
Locating Objects in Mobile Computing
Evaggelia Pitoura, Member, IEEE Computer Society, and

George Samaras, Member, IEEE Computer Society

AbstractÐIn current distributed systems, the notion of mobility is emerging in many forms and applications. Mobility arises naturally in

wireless computing since the location of users changes as they move. Besides mobility in wireless computing, software mobile agents

are another popular form of moving objects. Locating objects, i.e., identifying their current location, is central to mobile computing. In

this paper, we present a comprehensive survey of the various approaches to the problem of storing, querying, and updating the

location of objects in mobile computing. The fundamental techniques underlying the proposed approaches are identified, analyzed,

and classified along various dimensions.

Index TermsÐMobile computing, location management, location databases, caching, replication, moving objects, spatio-temporal

databases.

æ

1 INTRODUCTION

IN current distributed systems, the notion of mobility is
emerging in many forms and applications. Increasingly,

many users are not tied to a fixed access point but instead
use mobile hardware such as dial-up services or wireless
communications. Furthermore, mobile software, i.e., code
or data that move among network locations, is emerging as
a new form of building distributed network-centric applica-
tions. In the presence of mobility, the cost of communicating
with a mobile user or using mobile code and data is
augmented by the cost of searching for their current
location.

Mobility arises naturally in wireless mobile computing
[17], [26], [50] since, as mobile users move, their point of
attachment to the fixed network changes. Future Personal
Communication Systems (PCSs) will support a huge user
population and offer numerous customer services. In such
systems, the signaling and database traffic for locating
mobile users is expected to increase dramatically [67]. Thus,
deriving efficient strategies for locating mobile users, i.e.,
identifying their current location, is an issue central to
wireless mobile computing research.

Besides the mobility tied to wireless hardware, data or
code may be relocated among different network sites for
reasons of performance or availability. Mobile software
agents [66], [1] are popular forms of mobile software.
Mobile agents are processes that may be dispatched from
a source computer and be transported to remote servers
for execution. Mobile agents can be launched into an
unstructured network and roam around to accomplish
their task [2], thus providing an efficient, asynchronous
method for collecting information or attaining services in
rapidly evolving networks. Other applications of moving

software include the relocation of a user's personal

environment to support ubiquitous computing [68], or

the migration of services to support load balancing, for

instance, the active transfer of web pages to replication

servers in the proximity of clients [8].
In this paper, we present a comprehensive survey of

the various approaches to the problem of storing,

querying, and updating the location of objects in mobile

computing. The emphasis is on the fundamental techni-

ques underlying the proposed approaches as well as on

analyzing and classifying them along various dimensions.

By identifying various parameters and classifying ele-

mental techniques, new approaches to the problem can be

developed by appropriately setting the parameters and

combining the techniques.
The rest of this paper is structured as follows: In

Section 2, we introduce the location problem and its

variations. In Section 3, we present the two most common

architectures for location directories, i.e., directories that

hold the location of moving objects: One is a two-tier

architecture based on a pair of home/visitor location

databases and the other is a hierarchically structured one.

In Section 4, we discuss optimizations and variations of

these architectures. In the following sections, we introduce a

number of approaches that have been proposed to reduce

the cost of lookups and updates in both architectures. In

particular, in Sections 5 and 6, we discuss the caching and

replication of location information at selected network sites

and, in Section 7, we present forwarding pointer techniques

that only partially update the location directories. In

Section 8, we present a taxonomy of the approaches

presented. In Section 9, we review approaches to the

problems of deferring updates of location databases and

saving imprecise location information. In Section 10, we

focus on issues related to concurrency and fault-tolerance

and, in Section 11, on issues related to answering complex

queries about the location of moving objects. We conclude

in Section 12 with a summation.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001 571

. E. Pitoura is with the Department of Computer Science, University of
Ioannina, GR 45110 Ioannina, Greece. E-mail: pitoura@cs.uoi.gr.

. G. Samaras is with the Department of Computer Science, Unibersity of
Cyprus, CY 1678 Nicosia, Cyprus. E-mail: cssamara@turing.cs.ucy.ac.cy.

Manuscript received 14 Aug. 1998; revised 13 Jan. 2000; accepted 21 Jan.
2000; posted to Digital Library 6 Apr. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 107197.

1041-4347/01/$10.00 ß 2001 IEEE

2 LOCATION MANAGEMENT

In mobile computing, mobile objects, e.g., mobile software
or users using wireless hardware, may relocate themselves
from one network location to another. To enable the
efficient tracking of mobile objects, information about their
current location may be stored at specific network sites. In
abstract terms, location management involves two basic
operations, lookups and updates. A lookup or search is
invoked each time there is a need to locate a mobile object,
e.g., to contact a mobile user or invoke mobile software.
Updates of the stored location of a mobile object are
initiated when the object moves to a new network location.
In the rest of this section, we first provide an overview of
the problem and then introduce network architectures that
are commonly associated with mobile computing.

2.1 Overview

Approaches to storing location information range between
two extremes. At one extreme, up-to-date information of the
exact location of all users is maintained at each and every
network location. In this case, locating a user reduces the
need for querying a local database. On the other hand, each
time the location of a user changes, a large number of
associated location databases must be updated. At the other
extreme, no information is stored at any site of the network.
In this case, to locate a mobile user, a global search at all
network sites must be initiated. However, when a user
moves, there is no cost associated with updating location
databases.

Between these two extremes, various approaches that
balance the cost of lookups against the cost of updates are
plausible. These approaches compromise the availability,
precision, or currency of the location information stored for
each user (Fig. 1). In terms of availability, choices range
between saving the location at all network sites to not
storing the location at all. In between these two approaches,
location information may be maintained selectively at
specific network sites. There is a wide range of selection
criteria for the sites which are used for saving location
information for each user. For example, a choice may be to

save the location of users at the sites of their frequent
callers. Imprecision in location information takes many
forms. For instance, instead of maintaining the exact
location of the user, a wider region or a set of possible
locations is maintained. Currency refers to when the stored
location information is updated. For instance, for highly
mobile users, it may make sense to defer updating the
stored information about their location every time the users
move. When current and precise information about a user's
location is not available locally, locating the user involves a
combination of some search procedure and a number of
queries posed to databases storing locations.

2.2 Underlying Network Architecture

The networking infrastructure for providing ubiquitous
wireless communication coverage is represented by the
personal communication system (PCS) also known by a
number of different names such as personal communication
network (PCN) and UMTS (universal mobile communica-
tion system). While the architecture of the PCS has not
evolved yet, it is expected that it will be partially based on
the existing digital cellular architecture (see Fig. 2 adapted
from [26]). This network configuration consists of fixed
backbone networks extended with a number of mobile hosts
(MHs) communicating directly with stationary transceivers
called mobile support stations (MSS) or base stations. The area
covered by an individual transceiver's signal is called a cell.
The mobile host can communicate with other units, mobile
or fixed, only through the base station at the cell in which it
resides. Thus, to communicate with a mobile user, the base
station of the cell in which it currently resides must be
located. As a mobile host moves, it may cross the boundary
of a cell and enter an area covered by a different base
station. This process is called handoff and may involve
updating any stored location information for the mobile
host. It is speculated that ubiquitous communications will
be provided by PCS in a hybrid fashion: Heavily populated
areas will be covered by cheap base stations of small radius
(picocells), less populated areas will be covered by base
stations of larger radius, and farm land, remote areas, and
highways with satellites that will provide the bridge
between these different islands of population density.

572 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

Fig. 1. Approaches to saving location information.

Fig. 2. Wireless computing architecture.

PCSs involve two types of mobility: terminal and
personal mobility [43]. Terminal mobility allows a terminal
to be identified by a unique terminal identifier independent
of its point of attachment to the network. Personal mobility
allows PCS users to make and receive calls independently
of both their network point of attachment and a specific PCS
terminal. Each mobile user explicitly registers itself to notify
the system of its current location. The granularity of a
registration area ranges from that of a single cell to a group
of cells. Once the registration area is identified, the user can
be tracked inside this area using some form of paging.
Paging is the process whereby to locate a mobile user, the
system issues polling signals in a number of likely locations.
By changing the size of a registration area, the flexibility of
any combination of registration and paging is attained [52].
If not explicitly stated otherwise, we use the term cell or
zone as synonyms with registration area to indicate a
uniquely identifiable location where a mobile user can be
found.

In the cellular architecture, three levels are involved: the
access, the fixed, and the intelligent network [67]. The fixed
network is the wired backbone network. The access network is
the interface between the mobile user and the fixed
network. The intelligent network is the network connecting
any location registers, i.e., registers used to store informa-
tion about the location of mobile users. This network is used
to carry traffic related to tracking mobile users. The
Signaling System No. 7 (SS7) [40] and its signaling network
is a good candidate for carrying the signaling traffic in the
intelligent network.

Location management is handled at the data link or
networking layer transparently from the layers above it [61],
each time a call is placed or a change in the network point of
attachment occurs. Location management is an issue
present in all wireless networks (e.g., cellular, wireless
LANs, satellites). Although most solutions so far relate to
cellular architectures at the data link layer and to wireless
LAN architectures at the networking layer, most are general
enough to be applicable to different layers and architec-
tures. In addition to handling mobility at lower layers, the
need for information about the location of moving objects is
encountered at the application level as well. Applications
may need information about the location of mobile users to
answer a variety of queries that involve location (e.g., find
the nearest restaurant) [25]. Other applications may involve
updating environmental parameters and selecting locally
available computing resources (e.g., nearest printer) [44].
There is no standard way for applications to acquire and
use location information. For example, applications may
choose to maintain their own data structures for storing
location information.

The cellular architecture is not the sole infrastructure for
wireless mobile computing. In its absence, various techniques
may be employed to identify the current location of mobile
users, for instance, users may be equipped with a Global
Positioning System (GPS) [19], [18]. GPSs are space-based
radio positioning systems that provide three-dimensional
position, velocity, and time information to suitably equipped
users anywhere on or near the surface of the Earth. Common
applications in this area include digital battlefields in the

military context and transportation systems in the civilian
industry [69]. Finally, besides the mobility tied to wireless
hardware, the techniques presented in this paper are also
applicable when the objective is to locate mobile code and
data. Furthermore, similar techniques are also necessary
when, instead of location, the objective is to efficiently
retrieve other profile information related to mobile users.
This information may include QoS-related parameters or
services.

3 ARCHITECTURES OF LOCATION DATABASES

In this section, we describe the basic architectures for
distributed databases used for storing the location of
moving users. The two most common approaches are a
two-tier scheme in which the current location of each
moving user is saved at two network locations and a tree-
structured distributed database in which space is hierarchi-
cally decomposed in to subregions. We also describe a
graph-theoretic approach that employs regional directories.
Finally, we briefly refer to a centralized database approach.

3.1 Two-Tier Schemes

In two-tier schemes, a home database, termed Home Location
Register (HLR), is associated with each mobile user. The
HLR is located at a network location (zone) prespecified for
each user. It maintains the current location of the user as
part of the user's profile. The search and update procedures
are quite simple. To locate a user x, x's HLR is identified
and queried. When a user x moves to a new zone, x's HLR
is contacted and updated to maintain the new location.

As an enhancement to the above scheme, Visitor Location
Registers (VLRs) are maintained at each zone. The VLR at a
zone stores copies of the profiles of users not at their home
location, but are currently located inside that zone. When a
call is placed from zone i to user x, the VLR at zone i is
queried first and, only if the user is not found there, is x's
HLR contacted. When a user x moves from zone i to j, in
addition to updating x's HLR, the entry for x is deleted
from the VLR at zone i and a new entry for x is added to the
VLR at zone j.

The two prevailing existing standards for cellular
technologies, the Electronics Industry Association Telecom-
munications Industry Associations (EIA/TIA) Interim
Standard 41 (IS-41) commonly used in North America and
the Global System for Mobile Communications (GSM) used
in Europe, both support carrying out location strategies
using HLRs and VLRs [43].

At the Internet networking level, mobile IP [47] is a
modification to wireline IP that allows users to continue to
receive messages independently at their point of attachment
to the Internet. Mobile IP is designed within the IETF
(Internet Engineering Task Force) and is outlined in a
number of Request for Comments (RFCs) [28]. Wireline IP
assumes that the network address of a node uniquely
identifies the node's point of attachment to the Internet.
Thus, a node must be located on the network indicated by
its IP address to receive messages destined to it. To remedy
this, in mobile IP, there are two IP addresses associated with
each mobile node. One address, known as the home address
of the node, is used to identify the node and is treated

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 573

administratively just like a permanent IP address. When
away from its home network, a care-of-address is associated
with the mobile node and reflects the mobile node's current
point of attachment. The care-of-address is either the
address of a foreign agent which is a router on the visited
network that provides services to the mobile node or a
colocated address which is an address temporarily acquired
by the mobile node. When a mobile node is away from its
home, it registers its care-of-address with its home address.
Then, to deliver any messages, the home agent tunnels them
to the care-of-address.

One problem with the home location approach is that the
assignment of the home register to a mobile object is
permanent. Thus, long-lived objects cannot be appropri-
ately handled, since their home location remains fixed even
when the objects permanently move to a different region.
Another drawback of the two-tier approach is that it does
not scale well with highly distributed systems where sites
are geographically widely dispersed. To contact an object,
the possibly distant home location must be contacted first.
Similarly, even a move to a nearby location must be
registered at a potentially distant home location. Thus, the
locality of moves and calls is not taken advantage of.

3.2 Hierarchical Schemes

Hierarchical location schemes extend two-tier schemes by
maintaining a hierarchy of location databases. In this
hierarchy, a location database at a higher level contains
location information for users located at levels below it.
Usually, the hierarchy is tree-structured. In this case, the
location database at a leaf serves a single zone (cell) and
contains entries for all users registered in this zone. A
database at an internal node maintains information about
users registered in the set of zones in its subtree. For each
mobile user, this information is either a pointer to an entry
at a lower-level database or the user's actual current
location. The databases are usually interconnected by the
links of the intelligent signaling network, e.g., a Common
Channel Signaling (CCS) network. For instance, in tele-
phony, the databases may be placed at the telephone
switches. It is often the case that the only way that two
zones can communicate with each other is through the
hierarchy; no other physical connection exists among them.

We introduce the following notation: We use the term
LCA�i; j� to denote the least common ancestor of nodes i
and j. A parameter that affects the performance of most
location management schemes is the relative frequency of
the move and call operations of each user. This is captured
by the call to mobility ratio (CMR). Let Ci be the expected
number of calls to user Pi over a time period T and Ui the
number of moves made by Pi over T , then CMRi � Ci=Ui.
Another important parameter is the local call to mobility
ratio LCMRi;j that also involves the origin of the calls. Let
Ci;j be the expected number of calls made from zone j to a
user Pi over a time period T , then the local call to mobility
ratio LCMRi;j is defined as LCMRi;j � Ci;j=Ui. For hier-
archical location schemes, the local call to mobility ratio
(LCMRi;j) for an internal node j is extended as follows:
LCMRi;j �

P
k LCMRi;k, where k is a child of j. That is, the

local call to mobility ratio for a user Pi and an internal node

j is the ratio of the number of calls to Pi originated from any
zone at j's subtree to the the number of moves made by Pi.

The type of location information maintained in the
location databases affects the relative cost of updates and
lookups as well as the load distribution among the links and
nodes of the hierarchy. First, let's consider the case of
keeping at all internal databases pointers to lower level
databases. For example, in Fig. 3 (left), for a user x residing
at node (cell) 18, there is an entry in the database at node 0
pointing to the entry for x in the database at node 2. The
entry for x in the database at node 2 points to the entry for x
in the database at node 6, which, in turn, points to the entry
for x in the database at node 18. When user x moves from
zone i to zone j, the entries for x in the databases along the
path from j to LCA�i; j� and from LCA�i; j� to i are
updated. For instance, when user x moves from 18 to 20, the
entries at nodes 20, 7, 2, 6, and 18 are updated. Specifically,
the entry for x is deleted from the databases at nodes 18 and
6, the entry for x at the database at 2 is updated, and entries
for x are added to the databases at nodes 7 and 20. When a
caller located at zone i places a call for a user x located at
zone j, the lookup procedure queries databases starting
from node i and proceed up as the tree until the first entry
for x is encountered. This happens at node LCA�i; j� (the
least common ancestor of nodes i and j). Then, the lookup
procedure proceeds downward following the pointers to
node j. For instance, a call placed from zone 21 to user x
located at node 18 (Fig. 3 (left)) queries databases at nodes
21 and 7 and finds the first entry for x at node 2. Then, it
follows the pointers to nodes 6 and 18.

Noe, let's consider the case of database entries maintain-
ing the actual location of each user. Then, for user x
registered at 18 (Fig. 3 (right)), there are entries in the
databases at nodes 0, 2, 6, and 18, each containing a pointer
to location 18. In this case, a move from zone i to j causes
the update of all entries along the paths from j to the root
and from the root to i. For example, a relocation of user x
from node 18 to node 20, involves the entries for x at 20, 7, 0,
2, 6, and 18. After the update, entries for x exist in the

574 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

Fig. 3. Hierarchical location schema. Location databases' entries at the

left are pointers at lower-level databases, while location databases'

entries at the right are actual locations.

databases located at nodes 0, 2, 7, and 20, each containing a
pointer to 20, while the entries for x in the databases at
nodes 6 and 18 were deleted. On the other hand, the cost of
a call from i to j is reduced, since once the LCA�i; j� is
reached, there is no need to query the databases on the
downward path to j. For example, a call placed from node
21 to user x (Fig. 3 (right)), queries databases at nodes 21, 7,
2, and, then 18, directly (without querying the database at
node 6).

When hierarchical location databases are used, there is
no need for binding a user to a home location register
(HLR). The user can be located by querying the databases in
the hierarchy. In the worst case, an entry for the user will be
found in the database at the root.

Proposals for hierarchical versions have also been made
within the context of Mobile IP [47]. In this case, the foreign
agents are arranged hierarchically in the regional topology.
Each ancestral foreign agent considers the mobile node to
be registered at the foreign node just below it in the
hierarchy. A hierarchical arrangement of location entries is
also possible in ATM networks [65].

A hybrid scheme utilizing both hierarchical entries and
preassigned home location registers (HLRs) is also possible.
Assume that database entries are maintained only at
selective nodes of the hierarchy and that an HLR is used.
In this case, a call originating from zone i starts searching
for the callee from zone i. It proceeds following the path
from i to the LCA of i and the callee's HLR and, then moves
downward to the callee's HLR, unless an entry for the callee
is found in any database on this path. If such an entry is
encountered, it is followed instead [67].

The hierarchical scheme leads to reductions in commu-
nication cost when most calls and moves are geographically
localized. In such cases, instead of contacting the HLR of the
user that may be located far away from the user's current
location, a small number of location databases in the user's
neighborhood are accessed. However, the number of
location databases that are updated and queried increases
relative to the two-tier scheme. Another problem with the
hierarchical schemes is that the databases located at a
higher-level must handle a relatively large number of
messages. Furthermore, they have large storage demands.
One solution is to partition the databases at the high-level
nodes (e.g., at the root) into smaller databases at subnodes
so that the entries of the original database are shared
appropriately among the databases at the subnodes [64].
Table 1 summarizes some of the pros and cons of the
hierarchical architectures.

3.3 Nontree Hierarchy: Regional Matching

The objective of the regional directories approach [6] is
favorable to local operations because it moves to nearby
locations or searches for nearby users cost less. The
approach guarantees communication overheads that are
polylogarithmic in the size (i.e., number of network sites)
and the diameter (i.e., maximum distance between any two
sites) of the network. The overhead is evaluated by
comparing the total cost of a sequence of move and call
operations against the inherent cost, i.e., the cost incurred
by the operations assuming that information for the current
location of each user exists at all sites for free. The
comparison is done over all possible sequences of move
and call operations.

Location databases, called regional directories are orga-
nized in a nontree hierarchy. In particular, a hierarchy D of
� regional directories is built, where � � log d, for d being
the maximal distance between any two network sites. The
purpose of a regional directory RDi at level i is to enable a
potential searcher to track any user residing within distance
2i from it. Two sets of sites are associated with each site u in
an RDi directory: a readset Readi�u� and a writeset
Writei�u� which contains the property that the readset
Readi�u� and the writeset Writei�w� intersect for any pair of
site u and w within a distance 2i from each other. The two
sets of sites are used as follows: Each site reports all users it
hosts to every site in its writeset and, upon looking for a
user, it queries all sites in its readset.

Whenever a user moves to a new location at distance k
away, only the log k lowest levels of the hierarchy are
updated to point directly to the new address. Directory
entries at higher-level directories continue pointing to the
old address, where a forwarding pointer to the new location
is left. To bound the length of the chain of forwarding
pointers, it is guaranteed that, for every user, the distance
C�x� traveled since its address was updated at the regional
directory RDi is less or equal to 2iÿ1 ÿ 1 for each level i. The
complete search and update procedures are as follows:

Regional Matching Search Procedure
/* a call is placed from a user at site w to user x */
i 0 address nil

repeat

i i� 1

/* Search directory RDi */
for all sites u in Read�w�

query u

until address <> nil
repeat

follow forwarding pointers
until reaching x

Regional Matching Move Procedure

/* user x moves from site v to site w */
Let RDj be the highest directory for which C�x� > 2jÿ1 ÿ 1

for i =1 to maxfJ; �g
/* Update directory RDi */

for all sites u in Write�v�
update entry

add a forwarding pointer at RDi�1

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 575

TABLE 1
Summary of Pros and Cons of Hierarchical Architectures

3.4 A Centralized DBMS

The architectural alternatives presented so far are distrib-
uted, in that the locations of moving objects are stored in
different network sites. For some applications, it is feasible
to use a centralized approach in which the locations of all
moving objects are stored in a single centralized Database
Management System (DBMS). Such applications include,
for example, a trucking company's database, a database
representing the location of taxicabs or, in the context of
military applications, a database that keeps track of the
position of all moving objects in a battlefield. In this case, all
location queries and updates are directed to the central
DBMS. Using an existing spatial DBMS is not sufficient,
since existing DBMS do not handle continuously changing
data well, such as the location of moving objects. Thus, most
current research in this area [71] deals with extending
spatial databases with such capabilities.

4 PLACEMENT OF DATABASES

Maintaining location information at all nodes in the
hierarchy results in cost-effective lookups. However, it
increases the number of databases that must be updated
during each move operation. To reduce the update cost,
database entries may be only selectively maintained at
specific nodes in the tree hierarchy. In this case, during the
search and update procedures, only nodes that contain
location databases are queried or updated; others are
skipped. For instance, when a call is made from j to i, the
search procedure traverses the tree from node j up to the
lowest-level ancestor of the LCA�i; j� that contains a
location database.

A possible placement of location databases is to maintain
location entries for mobile hosts only at the leaf nodes of the
zone in which they currently reside. In this case, when there
is no home location register associated with a mobile host,
some form of global searching in the hierarchy is needed to
find its current location. In this scenario, location strategies
include flat, expanding, and hybrid searches [7]. Let home
be the zone at which a user registers initially. The flat search
procedure starts from the root and then, in turn, queries, in
parallel, all nodes at the next level of the tree until the leaf
level is reached. The expanding search procedure starts by
querying the home of the callee i, then queries the parent of
the home, which, in turn, queries all its children and so on.
This type of search favors moves to nearby locations.
Finally, the hybrid search procedure starts as the expanding
one, but, if the location is not found at the children of the
parent of the callee's home, a flat search is initiated. The
hybrid scheme can quickly locate those users that, when not
at home, happen to be found far away from it.

Next, we consider three alternative architectures: main-
taining location information at selective internal nodes so
that some performance metric is optimized, a dynamic
hierarchical database architecture, and partitions.

4.1 Optimization

The placement of location databases in the hierarchy can be
seen as an optimization problem. Objective functions
include minimizing: 1) the number of database updates
and accesses, 2) the communication cost, and 3) the sum of

the traffic on the network link or links, or any combination
of the above. Constraints that must be satisfied include: 1) an
upper bound on the rate at which each database can be
updated or accessed, 2) the capacity of links, and 3) the
available storage. Such an optimization-based approach is
taken in [5]. The objective there is to minimize the number
of updates and accesses per unit of time given a maximum
database service capacity (i.e, the maximum rate of updates
and lookups that each database can service) and estimates
of the call to mobility ratio. In this approach, communica-
tion is not considered and, thus, if the service capacity is
sufficiently large, a single, central database at the root is the
optimal placement. The problem is formulated as a
combinatorial optimization problem and is solved using a
dynamic programming algorithm.

4.2 Dynamic Hierarchical Database Architecture

The dynamic hierarchical scheme proposed in [24] extends
the two-tier scheme by introducing a new level of databases
called directory registers (DRs). Each DR covers a number of
location zones. Its primary function is to periodically
compute and store the location configuration for the mobile
units located in zones under its service. There are three
types of location addresses that can be stored in a DR. In
particular, besides maintaining the local address of all
mobile units located in its coverage, each DR also maintains
for selected mobile units either a direct remote address to
their current location or an indirect remote address to their
current serving DR. For each particular mobile unit, the
selection of the set of DRs that maintain direct remote
addresses or indirect remote addresses for it is periodically
determined based on the mobility and call arrival patterns
of the unit. The HLR may either store the current zone or
the current DR of a mobile unit, again depending on the
mobility and call arrival patterns of the unit. In the cases
that it is more cost-effective not to set up any remote
addresses, the scheme reduces to the original two-tier
scheme. In contrast to the two-tier and the hierarchical
architectures where the strategy for the distribution of
location information is the same for all mobile units, in this
scheme, the distribution strategy is dynamically adjusted
for each mobile unit.

4.3 Partitions

To avoid maintaining location entries at all levels of the
hierarchy, and at the same time reduce the search cost,
partitions are deployed [7]. The partitions for each user are
obtained by grouping the zones (cells) among which it
moves frequently and separating the zones between which
it relocates infrequently. Thus, partitions exploit locality of
movement. Partitions can be used in many ways. Next, we
describe two such partition-based strategies.

For each partition, the information whether the user is
currently in the partition is maintained at the least common
ancestor of all nodes in the partition called the representative
of the partition. The representative knows that a user is in
its partition but not its exact location [7]. This information is
used during flat search (i.e., top-down search starting from
the root) to decide which subtree in the hierarchy to search.
Thus, partitions reduce the overall search cost as compared
to flat search. There is an increase, however, on the update

576 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

cost since, when a user crosses a partition, the representa-
tives of its previous and new partitions must be informed.
For example, assume that user x often moves inside four
different set of nodes, i.e., partitions, and infrequently
between these sets. The nodes of each partition are
f10; 12; 14; 15g, f16; 18g, f19; 20; 21g, and f22; 23; 25; 26; 27g,
and are depicted in Fig. 4. The representative node of each
partition is highlighted. When user x is at node 14 in
partition 1, the representative of the associated partition,
node 1, maintains the information that the user is inside its
partition. When user x moves to node 16 which is outside
the current partition, both node 1, the representative of the
old partition, and node 6, the representative of the new
partition, are updated to reflect the movement.

A slightly different use of partitions, called redirection
trees, is proposed in [12]. A single partition, called local
region, is defined by including all nodes between which the
user often moves. The representative of the local region,
called a redirection agent, maintains the location of all users
that have appointed it as their redirection agent. When the
user is located in its local region, its redirection agent
redirects any calls passing through it during any type of
search (e.g., flat or using HLRs) to the current location of the
user. Movements inside a local region are recorded in the
redirection agent and not necessarily at location servers
outside the region.

5 CACHING

Caching is based on the premise that, after a call is resolved,
the information about the current location of the callee
should be reused by any subsequent calls originated from
the same region. To this end, in two-tier architectures, every
time a user x is called, x's location is cached at the VLR in
the caller's zone, so that any subsequent call to x originated
from that zone can reuse this information [32]. Caching is
useful for those users who frequently receive calls relative
to the rate at which they relocate. Similar to the idea of
exploiting locality of file accesses, the method exploits the
spatial and temporal locality of calls received by users.

To locate a user, the cache at the VLR of the caller's zone
is queried first. If the location of the user is found at the
cache, then a query is launched to the indicated location
without contacting the user's HLR. Otherwise, the HLR is
queried.

Regarding cache invalidation, there are various ap-
proaches. In eager caching, every time a user moves to a
new location, all cache entries for this user's location are
updated. Thus, the cost of move operations increases for
those users whose address is cached. In this type of caching,
the locations of the cache entries for a user's location must
be centrally known in order for the updates to be initiated.
This leads to scalability problems as well as making the
scheme susceptible to fault tolerance problems. In lazy
caching, a move operation signals no cache updates. Then, if
when at lookup a cache entry is found, there are two cases:
either the user is still in the indicated location and there is a
cache hit, or it has moved out, in which case a cache miss is
signaled. In the case of a cache miss, the usual procedure is
as follows: The HLR is contacted and after the call is
resolved the cache entry is updated. Thus, in lazy caching,
the cached location for any given user is updated only upon
a miss.

The basic overhead involved in lazy caching is in cases of
cache misses, since the cached location must be visited first.
So, for lazy caching to produce savings over the noncaching
scheme, the hit ratio p, for any given user at a specific zone,
must exceed a hit ratio threshold pT � CH=CB, where CH is
the cost of a lookup when there is a hit and CB is the cost of
the lookup in the noncaching scheme. Among other factors,
CH and CB depend on the relative cost of querying HLRs
and V LRs.

A performance study for lazy caching is presented in
[32], [21]. There, an estimation of CH and CB is computed
for a given signaling architecture based on a Common
Channel Signaling network that uses the SS7 protocol [40] to
set up calls. Conclusions are drawn on the benefits of
caching based on which of the factors participating in CH
and CB dominate. The hit ratio for the cache of user's
i location at zone j can also be directly related to the
LCMRi;j of the user [32]. For instance, when the incoming
calls follow a Poisson distribution with arrival rate � and
the intermove times are exponentially distributed with
mean �, then p � �=��� �� and the minimum LCMR,
denoted LCMRT , required for caching to be beneficial is
LCMRT � pT=�1ÿ pT �. So, caching can be selectively done
per user i at zone j, when the LCMi;j is larger than the
LCMRT bound. In general, this threshold is lower when
users accept calls more frequently from users located
nearby. In practice, it is expected that LCMRT > 7 [32].

Another approach to cache invalidation, suggested in
[38], is to consider cache entries obsolete after a certain time
period. To determine when a particular cache should be
cleared, a threshold T is used. T is dynamically adapted to
the current call and mobility patterns such that the overall
network traffic is reduced.

When the cache size is limited, cache replacement
policies, such as replacing the least recently used (LRU)
location, may be used. Another issue is how to initialize the
cache entries. User profiles and other types of domain
knowledge may be used to initially populate the cache with
the locations of the users most likely to be called.

In mobile IP, route optimization [47] provides a means for
any node to maintain a binding cache containing the care-
of-address of one or more mobile nodes. Such cache

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 577

Fig. 4. Partitions.

entries are used by the sender to tunnel any messages
directly to the care-of-address indicated in its cache. Each
entry in the binding cache has an associated lifetime that is
specified when the entry is created. The entry is to be
deleted from the cache after the expiration of this time
period. A lazy procedure is also used to update out-of-date
cache entries.

In the approach we have described, caching is performed
on a per user basis: The cache maintains the address of the
last called users. Another approach is to apply a static form
of caching, e.g., by caching the addresses of a certain group
of users or certain parts of the network where the users' call
to mobility ratios (CMRs) are known to be high on average.

Caching techniques can also be deployed to exploit the
locality of calls in tree-structured hierarchical architectures.
Recall that, in hierarchical architectures, when a call is
placed from zone i to user x located at zone j, the search
procedure traverses the tree upward from i to LCA�i; j� and
then downward to j. We also consider an acknowledgment
message that returns from j to i. To support caching, during
the return path, a pair of bypass pointers, called forward
and reverse, is created [30]. A forward bypass pointer is an
entry at an ancestor of i, say s, that points to an ancestor of j,
say t; the reverse bypass pointer is from t to s. During the next
call from zone i to user x, the search message traverses the
tree upward until s is reached. Then, the message travels to
database t either via LCA�i; j� or via a shorter route if such
a route is available in the underlying network. Similarly, the
acknowledgment message can bypass all intermediate
pointers on the path from t to s.

For example, let a call be placed from zone 13 to user x at
zone 16 (Fig. 5). A forward bypass pointer is set at node 1
pointing to node 6; the reverse bypass pointer is from 6 to 1.
During the next call from zone 13 to user x, the search
message traverses the tree from node 13 up to node 1 and
then at node 6, either through LCA�1; 6�, that is, node 0, or
via a shorter path. In any case, no queries are posed to
databases at nodes 0 and 2.

Where the bypass pointers are set, the level of nodes s
and t varies. In simple caching, s and t are both leaf nodes,
while in level caching, s and t are nodes belonging to any
level and possibly each to a different one (as in the previous

example). Placing a bypass pointer at a high-level node s,
makes this entry available to all calls originated from zones
at s's subtree. However, calls must traverse a longer path to
reach s. Placing the pointer to point to a high-level node t,
increases the cost of lookup, since to locate a user, a longer
path from t to the leaf node must be followed. On the other
hand, the cache entry remains valid as long as the user
moves inside t's subtree. An adaptive scheme can be
considered to set the levels of s and t dynamically.

As in the two-tier location scheme, there are many
possible variations for performing cache invalidations [30].
In lazy caching, the move operation remains unchanged
since cache entries are updated only when a cache miss is
signaled. In eager caching, cache entries are updated at each
move operation. Specifically, consider a move operation
from zone i to zone j, where a registration/deregistration
message propagates from j via LCA�j; i� to i. During this
procedure, the bypass pointers which are no longer valid
are deleted. These pointers include any forward bypass
pointers found during the upward traversal of the registra-
tion message and any reverse or bypass pointers found
during the downward traversal of the deregistration
message [30].

Preliminary performance results are reported in [30]. The
analysis is based on a quantity, called Regional Call-to-
Mobility Ratio (RCMR), defined for a user x with respect to
tree nodes s and t as the average number of calls from the
subtree rooted at s to user x, while user x is in the subtree
rooted at t. It is shown, that under certain assumptions, for
users with RCMR > 5, caching can result in up to a
30 percent reduction in the cost of both calls and moves
when considering only the number of database operations.

Caching in the case of storing the exact location at
internal nodes, as opposed to pointers to lower-level
databases, can also be deployed in many ways, again
ranging from simple to level caching. In simple caching, the
current location of the user is cached only at leaf nodes. In
level caching, the current location of a user is cached at all
nodes up to a given level.

Caching is orthogonal to partitions. In fact, in [63], [64]
caching is used in conjunction with partitions. In particular,
instead of caching the current location of the callee, the
location of its representative is cached. For example, assume
that partitions are defined as in Fig. 4 and user x is at
node 14. Let a call be placed for user x. Instead of caching
location 14 (or a pointer to it), location 1, e.g., the
representative of the current partition, is cached. This
significantly reduces the cost of cache updates since a cache
entry becomes obsolete only when a user moves outside the
current partition.

6 REPLICATION

To reduce the lookup cost, the location of specific users may
be replicated at selected sites. Replication reduces the
lookup cost since it increases the probability of finding the
location of the callee locally as opposed to issuing a high
latency remote lookup. On the other hand, the update cost
incurred increases considerably since replicas must be
maintained consistent every time the user moves.

578 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

Fig. 5. Caching in hierarchical location schemes. For simplicity, the

acknowledgment message is not shown; it follows the reverse route of

the search procedure.

In general, the location of a user i should be replicated at
a zone j, only if the replication is judicious, that is, the
savings due to replication exceed the update cost incurred.
As in the case of caching, the benefits depend on the
LCMR. Intuitively, if many calls to i originate from zone j,
then it makes sense to replicate i at j. However, if i moves
frequently, then replica updates incur excessive costs. Let �
be the cost savings when a local lookup, i.e., a query of the
local VLR, succeeds as opposed to a remote query and � be
the cost of updating a replica. Then, a replication of the
location of user i at zone j is judicious if

� � Ci;j � � � Ui Inequality; �1�
where Ci;j is the expected number of calls made from zone j
to i over a time period T and Ui is the number of moves
made by i over T .

In addition to cost, the assignment of replicas to zones
must take into account other parameters, such as the service
capacity of each database and the maximum memory
available for storing replicas. The replication sites for each
user may be kept at its HLR. Besides location information,
other information associated with mobile users may also be
replicated [56]. Such information may include service
information, such as call blocking and call forwarding, as
well as QoS requirements, such as minimum channel
quality or acceptable bandwidth. Unlike location informa-
tion which is needed at the caller's region, service and QoS
information is needed at the location at which the call is
received. Approaches similar to those used for the replica-
tion of location information can be used to replicate service
information at sites that are frequently visited by a mobile
user in place of sites from which most calls for that user
originate.

Finally, instead of the exact location of a user, more
coarse location information, e.g., the user's current parti-
tion, may be replicated. The coarseness or granularity of
location replicas presents location schemes with a trade-off
between the update and the lookup costs. If the information
replicated is coarse, then it needs to be updated less
frequently in the expense of a higher lookup resolution cost.

Choosing the network sites at which to maintain replicas
of the current location of a mobile user resembles the file
allocation [15] and the database allocation [46] problem.
These classical problems are concerned with the selection of
sites at which to maintain replicas of files or database
partitions. The selection of sites is based on the read/write
pattern of each file or partition, that is, the number of read and
write operations issued by each site. In the case of location
management, this corresponds to the lookup/update pattern
of a user's locations. Most schemes for file or database
allocation are static, that is, they are based on the assumption
that the read/write pattern does not change.

We describe four per user replication schemes. The first
one takes into account resource restrictions and is centra-
lized, whereas the second one does not place any such
global restrictions and, thus, is distributed. The first two
algorithms are for two-tier schemes, while the third one is
applicable to tree-structured hierarchical architectures. The
last algorithm is not developed specifically for location
management but treats the problem of dynamic data

allocation in its general form. It is a distributed algorithm
that considers no global restrictions. It is applicable to any
architecture, but it is proven to be optimal for tree-
structured hierarchical schemes.

6.1 Per User Profile Replication

The objective of the per user profile approach [57] is to
minimize the total cost of moves and calls, while maintain-
ing constraints on the maximum number ri of replicas per
user Pi and on the maximum number pj of replicas stored in
the database at zone Zj. Let M be the number of users and
N be the number of zones. A replication assignment of a
user's profile Pi to a set of zones R�Pi� is found, such that
the system cost expressed as the sum:

PN
i�1

PM
j�1;Zj2R�Pi� � �

Ui ÿ � � Ci;j is minimized and any given constraints on the
maximum number of replicas per database at each zone and
on the maximum number of replicas per user are
maintained.

To this end, a flow network F is constructed as follows:
The vertices of the graph correspond to users Pi and zones
Zj. There are two special vertices, a source vertex s and a
sink vertex t. A pair �c; p� of a cost, c, and a capacity, p,
attribute is associated with each edge. An edge is added
from s to all Pi with �c; p� � �0; ri� and from all Zj to t with
�0; pj�. An edge from Pi to Zj with �c; p� � �� � Ui ÿ � �
Ci;j; 1� is added only if it is judicious to replicate Pi at Zj,
i.e., if Inequality (1) holds. Then, computing a minimum-
cost (min-cost) maximum-flow (max-flow) on F finds the
requested assignment.

In Fig. 6, a simple flow network of a system with four
mobile users and three zones is depicted. The capacity
attribute 2 on edge �s; P1� indicates that P1's profile can be
replicated in at most two zones. The capacity attribute 3 on
edge �Z1; t� indicates that the database at zone Z1 can store
at most three replicas. Finally, in the pair �ÿ6; 1� on edge
�Z1; P1�, the cost attribute -6 indicates that replicating P1's
profile in zone Z1 will yield a net cost savings of six over not
replicating, while the capacity attribute 1 indicates that P1

should be replicated at most once in Z1.
In such a centralized approach, generating, distribut-

ing, and applying to all sites, a particular replica
assignment decision is a time consuming, computational
intensive, and bandwidth demanding process. Thus,
computing and applying a new replication plan is very
expensive and a graceful adaptation of the replica
assignment to changing calling and mobility patterns is
very important [56]. Let F�new represent the flow network
solution for a new calling and mobility pattern �new and

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 579

Fig. 6. An example of a flow network.

F�old represent the flow network solution for the previous
pattern �old. An algorithm is presented that incrementally
computes the min-cost max-flow of F�new given the min-
cost max-flow of F�old . A desired property of the replica
assignment algorithm is to keep the cost of evolution
from F�old to F�new low by avoiding radical changes in the
replication plan. To this end, two approaches are
proposed: 1) a tempered min-cost max-flow that factors
in the cost of replica reassignments when augmenting
paths and 2) a minimum mean cycle canceling algorithm
that augments flow along cycles with the minimum mean
cost, where the cost expresses the number of replica
reassignments.

6.2 Working Set Replication

The working set method [51] relies on the observation that
each user communicates frequently with a small number of
sources, called its working set, thus, it makes sense to
maintain copies of its location at the members of this set.
The approach is similar to the per user replication except
from the fact that no constraints are placed on the database
storage capacity or the number of replicas per user.
Consequently, the decision to provide the information of
the location of a mobile unit Pi at a zone Zj can be made
independently at each unit Pi.

Specifically, Inequality (1) is evaluated locally at the
mobile unit each time at least one of the quantities is
involved in the inequality changes. This happens 1) each
time a call is set up and 2) when the mobile unit moves. In
the former case, the inequality is evaluated only if the
caller's site is not a member of the working set of the callee.
If the inequality is found to hold, the caller's site becomes a
member of the set. In the latter case, the inequality is
reevaluated for all members of the working set, and the
members for which the inequality no longer holds are
dropped off the set. This way the scheme adapts to the
current call and mobility pattern. Note that, in case 1, all
four terms of Inequality (1) need to be recomputed, while,
in case 2, only the number of moves (Ui) needs to be
reevaluated.

Simulation studies in [51] show that, as expected, when
the call to mobility ratio (CMR) value is low, the scheme
performs like a scheme without replication. When the CMR
value is high, the scheme behaves like a static scheme in
which the working set for a user is fixed. It is also shown
that the performance of this adaptive scheme is not
primarily affected by the number of units in the working
set but rather by the CMR of each individual unit.

6.3 Replication in Hierarchical Architectures

In hierarchical architectures, in addition to leaf nodes,
the location of a mobile user may be selectively
replicated at internal nodes of the hierarchy. As in the
replication schemes for two-tier architectures, the loca-
tion of a user should be replicated at a node only if the
cost of replication does not exceed the cost of non-
replication. However, in a hierarchical location database
scheme, if a high LCMR value is the determining factor
for selecting replication sites, then the databases at
higher levels will tend to be selected as replication sites
over databases at lower levels since they possess much

higher LCMR values. In particular, if a database at level
j is selected, all its ancestors are selected as well. Recall
that the LCMR for an internal node is the sum of the
LCMRs of its children. Such a selection would result in
excessive update activities at higher-level databases. To
compensate, replication algorithms for hierarchical data-
bases must also set some maximum level of the
hierarchy at which to replicate.

HiPer proposed in [33] is a family of location manage-
ment techniques with four parameters: Nmax, Smin, Smax,
and L, where Nmax determines the maximum number of
replicas per user, Smin and Smax together determine when a
node may be selected as a replication site, and L determines
the maximum level of the hierarchy at which replicas can be
placed. The location of user i is not replicated at j if
LCMRi;j is smaller than Smin, while it is replicated if
LCMRi;j exceeds Smax. If Smin � LCMRi;j < Smax, then
whether replication should be performed or not depends
on a number of constraints placed by the database topology.
The constraints taken into account by HiPer are Nmax and L.
An offline algorithm to compute the sites of replication for
each user i proceeds in two phases. In the first phase, in a
bottom-up traversal, it allocates replicas of i at all databases
with LCMRi;j � Smax as long as the number of allocated
replicas n does not exceed Nmax. In the second phase, if
n � Nmax, the algorithm allocates the remaining replicas to
databases below level L with the largest nonnegative
LCMRi;j ÿ Smax in a top-down fashion.

The optimal values Soptmin and Soptmax for Smin and Smax are
determined based on whether replication is judicious, that
is, if the benefits of replication exceeds its costs. It is shown
that Soptmin � bu=�bl�2E�LCA� ÿ lj�� and Soptmax � bu=bl, where
bu is the network cost of each update message, bl is the
network cost of a lookup message for adjacent nodes in the
hierarchy, lj is the level of node j, and E�LCA� is the
expected number of sites visited before a replica is found.

6.4 The ADR Algorithm

The Adaptive Data Replication (ADR) algorithm [70]
presents a solution to the general problem of determining
an optimal (in terms of communication cost) set of
replication sites for an object in a distributed system when
the object's read-write pattern changes dynamically. We
will describe the ADR algorithm for the case of tree-
structured architectures. The tree represents a physical or
logical communication structure. Two sites are neighbor
sites if they are connected through a tree edge. Let R be the
current replication set of object x, i.e., the sites at which x is
replicated currently. A read of object x is performed from
the closest replica in R, while a write of x updates all
replicas in R.

Metaphorically, the replication set R forms a variable-
size amoeba that stays connected at all times and
constantly moves toward the center of the read-write
activity. The ADR algorithm updates the replication set R
of each object x periodically at a time period T . The
replication set expands as the read activity increases and
contracts as the write activity increases. Specifically, at the
end of the time period T , specific sites of the network
perform three tests, namely, the expansion, the contrac-
tion, and the switch test described below. First, we

580 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

introduce related terminology. A site i is an R-neighbor if
it belongs to R but has a neighbor site that does not
belong to R. If site i is not a singleton set, site i is an
R-fringe site if it is a leaf at a subgraph induced by R.

The expansion test is performed by each R-neighbor site i.
Site i invites each of its neighbor j not in R to join R if the
number of reads that i received from j during the last
period is greater than the number of writes that i received
during the same period from i itself or from a neighbor
other than j. The contraction test is executed by each
R-fringe site i. Site i requests permission from its neighbor
site j in R to exit R if the number of writes that i received
from j during the last time period is greater than the
number of reads that i received during this period. If site i is
both an R-neighbor and an R-fringe, it executes the
expansion test first and, if the test fails (i.e., no site joins
R), then it executes the contraction test. Finally, the switch
test is executed when R is a singleton test and the expansion
test that the single site i in R has executed fails. Site i asks a
neighbor site n to be the new singleton site if the number of
requests received by i from n during the last time period is
larger than the number of all other requests received by i
during the same period.

The ADR algorithm is shown to be convergent-optimal
in the following sense. Starting at any replication scheme,
the algorithm converges to the replication scheme that is
optimal to the current read-write pattern. The convergence
occurs within a number of time periods that is bounded by
the diameter of the network.

7 FORWARDING POINTERS

When the number of moves that a user makes is large
relative to the number of calls it receives, it may be too
expensive to update all database entries holding the user's
location, each time the user moves. Instead, entries may be
selectively updated and calls directed to the current location
of a user through the deployment of forwarding pointers.

7.1 Two-Tier Architectures

In two-tier architectures, if the mobility of a mobile unit is
high and, while it is located far way from its HLR, an
excessive amount of messages is transmitted between the
serving VLR and the HLR. Thus, to reduce the commu-
nication overhead as well as the query load at the HLR, the
entry in x's HLR is not updated, each time the mobile unit x
moves to a new location [31]. Instead, at the VLR at x's
previous location, a forwarding pointer is set up to point to
the VLR in the new location. Now, calls to a given user will
first query the user's HLR to determine the first VLR at
which the user was registered and then follow a chain of
forwarding pointers to the user's current VLR. To bound
the time taken by the lookup procedure, the length of the
chain of forwarding pointers is allowed to grow up to a
maximum value of K. An implicit pointer compression also
takes place when loops are formed as users revisit the same
areas. Since the approach is applied on a per user basis, the
increase in the cost of call operations affects only the
specific user. The router optimization extensions to IETF
Mobile IP protocol include pointer forwarding in conjunc-
tion with lazy caching [34].

The pointer forwarding strategy as opposed to replica-
tion is useful for those users who receive calls infrequently
relative to the rate at which they relocate. Clearly, the
benefits of forwarding also depend upon the cost of setting
up and traversing pointers relative to the costs of updating
the HLR. An analytical estimation of the benefits of
forwarding is given in [31]. It is shown that under certain
assumptions and if pointer chains are kept short (K < 5),
forwarding can reduce the total network cost by 20 percent
to 60 percent for users with a call to mobility ratio below 0.5.

A method for dynamically determining whether to
update the HLR or not is proposed in the local anchoring
scheme [23], where a pointer chain of at most length one is
maintained. For each mobile unit, a VLR close to it is
selected as its local anchor (LA). In some cases, the LA may
be the same as its serving VLR. Otherwise, the LA
maintains a forwarding pointer to the current VLR of the
mobile unit. For each mobile unit, the HLR maintains its
serving LA. To locate a mobile unit, the HLR is queried first
and then the associated LA is contacted. If the LA happens
to be the serving VLR, no further querying is necessary,
otherwise the forwarding pointer is used to locate the
mobile unit. Since after a call delivery the HLR knows the
current location of a mobile unit, the HLR is always
updated after a call to record the current VLR. Depending
on whether the HLR is updated upon a move, two schemes
are proposed: static and dynamic local anchoring. In static
local anchoring, the HLR is never updated at a move. In
dynamic local anchoring, the serving VLR becomes the new
LA if this will result in lower expected costs.

7.2 Hierarchical Architectures

To reduce the update cost, forwarding pointer strategies
may be also deployed in the case of hierarchical architec-
tures. In a hierarchical location scheme, when mobile user x
moves from zone i to zone j, entries for x are created in all
databases on the path from j to LCA�j; i�, while the entries
for x on the path from LCA�j; i� to i are deleted. Using
forwarding pointers, instead of updating all databases on
the path from j through LCA�j; i� to i, only the databases
up to a level m are updated. In addition, a forwarding
pointer is set from node s to node t, where s is the ancestor
of i at level m and t is the ancestor of j at level m (Fig. 7). As
in caching, the level of s and t can vary. In simple forwarding,

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 581

Fig. 7. An example of forwarding pointers (entries are pointers to lower-

level databases).

s and t are leaf nodes, while in level forwarding, s and t can

be nodes at any level. A subsequent caller reaches x through
a combination of database lookups and forwarding pointer

traversals.
Take, for example, user x located at node 14 that

moves to node 17 (Fig. 7). Let level m � 2. A new entry
for x is created in the databases at nodes 17, 6, and 2, the

entries for x in the databases at nodes 14 and 5 are
deleted, and a pointer is set at x's entry in the database at

node 1 pointing to the entry of x in the database at
node 2. The entry for x at node 0 is not updated. When a

user, say at zone 23, calls x, the search message traverses
the tree from node 23 up to the root node 0 where the

first entry for x is found, then goes down to 1, follows
the forwarding pointer to 2, and traverses down the path

from 2 to 17. On the other hand, a call placed by a user
at 15, results in a shorter route: it goes up to 1, then to 2,

and follows the path down to 17.
Forwarding techniques can also be deployed for hier-

archical architectures in which the entries of the internal

nodes are actual addresses, rather than pointers to the
corresponding entries in lower-level databases. The exam-

ple above is repeated in Fig. 8 for this case. Entries for x are
updated up to level m � 2 and a forwarding pointer at leaf

node 14 is set to redirect calls to the new location 17.
Such an architecture with internal nodes storing actual

addresses rather than tree pointers is considered in [37]
where a performance analysis of forwarding is presented.

Besides forwarding, the scheme in [37] also supports two
types of caching: leaf caching (i.e., caching the address of

the callee only at the zone of the caller) which is called jump

updates and level caching (i.e., caching the address of the

callee on all nodes on the search path) which is called path

compression. All combinations of forwarding (no forwarding

(NF), simple forwarding (SF), and level forwarding (LF))
and of caching (jump updates (JU), path compression

updates (PC), and no caching (NU)) are considered.
Preliminary simulation results are presented for two types

of environments: 1) arbitrary moves and calls and 2) short
moves and stability of calls (i.e., most calls are received

from a specific set of callers). The aggregate cost of search
and update is considered. The cost metric is the number of

messages for each operation.

For the type 1 environment, the simulation showed the
combination SF-PC to outperform all other combinations.
The strategies using either NF or LF incurred a high cost of
updates at each move. The SF-NU combination suffered
due to the very high search costs. Finally, the SF-JU did not
perform well as the cached entries were not used very
frequently since the calls were arbitrary. For the type 2
environment, SF-PC performed better as well except for the
cases of high communication and low mobility and low
communication and high mobility. In these cases, the
combination SF-JU performed better because jump updates
were more effective in reducing the search cost since there
was a specific set of callers. A per user adaptive scheme was
suggested to choose between the SF-PC and SF-JU
combinations based on the call and mobility characteristics.
To determine those characteristics, for each mobile unit, a
sequence is maintained of all moves made and calls
received. This sequence determines the degree of mobility
of the host (low or high) and whether it has a large number
of frequent callers.

Obsolete entries in databases at levels higher than m
(e.g., the entry at node 0 in Figs. 7 and 8) may be updated
after a successful lookup. Another possibility for updates is
for each node to send a location update message to the
location servers on its path to the root during off-peak
hours.

To avoid the creation of long chains of forwarding
pointers, some form of pointer reduction is necessary. To
reduce the number of forwarding pointers, a variation of
caching is proposed in [49]. After a call to user x, the actual
location of the user is cached at the first node of the chain.
Thus, any subsequent calls to x directed to the first node of
the chain use this cache entry to directly access the current
location of x, bypassing the forwarding pointer chain.
Besides this form of caching that reduces the number of
forwarding pointers that need to be traversed to locate a
user, the database hierarchy must also be updated to avoid
excessive look-up costs. Besides deleting forwarding poin-
ters, this also involves the deletion of all entries in internal
databases on the path from the first node, i, of the chain to
the LCA of i and the current location, j, and the addition of
entries in internal databases on the path from the LCA to j.
Take, for example, chain 11! 18! 26! 14 that resulted
from user x moving from node 11, to nodes 18, 26, and 14, in
that order. The entries for x at nodes 11, 18, and 26 are
deleted. Then, the entries in higher-level databases leading
to 11 are also deleted. In particular, the entry for x at 4 is

582 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

Fig. 8 An example of forwarding pointers (entries are exact addresses).

Fig. 9. An example of pointer purging.

deleted and entries are set at nodes 1, 5, and 14 leading to
14, the new location (see Fig. 9). Two conditions for
initiating updates are proposed and evaluated based on
setting a threshold either on the number of forwarding
pointers or on the maximum distance between the first node
of the chain and the current location.

Forwarding pointer techniques find applications in
mobile software systems to maintain references to mobile
objects, such as in the Emerald System and in SSP chains.
Emerald [35] is an object-based system in which objects can
move within the system. SSP chains [55] are chains of
forwarding pointers for transparently migrating object
references between processes in distributed computing.
The SSP-chain short-cutting technique is similar to the
simple update at calls method.

8 TAXONOMY OF LOCATION MANAGEMENT

TECHNIQUES

The techniques proposed in the previous sections are based
on exploiting knowledge about the calling and moving
behavior of mobile objects. Basically, two characteristics are
considered: the stability of calls and moves and the locality of
moves and calls. Stability, in the case of calls, means that
most calls for each user originate from the same set of
locations. For example, each user may receive the most calls
from a specific set of friends, family, and business
associates. Stability of moves refers to the fact that users
tend to move inside a specific set of regions. For instance,
they may follow a daily routine, e.g., drive from their home
to their office, visit a predetermined number of customers,
return to their office, and then back to their home. This
pattern can change but remains fixed for short periods of
time. Locality refers to the fact that local operations are
common. In particular, in the case of calls, a user frequently
receives calls from nearby places, while in the case of
moves, the user moves to neighbor locations more often
than to remote ones.

Another determinant factor in designing location tech-
niques is the relative frequency of calls and moves
expressed in the form of some call to mobility ratio. In

general, techniques tend to decrease the cost of either the
move or call operation in the expense of the other. Thus, the

call to mobility ratio determines the efficacy of the
technique. Fig. 10 summarizes the various techniques that

exploit locality, stability, and the call to mobility ratio. These
techniques are orthogonal; they can be combined with each

other.
Besides developing techniques for the efficient storage of

location information, the advancement of models of move-

ment can be used in guiding the search for the current
location of a mobile object (see, for example, [54], [4]), when

the stored information about its location is not current or
precise. For instance, potential locations may be searched in
descending order of the probability of the user being there.

An important parameter of any calling and movement
model is time. The models should capture temporal
changes in the movement and calling patterns and their

relative frequency as they appear during the day, the week,
or even the year. For instance, the traffic volume in

weekends is different than that during a workday. Thus,
dynamic adaptation to the current pattern and ratio is a

desirable characteristic of location techniques. Another
issue is the basis on which each location technique is

employed. For instance, a specific location technique may
be employed on a per user basis. Alternatively, the
technique may be adopted for all PCS users or for a group

of users based either on their geographical location (i.e, all
users in a specific region), on their mobility and calling

characteristics (i.e., all users that receive a large number of
calls), or a combination of both. Fig. 11 summarizes these

two dimensions of location techniques.
Tables 2 and 3 summarize, correspondingly, the varia-

tions of the two-tier and hierarchical location scheme and

their properties.

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 583

Fig. 10. Techniques along the dimensions of locality, stability, and CMR (call to mobility ratio).

Fig. 11. Further taxonomy of location techniques.

Since the performance of most location techniques
depends on the call to mobility ratio (CMR) in order for
the system to adapt to the most appropriate technique
based on the current CMR, dynamically estimating the
current value of the CMR is a central issue. One approach
to estimating CMRs is to calculate running estimates of
CMRs on a per user basis. Two such strategies are
proposed in [32]. The running average algorithm maintains,
for every user, the running counts of the number of
incoming calls and the number of times that the user
changes location. One problem with the running average
algorithm is that estimations are taken from the entire past
history of the user's movement and, thus, the algorithm
may not be sufficiently dynamic to adequately reflect the
recent history of the user's behavior. When the distribution
of the incoming call process or the user movement process
changes, a variation of this procedure, called the reset-K
algorithm, gives more accurate estimations. With reset-K,
running averages are estimated every K incoming calls.

Another approach is to maintain information about the

CMR, for instance, in the HLR and download it during off-

peak hours. Analytical estimations of the CMR are also

possible. Finally, traces of actual moving users can be used

(for example, the Stanford University Mobile Activity

TRAces (SUMATRA) [59]).
Finally, another parameter that affects the deployment of

a location strategy is the topology of network sites, how

they are populated, and their geographical connectivity.

How the strategy scales with the number of mobile objects,

location operation, and geographical distribution are also

an important consideration.
Location strategies are evaluated based on two criteria,

namely, the associated database and network overhead. In

terms of database operations, various objectives are set

including minimizing 1) the total number of database

updates and queries, 2) the database load and size, and

3) the latency of each database operation. In terms of

584 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

TABLE 2
Summary of Enhancements to the Basic Two-Tier Scheme

LCMR stands for the local call to mobility ratio.

TABLE 3
Summary of Proposed Enhancements to Hierarchical Location Schemes

communication, location schemes aim at reducing, among
others,

1. the total number of messages,
2. the number of hops,
3. the distance traveled,
4. the number of bytes generated, and
5. the sum of the traffic on each link or over all links.

9 PRECISION AND CURRENCY OF LOCATION

INFORMATION

The focus of the previous sections was on efficiently
storing, updating, and retrieving information about the
location of moving objects. However, in some cases, to
reduce the update cost, the stored information may not be
precise in that it may cover more than one zone (cell).
Then, to actually locate the user, after retrieving its stored
location, a search is necessary inside all zones covered by
the stored location. Another possibility is that the stored
location is not kept current, that is, it is not updated after
each move. In this case, the cost of actually locating the
user also includes the cost of finding the current location
based on the stored one.

9.1 Granularity of Location Information

The granularity of location information differs with respect
to how many location zones it covers. In the cellular
architecture, this translates to how many and which cells
are covered by each registration area. Then, to locate a user,
all cells in the area are polled: a process called paging. There
is a trade-off in defining the granularity of a registration
area. If it covers a small number of cells, the cost of updates
is large, while if it covers a large number of cells, then the
cost of searching increases.

Defining the shape and size of each registration area is
formulated as a combinatorial optimization problem in
[3]. The objective is to minimize the location update cost
subject to a constraint on the search cost to locate the user
inside the registration area. Since, it turns out that the
rectangular shapes are a good approximation to the
optimum registration area shapes, the optimization pro-
blem is also stated for rectangular registration areas. The
optimal registration area is calculated for each particular
mobile unit or for each particular class of mobile units
based on their respective mobility and call arrival
patterns. In [72], the optimal registration area size is
calculated for a mesh cell configuration with square
shaped cells given the costs of location updates and of
searching inside a registration area. Each registration area
consists of k� k cells arranged in a square and the value
of k is selected on a per user basis. The work in [72] uses
a different model of mobility from the work in [3].

9.2 Frequency of Updates

So far, we have assumed that the stored information
about the location of a moving object is updated each and
every time the user moves. However, to reduce the
update cost, the stored location information may be
updated less frequently. Three strategies for initiating
location updates are proposed in [10]: the time-based

strategy, the movement-based strategy, and the distance-
based strategy. In the time-based update strategy, the
stored location for each mobile user is updated periodi-
cally every T units of time. In the movement-based update
strategy, the stored location is updated after the user has
performed a predefined number of movements across
zone boundaries. Finally, in the distance-based update
strategy, the stored location is updated when the distance
of the stored location from the actual location of the user
exceeds a predefined value D. Analytical performance
results show that the distance-based update approach
outperforms the other approaches in most cases. How-
ever, distance-based approaches are more difficult to
implement since they require knowing and computing a
distance function.

A different approach to signaling location updates is
presented in [9]. A subset of all cells is selected and
designated as reporting cells. The location of a mobile user
is updated only when it enters a reporting cell. The search
to locate a mobile user is restricted to all cells that are in the
vicinity of the reporting center to which the user last
reported. For an arbitrary cellular topology, finding an
optimal set of reporting cells is shown to be an NP-complete
problem. Thus, optimal and near optimal solutions are
advanced for special cases such as for the common topology
of hexagonal cells. The reporting cells strategy is static in
the sense that the set of reporting cells is fixed. It is also
global since the set of reporting cells is the same for all
mobile users.

A timer-based approach to location updates is developed
in [52]. A time-out parameter Tm is defined as the maximum
amount of time to wait before updating the stored location
given that the last stored location was m. The set of the
time-out parameters Tm can be calculated by the system and
communicated to the mobile users as necessary or
calculated by the user directly.

A distance-based update strategy is taken by the
DOMINO (Databases fOr MovINg Objects) project [58],
[69]. In particular, a set of distance-based update strategies,
called dead-reckoning policies [45], are proposed that
update the database location whenever the distance
between the current location and the stored location
exceeds a given threshold h. A cost model is developed to
estimate the threshold h. The model takes into account the
deviation and uncertainty in the estimation of the moving
object's position as well as the communication cost of a
location update. The deviation of a moving object at a
particular time is the distance between the actual location of
object x and the location of x stored in the database, e.g.,
one mile. The uncertainty of a moving object x is the size of
the area in which the object x can possibly be, e.g., a circle
with radius one mile. Both uncertainty and deviation have a
cost or penalty in terms of incorrect decision making which
is proportional to the size of the uncertainty and deviation,
respectively. In the speed dead-reckoning policy, the threshold
is fixed for each mobile object. In the adaptive dead reckoning
policy, the threshold h is computed anew after each update
so that it minimizes the cost until the next update. The
disconnection detecting dead-reckoning policy considers the
case in which, for some reason, the object is unable to

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 585

generate updates. To avoid explicitly contacting the object,
the threshold h is continuously decreasing as the time
interval from the last updates increases.

9.3 Search Procedures

When the registration area covers a number of possible
locations or the stored location is not current, besides
retrieving the stored location of the user, additional
searching is necessary. The search procedure first identifies
the set of potential locations and then queries the locations
in the set. The set of potential locations depends on the
update policy and the granularity of the stored information.
For instance, in the case of a distance-based strategy, all
possible locations are a distance smaller that D from the
stored location.

Depending on whether we set any constraints on the
delay or on the maximum number of locations that are
polled before locating the mobile user, a search is called
constrained or unconstrained. The straightforward ap-
proach, also known as the ªblanket pollingº strategy is to
query all potential locations simultaneously. For the
unconstrained case, it is shown in [53] that given a
probability distribution on user location, the search
strategy that minimizes the expected number of locations
polled is to query each location sequentially in order of
decreasing probability. It is also shown that this strategy
substantially reduces the mean number of polling
requests over the blanket approach even after moderate
constraints are imposed. The results are extended in [73]
for the case where mobile units are allowed to move
during the search procedure. It is shown that the optimal
strategy is to search the most likely conditionally
locations after each polling failure.

In [41], a distance-based update strategy is adopted.
An iterative algorithm is proposed based on dynamic
programming for generating the optimal threshold dis-
tance D. Locations are searched in a shortest-distance-first
order such that locations closest to the location where the
last location update occurred are queried first. This is an
unconstrained search; the delay to locate a mobile user is
proportional to the distance traveled since the last
location update.

In [22], constrained searching is considered for a
distance-based update strategy. The delay to locate a user
is constrained to be smaller than or equal to a predefined
maximum value. When a call arrives, the residing area of a
mobile user is partitioned into a number of subareas. These
subareas are then searched sequentially. The search in each
subarea is by blanket polling, that is, all locations in the
subarea are simultaneously polled. By limiting the number
of subareas to a given value m, the time to locate a mobile
user is smaller than or equal to the time required for the
m polling operations.

10 CONSISTENCY AND RECOVERY

The focus of this section is on consistency and recovery
issues for location databases. Moves and calls are issued
asynchronously and concurrently. Since each of them
results in a number of database operations, concurrency
control is required to ensure the correctness of the execution

of these operations. In the case of a location database failure,
database recovery is also required. We discuss recovery in
the context of two-tier location schemes. Approaches to
handling recovery in hierarchical schemes and their
enhancements is an interesting, but less studied, research
problem.

10.1 Concurrency Control

Since call and move operations arrive concurrently and
asynchronously, concurrency control issues arise. If no
special treatment is provided for concurrency, a call may
read obsolete location data and fail to track the callee. In this
case, the call is lost and is reissued anew. This simple
method does not provide any upper bound on the number
of tries a call has to make before locating a moving user.

Concurrency issues get more involved in hierarchical
location schemes. In such schemes, a lookup operation
results in a sequence of query operations issued at location
databases at various levels in the hierarchy. Similarly, a
move operation causes a sequence of update operations to
be executed on various location databases. The underlying
assumption, so far, was that moves and calls arrive
sequentially and they are handled one at a time. Thus, it
was assumed that there is no interleaving between the
queries and the updates of the various call and move
operations. This is a reasonable assumption only if all
network and database operations are performed in negli-
gible time. There are various approaches to the problem.
For instance, setting a forwarding pointer to the new
location at the old address is necessary to ensure that calls
that were issued prior to the movement and, thus, arrive at
the old address will not be lost. If a transactional approach
is adopted, traditional database concurrency control tech-
niques are used to enforce that each call and move
operation is executed as a transaction, i.e., an isolated unit.
This approach is highly impractical since, for instance,
acquiring locks at all distributed databases involved in a
call or move operation causes prohibitive delays.

A more practical approach is based on imposing a
specific order on the way updates are performed. In
particular, upon a move operation from i to j, first entries
at the path from j to LCA�i; j� are added in a bottom-up
fashion and then the entries at the path from the LCA�i; j�
to i are deleted in a top-down fashion. Special care must be
given so that during the delete phase of a move operation,
an entry at a level kÿ 1 database is deleted only after
servicing all lookups for higher-level databases. For an
application of this approach to the regional matching
method refer to [6] and for an application to tree-structure
architectures refer to [49].

When a replication scheme is used, there is a need for
deploying coherency control protocols, to maintain consis-
tent replicas every time the user moves. Coherency control
is a well-studied problem in transaction management [11].
However, traditional approaches based on distributed locks
or timestamps may be expensive, thus other techniques that
ensure a less strict form of replica consistency may be
advanced. For example, if there is an HLR or a master copy
that is always consistent, i.e, maintains the most up-to-date
location, then a lookup can rely on this copy to locate the
user when the location at a replica proves to be obsolete.

586 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

Another approach is to use forwarding pointers at the old
location to handle any incoming calls directed there from
obsolete replicas.

10.2 Failure Recovery

Database recovery is required after the failure of a location
database. In the case of the VLR/HLR, either the VLR, the
HLR, or both may be periodically checkpointed. If this is the
case, after the failure, the backup is restored. However,
some of the records of the backup may be obsolete.

10.2.1 VLR Failure Restoration

If the VLR is checkpointed, the backup record is recovered
and used upon a failure. If the backup is obsolete, then all
areas within the VLR must be paged to identify the mobile
users currently in the VLR's zone. Thus, the restoration
procedure is not improved by the checkpointing process. In
[39], the optimal VLR checkpointing interval is derived to
balance the checkpointing cost against the paging cost. GSM
exercises periodic location updating: The mobile users
periodically establish contact with the network to confirm
their location. It is shown that periodic confirmation does
not improve the restoration process if the confirmation
frequency is lower than 0.1 times of the portable moving
rate [39]. A mechanism is proposed, called location update on
demand, which eliminates the need for periodic confirmation
messages. After a failure, a VLR restoration message is
broadcasted to all mobile users in the area associated with
the VLR. The mobile users then send a confirmation
message. To avoid congesting the base station, each such
message is sent within a random period from the receipt of
the request.

10.2.2 HLR Failure Restoration

In GSM, the HLR database is periodically checkpointed.
After a HLR failure, the database is restored by reloading
the backup. If a backup record is obsolete, then, when a call
delivery arrives, the call is lost. The obsolete data will be
updated by either a call origination or a location confirma-
tion from the corresponding mobile user. An estimation of
the probability of lost calls can be found in [39]. In IS-41,
after a HLR failure, the HLR initiates a recovery procedure
by sending an ªUnreliable Roamer Data Directiveº to all of
its associated VLRs. The VLRs then remove all records of
mobile users associated with that HLR. Later, when a base
station detects the presence of a mobile portable within its
coverage area and the portable is registered at the local
VLR, the VLR sends a registration message to the HLR
allowing it to reconstruct its internal structures in an
incremental fashion. Before the location is reconstructed,
call deliveries to the corresponding mobile user are lost.

A method, called aggressive restoration, is proposed in
[39]. Following this method, the HLR restores its data by
requesting all the VLRs referenced in its backup copy to
provide exact location information of the mobile users.
The probability pU that the HLR fails to request informa-
tion from a VLR is estimated. An algorithm is also
proposed to identify VLRs that are not mentioned in the
backup copy. These VLRs are such that there are portables
that move in the VLR between the last HLR checkpointing

and the HLR failure and do not move out of the VLR
before the failure.

11 QUERYING LOCATION DATABASES

Besides the efficient support of location lookups and
updates, a challenging issue is the management of more
advanced location queries. Examples of such queries
include finding the nearest service when the service or the
user is mobile (which is a form of a nearest-neighbor query),
or identifying the route with the best traffic condition
(which requires applying an aggregation operator to
estimate the number of moving users in each route).
Another application is sending a message to all users
within a specified geographical area, for example, to
perform geographically targeted advertising [27]. Location
queries may be imposed by either static or mobile users. In
the case in which a single centralized DBMS is used to store
the location of all moving objects, most research proposals
follow the approach of building additional capabilities for
handling moving objects on top of existing DBMSs. There is
not much work on providing advanced query capabilities in
distributed architectures. However, there is some very
recent work on querying network directories that may be
applicable to location directories as well.

11.1 Issues

A number of issues render processing location queries
different from query processing in traditional database
systems in both the centralized and the distributed case:

. The data values representing the location of mobile
users are continuously changing.

. Besides a spatial dimension, querying location data
also has a temporal dimension, thus an important
issue is how to express and answer spatio-temporal
queries, for instance, queries of the following form:
What is the location of moving object x at time t?

. There are interesting queries that refer to future time;
for example: ªFind all objects that will enter a
specified region in the next hour.º The answer to
such queries is only tentative, that is, it should be
considered correct according to what is currently
known.

. Location queries may include transient data, that is
data whose value changes while the queries are
being processed, e.g., a moving user asking for
nearby hospitals.

. Another possible type of location queries are
continuous queries, e.g., a moving car asking for
hotels locating within a radius of 5 miles and
requesting the answer to the query to be continu-
ously updated. Issues related to continuous queries
include when and how often should they be
reevaluated and the possibility of a partial or
incremental evaluation.

. An issue that further complicates the processing of
location queries is the introduction of uncertainty
since, to control the volume of location updates, the
stored information about the location of a mobile
object may be imprecise or out-of-date. Furthermore,

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 587

in a variety of location queries, knowing the exact
location of some users may not be necessary.
Interesting question are:

- how does one model and quantify imprecision
in query answering, and

- besides retrieving the stored locations, what is
the optimal way to search to acquire the exact
locations?

. The protocols for placing, replicating, caching, and
updating location data must be redesigned to
efficiently handle advanced queries in addition to
workloads based on look-up and move operations.

. Since the number of moving objects may be large, to
answer queries efficiently, we would like to avoid
examining the location of all objects. Thus, we would
like to build an index on the location attribute. The
type of index depends on the architecture of the
location databases.

A spatio-temporal query language, called FTL, with
temporal operators that refer to the future has been
proposed in [58]. FTL augments SQL with temporal (e.g.,
until, late) and spatial (e.g., inside-region) operators.

11.2 Centralized Database Architecture

Querying moving object databases has been discussed in

the context of spatio-temporal databases (for a survey on

spatio-temporal databases see, for example, Chapter 7 of

[42] and, in particular, for indexing [62]). Spatio-temporal

databases deal with geometries changing over time; that is,

with spatial objects whose position as well as their extent

(i.e., the region they cover) changes with time [16]; queries

refer to both the past and the future histories of moving

objects. Here, we focus on continuously moving objects

having a zero extent. We focus on an important type of

spatial queries called range queries. An example of a range

query is ªretrieve the objects that are currently inside a

given region P .º How such queries are processed depends

on how the objects are modeled and how they are stored

and indexed.

Modeling. To model the location of moving objects, a
new data model, called MOST, was introduced in [58]. The
novelty of MOST is the concept of a dynamic attribute, i.e.,
an attribute whose value changes continuously as a
function of time without being explicitly updated. Location
is modeled as a dynamic attribute. The value of the
dynamic attribute depends on time t. Formally, a dynamic
attribute A is represented by three subattributes: A:value,
A:updatetime, and a A:function. A:function is a function of
a single variable t that has value 0 at time t � 0. At time
A:updatetime the value of A is A:value and until the next
update of A, the value of A at time A:updatetime� t0 is
given by A:value�A:function�t0�, that is, it changes with
time according to f . An explicit update of the dynamic
attribute may update any of its subattributes, e.g., update
the function subattribute.

The above model has been extended for the case in
which mobile objects move on prespecified routes [69].
This is the case, for example, of airplanes or vehicles
moving on a highway. In this case, three subattributes:

A:route, A:direction, and A:speed are used instead of the
function attribute. A:route is a line spatial object denoting
the route the object is moving on, A:direction is a binary
indicator having value 0 or 1 indicating towards which
endpoint of the route the object is moving, and A:speed is
a linear function indicating the speed of the moving
object. The model is also extended to include information
about the potential uncertainty and deviation of the
stored location [69], [45].

Representing and Indexing Moving Objects. The

indexing problem can be best described by decomposing

it into two subproblems [71]. The first problem concerns the

geometric representation of the location attributes in multi-

dimensional space. The issues involved are how to define

the multidimensional space and how to map the attributes

of a moving object into a region (e.g., point, line) in this

space. The object's region is not updated continuously but

only when the attributes are explicitly updated. The second

problem concerns developing an indexing method appro-

priate for the proposed representation. Existing spatial

methods can be used; however, it is still unclear which one

is more appropriate for the location distribution of mobile

objects and for the specific geometric representation.
First, assume that objects move on an 1-dimensional line,

that is, the location y of each object is described as a linear
function of time, y�t� � v�tÿ t0� � y0, where v is the velocity
of the object and y0 the location of the object at time t0.

Value-Time Representation and Indexing [71], [36]. This

method plots the function y representing the way location

changes with time. Thus, the horizontal-axis represents

time (t) and the vertical-axis represents the value of

location (y). An object is mapped to a trajectory that plots

the location as a function of time. In fact, the trajectory is not

a line but a semiline starting at point �t0; y0�. One way to

index the lines is to use a spatial access method, for

example, each line could be approximated by a minimum

bounding rectangle which is then indexed using an R-tree

or a R*-tree. However, this approach is problematic [36].

First, the corresponding minimum bounding rectangle

covers a large portion of the space, whereas the actual

space occupied by the line is small, thus leading to

extremely large and overlapping rectangles [62]. Second, it

cannot represent infinite objects well. Another approach is

to decompose the data space into disjoint cells and store

with each cell the set of lines it intersects. A drawback of

this approach is that each line has many copies. This

approach is taken in [60] and uses a quadtree-based index.

The infinite time dimension is partitioned into equal-sized

time slices and an index is created for each slice.

Theoretically, the union of these indexes is the master

index of the whole time-value space being indexed. In

practice, however, since the storage space is limited, when

the period �T of an index is over, the index is disposed and

the next index is generated. Thus, the index is reconstructed

every �T time units; �T is called the index reconstruction

period. An index reconstruction algorithm is also proposed

that is optimal in CPU and disk access overheads.

588 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

Intercept-Slope [71] or Dual Space [36] Representation and
Indexing. Consider an object whose location as a function of
time is y�t� � a� ut, a is called the intercept and u is called
the slope. Then, the representation space is constructed by
the horizontal-axis representing the intercept and the
vertical-axis representing the slope. Thus, the object is
mapped to the point �a; u� in this space. The query region is
transformed into a polygon. A number of indexing techni-
ques are proposed and analyzed in [36].

The problem becomes more difficult if we consider

moving objects in the plane. An important case is when

objects move in the plane but their movement is restricted

on using a given set of routes on the finite terrain. This is

called the 1-5 dimensional problem in [36]. They propose

representing each predefined route as a sequence of

connected line segments and indexing the positions of

these line segments using a standard spatial access method.

The full 2-dimensional problem is harder. In this case, in the

value-time representation, the trajectories of moving objects

are lines in the space. The dual space representation is not

directly applicable. One way to get the dual [36] is to project

the lines on the �x; t� and �y; t� planes and then take the dual

(intercept-slope) representation for the two lines on these

planes. Thus, now a line can be represented by a

4-dimensional point. In [48], the case is considered in

which the trajectory of moving objects in the plane is

obtained by discretely sampling the movement of objects in

time and then using linear interpolation between these

samples. Each line of the trajectory is then approximated by

a minimum bounding box. An extension of the R-tree is

proposed that keeps line segments that belong to the same

trajectory together, i.e., in the same or neighbor nodes. This

work does not address queries that refer to the future.

Uncertainty in Query Processing. Since the stored

location of a moving object may deviate from its actual

current location, there is some uncertainty in answering a

query. Depending on the bound on the uncertainty of the

stored location, it should be possible to calculate a bound on

the uncertainty of the answer. The DOMINO project offers

two approaches, a qualitative and a quantitative one. In the

qualitative approach [58], [71], two kinds of semantics,

namely, the may and must semantics, are incorporated.

Under the may semantics, the answer to a range query is the

set of all objects that are possibly inside the query polygon

P , i.e., the objects whose uncertainty interval intersects P .

Under the must semantics, the answer is the set of all

objects that are definitely inside P , i.e., the objects whose

uncertainty interval are entirely inside P . In the quantitative

approach [45], the answer is a set of objects each of which is

associated with a probability that the object is inside P .
To support such semantics, indexing should be ex-

tended. How to extend the value-time representation for the

1-dimensional case to support the may-must semantics is

considered in [71]. In this representation, two lines are

plotted for each object, one represents the maximum

distance from y0 and the other the minimum distance from

y0. Thus, at time t, the value of location is an interval, the

uncertainty interval, instead of a point. In this case, instead

of being represented by a line or trajectory, an object is

represented by a plane (the one between the two lines).

11.3 Distributed Database Architectures

There is not much research in querying distributed location
directories. Query processing depends on the type of the
architecture, for example, in the case of hierarchical
architectures, location databases are physically structured
based on location. For example, an internal node in the
hierarchy contains location information for all mobile users
currently in the geographical area it covers. Thus, it can be
viewed as a distributed spatial index.

Location queries in distributed architectures were intro-

duced in [25]. In this approach, the architecture is based on

partitions which are sets of locations between which the

user relocates very often. A mobile user moves only

infrequently to locations that belong to different partitions.

The stored location information about a moving object is not

its actual location but just the partition to which its actual

location belongs. Thus, only movements among partitions

generate database updates. The system guarantees bounded

ignorance, in that the actual and stored location of a user are

always in the same partition. To determine the actual

location of a user, searching all locations in the partition of

its stored location is necessary. Thus, deriving an optimal

execution plan for a query involves determining an optimal

sequence in which to search inside the partitions involved

in the query. A tree-representation of this problem is

proposed.

11.4 Service Discovery Protocols

With the widespread use of networking and the increasing

number of network devices, there is a need for a scalable

means to locate services. The location directories we have

considered so far associate the name of a mobile object

(service) with its location. Many recent approaches consider

the problem of finding an appropriate object (service) by

specifying a number of desired characteristics for the

service.
The Service Location Protocol (SLP) [20] provides a

flexible and scalable framework for providing hosts with

access to information about the existence, location, and

configuration of networked services. Traditionally, to locate

a service, users provide the name of a network host (which

is an alias for its network address) that supports the service.

SLP eliminates the need for a user to know the name of a

network host. Rather, the user supplies the desired type of

service along with a set of attributes which describe the

service. Based on this description, the SLP resolves the

network address of the service for the user. Client

applications are modeled as user agents and services are

advertised by service agents. The user agent issues a service

request on behalf of the client application specifying the

characteristics of the service. The user agent receives a

service reply specifying the location of all services in the

network with the requested characteristics. The user agent

may directly contact the service agents or, in larger

networks, a directory agent. The directory agent functions

as a cache. Service agents register the services they advertise

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 589

in the directory agents. These advertisements must be
refreshed or they expire. Services are grouped together
using scopes. A scope may indicate a location, adminis-
trative grouping, proximity in a network topology, or some
other category.

Interesting problems related to service location protocols
include:

. Modeling services whose location change, e.g., how
is the location of a moving service specified,

. Storing, caching, and replicating directory entries
when either the services are mobile and/or the
requests originate from mobile clients,

. updating directory entries and refreshing directory
caches when the services are mobile and, thus, their
location is fast changing,

. efficient location-aware querying, e.g., finding ser-
vices based on location attributes when the client
requested the service, or the service is mobile:
Should the directory be hierarchically structured
based on location or should an appropriate spatial
index be built on top of it; what is an appropriate
index in this case?

. Interoperability: How to relate information available
at different layers in the network, e.g., information
stored at an HLR, to actually locate a service using a
directory service protocol.

Most of the above questions remain open. A hierarchical

architecture for a service discovery directory is proposed in

[14], which is based on the use of a hash-based index.

Finally, there has been some very recent research in

incorporating database techniques in manipulating network

directories including developing a data model and a

declarative language for network directories [29] and

semantic caching of directory entries [13]. Extending this

work for the case of directories that include the location of

moving objects is an interesting problem.

12 CONCLUSIONS

Managing the location of moving objects is becoming
increasingly important as mobility of users, devices, and
programs becomes widespread. This paper focuses on data
management techniques for locating, i.e., identifying the
current location, of mobile objects. The efficiency of
techniques for locating mobile objects is critical since the
cost of communicating with a mobile object is augmented
by the cost of finding its location. Location management
techniques use information concerning the location of
moving objects stored in location databases in combination
with search procedures that exploit knowledge about the
objects' previous moving behavior. Various enhancements
of these techniques include caching, replication, forwarding
pointers, and partitioning. The databases for storing the
location of mobile objects are distributed in nature and must
support very high update rates since the location of objects
changes as they move. The support of advanced queries
involving the location of moving objects is a promising
research topic.

REFERENCES

[1] Comm. ACM, special issue on Intelligent Agents, vol. 37, no. 7,
1994.

[2] IEEE Internet Computing, special issue on Internet-Based Agents,
vol. 1, no. 4, 1997.

[3] A. Abutaleb and V.O.K. Li, ªLocation Update Optimization in
Personal Communication Systems,º ACM/Baltzer Wireless Net-
works J., vol. 3, pp. 205±216, 1997.

[4] I.F. Akyildiz and J.S.M. Ho, ªDynamic Mobile User Location
Update for Wireless PCS Networks,º ACM/Baltzer Wireless Net-
works J., vol. 1, no. 2, 1995.

[5] V. Anantharam, M.L. Honig, U. Madhow, and V.K. Kei,
ªOptimization of a Database Hierarchy for Mobility Tracking in
a Personal Communications Network,º Performance Evaluation,
vol. 20, pp. 287±300, 1994.

[6] B. Awerbuch and D. Peleg, ªOnline Tracking of Mobile Users,º J.
ACM, vol. 42, no. 5, 1995.

[7] B.R. Badrinath, T. Imielinski, and A. Virmani, ªLocating Strategies
for Personal Communications Networks,º Proc. 1992 Int'l Conf.
Networks for Personal Comm., 1992.

[8] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm,
ªEnhancing the Web's Infrastructure: From Caching to Replica-
tion,º IEEE Internet Computing, vol. 1, no. 2, pp. 18±27, Mar. 1997.

[9] A. Bar-Noy and I. Kessler, ªTracking Mobile Users in Wireless
Communications Networks,º IEEE Trans. Information Theory,
vol. 39, pp. 1877±1886, 1993.

[10] A. Bar-Noy, I. Kessler, and M. Sidi, ªMobile Users: To Update or
not to Update?º ACM/Baltzer Wireless Networks J., vol. 1, no. 2,
1995.

[11] P.A. Bernstein, V. Hadjilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[12] G. Cho and L.F. Marshall, ªAn Efficient Location and Routing
Schema for Mobile Computing Environments,º IEEE J. Selected
Areas in Comm. vol. 13, no. 5, June 1995.

[13] S. Cluet, O. Kapitskaia, and D. Srivastava, ªUsing LDAP Directory
Caches,º Proc. ACM Symp. Principles of Database Systems, 1999.

[14] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, and R.H.
Katz, ªAn Architecture for a Secure Service Discovery Service,º
Proc. Fifth ACM/IEEE Int'l Conf. Mobile Computing and Networking
(MobiCom '99), 1999.

[15] L.W. Dowdy and D.V. Foster, ªComparative Models of the File
Assignment Problem,º ACM Computing Surveys, vol. 14, no. 2,
pp. 288±313, June 1982.

[16] M. Erwig, R.H. Goting, M. Schneider, and M. Vazirgiannis,
ªSpatio-Temporal Data Types: An Approach to Modeling and
Querying Moving Objects in Databases,º GeoInformatica, vol. 3,
no. 3, 1999.

[17] G.H. Forman and J. Zahorjan, ªThe Challenges of Mobile
Computing,º Computer, vol. 27, no. 6, pp. 38±47, Apr. 1994.

[18] ªGPSÐIntroduction to GPS Applications,ºwww.redsword.com/
gps/apps/index.htm.

[19] ªGPSÐUSCG Navigation Center GPS Page,ºwww.navcen.uscg.
mil/gps/.

[20] E. Guttman, C. Perkins, J. Veizades, and M. Day, ªService Location
Protocol, Version 2,º IETF, RFC 2608, June 1999, ftp://
ftp.isi.edu/in-notes/rfc2608.txt.

[21] H. Harjono, R. Jain, and S. Mohan, ªAnalysis and Simulation of a
Cache-Based Auxiliary User Location Strategy for PCS,º Proc. 1994
Int'l Conf. Networks for Personal Comm., Mar. 1994.

[22] J.S.M. Ho and I.F. Akyildiz, ªA Mobile User Location Update and
Paging Mechanism Under Delay Constraints,º ACM/Baltzer J.
Wireless Networks, vol. 1, no. 4, 1995.

[23] J.S.M. Ho and I.F. Akyildiz, ªLocal Anchor Scheme for Reducing
Signalling Cost in Personal Communication Networks,º IEEE/
ACM Trans. Networking, vol. 4, no. 5, 1996.

[24] J.S.M. Ho and I.F. Akyildiz, ªDynamic Hierarchical Database
Architecture for Location Management in PCS Networks,º IEEE/
ACM Trans. Networking, vol. 5, no. 5, 1997.

[25] T. Imielinski and B.R. Badrinath, ªQuerying in Highly Mobile
Distributed Environments,º Proc. 18th Int'l Conf. Very Large Data
Bases (VLDB '92), 1992.

[26] T. Imielinski and B.R. Badrinath, ªWireless Mobile Computing:
Challenges in Data Management,º Comm. ACM, vol. 37, no. 10,
Oct. 1994.

[27] T. Imielinski and J.C. Navas, ªGPS-Based Geographic Addressing,
Routing, and Resource Discovery,º Comm. ACM, vol. 42, no. 4,
1999.

590 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

[28] ªIP Routing for Wireless/Mobile Hosts Working Group,ºRFC
Documents, http://www.ietf.org/html.charters/mobileip-char-
ter.html.

[29] H.V. Jagadish, L.V.S. Lakshmanan, T. Milo, D. Srivastava, and D
Vista, ªQuerying Network Directories,º Proc. SIGMOD Conf.,
1999.

[30] R. Jain, ªReducing Traffic Impacts of PCS Using Hierarchical User
Location Databases,º Proc. IEEE Int'l Conf. Comm., 1996.

[31] R. Jain and Y-B. Lin, ªA Auxiliary User Location Strategy
Employing Forwarding Pointers to Reduce Network Impacts of
PCS,º Wireless Networks, vol. 1, pp. 197±210, 1995.

[32] R. Jain, Y.-B. Lin, C. Lo, and S. Mohan, ªA Caching Strategy to
Reduce Network Impacts of PCS,º IEEE J. Selected Areas in Comm.,
vol. 12, no. 8, pp. 1434±1444, Oct. 1994.

[33] J. Jannink, D. Lam, N. Shivakumar, J. Widom D.C. Cox, ªEfficient
and Flexible Location Management Techniques for Wireless
Communication Systems,º ACM/Baltzer J. Mobile Networks and
Applications, vol. 3, no. 5, pp. 361±374, 1997.

[34] D.B. Johnson and D.A. Maltz, ªProtocols for Adaptive Wireless
and Mobile Networking,º IEEE Personal Comm., vol. 3, no. 1, 1996.

[35] E. Jul, H. Levy, N. Hutchinson, and A. Black, ªFine-Grained
Mobility in the Emerald System,º ACM Trans. Computer Systems,
vol. 8, no. 1, pp. 109±133, Feb. 1988.

[36] G. Kollios, D. Gunopulos, and V.J. Tsotras, ªOn Indexing Mobile
Objects,º Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, 1999.

[37] P. Krishna, N.H. Vaidya, and D.K. Pradhan, ªStatic and Dynamic
Location Management in Mobile Wireless Networks,º J. Computer
Comm., special issue on Mobile Computing, vol. 19, no. 4, Mar.
1996.

[38] Y.B. Lin, ªDetermining the User Location for Personal Commu-
nications Service Networks,º IEEE Trans. Vehicular Technology,
vol. 43, no. 3, Aug. 1994.

[39] Y.-B. Lin, ªFailure Restoration of Mobility Databases for Personal
Communication Networks,º Wireless Networks, vol. 1, pp. 367±372,
1995.

[40] Y.B. Lin and S.K. DeVries, ªPCS Network Signaling Using SS7,º
IEEE Personal Comm., June 1995.

[41] U. Madhow, M.L. Honig, and K. Steiglitz, ªOptimization of
Wireless Resources for Personal Communications Mobility Track-
ing,º IEEE/ACM Trans. Networking, vol. 3, no. 6, pp. 698±707, 1995.

[42] Y. Manolopoulos, Y. Theodoridis, and V. Tsotras, Advanced
Database Indexing. Kluwer Academic, 1999.

[43] S. Mohan and R. Jain, ªTwo User Location Strategies for Personal
Communication Services,º IEEE Personal Comm., vol. 1, no. 1,
pp. 42±50, Jan.-Feb. 1994.

[44] B.C. Neuman, S.S. Augart, and S. Upasani, ªUsing Prospero to
Support Integrated Location-Independent Computing,º Proc.
USENIX Symp. Mobile & Location-Independent Computing, pp. 29±
34, Aug. 1993.

[45] A.P. Sistla, O. Wolfson, S. Chamberlain, and Y. Yesha, ªUpdating
and Querying Databases that Track Mobile Units,º Distributed and
Parallel Databases, vol. 7, no. 3, 1999.

[46] M.T. Ozsu and P. Valduriez, Principles of Distributed Database
Systems. Prentice Hall, 1991.

[47] C.E. Perkins, Mobile IP: Design Principles and Practices. Addison
Wesley, 1998.

[48] D. Pfoser, Y. Theodoridis, and C.S. Jensen, ªIndexing Trajectories
of Moving Point Objects,º Chorochronos Technical Report, CH-99-
3, Oct. 1999.

[49] E. Pitoura and I. Fudos, ªAn Efficient Hierarchical Scheme for
Locating Highly Mobile Users,º Proc. Seventh Int'l Conf. Information
and Knowledge Management (CIKM '98), pp. 218±225, Nov. 1998.

[50] E. Pitoura and G. Samaras, Data Management for Mobile Computing.
Kluwer Academic, 1998.

[51] S. Rajagopalan and B.R. Badrinath, ªAn Adaptive Location
Management Strategy for Mobile IP,º Proc. First ACM Int'l Conf.
Mobile Computing and Networking (Mobicom '95), Oct. 1995.

[52] C. Rose, ªMinimizing the Average Cost of Paging and Registra-
tion: A Timer-Based Method,º ACM/Baltzer Wireless Networks J.,
vol. 2, pp. 109±116, 1996.

[53] C. Rose and R. Yates, ªMinimizing the Average Cost of Paging
Under Delay Constraints,º ACM/Baltzer J. Wireless Networks, vol. 1,
no. 2, 1995.

[54] C. Rose and R. Yates, ªLocation Uncertainty in Mobile Networks:
A Theoretical Framework,º IEEE Comm. Magazine, vol. 35, no. 2,
1997.

[55] M. Shapiro, P. Dickman, and D. Plainfosse, ªSSP Chains: Robust,
Distributed References Supporting Acyclic Garbage Collection,º
Technical Report 1799, INRIA, Rocquentcourt, France, Nov. 1992.

[56] N. Shivakumar, J. Jannink, and J. Widom, ªPer-User Profile
Replication in Mobile Environments: Algorithms, Analysis, and
Simulation Results,º ACM/Baltzer J. Mobile Networks and Applica-
tions, vol. 2, no. 2, pp. 129±140, 1997.

[57] N. Shivakumar and J. Widom, ªUser Profile Replication for Faster
Location Lookup in Mobile Environments,º Proc. First ACM Int'l
Conf. Mobile Computing and Networking (Mobicom '95), pp. 161±169,
Oct. 1995.

[58] A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, ªModeling
and Querying Moving Objects,º Proc. 13th Int'l Conf. Data Eng.
(ICDE '97), 1997.

[59] Stanford Pleiades Research Group, Stanford Univ. Mobile Activity
TRAces (SUMATRA), www-db.stanford.edu/sumatra.

[60] J. Tayeb, O. Wolfson, and O. Ulusoy., ªA Quadtree-Based
Dynamic Attribute Indexing Method,º The Computer J., vol. 41,
no. 3, 1998.

[61] F. Teraoka, Y. Yokote, and M. Tokoro, ªA Network Architecture
Providing Host Migration Transparency,º Proc. ACM SIGCOMM
Symp. Comm., Architectures and Protocols, pp. 209±220, Sept. 1991.

[62] Y. Theodoridis, T. Sellis, T. Papadopoulos, and Y. Manolopoulos,
ªSpecification of Efficient Indexing in Spatiotemporal Databases,º
Proc. 10th Int'l Conf. Scientific and Statistical Database Management,
1998.

[63] M. van Steen, F.J. Hauck, G. Ballintijin, and A.S. Tanenbaum,
ªAlgorithmic Design of the Globe Wide-Area Location Service,º
The Computer J., vol. 41, no. 5, pp. 297±310, 1998.

[64] M. van Steen, F.J. Hauck, P. Homburg, and A.S. Tanenbaum,
ªLocating Objects in Wide-Area Systems,º IEEE Comm. Magazine,
pp. 104±109, Jan. 1998.

[65] M. Veeraraghavan and G. Dommety, ªMobile Location Manage-
ment in ATM Networks,º IEEE J. on Selected Areas in Comm.,
vol. 15, no. 8, 1997.

[66] Mobile Object Systems: Towards the Programmable Internet, J. Vitek
and C. Tschudin, eds. Springer Verlag, 1997.

[67] J.Z. Wang, ªA Fully Distributed Location Registration Strategy for
Universal Personal Communication Systems,º IEEE J. on Selected
Areas in Comm., vol. 11, no. 6, pp. 850±860, Aug. 1993.

[68] M. Weiser, ªSome Computer Science Issues in Ubiquitous
Computing,º Comm. ACM, vol. 36, no. 7, pp. 75±84, July 1993.

[69] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez,
ªCost and Imprecision in Modeling the Position of Moving
Objects,º Proc. 14th Int'l Conf. Data Eng. (ICDE '98), 1998.

[70] O. Wolfson, S. Jajodia, and Y. Huang, ªAn Adaptive Data
Replication Algorithm,º ACM Trans. Database Systems, vol. 22,
no. 2, pp. 255±314, June 1997.

[71] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang, ªMoving Objects
Databases: Issues and Solutions,º Proc. Tenth Int'l Conf. Scientific
and Statistical Database Management, 1998.

[72] H. Xie, S. Tabbane, and D. Goodman, ªDynamic Location Area
Management and Performance Analysis,º Proc. IEEE Vehicular
Technology Conf., 1993.

[73] A. Yener and C. Rose, ªHighly Mobile Users and Paging: Optimal
Polling Strategies,º IEEE Trans. Vehicular Technology, vol. 47, no. 4,
1998.

PITOURA AND SAMARAS: LOCATING OBJECTS IN MOBILE COMPUTING 591

Evaggelia Pitoura received her BSc degree
from the Department of Computer Science and
Engineering at the University of Patras, Greece,
in 1990 and her MSc and PhD degrees in
computer science from Purdue University in
1993 and 1995, respectively. Since September
1995, she has been on the faculty of the
Department of Computer Science of the Uni-
versity of Ioannina, Greece. Her main research
interests are data management for mobile

computing and multidatabases. Her publications include several journal
and conference articles and a recently published book on mobile
computing. She received a best paper award at the IEEE Int'l
Conference on Data Engineering (ICDE 1999) for her work on mobile
agents. She has served on a number of program committees and was
program cochair of the MobiDE workshop held in conjunction with
MobiCom 99. She is a member of the IEEE Computer Society.

George Samaras received the PhD degree in
computer science from Rensselaer Polytechnic
Institute, New York, in 1989. He is currently an
associate professor at the University of Cyprus,
Nicosia, Cyprus. He was previously at IBM
Research Triangle Park, North Carolina and
taught at the University of North Carolina at
Chapel Hill (adjunct assistant professor, 1990-
1993). He served as the lead architect of IBM's
distributed commit architecture (1990-1994) and

coauthored the final publication of the architecture (IBM Book, SC31-
8134-00, September 1994). He was member of IBM's wireless division
and participated in the design/architecture of IBM's WebExpress, a
wireless Web browsing system. He recently (1997) coauthored a book
on data management for mobile computing (Kluwer Academics). He has
a number of patents relating to transaction processing technology and
numerous technical conference and journal publications. His work on
utilizing mobile agents for Web database access received a best paper
award of at the 1999 IEEE International Conference on Data
Engineering (ICDE 1999). He has served as a proposal evaluator at a
national and international level and he is regularly invited by the
European Commission to serve as project evaluator and auditor in areas
related to mobile computing and mobile agents. He also served on IBM's
internal international standards committees for issues related to
distributed transaction processing (OSI/TP, XOPEN, OMG). His
research interest includes mobile computing, mobile agents, transaction
processing, commit protocols and resource recovery, and real-time
systems. He is a voting member of the ACM and IEEE Computer
Society.

. For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

592 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 4, JULY/AUGUST 2001

