, the outer
of these circles gives us the space that this cluster needs in order to be displayed.

Visual Maps for Data-Intensive Ecosystems 389

Fig. 2. Circular cluster placements (left) and the BioSQL ecosystem (right)

2.3 Layout of Cluster Circle(s)

We propose three alternative circular layouts for the deployment of the graph
on a 2D canvas.

Circular Cluster Placement with Variable Angles. In this method, we use
a single circle to place circular clusters on. As already mentioned, we have already
calculated the radius r of each cluster. Given this input, we can also compute R,
the radius of the embedding circle. We approximate the contour of the inscribed
polygon of the circle, computed via the sum of twice the radius of the clusters by
the perimeter of the embedding circle, which is equal to 2π ∗R (Fig. 2). We take
special care that the layouts of the different clusters do not overlap; to this end,
we introduce a white space factor w that enlarges the radius R of the cluster

circle (typically, we use a fixed value of 1.8 for w). Then, R =
|C|∑

i=0

2 ∗ �i
2π ∗ w , where

C is the set of clusters, and �i the radius of cluster i. As the arc around which
each cluster will be placed is expanded, this leaves extra whitespace between the
actually exploited parts of the clusters’ arcs. Given the above inputs, we can
calculate the angle φ that determines the sector of a given cluster, as well as its
center coordinates (cx, cy) via the following equations:

φ = 2 ∗ arccos
(
2 ∗R2 − �2

2 ∗R2

)

, cx = cos

(
φ

2

)

∗R∗w, cy = sin

(
φ

2

)

∗R∗w (2)

Concentric Cluster Placement. This method involves the placement of clus-
ters to concentric circles. Each circle includes a different number of segments,
each with a dedicated cluster. The proposed method obeys the following steps:

390 E. Kontogiannopoulou, P. Manousis, and P. Vassiliadis

1. Sort clusters by ascending size in a list LC

2. While there are clusters not placed in circles
(a) Add a new circle and divide it in as many segments as S = 2k, with k

being the order of the circle (i.e., the first circle has 21 segments, the
second 22 and so on)

(b) Assign the next S fragments from the list LC to the current circle and
compute its radius according to this assignment

(c) Add the circle to a list L of circles
3. Draw the circles from the most inward (i.e., from the circle with the least

segments) to the outermost by following the list L.

Practically, the algorithm expands a set of concentric circles, split in fragments
of powers of 2 (Fig. 3). As the order of the introduced circle increases, the
number of fragments increases too (S = 2k), with the exception of the outermost
circle, where the segments are equal to the number of the remaining clusters.
By assigning the clusters in an ascending order of size, we ensure that the small
clusters will be placed on the inner circles, and we place bigger clusters on outer
circles since bigger clusters occupy more space.

Radius Calculation. We need to guarantee that clusters do not overlap. This
can be the result of two problems: (a) clusters of subsequent circles have radiuses
big enough, so that they meet, or, (b) clusters on the same circle are big enough
to intersect. To solve the first problem, we need to make sure that the radius of a
circle is larger than the sum of (i) the radius of its previous circle, (ii) the radius
of its larger cluster, and (iii) the radius of the larger cluster of the current circle.
For the second problem, we compute Ri as the encompassing circle’s periphery
(2∗π ∗Ri) that can be approximated the sum of twice the radiuses of the circle’s
clusters. Then, to avoid the overlapping of clusters, we set the radius of the circle
to be the maximum of the two values produced by the aforementioned solutions
and we use an additional whitespace factor w to enlarge it slightly (typically, we
use a fixed value of 1.2 for w).

Ri = w ∗max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ri−1 + bi−1 + bi

1

π
∗

|C|∑

j=1

�j

(3)

where (a) bα: is the rad of biggest cluster of circle α, and (b) �j : is the rad of
cluster cj which is part of C, where C is the set of clusters of circle i.

Clusters on Concentric Arches. It is possible to layout the clusters in a set of
concentric arcs, instead of concentric circles (Fig. 3). This provides better space
utilization, as the small clusters are placed upper left and there is less whitespace
devoted to guard against cluster intersection. Overall, this method is a combina-
tion of the previous two methods. Specifically, (a) we deploy the clusters on con-

centric arches of size
π

2
, to obtain a more compact layout, and (b) we partition

Visual Maps for Data-Intensive Ecosystems 391

Fig. 3. Concentric cluster placement for BioSQL: circles (left), arcs (right)

each cluster in proportion to the cluster’s size by applying the method expressed
by equation (2).

2.4 Layout of Nodes inside a Cluster

The last part of the visualization process involves placing the internals of each
cluster within the area designated to the cluster from previous computations. As
already mentioned, each cluster is aligned in terms of several concentric circles:
an innermost circle for relations, a set of intermediate circles for views and one
or more circles for queries, as we previously stated at section 2.2. Now, since
the radiuses of the circles have been computed, what remains to be resolved
is the order of nodes on their corresponding circle. We order relations via a
greedy algorithm that promotes the adjacency of similar relations (i.e., sharing
the large amount of views and queries). Once relations have been laid out, we
place the rest of the views and queries in their corresponding circle of the cluster
via a traditional barycenter-based method [1] that places a node in an angle that
equals the average value of the sum of the angles of the nodes it accesses.

3 To Probe Further

The long v. of our work [8] contains a full description of our method, along
with its relationship to aesthetic and objective layout criteria and related exper-
iments. Naturally, a vast area of research issues remains to be explored. First,
alternative visualization methods with improved space utilization is a clear re-
search area. Similarly, the application of the method to other types of data sets
is also necessary. The relationship of graph metrics to source code properties po-
tentially hosts interesting insights concerning code quality. Navigation guidelines

392 E. Kontogiannopoulou, P. Manousis, and P. Vassiliadis

(e.g., via textual or color annotation, or an annotated summary of the clusters
of the graphs) also provide an important research challenge.

Acknowledgments. Prof. I. Fudos and L. Palios have made useful comments
to an earlier version of this paper. This research has been co-financed by the Eu-
ropean Union (European Social Fund - ESF) and Greek national funds through
the Operational Program ”Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF) - Research Funding Program: Thales.
Investing in knowledge society through the European Social Fund.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

2. Bragdon, A., Reiss, S.P., Zeleznik, R.C., Karumuri, S., Cheung, W., Kaplan, J.,
Coleman, C., Adeputra, F., LaViola Jr., J.J.: Code bubbles: rethinking the user in-
terface paradigm of integrated development environments. In: Kramer, J., Bishop,
J., Devanbu, P.T., Uchitel, S. (eds.) ICSE (1), pp. 455–464. ACM (2010)

3. Caserta, P., Zendra, O.: Visualization of the static aspects of software: A survey.
IEEE Trans. Vis. Comput. Graph. 17(7), 913–933 (2011)

4. DeLine, R., Venolia, G., Rowan, K.: Software development with code maps. ACM
Queue 8(7), 10 (2010)

5. Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice-Hall
(2002)

6. Halupczok, I., Schulz, A.: Pinning balloons with perfect angles and optimal area.
J. Graph Algorithms Appl. 16(4), 847–870 (2012)

7. Johnson, B., Shneiderman, B.: Tree maps: A space-filling approach to the visual-
ization of hierarchical information structures. In: IEEE Visualization, pp. 284–291
(1991)

8. Kontogiannopoulou, E.: Visualization of data-intensive information ecosystems via
circular methods. Tech. rep., MT-2014-1, Univ. Ioannina, Dept. of Computer Sci-
ence and Engineering (2014),
http://cs.uoi.gr/~pmanousi/publications/2014_ER/

9. Manousis, P., Vassiliadis, P., Papastefanatos, G.: Automating the adaptation of
evolving data-intensive ecosystems. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.)
ER 2013. LNCS, vol. 8217, pp. 182–196. Springer, Heidelberg (2013)

10. Misue, K.: Drawing bipartite graphs as anchored maps. In: Misue, K., Sugiyama,
K., Tanaka, J. (eds.) APVIS. CRPIT, vol. 60, pp. 169–177. Australian Computer
Society (2006)

11. Six, J.M., Tollis, I.G.: A framework and algorithms for circular drawings of graphs.
J. Discrete Algorithms 4(1), 25–50 (2006)

http://cs.uoi.gr/~pmanousi/publications/2014_ER/

	Visual Maps for Data-Intensive Ecosystems
	1 Introduction
	2 Graph Layout Methods for Data-Intensive Ecosystems
	2.1 Clustering of Modules
	2.2 Cluster Preprocessing
	2.3 Layout of Cluster Circle(s)
	2.4 Layout of Nodes inside a Cluster

	3 To Probe Further
	References

