
Εξέλιξη Βάσεων Δεδομένων και

Συντήρηση Εξαρτώμενων

Εφαρμογών μέσω

Επανεγγραφής ΕρωτήσεωνΕπανεγγραφής Ερωτήσεων

Πέτρος Μανούσης

University of Ioannina, Greece

Problem definition

•Changes on a database schema may cause

inconsistency in applications that use that database,

is there a way to regulate that?

•If there is such a way of accepting or rejecting a

change, could we satisfy it by rewriting thechange, could we satisfy it by rewriting the

database schema?

•If there are conflicts between the applications on

acceptance or rejection of a change, is there a

possibility of satisfying both?

Our approach

We are going to present you a method that contains 3

steps:

1. Status Determination

2. Path Check2. Path Check

3. Rewrite

Background

Message propagation

Background

Path check

Rewriting

Experiments and Results

Database and queries

5

Data-centric Ecosystem

6

Evolving data-centric ecosystem

7

Add exam year

Evolving data-centric ecosystem

Remove CS.C_NAME

8

Evolving data-centric ecosystem

Remove CS.C_NAME

Which parts are affected?

9

Add exam year

Evolving data-centric ecosystem

Remove CS.C_NAME Structure invalid

Semantically

Add exam year

How are they affected?

10

Semantically

Problem definition

•Changes on a database schema may cause

inconsistency in applications that use that database,

is there a way to regulate that?

•If there is such a way of accepting or rejecting a

change, could we satisfy it by rewriting thechange, could we satisfy it by rewriting the

database schema?

•If there are conflicts between the applications on

acceptance or rejection of a change, is there a

possibility of satisfying both?

Policy-driven evolution

Remove CS.C_NAME Block deletion

Add exam year

Can we regulate the propagation of

the events?

Propagate addition

12

Background

Message propagation

Message propagation

Path check

Rewriting

Experiments and Results

13

Message propagation algorithm

Our approach

•Model data-centric ecosystems with Architecture

Graphs

•Mechanism for propagating evolution events on the

graph, based on
Graph structure & semanticsGraph structure & semantics

Types of evolution events

Policies that regulate the message flooding

•Guarantee the termination of the events propagation

15

Architecture Graph

Modules and Module

Encapsulation

SELECT V.STUDENT_ID, S.STUDENT_NAME, AVG(V.TGRADE) AS GPA

FROM V_TR V �� STUDENT S ON STUDENT_ID

WHERE V.TGRADE > 4 / 10

GROUP BY V.STUDENT_ID, S.STUDENT_NAME

16

University E/S Architecture Graph

17

Annotation with Policies
On attribute deletion Then

block

On attribute addition Then

propagate

Status Determination

18

Implementation problems

•How do we guarantee that when a

change occurs at the source nodes

of the AG, this is correctly

propagated to the end nodes of the

graph?

•Q

graph?
We notify exactly the nodes that

should be notified

The status of a node is determined

independently of how messages arrive

at the node

Without infinite looping

•V1 •V2

•R

19

Propagation mechanism

•Modules communicate with

each other via a single means:

the schema of a provider

module notifies the input

schema of a consumer module schema of a consumer module

when this is necessary

•Propagation
At the module level

Intra-module level

20

At the module level

1.Topologically sort the graph

2.Visit affected modules with its topological order and

process its incoming messages for it. process its incoming messages for it.

3.Process locally the incoming messages

21

Module Level Propagation

Add Exam Year

22

Module Level Propagation

1

Add Exam Year

23

Module Level Propagation

1

2

Add Exam Year

2

24

Message initiation

The Message is processed in one of the following

schemata:
Output schema and its attributes if the user wants to change the output of a

module (add / delete / rename attribute).

Semantics schema if the user wants to change the semantics tree of the

module.module.

Finally, Messages are produced within the module for

its consumers, containing the necessary parameters for

its consumers.

25

Within each module

A Message arrives at a module, through the

propagation mechanism, these steps describe

module's way of handling:
1) Input schema and its attributes if applicable, are probed.

2) If the parameter of the Message has any kind of connection2) If the parameter of the Message has any kind of connection

with the semantics tree, then the Semantics schema is probed.

3) Likewise if the parameter of the Message has any kind of

connection with the output schema, then the Output schema and

its attributes (if applicable) is probed.

Finally, Messages are produced within the

module for its consumers.s

Theoretical Guarantees

•At the inter-module level
Theorem 1 (termination). The message propagation at the inter-module

level terminates.

Theorem 2 (unique status). Each module in the graph will assume a

unique status once the message propagation terminates.

Theorem 3 (correctness). Messages are correctly propagated to the Theorem 3 (correctness). Messages are correctly propagated to the

modules of the graph

•At the intra-module level
Theorem 4 (termination and correctness). The message propagation at

the intramodule level terminates and each node assumes a status.

27

Background

Message propagation

Path check

Path check

Rewriting

Experiments and Results

28

Problem definition

•Changes on a database schema may cause

inconsistency in applications that use that database,

is there a way to regulate that?

•If there is such a way of accepting or rejecting a

change, could we satisfy it by rewriting the

database schema?database schema?

•If there are conflicts between the applications on

acceptance or rejection of a change, is there a

possibility of satisfying both?

Rewriting

Relation R

View0

View1 View2

Relation R

View0n

View1n View2n

View0

View2

Query1 Query2 Query1n Query2

•View0 initiates a change.

•Query2 rejects the change.

•Query1 accepts the change.

30

Path Check algorithm

Path Check

•If there exists any Block Module we travel in

reverse the Architecture Graph from blocker

node to initiator of change

•In each step we inform the Module to keep •In each step we inform the Module to keep

current version and produce a new one adapting

to the change

•We inform the blocker node that it should not

change at all.

32

Path Check

Relation R

View0

View1 View2

33

View1 View2

Query1 Query2

Path Check

Query2 starts Path Check algorithm

Searching which of his providers sent

him the message and notify him that

he does not want to change

Relation R

View0

34

View0

View1 View2

Query1 Query2

Path Check

View2 is notified

to keep current version for Query2 and

produce new version for Query1

Relation R

View0

35

View0

View1 View2

Query1 Query2

Path Check

View0 is notified

To keep current version for Query2 and

Produce new version for Query1

Relation R

View0

36

View0

View1 View2

Query1 Query2

Path Check

We make sure that Query2 will not

change since it is the blocker

Relation R

View0

37

View0

View1 View2

Query1 Query2

Problem definition

•Changes on a database schema may cause

inconsistency in applications that use that database,

is there a way to regulate that?

•If there is such a way of accepting or rejecting a

change, could we satisfy it by rewriting the

database schema?database schema?

•If there are conflicts between the applications on

acceptance or rejection of a change, is there a

possibility of satisfying both?

Background Information

Message propagation

Rewriting

Path check

Rewriting

Experiments and Results

39

Rewriting algorithm

Rewriting

•If there is no Block, we perform the rewriting.

•If there is Block and the initiator of the change is a

relation we stop further processing.

•Otherwise:

We clone the Modules that are part of a block path We clone the Modules that are part of a block path

and were informed by Path Check and we perform

the rewrite on the clones

We perform the rewrite on the Module if it is not

part of a block path.

41

Rewriting

Relation R

View0n

View1n View2n

View0

View2

Relation R

View0

View1 View2

Keep current&

produce new

Keep current&

produce new

42

Query1n Query2Query1 Query2

Keep only

current

Background Information

Message propagation

Experiments and results

Path check

Rewriting

Experiments and Results

43

Experimental setup

University database ecosystem (the one of we used in previous

slides, consisted of 5 relations, 2 view and 2 queries)

TPC-DS ecosystem (consisted of 15 relations, 5 views and 27

queries) where we used two workloads of events

For both ecosystems: propagate all policy and mixture policy

(20% blockers)

Measurements: effectiveness & cost

Impact & adaptation assessment for TPC-DS

Impact & adaptation assessment

Cost analysis

•The results of TPC-DS

ecosystem in workload 1

•Path check nearly no cost at all,•Path check nearly no cost at all,

but in 20% blockers doubled its

value

Status Determination Cost

•Slightly slower time in mixture•Slightly slower time in mixture

mode due to blockers.

Rewrite Cost

•Due to blockers and workload

containing mostly relationcontaining mostly relation

changes, we have no rewrites in

mixture mode in a set of events

Rewrite time comparison

•Picks of red are due to cloning

of modules.

•Bottoms of red are due to•Bottoms of red are due to

blockers at a relation related

event.

Lessons learned #1

•Users gain up to 90% of effort.

•Even in really cohesive environments users gain at least 25% of•Even in really cohesive environments users gain at least 25% of

effort.

•When all modules propagate changes 3.5 modules rewrite

themselves on average.

Lessons learned #2

•In “popular” modules our method takes great time compared to

unpopular ones.

•Module cloning costs.

•But since the time is measured in nanoseconds this is not big deal

Thank you

Any question?

53

