E¢EALEN Baoswv AsdopEvwy Kot
zuvtnpnon E€optwpevwyv
Edbopuoywyv pEocw
Enaveyypadnc Epwtnoswv

Metpoc Mavouonc

:,;/ ’"”,l fl,_i) . .
° N 5 University of loannina, Greece

Problem definition

*Changes on a database schema may cause
inconsistency in applications that use that database,
is there a way to regulate that?

*If there is such a way of accepting or rejecting a
change, could we satisfy it by rewriting the
database schema?

*|f there are conflicts between the applications on
acceptance or rejection of a change, is there a
possibility of satisfying both?

Our approach

We are going to present you a method that contains 3
steps:

1. Status Determination

2. Path Check

3. Rewrite

Background

Message propagation
Path check

Rewriting

Experiments and Results

Background

Database and queries

University DB

View for Courses

Report on DBI, DBIl Grades

Semester I.i

_ CREATE VIEW V_COURSE A5 S
l . SELECT 55 1D, 55 DESCR, G50k G50 MAME, C.ID SELECTWVLSTUDENT_ID, V1.C_MAME, V1.GRADE,

FROM Semester 5 &< CourseStd €5 b1 Course C VZ.C_NAME, V2.GRADE

FROM V_TR V1< V_TR V2 ON STUDENT_ID
— WHERE ¥1.C_NAME="DBI

CourseStd AND V2.C_NAME= ‘DBl

View for Student Transcripts

Report on Average Grade

EE

CHEATE VIEW Y TR A%
SELECT V.=, T.STUDEMT D, T.GRADE
FROM Y Course Y =« Transcript T

SELECT W STUDEMT _IDy, SSTUDEMT _MWAME,
AVGV GRADE) AS GPA

FROM W _TR W =1 STUDEMT 5 ON STUDENT _ID
GROUP BY W.STUDEMNT_ID, 5.5TUDENT_MARE

Student

University DB

Data-centric Ecosystem

View for Courses

H

4

CREATE VIEW v_COURSE AS
SELECT 5.5_ID, %5_DESCH, C5.I0, C5.C_MNAME, C.ID
FROM Semester 5 =< CourseStd C5 -1 Course C

Transcript

3 .

Student

!

Report on DBI, DBIl Grades

ol

SELECT VL STUDENT_ID, W1.C_MNAME, V1.GRADE,
W2.C_MNAME, V2.GRADE

FROMNY_TR W12V _TRVZ OM STUDEMT_ID
WHERE V1.C_NAME= "DBI"

AMNDV2.C_MNAME= "DBII"

View for Student Transcripts

CREATE VIEW V_TR AS
SELECT W™, T.STUDEMT_ID, T.GRADE

FROM W _Course W =« Transcript T

Report on Average Grade

SELECTW.STUDENT_IDy, 5.5TUDENT_NAME,
AVG[W.GRADE) AS GPA,

FROM W _TR W =1 STUDEMT 5 ON STUDENT _ID
GROUP BY W.STUDEMNT_ID, 5.5TUDENT_MARE

Evolving data-centric ecosystem

University DB

3 -

Semester

5 .

CourseStd

View for Courses

CREATE VIEW v_COURSE AS
SELECT 5.5_ID, %5_DESCH, C5.I0, C5.C_MNAME, C.ID
FROM Semester 5 =< CourseStd C5 -1 Course C

!

Report on DBI, DBIl Grades

ol

SELECT VL STUDENT_ID, W1.C_MNAME, V1.GRADE,
W2.C_MNAME, V2.GRADE

FROMNY_TR W12V _TRVZ OM STUDEMT_ID
WHERE V1.C_NAME= "DBI"

AMNDV2.C_MNAME= "DBII"

View for Student Transcripts

Add exam year

CREATE VIEW V_TR AS

-

SELECT W™, T.STUDEMT_ID, T.GRADE

FROM W _Course W =« Transcript T

Student

Report on Average Grade

ol

SELECT W STUDEMT _IDy, SSTUDEMT _MWAME,
AVGV GRADE) AS GPA

FROM W _TR W =1 STUDEMT 5 ON STUDENT _ID
GROUP BY W.STUDEMNT_ID, 5.5TUDENT_MARE

Evolving data-centric ecosystem

University DB

3 -

Semester

5 .

CourseStd

View for Courses

CREATE VIEW v_COURSE AS

SELECT 5.5_ID, %5_DESCH, C5.I0, C5.C_MNAME, C.ID
FROM Semester 5 =< CourseStd C5 -1 Course C

Remove CS.C_NAME

Student

!

Report on DBI, DBIl Grades

ol

SELECT VL STUDENT_ID, W1.C_MNAME, V1.GRADE,
W2.C_MNAME, V2.GRADE

FROMNY_TR W12V _TRVZ OM STUDEMT_ID
WHERE V1.C_NAME= "DBI"

AMNDV2.C_MNAME= "DBII"

View for Student Transcripts

CREATE VIEW V_TR AS
SELECT W™, T.STUDEMT_ID, T.GRADE

FROM W _Course W =« Transcript T

Report on Average Grade

ol

SELECT W STUDEMT _IDy, SSTUDEMT _MWAME,
AVGV GRADE) AS GPA

FROM W _TR W =1 STUDEMT 5 ON STUDENT _ID
GROUP BY W.STUDEMNT_ID, 5.5TUDENT_MARE

Evolving data-centric ecosystem

University DB
Remove CS.C_NAME
o View for Courses
3 -
Semester
; CREATE VIEW V_COURSE AS
| SELECT 5.5_ID0, 55_DESCR, ChI0, C5.C_MNAME, C.ID
jJ - FROM Semester 5 = CourseStd C5 <1 Course C
CourseStd
’ ;_J - Which parts are affected?
Course

Add exam year
/

5

Transcript

j—J]

Student

Evolving data-centric ecosystem

University DB

Semester

¥ -

CourseStd

Course

View for Courses

H

CREATE VIEW v_COURSE AS
SELECT 5.5_ID, %5_DESCH, C5.I0, C5.C_MNAME, C.ID
FROM Semester 5 =< CourseStd C5 -1 Course C

"

Remove CS.C_NAME

Semantically

Add exam year

5

Transcript

Structure invalid

3 -

Student

How are they affected?

10

Problem definition

*Changes on a database schema may cause
inconsistency in applications that use that database,
is there a way to regulate that?

o/f there is such a way of accepting or rejecting a
change, could we satisfy it by rewriting the

database schema?

o/f there are conflicts between the applications on
acceptance or rejection of a change, is there a
possibility of satisfying both?

Policy-driven evolution

University DB

Remove CS.C_NAME Block deletion
View for Courses /
- T

;J 4

Semester
CREATE VIEW V_COURSE AS

. i SELECT 5.5_ID0, 55_DESCR, ChI0, C5.C_MNAME, C.ID

;—l * FROM Semester 5 =< CourseStd C5 < Course C
CourseStd

g_i - Propagate addition

Add exam year

-
Transcript
3 -
Student

Can we regulate the propagation of
the events?

12

Background

Message propagation
Path check

Rewriting

Experiments and Results

Message propagation

13

Message propagation algorithm

Algorithm 2 Status determination algorithm

Input: A topologically sorted architecture graph summary G, (V.. E;) (output of algorithm 1),
a global queue (2} that facilitates the exchange of messages between modules

Ouput: A list of modules Af fected Modules © WV that were affected by the event and
acquire a status other than NO_STATU S

1: fumction SetStatus(A odule, Messages)

2 Consumers Messages = 0

3 for all M essage & Messages do

4 decide status of Module;

5 put messages for M odrle’s consumers in C'onsumers Messages;
6: end for

7: end function

8: Begin

9: for all node = Gg(V,, E;) do
10: node. sfafus = NO_STATUS,
1: end for
12: while size((?) = 0 do

3: visit module (node) in head of ()
14: insert node in A f fected Modules list;
15: zet all messages, M essages, that refer to node;
16: SetStatus(node, Wessages);
17: if node.sfatus == FPROPAGATE then

18: insert node C'onsumers Messages to the ()
19: end if
20: end while

return A f fected Modules;

21:
22: End

Our approach

*Model data-centric ecosystems with Architecture

Graphs
*Mechanism for propagating evolution events on the

graph, based on
‘Graph structure & semantics
Types of evolution events
Policies that regulate the message flooding

*Guarantee the termination of the events propagation

Architecture Graph

SELECT V.STUDENT_ID, S.STUDENT_NAME, AVG(V.TGRADE) AS GPA
FROM V_TR V [><I STUDENT S ON STUDENT_ID

WHERE V.TGRADE > 4/ 10
Modules and Module GROUP BY V.STUDI;NT_ID, S.STUDENT NAME

Encapsulation

Semester Q_pass2courses
== SMTX ouTs
SM [t——— INS_V :
1
CourseStd l sSID : m_ SID
SID
CS |e+——V _Course «=—— V. Tr Tgra : | SName
Course ce AND SNa
| I e GPA
 Jo— —
‘>
Transcript
ol INS_S
SID
Student T
5 SMa _L__
%4 i Q_allStudentGPA

16

University E/S Architecture Grap

Semester V_Course Q_pass2courses
SM INS_SM SMTX ouTsS INS_V1 SMTX ouTS
MID I
MID I o -
MDe = AND MID
scr £ | | MDe
scr | | R C5MNamel
CourseStd . L SID
| CsID Tgradel
s INS_CS : C5N
| C5MN ame
sl csiD 1 ame Tara CSName2
| de
vV _Tr
e C5M | : clp L i Tgrade2
ame 1 -
ame = -
Cabt INS_VC | SMTX | OUTS |= MID
5
MID |
Course I MID sip |
MDe I
I
C j= INS_C scr : = :rii
CID b csID | sCr
I Tgra
I de
csip oI CSN i csiD
3 ame i
Cinf |
© MID Mo & | CSN
_I ame
i -——- SMTX ouTs
Transcript cio INS_V L .
= [— - : Eg SID
T INS_T <0 :
[ul]s} - - i =
Tara | SName
°P 51D de Tgra AND SNa
de | I me GPA
Tate Tera 11 el &
= S = ——4] avg
e)
Student
[E INS_S
S
51D o
Sgo ?-:: SNa
ms Q_allStudentGPA

17

Annotation with Policies

Semester Q_pass2courses
SM INs_sm | SMTX [ouTs INS_V1 SMTX | OUTS
L 1
i mio ! MID sip
MDe AND MID
sCr MO | I MDe
scr | | b C5Namel
Coursestd = s SID
| CSID Tgradel
m-ilws_cs : a‘j:
; CSN
=l CsiD : ame -rgrFJ CSMame2
v Tr ul
C CSN | : cio = Tgrade2
ame 9 -
ame = -
S HE INS_VC | SMTX |OUTS = MID
5
MID |
Course : MID sSiD |
MDe
|
C |e INS_C scr ! ey ex
cID el csiD : ot Toe
I de
csip csio :;"; : csiD
cinf |
0 MID mMiD o : :rSnN
e
; / iti -——- SMTX |OuTs
Transcript cib INS_V ! :
I=] : I
i | sSID
INS_T 0 :
ciD . " ! o
Tgra | SMame
sIb SID de Tgra AND S
Tara de I | G GPA
Er Tgra T i avg
de A = ——4 !)
Student
- INS_S
s | =
SID .
SO Sna 1 1
[Status Determination
e Q_allStudentGPA

18

Implementation problems

How do we guarantee that when a
change occurs at the source nodes
of the AG, this is correctly
propagated to the end nodes of the
graph?
‘We notify exactly the nodes that
should be notified
The status of a node is determined
independently of how messages arrive

at the node
‘Without infinite looping

19

Propagation mechanism

Q_pass2courses

*Modules communicate with
each other via a single means: =
the schema of a provider wl
module notifies the input [ooc] sur]
schema of a consumer module - e
when this is necessary o =

Propagation -~ 7 E

At the module level — o foun
Intra-module level m'ws.r ﬂ

=l SName

Tera

sID de Tgra

I e GPA
Tara - = ; avg

INS_S

S0

SNa
me Q_allStudentGPA

At the module level

1.Topologically sort the graph
2.Visit affected modules with its topological order and

process its incoming messages for it.
3.Process locally the incoming messages

Module Level Propagation

Semester V_Course Q_pass2courses
e INs_sm | SMTX |ouTs [* INS_V1 SMTX | ouTs
MID - I 1
MID | MID -
fos MD o MID
sCr £ | I MDe
sCr | I b C5Namel
1 SID
CourseStd e 2
| CSID Tgradel
L 1 CSN
5 INS_CS : — o
=l €siD 1 ame Tgra CSName2
| de
V_Tr
ac:‘:t (il | : ¢ ‘L - Tgrade2
ame = -
CSSPI INS_VC | SMTX |OUTS = MID
MID i
Course : MID SID |
MDe
I
C |= INS_C scr : = ::12
CID cio csID | sCr =
I gra
I de
CsiD GEID s | CsID
ame]
Cinf I
0 MID MID a0 | &)
_I ame
-——- SMTX ouTs
Transcript cio INS_V : :
- DR I
T l INS_T sID | S
fal]} = I
Add Exam Year = o) ! b
Tgra | SName
= SID de Tgra AND ELE
Tgra de j l s GPA
4 TS: S I avg
>
Student
[INS_S
S
51D .
SDo Sna =
B me
s Q_allStudentGPA

22

Module Level Propagation

Semester V_Course Q_pass2courses
SM INS SM SMTX ouTs [INS_V1 SMTX ouTS
MID _ ! 1
MID | MID SID
MDe = AND MiD
sCr £ | I MDe
sCr | I b C5Namel
1 SID
CourseStd Y
| CSID Tgradel
i CSN
cs INS_CS : e S
= CsiD | ame c Tgra CSName2
| de
V_Tr
f:_:l CSN | : cio ‘L = Tgrade2
ame = - ——
CSSPI l INS_VC | SMTX |OUTS = MID
MID |
Course : MID SID |
MDe
I
(= [|NS_C scr : MDe :fnli
o el csiD i Gl =
| gra
I de
CsiD GEID s | CsID
ame]
Cinf |
i I MID - I SN
_I ame
-——- SMTX ouTs
Transcript cio INS_V : :
-] I
(N L iNs_T o l *I0
fal]} = I
Add Exam Year Cib AT I sID
Tgra | SMame
= SID de Tgra AND ELE
Tera de ; J!' - aki
o TS: S I avg
>
Student
|= INS_S
S
51D T
SDo Sna Na
B me
me Q_allStudentGPA

23

Module Level Propagation
Semester v_Co:rse 0 Q_pass2courses

o INs_sm | SMTX |ouTs INS_V1 SMTX | outs
MID I 1
MID | D il
fos MD ol MID
sCr £ | I MDe
scr | | b C5Namel
Coursestd L = SID
| CSID Tgradel
?'47 INS_CS : csN
| CSN ame
EID CsiD | ame c Tera CSMName2
| de
V_Tr
C CSN | : cio = Tgrade2
ame L
ame = »
on [ins.ve | swmx [ours |« Vi
MID i
Course : MID sSiD |
MDe
I
C |= INS_C scr : = ::12
CID cio csID | sCr =
I gra
I de
CsiD GEID s | CsID
ame I
cinf I
o MID MID b | SN 0
_I ame
i -——- SMTX ouTs
Transcript cio INS_V : :
T [I m_ SID
=T INS_T 0 :
Add Exam Year = SID [b
Tgra | SName
= SID de Tgra AND ELE
de I I i GPA
S T rsneeef
de S’a S | avg
e ,)
Student
N INS_S
S
SID o
Do Sna =
B me
s Q_allStudentGPA

24

Message initiation

The Message is processed in one of the following

schemata:

Output schema and its attributes if the user wants to change the output of a
module (add / delete / rename attribute).

Semantics schema if the user wants to change the semantics tree of the
module.

Finally, Messages are produced within the module for

its consumers, containing the necessary parameters for
Its consumers.

Within each module

A Message arrives at a module, through the
propagation mechanism, these steps describe

module's way of handling:

1) Input schema and its attributes if applicable, are probed.

2) If the parameter of the Message has any kind of connection
with the semantics tree, then the Semantics schema is probed.

3) Likewise if the parameter of the Message has any kind of
connection with the output schema, then the Output schema and
its attributes (if applicable) is probed.

Finally, Messages are produced within the
module for its consumers.s

Theoretical Guarantees

*At the inter-module level
‘Theorem 1 (termination). The message propagation at the inter-module
level terminates.
‘Theorem 2 (unique status). Each module in the graph will assume a
unique status once the message propagation terminates.
‘Theorem 3 (correctness). Messages are correctly propagated to the
modules of the graph

*At the intra-module level
‘Theorem 4 (termination and correctness). The message propagation at
the intramodule level terminates and each node assumes a status.

Background

Message propagation
Path check

Rewriting

Experiments and Results

Path check

28

Problem definition

*Changes on a database schema may cause
inconsistency in applications that use that database,
is there a way to requlate that?

o/f there is such a way of accepting or rejecting a
change, could we satisfy it by rewriting the
database schema?

*If there are conflicts between the applications on
acceptance or rejection of a change, is there a
possibility of satisfying both?

Rewriting

Relation R Relation R

*ViewO initiates a change.
*Query?2 rejects the change.
*Query1 accepts the change.

30

Path Check algorithm

Algorithm 3 Path check algorithm

Input: A swimary of an architecture graph Gg(Vg, Eg), a list of inodules A [fecied modales,
that were alTected by the event (vutput ol algorithin 2)

Ouput: Annotation of the modules of Af fecfed maodules on the action needed to take, and
specifically whether we have to make a new version of it, or, implement the change the user
asked on the current version

1: function CheckModule(M odule, Af fected modules)
2 if AMfodule has been marked then

return; & notified by previous block path
3 end if
5 mark M odule to keep current version and apply the change on a clone;
fa: for all Vew module & Af fected modules feeding M oduwle do
7: CheckModulel Vew module, Af fected modules), = notify path
g end for
2. end function
10: Begin
11: for all Module © Af fected modules do
(et if \odule statns == BT(NW 'K then
13 CheckModule{ M odwle, Af fected maodules);
14 mark A odule not to change; > hlockers keep only current version
15: end if
16: end for

17 Fnd

Path Check

*|f there exists any Block Module we travel in
reverse the Architecture Graph from blocker
node to initiator of change

*In each step we inform the Module to keep
current version and produce a new one adapting
to the change

*We inform the blocker node that it should not
change at all.

Path Check

-
Relation R

Path Check

Query?2 starts Path Check algorithm

Searching which of his providers sent

him the message and notify him that
he does not wan han

Relation R

34

Path Check

View2 is notified
to keep current version for Query2 and
produce new version for Query1

Relation R

35

Path Check

ViewO is notified
To keep current version for Query2 and
Produce new version for Query1

Relation R

36

Path Check

We make sure that Query2 will not
change since it is the blocker

Relation R

37

Problem definition

*Changes on a database schema may cause
inconsistency in applications that use that database,
is there a way to requlate that?

oIf there is such a way of accepting or rejecting a
change, could we satisfy it by rewriting the
database schema?

o/f there are conflicts between the applications on
acceptance or rejection of a change, is there a
possibility of satisfying both?

Background Information
Message propagation
Path check

Rewriting

Experiments and Results

Rewriting

39

Rewriting algorithm

Algorithm 4 Rewriting alzgorithm
Input: A list of modules A f fected modules, knowing the number of versions they have to

retain (output of algorithm 3). initial messages of Af fected modules

Ouput: Architecture graph after the implementation of the change the user asked

1: Begin

2: if any of A f fecfed modules has status BLOCK then

3: if initial message started from Relation module type then

4: return ; t Relations do not change at all
5: else

6 for all Module = A f fected modules do

7: if A odule needs only new version then

8: proceed with rewriting of M odule;

9: connect A odule to new providers; > new version goes to new path
10: else
i1: clome Module; &= clone module, to keep both versions
12: connect cloned M odule to new providers: = clone is the new version
13: proceed with rewriting of cloned M odule;
14: end if
15: end for
16: end if
17: else
18: for all M odule € Af fecied modules do
19: proceed with rewriting of M odele t= no blocker node;
20: end for
21: end if

22: End

Rewriting

*If there is no Block, we perform the rewriting.

*If there is Block and the initiator of the change is a

relation we stop further processing.

*Otherwise:
‘We clone the Modules that are part of a block path
and were informed by Path Check and we perform
the rewrite on the clones
‘We perform the rewrite on the Module if it is not
part of a block path.

Rewriting

Keep current&
produce new

Keep current&
produce new

Keep only
current

Relation R Relation R

42

Background Information
Message propagation
Path check

Rewriting

Experiments and Results

Experiments and results

43

Experimental setup

University database ecosystem (the one of we used in previous
slides, consisted of 5 relations, 2 view and 2 queries)

TPC-DS ecosystem (consisted of 15 relations, 5 views and 27
qgueries) where we used two workloads of events

For both ecosystems: propagate all policy and mixture policy
(20% blockers)

Measurements: effectiveness & cost

Impact & adaptation assessment for TPC-DS

Event:MNode

DS:WEB_SALES
RS:CUSTOMER_DEMOGRAPHICS.CD_DEMO_SK
RS:VIEW38.C_LAST_NAME
RS:CUSTOMER_TOTAL_RET.CTR_TOTAL_RETURN
RS:CUSTOMER_TOTAL_RETRN.CTR_TOTAL_RETURN
ASVIEW3R

AS:CUSTOMER_TOTAL_RET
AS:CUSTOMER_TOTAL_RETEN

AAVIEW3SR

AA:QIB

DS:QI8

DS:CUSTOMER_DEMOGRAPHICS

R5:ITEM

R5:PROMOTION

AM

=

b B b

i = = b e e b

ot
[

Imp.act ASSessment

% AM
100
90.63
93.75
93.94
94.12
94.29
91.67
91.89
94.74
97.44
97.44
92.11
73.68
94.74

Al

(ST SO US T S T T = S S SR =

—_ L
W o=

T Al
99.59
99.46
99.73
99.73

99.6
99.87
99.81
99.81
99.75
99.94
99.82

97.9
99.32
99.81

Adaptation assessiment

NM

ERM

N T T T T O S e S S I CH .

w0

RM

P N . T o N % % T T R T R Sy

Minimum
Maximum
Average
Minimum
Maximum
Average
Minimum
Maximum
Average
Minimum
Maximum
Average
Minimum
Maximum
Average
Minimum
Maximum
Average

University ecosystem
propagate all

University ecosystem
mixture

TPC-DS workload 1
propagate all

TPC-DS workload 1
mixture

TPC-DS workload 2
propagate

TPC-DS workload 2
mixture

AM

3.92
(0

10
2.57
0

10
2.57

I['I.’l[].'lﬂ[dssessment

90 AM
0
13
30.36

0

100
28.01
22.58
100
87.51
21.21
100
88.22
67.74
100
91.86
73.68
100
92.89

Al

2

34
12,14

15.86

&0
12.46

86
12.63

34
6.57

34
6.57

% Al
66.25
98.37
91.47

66.14
99.31
90.19
94.44
99.94
99.19

94.2
99.94
99.15
97.68
99.93
99.55

97.9
99.94
99,58

Impact & adaptation assessment

Adaptation assessment

NM
0
0
0
0

A

0.21
0

0

0

0

1
0.13
0

0

0

0

0.5

ERM

4

5
357

0

1.64

25

4.56

0

1.02

11
2.93

0

.64

RM
2
=

3.57

Cost analysis

Average time (nanosecs)
Status Path

o Rewriting | Total
Determination Check
Propagate all 358161 4947 367071 | 730179
Mixture 327488 18340 341735 | 687563

Percentage Breakdown

Status Path .
o Rewriting
Determination Check
Propagate all 49% 1% 50%

Mixture

48% 2% 50%

*The results of TPC-DS
ecosystem in workload 1
*Path check nearly no cost at all,

but in 20% blockers doubled its
value

Status Determination time

Status Determination time

0

0

Status Determination Cost

108
: E

- I i
t |I*..,

ENLEE BN I
| - i -‘:*‘I-":In . |l |
RN VY, T

i L a b ':'f'w - l_“.y‘-":;..J L
1 1 1 L ' '
0 10 20 30 40 50
Event
{a) Propagate
108
T T T T ' '
:]
J'.I
- rll 7]
|
i H]
ol 1
. 1 [I i -
3 il L ! |
- Ilé' .JI" i'.*l‘"' e I""II i
| el U (S ot
1 1 1 L ' '
0 10 20 30 40 50
Event

(b} Mlizoture

100

180

0

40

20

100

1&0

£l

40

20

Internal nodes affected

Intemnal nodes affected

Slightly slower time in mixture
mode due to blockers.

Rewriting time

Rewrite time

0k

-]

Rewrite Cost

100
T T T T T l[]{]
. 180
i
l {60
LR
. f; 1.,: - A0
.I !-Il [II’. T F"I n
1 W " 1 kS
AT R 1Y T
Lo Wl e A e 0
| | 1 1 1
] 10 20 30 40 20
Event
{a) Propaygate
10
T T T T T T 100
T -~ 8D
=.-||
F.' - 6
i
A ST
I | |
1 Lo _
, | I e II 20
i ' ‘.. - Yl .H‘:. * - ;
'i| 17 '! i |Illli li" 'I?‘-'-.' .i'." » F 'I-
el W PRI e
| | 1 | 1 |
0 10 20 a0 40 S0
Event
L2 Ml

Internal nodes affected

Internal nodes affected

*Due to blockers and workload
containing mostly relation
changes, we have no rewrites in
mixture mode in a set of events

Rewrite time comparison

106

3 |
o *Picks of red are due to cloning
£ of 1 of modules.
en
;g *Bottoms of red are due to
§ 1 1?1 | blockers at a relation related

X event.
O -]
| | | | | |

Lessons learned #1

*Users gain up to 90% of effort.

*Even in really cohesive environments users gain at least 25% of
effort.

*When all modules propagate changes 3.5 modules rewrite
themselves on average.

Lessons learned #2

*In “popular” modules our method takes great time compared to
unpopular ones.

N N
. 00
*Module cloning costs. '\u)

P,
N

*But since the time is measured in nanoseconds this is not big deal

Thank you

Any question?

