
1224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

Multiversion Data Broadcast

Evaggelia Pitoura, Member, IEEE Computer Society,
and Panos K. Chrysanthis, Member, IEEE

Abstract—Recently, broadcasting has attracted considerable attention as a

means of disseminating information to large client populations in both wired and

wireless settings. In this paper, we consider broadcasting multiple versions of data

items to increase the concurrency of client transactions in the presence of

updates. We introduce various techniques for organizing multiple versions on the

broadcast channel. Performance results show that the overhead of supporting

multiple versions can be kept low while providing a considerable increase in

concurrency. Besides increasing the concurrency of client transactions,

multiversion broadcast provides clients with the possibility of accessing multiple

server states in a single broadcast cycle. Furthermore, multiversioning increases

the tolerance of client transactions of disconnections from the broadcast channel.

Index Terms—Mobile computing, broadcast, transaction management,

versioning, consistency.

�

1 INTRODUCTION

ALTHOUGH the concept of broadcast delivery is not new, recently,
data dissemination by broadcast has attracted considerable
attention due to the physical support for broadcast provided by
an increasingly important class of networked environments such
as by most wireless computing infrastructures, including cellular
architectures and satellite networks [10]. The use of broadcast for
disseminating information to large client populations is also
motivated by the explosion of data intensive applications created
by the dramatic improvements in global connectivity and the
popularity of the Internet. In such a setting, the server repetitively
broadcasts data to a number of clients without any specific data
request. Clients monitor the broadcast channel and retrieve the
data items that they may need as they appear on the broadcast
channel. Applications typically involve a small number of servers
and a much larger number of clients with similar interests,
operating in read-only mode. Examples include stock trading,
electronic commerce applications, such as auction and electronic
tendering, and networks of sensors.

As broadcast-based systems continue to evolve, more and more

sophisticated client applications will require reading current and

consistent data, despite updates at the server. In most related

research, updates are mainly treated in the context of caching at the

client (e.g., [4], [2]). In this case, the focus is on cache coherency;

there are no transactional semantics. Transactions and broadcast

were first discussed in the Datacycle project [5], where special

hardware was used to detect changes of values read by

transactions and thus ensure consistency. Recent work involves

the development of new correctness criteria for transactions in

broadcast environments [12], as well as the deployment of the

broadcast medium for transmitting concurrency control related

information to clients so that part of transaction management can

be undertaken by them [3]. In our previous work [8], we proposed

and comparatively studied a suite of invalidation-based techniques

to ensure the consistency of client read-only transactions.

. E. Pitoura is with the Department of Computer Science, University of
Ioannina, GR 45110 Ioannina, Greece. E-mail: pitoura@cs.uoi.gr.

. P.K. Chrysanthis is with the Department of Computer Science, University
of Pittsburgh, Pittsburgh, PA 15260. E-mail: panos@cs.pitt.edu.

Manuscript received 15 July 2001; revised 15 May 2002; accepted 4 June
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 116692.

0018-9340/02/$17.00 � 2002 IEEE

In this paper, we propose broadcasting multiple versions of
items to increase the concurrency of client transactions. Multi-
version schemes have been successfully used to speed up
processing of online read-only transactions in traditional database
systems (e.g., [6]). Here, we explore their applicability in broadcast
databases, as well as the new issues, protocols, and overheads that
arise. Versions are combined with invalidation reports to inform
clients of updates and thus ensure the currency of their reads. We
assume that updates are performed at the server and disseminated
from there. The currency and consistency of the values read by
clients is preserved without requiring that clients contact the
server. We introduce protocols for interleaving current and
previous versions and for determining the frequency of broad-
casting older versions. Multiversion broadcast was first introduced
in [9].

Besides increasing the concurrency of client transactions,
multiversion broadcast provides clients with the possibility of
accessing multiple server states. For example, such a functionality
is essential to support applications that require access to data
sequences and have limited local memory to store the previous
versions, as is the case with data streams.

Performance results show that the overhead of maintaining
older versions can be kept low, while providing a considerable
increase in concurrency. For instance, when about 10 percent of the
broadcast items are updated per broadcast, maintaining two
versions per data item increases the number of consistent read-
only transactions that successfully complete their operation from
below 40 percent (when only one—the most current—version is
maintained) to above 80 percent. The increase of the broadcast size
is below 20 percent of the original broadcast size. For less update-
intensive environments, the overhead is considerably smaller.
Furthermore, in the case of client disconnecting from the broadcast
channel, broadcasting two versions per data item results in
reducing the number of transactions that are aborted by a factor
ranging from 25 percent to 90 percent, depending on the frequency
and the duration of the disconnections.

The remainder of this paper is organized as follows: Section 2
introduces the problem and presents two basic approaches for
maintaining consistency. Section 3 describes the multiversioning
scheme, while Section 4 proposes various protocols for interleav-
ing versions on the broadcast channel. Section 5 presents our
performance model and experimental results. Section 6 concludes
the paper.

2 BROADCAST AND UPDATES

In our model, a data server periodically broadcasts data items to a
large client population. Each period of the broadcast is called a
broadcast cycle or bcycle, while the content of the broadcast is called
a bcast. Each client listens to the broadcast and fetches data as they
arrive. This way, data can be accessed concurrently by any number
of clients without the performance degradation that would result if
the server were to submit data to individual clients. However,
access to data is strictly sequential since clients need to wait for the
data of interest to appear on the channel. The smallest logical unit
of a broadcast is called a bucket. Buckets are the analog to blocks for
disks. Data items correspond to database records (tuples). Users
access data by specifying the value of one attribute of the record,
the search key. Each bucket may contain several data items.

We assume that all updates are performed at the server and
disseminated from there. Let us consider what value for an item x

is placed on the broadcast at some time t. There are two reasonable
choices: 1) Immediate Updates: The value that is placed on the
broadcast channel at time t for an item x is the most recent value of
x (that is, the value of x produced by all transactions that
committed at the server by t). 2) Periodic Updates: Updates at the

server are not reflected on the broadcast content immediately, but

at each bcycle. In particular, the value of item x that the server

places on the broadcast at time t is the value of x produced by all

transactions committed at the server by the beginning of the

current bcycle. Note that this may not be the value of x at the

server at time t if, between the beginning of the current bcycle and

t, x has been updated at the server. Without loss of generality, in

this paper, we assume periodic updates.

2.1 Updates and Consistency

We assume that the server broadcasts items from a database. A

database consists of a finite set D of data items. A database state is

typically defined as a mapping of every data item to a value of its

domain. Thus, a database’s state, denoted DS, is a set of ordered

pairs of data items in D and their values. In a database, data are

related by a number of integrity constraints that express relation-

ships of values of data that a database state must satisfy. A

database state is consistent if it does not violate the integrity

constraints.
A client transaction may read data items from different bcycles.

We define the span of a client transaction R, spanðRÞ, to be the

maximum number of different bcycles from which R reads data.

We define the readset of a transaction R, denoted Read SetðRÞ, to

be the set of items it reads. In particular, Read SetðRÞ is a set of

ordered pairs of data items and their values that R read. Our

correctness criterion for read-only transactions is that each transac-

tion reads consistent data. Specifically, the readset of each read-

only transaction must form a subset of a consistent database state

[11]. We make no assumptions about transaction management at

the server. Since the set of values broadcast during a single bcycle

correspond to the same database state, this set is a subset of a

consistent database state. Thus, if, for some transaction R,

spanðRÞ ¼ 1, R is correct. However, since, in general, client

transactions read data values from different bcycles, there is no

guarantee that the values they read are consistent.

2.2 Invalidation Methods

To ensure the correctness of read-only transactions, we invalidate,

e.g., abort, transactions that read data values that correspond to

different database states. To determine whether all values in the

readset correspond to a single database state, we consider two

basic approaches: 1) attaching control information with each data

item; we call this method versioning, and 2) broadcasting control

information periodically; we call this method invalidation report.
With the versioning method, a timestamp or version number is

broadcast along with the value of each data item. This version

number corresponds to the bcycle at the beginning of which the

item had the corresponding value. Let v0 be the bcycle during

which a transaction performs its first read. For each subsequent

read, we test whether the item read has version number v such that

v � v0. If the item has a larger version number, the transaction is

aborted. Clearly [7]:

Theorem 1. The versioning method produces correct read-only

transactions.

With the invalidation report method, we broadcast an invalida-

tion report at the beginning of each bcast. The invalidation report

includes a list with the data items that have been updated since the

previous invalidation report was broadcast. In addition, at each

client, a set RSðRÞ is maintained for each active transaction R that

includes all data items that R has read so far. The client tunes in at

the beginning of the bcast to read the invalidation reports. A

transaction R is aborted if an item x 2 RSðRÞ appears in the

invalidation report, i.e., if x is updated. (A possible optimization is

to just mark R as invalid if one of its x 2 RSðRÞ appears in an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002 1225

invalidation report and abort R only if it tries to read another data
item.) It can be shown [8] that:

Theorem 2. The invalidation report method produces correct read-only

transactions.

In terms of currency, with the versioning method, transaction R

reads values that correspond to the database state at the beginning
of the bcycle at which R performs its first read operation. With the
invalidation report method, R reads values that correspond to the
database state at the beginning of the bcycle at which it commits.

3 MULTIVERSION BROADCASTING

In the current broadcast schemes, only the last committed value for
each data item is broadcast. Instead, in our proposed multiversion
scheme, the server maintains and broadcasts multiple versions for
each data item. Versions correspond to different values at the
beginning of each bcycle and version numbers to the correspond-
ing bcycle.

Let v0 be the bcycle at which R performs its first read operation.
During v0, R reads the most current versions, that is, the versions
with the largest version numbers. In subsequent bcycles, for each
data item in its readset, R must read the version with the largest
version number vc smaller than or equal to v0. If such a version
exists in the broadcast, R proceeds, else R is aborted. We call this
scheme multiversioning. It can be shown [7] that:

Theorem 3. The multiversioning method produces correct read-only

transactions.

If invalidation reports are available, we get the following
variation of the multiversion method that we call the multi-

versioning with invalidation reports method. Initially, R reads the
most current version of each item. Let vi be the bcycle at which R is
invalidated for the first time, i.e., a value that R has read is
updated. After vi, R attempts to read the version with the largest
version number vc such that vc < vi. If such a version exists in the
broadcast, R proceeds, else R is aborted. It can be shown [7] that:

Theorem 4. The multiversioning with invalidation reports method

produces correct read-only transactions.

In terms of currency, in the multiversion method, R reads
values that correspond to the database state at the beginning of the
bcycle at which R performs its first read operation (as in the
versioning method). In the multiversioning with invalidation
reports method, R reads the values that correspond to the database
state at the beginning of the bcycle of its first invalidation vi.
Clearly, multiversioning with invalidation reports provides better
currency than simple multiversioning, but at the cost of broad-
casting invalidation reports.

3.1 Caching

To reduce latency in answering queries, clients may cache items of
interest locally. Caching reduces the span of transactions since
transactions find data of interest in their local cache and thus need
to access the broadcast channel less frequently. We assume that
each page, i.e., the unit of caching, corresponds to a bucket, i.e., the
unit of broadcast.

In the presence of updates, items in the cache may become stale.
There are various approaches to communicating updates to the
client caches. Invalidation combined with a form of autoprefetch-
ing was shown to perform well in broadcast delivery [2]. In this
approach, the server broadcasts an invalidation report, which is a
list of the pages that have been updated. This report is used to
invalidate those pages in the cache that appear in the invalidation
report. The invalidated pages remain in the cache to be

autoprefetched later. In particular, at the next appearance of the
invalidated page on the broadcast, the client fetches its new value
and replaces the old one. Without loss of generality, we assume
this kind of cache updates in this paper. To support multi-
versioning, items in the cache have version numbers. For reading
items from the cache, we perform the same tests regarding their
version numbers as when reading items from the broadcast. To
ensure that items in the cache are current, the propagation of cache
invalidation reports must be at least as frequent as the propagation
of invalidation reports for data items. This way, a cached page is
either current (i.e., corresponds to the value at the current bcycle)
or is marked for autoprefetch.

3.2 Disconnections

In many settings, for example, in the case of clients carrying
portable devices and thus seeking to reduce battery power
consumption, it is desirable that the clients do not to monitor the
broadcast continuously. Further, access to the broadcast may be
monetarily expensive and, thus, minimizing access to the broad-
cast is sought for. Finally, when data are delivered wirelessly,
client disconnections are very common. Wireless communications
face many obstacles because the surrounding environment inter-
acts heavily with the signal; thus, in general, wireless commu-
nications are less reliable and deliver less bandwidth than wireline
communications. For the reasons above, clients may be forced to
miss a number of broadcast cycles.

In general, versioning frees transactions from the requirement
of reading invalidation reports. When there are no version
numbers associated with data items, a transaction cannot tolerate
missing any invalidation reports since there is no other way for it
to determine whether an item has been updated. Furthermore,
with multiversioning, client transactions can refrain from listening
to the broadcast for a number of cycles and resume execution later,
as long as the required versions are still on the bcast. In general, a
transaction R with spanðRÞ ¼ sR can tolerate missing up to k sR
bcycles in any broadcast with k versions. The tolerance of the
multiversion scheme of intermittent connectivity also depends on
the rate of updates, i.e., the creation of new versions. For example,
if the value of an item does not change during m, m > k, bcycles,
this value will be available to read-only transactions for more
intervals. Note that the multiversion with invalidation reports
scheme behaves similar to the invalidation scheme with regard to
disconnections. However, it can be made to adopt to disconnec-
tions by switching to pure multiversion in anticipation of
disconnections.

4 MULTIVERSION BROADCAST ORGANIZATION

To reduce the latency of client transactions, it has been proposed
[1] that, instead of broadcasting each item once during a bcast, the
frequency of broadcasting an item is determined based on the
probability of it being accessed by the clients. Such a schema is
called broadcast disk organization.

To further describe the broadcast disk organization, we will use
an example; for a complete definition of the organization, refer to
[1]. In a broadcast disk organization, the items of the broadcast are
divided in ranges of similar access probabilities. Each of these
ranges is placed on a separate disk. In the example of Fig. 1,
buckets of the first disk, Disk1, are broadcast three times as often as
those in the second disk, Disk2. To achieve these relative
frequencies, the disks are split into smaller equal sized units
called chunks; the number of chunks per disk is inversely
proportional to the relative frequencies of the disks. In the
example, the number of chunks is one (chunk 1) and three
(chunks 2a, 2b, and 2c) for Disk1 and Disk2, respectively. Each
bcast is generated by broadcasting one chunk from each disk and

1226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

cycling through all the chunks sequentially over all disks. A minor

cycle is a subbcycle that consists of one chunk from each disk. In the
example of Fig. 1, there are three minor cycles.

We consider three multiversion broadcast disk organization
schemes that address two interrelated problems: where in the bcast
to place the old versions and how to determine what the optimal
frequency of transmitting old versions is.

4.1 Clustering

With the clustering approach, all versions of each item are
broadcast successively (Fig. 2b). Thus, older versions of hot items
(chunk 1 in Fig. 1 and Fig. 2a) are placed along with the current
values of hot items on fast disks, while versions of cold data
(chunks 2a, 2b, and 2c in Fig. 1 and Fig. 2a) are placed on slow
disks. Consequently, clustering works well when each transaction
may access any version of an item with equal probability. The size
of each disk, and, thus, the size of its chunks, is increased to
accommodate old versions. The number of chunks per disk,
however, remains fixed. The overall increase in the size of the bcast
depends on how the hot data items are related to the items that are
frequently updated. The increase is the largest when the hot items
are the most frequently updated ones since their versions are
broadcast more frequently during each bcycle.

4.2 Overflow Bucket Pool

With the overflow approach, older versions of items are broadcast
at the end of each bcycle. In particular, one or more additional
minor cycles at the end of each broadcast is allocated to old
versions (Fig. 2c). While, in the clustering approach, the overhead

in latency due to the increase in the broadcast size is equally
divided among all transactions, in the overflow approach, long-
running read-only transactions that read old versions are pena-
lized since they have to wait for the end of the bcast to read such
versions. However, transactions that are satisfied with current
versions do not suffer from such an increase in latency.

A drawback of this approach is that, by introducing an
additional minor cycle, the relative speed of each disk is affected.
Another problem is that the space allocated to old versions is fixed;
it is a multiple of the size of a minor cycle. To avoid this restriction,
older versions can be placed on the slowest disk. In this case, the
size of the slowest disk and the size of its chunks are increased to
accommodate old versions. Old versions are placed on those
chunks of the disk that are broadcast last. Again, the increase of the
size of the slowest disk affects the relative speed of the disks.

4.3 Old Versions on New Disk

With the new disk approach, a new disk is created to hold any old
versions. The relative frequency of the disks with the current
versions is maintained by simply multiplying their frequency by a
positive number m so that the slow disk that carries the old
versions is m times slower than the disks with the current versions.
Take, for instance, the broadcast of Fig. 2. A new disk, Disk3, with
six chunks is created for the old versions (Fig. 2d). Current items
are broadcast twice (m ¼ 2) as frequently as old versions. The
relative frequency of the two disks is maintained; items of Disk1

are broadcast three times as frequently as items of Disk2. The
resulting bcast is twice the size of the original bcast plus the extra
space for the old versions. The new disk approach is easily
adaptive. Old versions can be placed on faster disks (by selecting a
small m) when there are many long-running transactions and on
slower disks (by selecting a large m) when most transactions need
current values.

5 PERFORMANCE EVALUATION

Our performance model is similar to the one presented in [1]. The
server periodically broadcasts a set of data items in the range of 1
to NoItems. We assume a broadcast disk organization with three
disks and relative frequencies 5, 3, and 1. The unit of time is set to
the time it takes to broadcast a single item. The client accesses
items from the range 1 to ReadRange, which is a subset of the items
broadcast (ReadRange � NoItems). Within this range, the access
probabilities follow a Zipf distribution. The Zipf distribution with
a parameter theta is often used to model nonuniform access. It
produces access patterns that become increasingly skewed as theta
increases. The client waits ThinkTime units and then makes the
next read request.

Updates at the server are generated following a Zipf distribu-
tion similar to the read access distribution at the client. The update
distribution is across the range 1 to UpdateRange. An update is
generated at the server every UpdateTime units. In the following,
for clarity, we express the update rate as a percentage of the items
that are updated during each broadcast cycle. This estimation is
based on the duration of a single version broadcast. We assume

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002 1227

Fig. 1. Broadcast disks.

Fig. 2. Multiversion broadcast organization: (a) single version broadcast; (b)

multiversion broadcast using clustering; (c) multiversion broadcast with an

overflow bucket pull; (d) multiversion broadcast with a new disk.

that, during each bcycle, N transactions are committed at the

server. All server transactions have the same number of update

and read operations, where read operations are four times more
frequent than updates. Read operations at the server are in the

range 1 to NoItems, follow a Zipf distribution, and have zero offset

with the update set at the server.
We use a parameter called Offset to model disagreement

between the client access pattern and the server update pattern.

When the offset is zero, the overlap between the two distributions
is the greatest, that is, the client’s hottest pages are also the most

frequently updated. An offset of L shifts the update distribution

L items, making them of less interest to the client. The client
maintains a local cache that can hold up to CacheSize pages. The

cache replacement policy is LRU: When the cache is full, the least

recently used page is replaced. When pages are updated, the
corresponding cache entries are invalidated and subsequently

autoprefetched. Table 1 summarizes the parameters that describe

the operation at the server and the client. Values in parentheses are
the default ones.

5.1 Experiment 1: Comparison of the Different Broadcast
Organizations

We compare the three different multiversion organization

schemes, namely, the clustering, overflow bucket pool, and new

disk organizations. For the new disk organization, we set m ¼ 1

and m ¼ 2. We used multiversion with invalidation reports. In

general, when about 5 percent of the database items are updated at

the server at each bcycle, by using just one extra version (k ¼ 2), all
schemes reduce the abort rate from 47 percent (in the case in which
only one version, the most current one, is available, i.e.,
invalidation) to around 6 to 20 percent, depending on the
broadcast organization (Fig. 3a). For all organizations, the increase
in the broadcast size is well below 20 percent (Fig. 4a). For an
update rate at 10 percent, the abort rate is reduced from 60 percent
to 15 percent (clustering) (Fig. 3b), while the increase in the
broadcast size is below 25 percent (Fig. 4b).

Fig. 3 depicts the abort rate with the number of versions. With
the overflow bucket pool approach, transactions have to wait for
the end of the broadcast to locate old versions, thus their span
increases, as does their probability of abort. Note that, for the new
disk organization with m ¼ 2, the size of the bcast is effectively
double the size of the bcast of the other organizations. For this
reason, new values and invalidation reports appear in the
broadcast very late (at each new bcycle). Thus, we pay for the
increase in concurrency by reading less current data.

Fig. 4 shows the increase in the broadcast size for a different
number of versions. For the clustering approach, the increase
depends on the offset. The increase is the maximum when the hot
items are the most often updated ones (Offset ¼ 0), while it is
minimum when the frequently updated items are cold and, thus,
their versions are placed on slow disks. In all other schemes, the
offset does not affect the increase in the broadcast size. Note that,
for different offsets, the relative behavior of all methods in terms of
the abort rate remains the same. For the new disk approach with

1228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

TABLE 1
Performance Model Parameters

Fig. 3. Abort rate: (a) 5 percent of the database items are updated per bcast; (b) 10 percent of the database items are updated per bcast.

m ¼ 2, the size of the broadcast is doubled from the case of a single

version. However, the current value of each item appears twice as

often as in the single version case; thus, it is as if we had an

additional bcycle.
Fig. 5 shows the response time. Note that we report the

response time only for the nonaborted transactions, thus the

increase in the response time does not mean that transactions get

slower, but that even slow transactions are not forced to abort.

Although the increase in the broadcast size for the new disk

organization with m ¼ 2 is large, the mean life time of client

transactions is very short (in some cases, even shorter than that for

the clustering and the overflow pool organizations).

5.2 Experiment 2: Disconnections

Disconnections are characterized by their duration, which we

model using parameter DD, and their frequency, which we model

using parameter DF . DD is equal to the number of consequent

broadcast units that a disconnection lasts. DF is equal to the

number of broadcast units during which a single disconnection of

duration DD units occurs. When, exactly, inside DF the

disconnection occurs is selected randomly. For example, DD equal

to two broadcast units and DF equal to the duration of a minor

cycle means that one disconnection lasting two broadcast units

occurs in each minor cycle.
In this experiment, we also consider an enhanced version of the

protocols: each invalidation report is broadcast twice during each

bcycle. Fig. 6 depicts the behavior of invalidation report, version-

ing, multiversioning (clustering with k ¼ 2), and their enhanced

versions. We kept the update rate at a low value (around 2 percent

of the database items are updated at each bcycle) so that the abort

rate is mainly due to disconnections rather than to updates. Fig. 6a

shows the performance of the methods for varying disconnection

frequencies. Each disconnection has a fixed duration of one minor

cycle (around 7 percent of the broadcast cycle). Fig. 6b shows the

behavior for disconnections having varying durations and occur-

ring once per bcycle.
Invalidation methods behave poorly in the case of disconnec-

tions. This is because, in the case in which an invalidation report is

missed, a transaction must abort since it cannot make any

assumptions about which items have been updated. On the

contrary, versioning and multiversioning are rather tolerant to

disconnections. Short disconnections, even if they occur very often

(four times per bcycle), result in aborting only 10 percent of the

transactions (Fig. 6a). Similarly, even when half of the broadcast

content is missed at each bcycle, still around 90 percent of the

transactions complete successfully (Fig. 6b). The enhancement

(broadcasting the invalidation report twice) improves the perfor-

mance of both the invalidation and multiversioning.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002 1229

Fig. 4. Increase of the broadcast size: (a) 5 percent of the database items are updated per bcast; (b) 10 percent of the database items are updated per bcast.

Fig. 5. Mean life time (in broadcast units). Only the response time of nonaborted transactions is reported. (a) 5 percent of the database items are updated per bcast;

(b) 10 percent of the database items are updated per bcast.

6 CONCLUSIONS

Data dissemination by broadcast is an important mode for data

delivery in data intensive applications. This paper makes three

important contributions. First, it proposes the use of multiversions

to increase concurrency as well as to support data sequences

reflecting multiple server states. Toward this, it suggests and

evaluates three different multiversion data broadcast organiza-

tions, of which clustering offers the best balance between currency

and consistency. Second, the paper introduces two different

multiversions schemes with or without invalidation reports. Third,

the paper discusses and demonstrates that these schemes work

well with autoprefetch caching. Furthermore, by maintaining

multiple versions, the tolerance of client transactions of disconnec-

tions is increased, as confirmed by our experiments, which is

particularly important in the case of mobile data access. The

proposed multiversion schemes are scalable in that their perfor-

mance is independent of the number of clients.

ACKNOWLEDGMENTS

The work of Evaggelia Pitoura was supported in part by the

European Union through grant IST-2001-32645. The work of Panos

K. Chrysanthis was supported in part by the US National Science

Foundation under grants IRI-9502091 and IIS-9812532.

REFERENCES

[1] S. Acharya, R. Alonso, M.J. Franklin, and S. Zdonik, “Broadcast Disks: Data
Management for Asymmetric Communications Environments,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 199-210, 1995.

[2] S. Acharya, M.J. Franklin, and S. Zdonik, “Disseminating Updates on
Broadcast Disks,” Proc. 22nd Int’l Conf. Very Large Data Bases, pp. 354-365,
1996.

[3] D. Barbará, “Certification Reports: Supporting Transactions in Wireless
Systems,” Proc. IEEE Int’l Conf. Distributed Computing Systems, 1997.

[4] D. Barbará and T. Imielinski, “Sleepers and Workaholics: Caching
Strategies in Mobile Environments,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 1-12, 1994.

[5] T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee, W. Mansfield, J. Raitz,
and A. Weinrib, “The Datacycle Architecture,” Comm. ACM, vol. 35, no. 12,
pp. 71-81, 1992.

[6] C. Mohan, H. Pirahesh, and R. Lorie, “Efficient and Flexible Methods for
Transient Versioning to Avoid Locking by Read-Only Transactions,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 124-133, 1992.

[7] E. Pitoura and P.K. Chrysanthis, “Multiversion Broadcast,” extended
version, Technical Report, TR-2002-11, Computer Science Dept, Univ. of
Ioannina, Apr. 2002.

[8] E. Pitoura and P.K. Chrysanthis, “Scalable Processing of Read-Only
Transactions in Broadcast Push,” Proc. 19th IEEE Int’l Conf. Distributed
Computing Systems, 1999.

[9] E. Pitoura and P.K. Chrysanthis, “Exploiting Versions for Handling
Updates in Broadcast Disks,” Proc. 25th Int’l Conf. Very Large Data Bases,
pp. 114-125, 1999.

[10] E. Pitoura and G. Samaras, Data Management for Mobile Computing. Kluwer
Academic, 1998.

[11] R. Rastogi, S. Mehrotra, Y. Breitbart, H.F. Korth, and A. Silberschatz, “On
Correctness of Non-Serializable Executions,” Proc. ACM Symp. Principles of
Database Systems, pp. 97-108, 1993.

[12] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, and K.
Ramamritham, “Efficient Concurrency Control for Broadcast Environ-
ments,” Proc. ACM SIGMOD Int’l Conf. Management of Data, 1999.

1230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

Fig. 6. Disconnections: (a) each disconnection lasts one minor cycle (around 7 percent of the bcycle); (b) one disconnection per bcycle.

