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Abstract—We consider flooding-based resource discovery in distributed systems. With flooding, a node searching for a resource

contacts its neighbors in the network, which in turn contact their own neighbors and so on until a node possessing the requested

resource is located. Flooding assumes no knowledge about the network topology or the resource distribution thus offering an attractive

means for resource discovery in dynamically evolving networks such as peer-to-peer systems. We provide analytical results for the

performance of a number of flooding-based approaches that differ in the set of neighbors contacted at each step. The performance

metrics we are interested in are the probability of locating a resource and the average number of steps and messages for doing so. We

study both uniformly random resource requests and requests in the presence of popular (hot) resources. Our analysis is also extended

to take into account the fact that nodes may become unavailable either due to failures or voluntary departures from the system. Our

analytical results are validated through simulation.

Index Terms—Resource discovery, flooding, distributed systems, performance analysis, peer-to-peer systems, multiagent systems.
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1 INTRODUCTION

IN a distributed resource sharing system, several nodes
offer resources (such as data items, programs, computa-

tional power, or Web services) that other nodes want to use.
Popular examples of resource sharing systems include peer-
to-peer (p2p) networks, computational grids, multiagent
systems, and the Web. An issue central to all such systems
is how to locate a resource, that is, a node in the distributed
system that provides it. There are various approaches to
resource discovery. Centralized approaches utilize direc-
tories that maintain mappings between the resources and
the nodes that offer them. However, directory servers
constitute performance bottlenecks as well as single points
of failure. Moreover, centralized solutions do not scale well
in dynamic systems in which nodes enter and leave the
system asynchronously thus creating large update volumes.

In this paper, we consider decentralized resource
discovery mechanisms based on flooding. With flooding,
a node that wants a particular resource contacts its
neighbors in the system, which in turn contact their own
neighbors until a node that provides the requested resource
is reached. Flooding enables resource discovery without
directories or knowledge of the specific topology of the
system, thus, offering an attractive mechanism for resource
discovery in dynamically evolving networks. For example,
Gnutella [8], a popular peer-to-peer file sharing system,
utilizes some form of flooding-based discovery.

In abstract terms, we assume a distributed system with
N nodes where each node provides a number of resources.
There are R different types of resources. Each node knows
about d other nodes which are called its neighbors. The
system is modeled as a directed graph GðV ;EÞ where each

node of the graph corresponds to a node of the distributed
system and there is an edge from node A to each of A’s
neighbors. Because each edge in G may not correspond to a
single physical link, graph G is called the overlay network.
There is no knowledge about the size of the network. An
example is shown in Fig. 1.

In addition, we assume that each node has a local cache
of size k, where it stores information about k different
resources, that is, for each of the k resources the contact
information of one node that provides it. The goal of
caching is to exploit locality in resource requests that has
been reported in many resource sharing systems (such as in
peer-to-peer systems [16], [21] and the Web [7]).

Given an overlay network, the resource discovery
problem is the following: how can a node A that needs a
particular type of resource x, find a node that provides it. In
pure flooding, node A initially searches its own cache. If it
finds the resource there, it extracts the corresponding
contact information and the search ends. If resource x is
not found in the local cache, A sends a message querying all
its neighbors, which in turn propagate the message to all
their own neighbors, and so on. Since, pure flooding
overwhelms the network with search messages, we con-
sider variations that restrict the search space, such as
random walkers or paths [6], [15] and probabilistic flooding
or teeming [3], [6], [11] that contact subsets of each node’s
neighbors at each step.

Although, there has been a lot of empirical studies (e.g.,
[19]) and some simulation-based analysis (e.g., [15]) of
flooding and its variants, analytical results are lacking. In
this paper, we provide analytical estimations of the
performance of flooding-based search and its variations.
We validate our analytical estimations through simulation.
We study both uniformly random requests and requests
when there exist hot spots. In the former case, we assume
that the entries in the caches are random, that is, the entries
of each cache is a uniformly random subset of the available
resources. In the latter case, we assume that some resources
(i.e., the hot spots) appear in a large number of caches. This
is motivated by the fact that in many settings, some
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resources are more popular than others (for instance, in
peer-to-peer systems [21]); this results in hot resources
being cached more often. In addition, we extend our
analysis to take into account node unavailability. Node
unavailability may be the result of node failures or of the
dynamic nature of some resource sharing systems where
nodes leave and enter the system at will.

The performance metrics we are interested in are:

. the probability of locating a resource within t steps,

. the average number of steps needed to locate a
resource, and

. the average number of message transmissions
required.

The remainder of this paper is structured as follows:
The flooding-based search procedures are introduced in
Section 2 and analytical results about their performance
are derived in Section 3. Next, our performance results
are extended for accounting for hot spots (in Section 4)
and node unavailability (in Section 5). In Section 6, we
present related research and various applications of
flooding-based search. In Section 7, we summarize our
results and outline our plans for future work.

2 SEARCH ALGORITHMS

We assume an overlay network where each node has
d neighbors and maintains a local cache with k entries. When
a node A needs a particular type of resource x, it initially
searches its own cache. If it finds the resource there, it extracts
the corresponding contact information and the search ends. If
resource x is not found in the local cache, A sends a message
querying all or a subset of its neighbors, which in turn
propagate the message to their neighbors, and so on.

To avoid overwhelming the network with search re-
quests, search is limited to a maximum number of steps, t
(similar to the Time To Live (TTL) parameter in many

network protocols). In particular, the search message
contains a counter field initialized to t. Any intermediate
node that receives the message first decrements the counter
by 1. If the counter value is not 0, the node proceeds as
normal; otherwise, the node does not contact its neighbors
and sends a positive (negative) response to the inquiring
node if x is found (not found) in its cache.

When the search ends, the inquiring node A will either
have the contact information for resource x or just a set of
negative responses. In the latter case, node A assumes that a
node offering the resource cannot be found. Note that we
make no assumption about network connectivity. Discon-
nectedness may indeed occur because the network is
dynamic. This is quite possible in peer-to-peer systems.
For example, measurement studies have shown several
disjoint Gnutella overlay networks existing simultaneously
in the Internet [19].

We consider three different search strategies based on
what subset of its neighbors each node contacts, namely, the
flooding, teeming and random paths strategies.

2.1 Flooding

With (pure) flooding, node A that searches for a resource x
checks its cache, and if the resource is not found there, A
contacts all its neighbors. In turn, A’s neighbors check their
caches and if the resource is not found locally, they
propagate the search message to all their neighbors. The
procedure ends when either the resource is found or a
maximum of t steps is reached. The scheme, in essence,
broadcasts the inquiring message.

As the search progresses, a d-ary tree is unfolded rooted at
the inquiring node A. An example is shown in Fig. 2a. Note
that the term “tree” is not accurate in graph-theoretic terms
since a node may be contacted by two or more other nodes,
but we will use it here as it helps to visualize the situation.
This search tree has (at most)di different nodes at the ith level,
i � 0, which means that at the ith step of the search algorithm,
there will be (at most) di different nodes contacted.

2.2 Teeming

To reduce the number of messages, we consider a variation
of flooding called teeming [6], probabilistic flooding [3], or
random BFS [11]. At each step, if the resource is not found
in the local cache of a node, the node propagates the
inquiring message only to a random subset of its neighbors.
We denote by � the fixed probability of selecting a
particular neighbor. In contrast with flooding, the search
tree is not a d-ary one any more (Fig 2b). A node in the
search tree may have between 0 to d children, d� being the
average case. Flooding can be seen as a special case of
teeming for which � ¼ 1.

DIMAKOPOULOS AND PITOURA: ON THE PERFORMANCE OF FLOODING-BASED RESOURCE DISCOVERY 1243

Fig. 1. An overlay network with d ¼ 2.

Fig. 2. Searching the overlay network of Fig. 1: (a) flooding, (b) teeming, and (c) random paths ðp ¼ 2Þ:



2.3 Random Paths

Although, depending on �, teeming can reduce the overall
number of messages, both teeming and flooding suffer from
an exponential number of messages. One approach to
eliminate this drawback is performing a random path or
random walker [6], [15] search as follows: Each node
contacts only one of its neighbors (randomly). The search
space formed ends up being a single random path in the
overlay network. This scheme propagates one single
message along the path and the inquiring node will be
expecting one single answer.

This scheme is generalized as follows: The root node (i.e.,
the inquiring node A) constructs p � 1 random paths. In
particular, ifx is not in its cache,A asks p out of its dneighbors
(not just one of them). All the other (intermediate) nodes
construct a simple path as above, by asking exactly one of
their neighbors. This way, we end up with p different paths
unfolding concurrently (Fig. 2c). The search algorithm
produces less messages than flooding or teeming but needs
more steps to locate a resource.

3 PERFORMANCE ANALYSIS

In this section, we analyze the performance of the three
search algorithms presented in the previous section. In
particular, we will assume that the algorithms operate for a
maximum of t steps and we will derive analytically three
important performance measures:

. The probability, Qt, that the resource we are looking
for is found within the t steps; Qt should be as high
as possible.

. The average number of steps, St, needed for locating
a resource (given that the resource is found), which
should be kept low.

. The average number of message transmissions, Mt,
occurring during the course of the algorithm.
Efficient strategies should require as few messages
as possible in order not to saturate the underlying
network resources (which, however, may lead to a
higher number of steps).

3.1 Preliminaries

The Appendix contains a summary of the notation we will
use. We assume a random directed network ofN nodes, each
node having d links to d other nodes, called its neighbors.
Each node is equipped with a cache of size k storing the
resource-provider pairs it knows of. A node may also offer
resources itself. There are in total R different resources
provided collectively in the network. Some node (“inquiring
node”) will be assumed to search for some resource x, and we
let nx be the number of nodes offering that particular
resource. Finally, the caches are assumed to be in steady-
state, all caches being full, meaning that each node knows of
exactly k resources (along with their providers).

Given a resource x, assume that the probability that x is
known to a particular node is equal to F1. A resource is
known to a node when the node either offers it or has
cached one of its providers.

Now, let us denote by Qt the probability of locating x
within t steps of an algorithm. An important performance
measure is the average number of steps needed to find a

resource x. Given that a resource is located within t steps,
the average number of steps is shown to be:

St ¼ t�
1

Qt

Xt�1

i¼1

Qi: ð1Þ

The derivation of (1) is given at the end of this section for
presentation purposes.

To derive the performance measures, we need to
calculate F1 and Qt. F1 is dependent only on the resource
distribution and the cache contents, while Qt also depends
on the particular search strategy utilized. We compute F1

next, and we defer the derivations of Qt for each strategy to
the corresponding sections.

In what follows, we assume that the content of each cache
is completely random; in other words a node’s k cached
resources are a uniformly random subset of the R available
resources. We consider other distributions for the cache
contents in later sections.

For a node to not know about a resource x, it must not
provide it and it must not have it cached. Thus,

F1 ¼ 1� P ½node does not offer x�P ½x =2 node0s cache�:

Since resource x is offered by nx nodes in total, we have:

P ½node offers x� ¼ nx
N
:

The number of ways to choose k elements out of a set of
R elements so that a particular element is not chosen is
R�1
k

� �
. Since the k elements of the node’s cache are assumed

completely random, we obtain:

P ½x =2 node0s cache� ¼
R�1
k

� �
R
k

� � ¼ R� k
R

;

which gives:

F1 ¼ 1� 1� nx
N

� � R� k
R

� �
¼ 1� ðN � nxÞðR� kÞ

NR
:

In what follows, we let a ¼ ðN � nxÞðR� kÞ=NR, so that
F1 ¼ 1� a.

Derivation of (1). Let si denote the probability of locating
the resource at exactly the ith step of an algorithm. Then,
the probability of locating it within t � 1 steps is given by:

Qt ¼
Xt
i¼0

si;

which means that st ¼ Qt �Qt�1. Given that the resource is
found within t steps, the probability of locating it exactly at
the ith step is equal to si=Qt and the average number of steps
is equal to:

St ¼
1

Qt

Xt
i¼1

isi ¼
1

Qt

Xt�1

i¼1

isi þ tst

 !
¼ 1

Qt
ðQt�1St�1 þ tstÞ:

Substituting for st, we obtain:

QtSt ¼ Qt�1St�1 þ tQt � tQt�1:

Letting gt ¼ QtSt, the recurrence takes the following form:

gt ¼ gt�1 þ tQt � tQt�1;
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with a boundary of g0 ¼ S0Q0 ¼ 0. It is easy to see that

gt ¼
Xt
i¼1

iQi �
Xt
i¼1

iQi�1 ¼ tQt �
Xt�1

i¼0

Qi;

and, since gt ¼ QtSt, (1) follows.

3.2 Performance of Flooding

With flooding, each node receiving the inquiring message
transmits it to all its neighbors (unless it offers the required
resource x or x is in its cache). As the algorithm progresses, a
d-ary “tree” is unfolded rooted at the inquiring node. This
search tree has (at most) di different nodes in the ith level,
i � 0, which means that at the ith step of the algorithm, there
will be (at most) di different nodes contacted.1

If the requested resource is not found, it is because the
inquiring node did not know about it (with probability a ¼
1� F1Þ and because none of the d “subtrees” unfolding
from the inquiring node’s neighbors replied with a positive
answer. Such a subtree has t� 1 levels; it sends an
affirmative reply only if it locates the requested resource
(with probability Qt�1Þ. Thus, the probability of not finding
x is given by the following recurrence:

1�QðF Þt ¼ a 1�QðF Þt�1

� �d
;

where ðF Þ is used to denote the flooding algorithm. The
boundary condition is, clearly, Q

ðF Þ
0 ¼ F1 ¼ 1� a. Notice

that, as discussed above, the d subtrees of the inquiring
node may not be disjoint and as a consequence the events of
locating the resource in the d subtrees may not be
statistically independent. The above recurrence is an
approximation which overestimates somewhat the prob-
ability but it simplifies the analysis and does not introduce
significant error as indicated by our simulation results.

Setting qt ¼ 1�QðF Þt , the recurrence becomes qt ¼ aqdt�1
which easily evaluates to qt ¼ aðd

tþ1�1Þ=ðd�1Þ, giving:

Q
ðF Þ
t ¼ 1� ad

tþ1�1
d�1 : ð2Þ

The average number of steps needed to locate a resource
can be found by substituting (2) into (1). After some
straightforward manipulations, the average number of
steps is found to be, for t � 1,

S
ðF Þ
t ¼ t� t

Q
ðF Þ
t

þ 1

Q
ðF Þ
t

Xt
i¼1

a
di�1
d�1 : ð3Þ

We know of no closed-form formula for the sum in (3).
Let us now compute the number of messages in the

flooding algorithm. We will assume that nodes reply directly
to the inquiring node. If the resource is found at the inquiring
node there will be no message transmissions. Otherwise,
there will be d transmissions to the d neighbors of the root,
plus the transmissions internal to each of the d subtrees T
rooted at those neighbors. Symbolically, we have:

M
ðF Þ
t ¼ ð1� F1Þðdþ dmðt� 1ÞÞ;

where mðt� 1Þ are the transmissions occurring within a
particular subtree T with t� 1 levels. For such a subtree T ,

if x is found in its root node there will be 1 positive reply
back to the inquiring node; otherwise, there will be
d message transmissions to the children of the root plus
the transmissions inside the d subtrees T 0 (with t� 2 levels)
rooted at the node’s children. This leads to the following
recurrence:

mðt� 1Þ ¼ 1� F1 þ ðdþ dmðt� 2ÞÞ � ð1� F1Þ
¼ admðt� 2Þ þ adþ 1� a;

with a boundary condition of:

mð0Þ ¼ 1; ð4Þ

since each of the last nodes receiving the message (at the
tth step) will always reply to the inquiring node whether
it knows x or not. The solution to the above recurrence is:

mðt� 1Þ ¼ ðadÞt�1 þ ðadÞ
t�1 � 1

ad� 1
ðadþ 1� aÞ;

which gives, after some manipulation:

M
ðF Þ
t ¼ aþ ðc

t � 1Þð2c� aÞ
c� 1

; c ¼ ad; t � 1: ð5Þ

Equation (5) shows that (as anticipated) the flooding
algorithm requires an exponential number of messages
with respect to the nodes’ degree ðdÞ.

3.3 Performance of Teeming

With teeming, a node propagates the inquiring message to
each of its neighbors with a fixed probability �. Again, if the
requested resource x is not found, it is due to two facts: first,
the inquiring node does not know about it (occurring with
probability 1� F1). Second, none of the d “subtrees”
unfolding from the inquiring node’s neighbors replies with
a positive answer. Such a subtree has t� 1 levels; it sends
an affirmative reply only if it asked by the inquiring node
(with probability �Þ and indeed locates the requested
resource (with probability Q

ðT Þ
t�1). Thus, the probability of

not finding x is given by the following recurrence:

1�QðT Þt ¼ ð1� F1Þ 1� �QðT Þt�1

� �d
;

which gives:

Q
ðT Þ
t ¼ 1� a 1� �QðT Þt�1

� �d
; ð6Þ

where ðT Þ is used to denote the teeming algorithm. The

boundary condition is, clearly, Q
ðT Þ
0 ¼ F1 ¼ 1� a.

The average number of steps, for t � 1, can be found

using (1):

S
ðT Þ
t ¼ t� 1

Q
ðT Þ
t

Xt�1

i¼0

Q
ðT Þ
i : ð7Þ

The average number of messages is computed almost
identically with the flooding case; the only difference is that

since a node transfers the message to a particular child with
probability �, the average number of steps is given by:

M
ðT Þ
t ¼ ð1� F1Þðd�þ d�mðt� 1ÞÞ;
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through more than one path. This fact may limit the number of different
nodes in the ith level of the tree to less than di.



where mðt� 1Þ is the transmissions occurring within a
particular subtree T with t� 1 levels. The recurrence (see
Section 3.2) takes the form:

mðt� 1Þ ¼ 1� F1 þ ðd�þ d�mðt� 2ÞÞ � ð1� F1Þ;

which eventually gives:

M
ðT Þ
t ¼ aþ ðc

t � 1Þð2c� aÞ
c� 1

; c ¼ ad�; t � 1: ð8Þ

Teeming also requires an exponential number of messages,
which, however, grows slower than in the case of flooding;
its rate is controlled by the probability �.

3.4 Performance of the Random Paths Algorithm

When using the random paths algorithm, the inquiring
node transmits the message to p � 1 of its neighbors. Each
neighbor then becomes the root of a randomly unfolding
path. There is a chance that those p paths meet at some
node(s), thus they may not always be disjoint. However, for
simplification purposes, we will assume that they are
completely disjoint and, thus, statistically independent.
This approximation introduces negligible error (especially if
t is not large) as our experiments show.

The probability of not finding the required resource x is
given by:

1�QðpÞt ¼ ð1� F1Þð1� qt�1Þp;
where a ¼ 1� F1 is the probability that the inquiring node
does not know about x and 1� qt�1 is the probability of not
locating the resource in one of the p randomly unfolding
paths of length t� 1. Such a path has t nodes and for failing
to locate the resource, none of its nodes should know about
x, which means that:

1� qt�1 ¼ ð1� F1Þt ¼ at;

yielding:

Q
ðpÞ
t ¼ 1� aptþ1: ð9Þ

Using (9) and (1), we can easily find the average number of
steps:

S
ðpÞ
t ¼ t�

1

Q
ðpÞ
t

Xt�1

i¼0

ð1� apiþ1Þ;

which after some algebraic manipulations gives, for t � 1,

S
ðpÞ
t ¼

a� ð1þ t� tapÞaptþ1

ð1� apÞð1� aptþ1Þ : ð10Þ

Setting p ¼ 1 the above formulas give the corresponding
performance measures for the single-path algorithm.

Finally, the number of message transmissions can be
calculated using arguments similar to the ones in Section 3.2.
If x is not known by the inquiring node’s cache, there will be
pmessage transmissions to p of its children, plus the message
transmissions in each of the p paths:

M
ðpÞ
t ¼ ð1� F1Þðpþ pmðt� 1ÞÞ;

where mðt� 1Þ is the transmissions occurring within a
particular path P of t� 1 nodes. For such a path P , if x is
found in its root node there will be 1 positive reply back to the
inquiring node; otherwise, there will be one message

transmission to the next node of the path plus the transmis-
sions inside the subpath P 0 (with t� 2 nodes) rooted at the
next node. This leads to the following recurrence:

mðt� 1Þ ¼ 1� F1 þ ð1þmðt� 2ÞÞ � ð1� F1Þ
¼ amðt� 2Þ þ 1;

where, as in (4), mð0Þ ¼ 1, since the last node receiving the
message will always reply to the inquiring node whether it
knows x or not. The solution to the above recurrence is:

mðt� 1Þ ¼ a
t � 1

a� 1
;

which gives:

M
ðpÞ
t ¼ apþ ap

at � 1

a� 1
: ð11Þ

3.5 Comparison

The three performance measures are shown in Fig. 3 for
all three strategies and for a network consisting of N ¼
1; 000 nodes and a total of R ¼ 5; 000 resources. Two
different node degrees ðd ¼ 4; 6Þ and two different cache
sizes ðk ¼ 20; 250Þ are considered. The resource in ques-
tion is assumed to be offered by nx ¼ 4 nodes in total.
Notice that the plots include the probability of not finding
the resource, i.e. 1�Qt instead of Qt.

The graphs show the random paths strategy for p ¼ 1
and 4 paths. For the teeming algorithm, we chose � ¼ 0:5;
on the average half of a node’s neighbors are contacted each
time. Larger values of � will yield less steps, but more
message transmissions, as is evident from (7), (8), while, for
� approaching 1, teeming approaches flooding.

The plots show the positive and negative aspects of the
algorithms. Flooding/teeming yield lower probabilities of
missing the requested resource and within a smaller
number of steps, as compared to random paths. However,
the number of message transmissions is excessive. Teeming
constitutes possibly the better tradeoff, if the probability � is
chosen appropriately.

The random paths strategy performs quite poorly for
very small values of p (e.g., 1 or 2), since it has a high
probability of not finding the requested resource within a
limited number of steps. However, for four paths or more,
and larger cache sizes, its performance improves substan-
tially, although achieving comparable probabilities of
success with teeming and flooding requires more steps.

Given that the resource is found, the graphs show that
the average number of steps is smaller for the random paths
strategy and for small values of t. The reason for this
seemingly unexpected behavior is that if the resource is
found, flooding and teeming will locate it at later steps since
most of the contacted nodes will be contained at the last
levels of the search tree. Thus, for small t, most of the time
the resource will be discovered in about t steps. On the
other hand, a random path will locate it on the average at
the middle node, i.e., in about t=2 steps. However, after
some point, flooding and teeming will have contacted most
of the nodes in the network; consequently, as t grows, both
strategies need no additional steps. For example, it is easy to
see that for d ¼ 4, flooding will have covered all 1,000 nodes
in the network in less than five steps.

The beneficial effect of increasing the cache size is also
apparent, especially for the random paths strategy, since it
reduces the average number of steps and messages while
increasing the probability of success. Increasing the degree
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of nodes is not by itself helpful for this strategy, unless the
number of paths is also increased. For the other two
strategies, increasing the cache size boosts the performance
for the smaller values of t since, as noted above, for larger t
a large number of nodes in the network will be contacted
anyway; these strategies are more sensitive to the increase
of nodes’ degree. For example, in the considered system, the
number of messages for flooding is exponential on the
parameter c ¼ ad. Increasing d by 50 percent increases c also
by 50 percent, while increasing the cache size by a factor of
10 decreases a and c by only 2.5 percent.

3.6 Validation

To validate the theoretical analysis, we developed simula-
tors (written in C) for each of the proposed strategies. The
simulators, upon initialization, construct a network of
N nodes, each node having d random neighbors, and

assign each of the R resources to random nodes. Each
resource x is assigned to nx nodes in total. Next, the caches
of all nodes are filled with random k-element subsets of the
available resources where k can be anywhere from 0 to R.

After the initialization, simulation sessions for different
values of t take place, with a random node issuing one
request for a random resource x each time. Measurements
obtained from each simulation session include the number
of messages, the number of steps and a flag denoting
whether the resource was found or not. For each of the
proposed algorithms, at least 500 such sessions are
performed and the accumulated results are averaged.

In Fig. 4, we give a number of simulation results for each
of the proposed algorithms (patterned lines), along with the
curves obtained from the theoretical analysis (unpatterned
lines). The test cases are the same as in Fig. 3, i.e., there were
N ¼ 1; 000 nodes, R ¼ 5; 000 resources and the resource was
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message transmissions ð¼MtÞ. The p-paths algorithm is shown for p ¼ 1; 4. The teeming algorithm uses � ¼ 0:5.

Fig. 4. Simulation (patterned lines) and analytical (unpatterned lines) results.



offered by nx ¼ 4 nodes. The results include the probability
of not locating the resource ð¼ 1�QtÞ for the case of d ¼ 4,
k ¼ 20, the average number of steps ð¼ StÞ for the case of
d ¼ 6, k ¼ 20, and the average number of message transmis-
sions ð¼MtÞ for the case of d ¼ 4, k ¼ 250.

It is clearly seen that the simulation results match the
analytical ones quite closely. The approximation in Sec-
tions 3.2 and 3.3 produces negligible error. A slight under-
estimation of the probability of missing the requested
resource in pure flooding shows up only for small values of
the allowable number of steps ðtÞ.

4 HOT-SPOT ANALYSIS

It is quite common, in practice, that some resources are
more popular than others [19]. The former are called hot
spots and the latter cold spots. In this section, we extend our
analysis to account for such nonuniform traffic.

Under the presence of hot spots, searching for a resource
will be affected in two ways:

. a hot resource will be offered by more nodes, which
means that nx may take higher values, and

. the cache contents will no longer be uniformly
random—hot spots/resources will be present in a
higher percentage of caches than cold spots.

We will assume that within each class (hot or cold) all
resources are equiprobable. In particular, each hot spot will
be assumed to appear in a percentage h of all caches.
Finally, we let rh denote the fraction of resources that are
hot—then rhR is the total number of hot spots, while the
remaining ð1� rhÞR are cold spots.

4.1 Searching for Hot Spots

Assume we are searching for a particular resource x. As in
Section 3.1, the probability that any given node knows
about it is equal to:

F1 ¼ 1� P ½node does not offer x�P ½x =2 node0s cache�:

P ½node offers x� ¼ nx
N , as we have already seen. If x is a hot

spot then the probability of finding it in a cache is equal to
h, which gives:

F1 ¼ 1� ð1� hÞ 1� nx
N

� �
;

and by setting a ¼ ð1� hÞð1� nx=NÞ, we get F1 ¼ 1� a.

4.2 Searching for Cold Spots

Assume now that the resource xwe are searching for is a cold
spot. Given N caches, each one holding contact information
for k resources, there are in total kN cache entries in the whole
network. Each hot spot appears in hN caches, and thus
rhRhN entries are occupied by hot spots, in total. The rest will
be occupied by cold spots, and since all of them are
equiprobable, each of the cold resources appears on the
average:

kN � rhRhN
R� rhR

¼ Nðk� rhRhÞ
Rð1� rhÞ

times, or equivalently, in a portion

Nðk� rhRhÞ
Rð1� rhÞ

.
N

of the caches. Consequently, we obtain:

F1 ¼ 1� 1� nx
N

� �
1� k� hrhR

Rð1� rhÞ

� �
:

Setting a ¼ ð1� nx=NÞð1� ðk� hrhRÞ=ðRð1� rhÞÞ, F1 be-
comes equal to 1� a.

In conclusion, F1, the probability that a given node knows
about a resourcex, is always given byF1 ¼ 1� a. The value of
a depends on the repetition of resources, the contents of the
caches and the type of resource we are searching for. Apart
from the different values of a, the analysis in the previous
sections remains exactly the same in every case. The
analytical results are summarized in Table 1.

4.3 Validation

In Fig. 5, we present simulation results (patterned lines),
along with the theoretical ones (unpatterned lines) for a
system with N ¼ 1; 000 nodes, R ¼ 5; 000 resources, node
degree d ¼ 4 and cache size k ¼ 20, for all three strategies. In
the first set of experiments, we assume no hot/cold spots, and
a repetition of nx ¼ 4 of the resource exactly as in Fig. 4. In the
second and third sets, we consider a total of 100 (or rh ¼ 2 %Þ
of the resources to be hot spots and that each hot spot appears
in a percentage of h ¼ 15 % of all caches. Furthermore, a hot
spot is assumed to be offered by nx ¼ 50 nodes, while cold
spots are only offered by two nodes in total.

Fig. 5 shows the probability of missing the resource and
the corresponding number of messages for all three cases
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(uniform, hot, cold) and all three strategies. Simulation and
analytical results are in close agreement. As expected, the
hot-spot searches are performed more efficiently, for all
strategies.

5 ACCOUNTING FOR NODE UNAVAILABILITY

Dynamic resource sharing systems evolve over time, with
new nodes being added, while some older nodes departing.
This is especially true for peer-to-peer systems. For example
in Gnutella, the uptime of nodes, measured as the
percentage of time that the peer is available and responding
to messages, is small [19]. In addition, there is always a
possibility for some nodes to malfunction or fail, thus, being
unable to participate in searches. In multiagent systems,
agents may also be mobile, leaving their host environment
at will. Such phenomena render some of the links in the
overlay network invalid; search queries can not be
propagated through them.

We model this situation by letting each node have a fixed
probability P of being online. Offline nodes are nodes that
either departed, moved or malfunctioned. Queries sent to
such nodes do not propagate any further. Under such a
probability, on the average ð1� PÞN nodes will be offline.
In this section, we update our performance metrics to
account for this type of phenomena.

A search is considered successful, only if the resource is
obtained, i.e., the inquiring node finds the contact informa-
tion of a node that provides the required resource and that
node is online. Thus, unsuccessful searches result either
from failing to locate the requested resource or from correct
discovery of a node offering the resource but unavailability
of that node.

Before proceeding with the analysis, we note that
independently of the search strategy, the probability of
successfully obtaining a resource is limited by:

Qt � 1� ð1� PÞnx : ð12Þ
This is the probability at least one of the nx providers of the
resource being online. For example, if a resource is offered
by only one node, and P ¼ 60%, the probability of

successfully obtaining the resource cannot be larger than
60 percent, no matter what search strategy is utilized.

Assume we search for a resource x and let Pnof ¼
P ½a node does not offer x� ¼ 1� nx=N , and P =2 ¼ P ½x =2
a node0s cache� (recall that PnofP =2 ¼ aÞ.

During the search, queried nodes reply affirmatively
(and do not propagate the search further) if they either offer
x or have it cached; in the latter case the reply will be
invalid with probability 1�P of the provider of the cached
resource being offline. Consequently, the probability pc ðpwÞ
that a node replies correctly (wrongly) is:

pc ¼ ð1� PnofÞ þ Pnofð1� P =2 ÞP ¼ nx
N
þ 1� nx

N
� a

� �
P:

pw ¼ Pnoffð1� P =2 Þð1�PÞ ¼ 1� a� pc:

The search will be propagated to other nodes only if the
current node does not offer the resource and does not have
it cached. This probability is equal to PnofP =2 ¼ a.

5.1 Flooding and Teeming

To derive the probability Qt of locating a resource x, we
proceed in a manner similar to that of Sections 3.2 and 3.3.
We only consider the teeming algorithm recalling that if the
probability of contacting a neighbor is � ¼ 1 we have in
effect a pure flooding strategy.

If the search is unsuccessful (probability 1�Q0t), it is due
to either one of the following facts:

. the inquiring node knows about an offline resource
provider (with probability pw), or

. the inquiring node propagates the search (with
probability a) and none of the d “subtrees” unfolding
from the inquiring node’s neighbors replies with a
successful answer. Such a subtree has t� 1 levels; it
sends a successful reply only if it is contacted by the
inquiring node (with probability �), its root node is
online (with probability P) and locates the requested
resource successfully (with probability Q0t�1).

Thus, the probability of not finding x through the search
procedure is given by the following recurrence:
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1�Q0t ¼ pw þ a 1� P�Q0t�1

� �d
;

which gives:

Q0t ¼ aþ pc � a 1� P�Q0t�1

� �d
;

with Q00 ¼ pc. Taking into account (12), we obtain:

Q
ðT Þ
t ¼ minfQ0t; 1� ð1�PÞ

nxg:

The average number of steps is given by (1). The number

of messages is given by the recurrence:

M
ðT Þ
t ¼ aðd�þ d�Pmðt� 1ÞÞ;

where the inquiry is transmitted to d� of the root’s
neighbors2 and mðt� 1Þ is the transmission within the
subtrees T with t� 1 levels rooted at the contacted
neighbors. For such a T , further message transmissions
take place only if its root node is online ðPÞ. In such a case,
if x is found in the subtree’s root, there will be 1 positive
reply back to the root. Otherwise:

mðt� 1Þ ¼ 1� ð1� aÞ þ ðd�þ d�Pmðt� 2ÞÞ � a
¼ ad�Pmðt� 2Þ þ ad�þ 1� a;

with boundary mð0Þ ¼ 1. Solving the recurrence and simple
manipulations yield:

M
ðT Þ
t ¼ aþ ct � 1ð Þðcþ c=P � aÞ

c� 1
; c ¼ ad�P:

5.2 Random Paths

Similarly to Sections 5.1 and 3.4, the probability of an
unsuccessful search is given by:

1�Q0t ¼ pw þ að1� Pqt�1Þp;

where qt�1 is the probability of finding x in one (of the p)
random paths, within the remaining t� 1 steps. Such a path
is traversed with probability P of its first node being online.
Locating x in such a path means that its first node replies
correctly or propagates the search and the resource is
successfully found at later steps, which leads to the
following recurrence:

qt�1 ¼ pc þ aPqt�2;

with q0 ¼ pc.
If an offline intermediate node is selected in any of the

paths, the search in that path stops. This deteriorates the

performance of the strategy, especially for small values of p.
We thus consider the following variation. Instead of
randomly selecting among all neighbors, each node selects
randomly among its neighbors that are online. Adopting this
policy, qt�1 will now be given by:

qt�1 ¼ pc þ að1� ð1�PÞdÞqt�2;

where u ¼ 1� ð1� PÞd is the probability of having at least
one online neighbor. The solution is qt�1 ¼ pcððauÞt�1Þ=
ðau� 1Þ, which gives:

Q0t ¼ aþ pc � a 1� pcP
ða� að1�PÞdÞt � 1

a� að1�PÞd � 1

 !p

:

Using (12), we finally obtain:

Q
ðpÞ
t ¼ minfQ0t; 1� ð1�PÞ

nxg:

The average number of steps is given by (1), while the
number of messages is given by:

M
ðpÞ
t ¼ aðpþ pPmðt� 1ÞÞ;

where mðt� 1Þ is the transmissions occurring within a
particular path of t� 1 nodes. As in Section 3.4, we arrive at
the following recurrence:

mðt� 1Þ ¼ aumðt� 2Þ þ 1;

which has mð0Þ ¼ 1 and a solution of mðt� 1Þ¼ððauÞt � 1Þ=
ðau� 1Þ. Consequently,

M
ðpÞ
t ¼ apþ apP

ða� að1� PÞdÞt � 1

a� að1� PÞd � 1
:

5.3 Validation

To validate our theoretical analysis, the simulator was
modified to account for unavailable nodes. Before each
simulation round, each node is marked as online with a
given probability P. During the simulation sessions, any
replies which point to owners that are offline are considered
incorrect. A search is considered successful only if it results
in locating a resource owner and that node is online.

In Fig. 6, we present simulation results (patterned lines),
along with the theoretical ones (unpatterned lines) for a
system with N ¼ 1; 000 nodes, R ¼ 5; 000 resources, node
degree d ¼ 4 and cache size k ¼ 250, for all three strategies.
We present the probability of successfully obtaining the
requested resource for P ¼ 100 %; 90 %; 80 %; 60 %.

Simulation and analytical results are in close agreement.
The variation of random paths (where each of the p paths
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2. Notice that we count all d� transmissions even if some of them are sent
to unavailable (offline) neighbors.

Fig. 6. Simulation (patterned lines) and analytical (unpatterned lines) for the case of nodes being online with probability P.



continues to evolve as long as intermediate nodes have at
least one online neighbor) performs comparably with
teeming when the percentage of online nodes is small. In
this case, during teeming, nodes contact successfully quite
few neighbors, since only a few nodes are online and among
those, only a portion � is selected. In our example, for
P ¼ 60 %, � ¼ 0:5 and d ¼ 4, each node will have about
2.4 online neighbors, and contacts on average 1.2 of them.

6 RELATED WORK AND APPLICATIONS OF

FLOODING

There are many applications of flooding-based search in
distributed systems. Next, we discuss related work on
flooding-based search in three different settings, namely,
peer-to-peer systems, multiagent systems and distributed
networks.

Resource discovery in peer-to-peer systems. Recently,
peer-to-peer (p2p) computing has attracted much attention as
a new distributed computing paradigm of sharing resources
available at the edges of the network. A p2p system is a fully-
distributed cooperative network in which nodes collectively
form a system without any supervision. An issue central to
p2p systems is discovering a peer that offers a particular
resource. There are two types of p2p systems depending on
the way resources are located in the network. In structured p2p
systems, resources are placed at peers at specified locations.
Most resource discovery procedures in structured p2p
systems (such as CAN [17], Chord [22], and Past [18]) build
a distributed hash table. With distributed hashing, each
resource is associated with a key and each node (peer) is
assigned a range of keys. In unstructured p2p systems,
resources are located at random points. In this context,
flooding-based approaches to resource discovery have been
proposed, in which each peer searching for a resource
contacts all its neighboring peers. Gnutella [8] is an example
of such an approach. Unstructured approaches distribute the
load and increase tolerance to failures.

The analysis in this paper is applicable in the case of fully-
decentralized, unstructured search. While there have been
empirical studies (e.g., [19]) and some simulation-based
analysis (e.g., [15]) of flooding and its variants for
p2p systems, analytical results are lacking. Here, we
analytically evaluate various alternatives of flooding-based
approaches.

Open multiagent systems. Another application of flood-
ing-based search is in multiagent systems. A multiagent
system (MAS) is a loosely coupled network of software
agents that cooperate to solve problems that may be beyond
the individual capacities or knowledge of each particular
agent. In a MAS, computational resources are distributed
across a network of interconnected agents. To fulfill their
goals, agents in a MAS need to use resources provided by
other agents. To use a resource, an agent must contact the
agent that provides it. However, in an open MAS, an agent
does not know which agents provide which resources.
Furthermore, it does not know which other agents
participate in the system. A common approach to the
resource discovery problem is to introduce middle agents
or directories that maintain information about which agents
provide which resources [23]. Thus, to find a resource, an
agent has first to contact the middle agent. However,
middle agents can become bottlenecks and contradict the
distribution goals set by a MAS along the dimensions of
computational efficiency, reliability, extensibility, robust-
ness, maintainability, responsiveness, and flexibility.

An approach based on flooding is applicable to the
resource discovery problem in open MAS [5], [6]. In this
approach, each agent maintains a limited size local cache
with the contact information for k different resources (i.e.,
for each of the k resources, one agent that offers it). This
results in a fully distributed directory scheme, where each
agent stores part of the directory. The agents in the cache of
an agent A are the agents that A knows about. We call them
the agent’s neighbors.

The only other performance studies of the use of local
caches for resource location in MAS that we are aware of are
[4] and [20]. In [4], a depth first traversal of what corresponds
to our overlay network is proposed. Experimental results are
presented that show that this approach is more efficient in
terms of the number of messages than flooding for particular
topologies, in particular, the ring, star, and complete graph
topologies. There are no analytical results. In [20], the
complexity of the very limited case of lattice-like graphs (in
which each agent knows exactly four other agents in such a
way that a static grid is formed) is analyzed.

Resource discovery in distributed networks. The pro-
blem that we study in this paper can be seen as a variation
of the resource discovery problem in distributed networks,
where nodes in a large, dynamic communication infra-
structure know only about a small number of other nodes
and wish to discover all nodes currently existing in the
system. The problem was initially introduced in [10],
deterministic algorithms with improved complexity were
presented in [13], and the case of asynchronous networks
was studied in [2], [12]. However, there are important
differences: 1) we are interested in learning about one
specific resource as opposed to learning about all other
known nodes, 2) our network may be disconnected, and
3) in our case, each node has a limited-size cache, so at each
instance, it knows about at most k other nodes. Finally,
flooding has also been used in ad hoc routing (e.g., [1], [9]).
In this case, the objective is to ensure that a message starting
from a source node reaches its destination.

7 CONCLUSIONS

In this paper, we consider the general problem of discovering
resources in a distributed environment. In particular, we
study the performance of a number of flooding-based
approaches to this problem. With flooding, a node searching
for a resource contacts its neighbors, which in turn contact
their own neighbors, and so on, until a node with the
requested resource is located. Flooding assumes no knowl-
edge about the network topology and the distribution of
resources, thus offering an attractive method for resource
discovery in dynamically evolving networks. However, pure
flooding incurs large network overheads. To address this, we
consider two variations, namely, teeming and random paths,
that confine the search space. We derive analytical results for
the performance of each strategy which are validated through
simulation. Our results take into account nonuniform
resource requests as well as node unavailability.

As future research, we plan to study the performance of
other resource discovery strategies. An interesting one is a
refinement of teeming, called teeming with decay [14]. In
this policy, � (the probability of selecting a neighbor to
propagate a request) decreases as the search progresses, so
as to avoid the excessive number of messages in the later
steps of the original algorithm.

Because the overlay network may contain directed
cycles, queries may reach intermediate nodes through
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multiple paths. Those nodes will propagate the same query

multiple times, creating unnecessary duplicate messages,

which cause a high traffic overhead [15] while they do not

increase the probability of successful resource discovery.

Duplication detection mechanisms should thus be present

at each node. Our research plans include extending our

analysis to systems with duplicate message avoidance.

APPENDIX

NOTATION

The notation used in this paper is summarized in Table 2.

The top portion of the table contains the given parameters

and the bottom half contains the derived quantities.
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