
Scalable Processing of Read-Only Transactions
in Broadcast Push

Evaggelia Pitoura
Department of Computer Science
University of Ioannina, Greece

pitoura@cs.uoi.gr

Panos K. Chrysanthis
Department of Computer Science

University of Pittsburgh
panos@cs.pitt.edu

Abstract

Recently, push-based delivery has attracted considerable
attention as a means of disseminating information to large
client populations in both wired and wireless settings. In
this paper, we address the problem of ensuring the consis-
tency and currency of client read-only transactions in the
presence of updates. To this end, additional control infor-
mation is broadcast. A suite of methods is proposed that
vary in the complexity and volume of the control informa-
tion transmitted and subsequently differ in response times,
degrees of concurrency, and space and processing over-
heads. The proposed methods are combined with caching
to improve query latency. The relative advantages of each
method are demonstrated through both simulation results
and qualitative arguments. Read-only transactions are pro-
cessed locally at the client without contacting the server
and thus the proposed approaches are scalable, i.e., their
performance is independent of the number of clients.

1. Introduction

In traditional client/server systems, data are delivered on
demand. A client explicitly requests data items from the
server. Upon receipt of a data request, the server locates the
information of interest and returns it to the client. This form
of data delivery is calledpull-based. In many wireless set-
tings, such as in satellite and cellular networks, the server
machine is provided with a relative high-bandwidth chan-
nel which supports broadcast delivery to all mobile clients
located inside the geographical region it covers. This facil-
ity provides the infrastructure for a new form of data de-
livery calledpush-baseddelivery. Broadcast is supported
in wireline networks as well. In push-based data delivery,
the server repetitively broadcasts data to a client population
without a specific request. Clients monitor the broadcast
and retrieve the data items they need as they arrive on the

broadcast channel.
Push-based delivery is central to an increasingly impor-

tant range of applications that involve dissemination of in-
formation to a large number of clients. Dissemination-
based applications include information feeds such as stock
quotes and sport tickets, electronic newsletters, mailing
lists, road traffic management systems, and cable TV. Im-
portant are also electronic commerce applications such as
auctions or electronic tendering. Recently, information dis-
semination on the Internet has gained significant attention
(e.g., [7, 19]) as well.

In this paper, we address the problem of preserving the
consistency and currency of client read-only transactions,
when the values of broadcast data are updated at the server.
To this end, control information is broadcast that enables
the validation of read-only transactions at the clients. We
propose various methods that vary in the complexity and
volume of control information, including transmitting inval-
idation reports, multiple versions per item, and serializabil-
ity information. Caching at the client is also supported to
decrease query latency. The performance of the methods is
evaluated and compared through both qualitative arguments
and simulation results. In all the methods proposed, consis-
tency is preserved without contacting the server and thus the
methods are scalable; i.e., their performance is independent
of the number of clients. This property makes the methods
appropriate for highly populated service areas.

Providing transactional support tailored to read-only
transactions is important for many reasons. First, the great
majority of transactions in dissemination systems are read-
only. Then, even if we allow update transactions at the
client, it is more efficient to process read-only transactions
with special algorithms. That is because consistency of
queries can be ensured without contacting the server. This
is important because even if a backchannel exists from the
client to the server, this channel typically has small commu-
nication capacity. Furthermore, since the number of clients
supported is large, there is a great chance of overwhelm-
ing the server with clients’ requests. In addition, avoiding

1

contacting the server decreases the latency of client trans-
actions. The proposed methods are applicable in wired as
well as in wireless settings.

In most current research, updates have been treated in
the context of caching (for example, [5], [2], and [12]). In
this case, updates are considered in terms of local cache
consistency; there are no transactional semantics. Trans-
actions and broadcast were first discussed in the Datacycle
project [8] where special hardware is used to detect changes
of values read and thus ensure consistency. The Datacycle
architecture is extended in [3] for the case of a distributed
database where each database site broadcasts the contents
of the database fragments residing at that site. More recent
work involves the development of new correctness criteria
for transactions in broadcast environments [18] and the de-
ployment of the broadcast medium for transmitting concur-
rency control related information so that part of transaction
management can be undertaken by the clients [4].

The remainder of this paper is organized as follows. In
Section 2, we introduce the problem and in Section 3, we
propose various methods for processing read-only transac-
tions. The methods are extended to support caching in Sec-
tion 4. In Section 5, the performance of the methods pro-
posed is compared through both qualitative arguments and
simulation results. Finally, in Section 6, we offer conclu-
sions and present our plans for future work.

2. Read-Only Transactions and Broadcast

2.1. The Broadcast Model

The server periodically broadcasts data items to a large
client population. Each period of the broadcast is called a
broadcastcycleor bcycle, while the content of the broad-
cast is called abcast. Each client listens to the broadcast
and fetches data as they arrive. We assume that all updates
are performed at the server and disseminated from there.
Clients access data from the broadcast in a read-only mode.
We do not make any particular assumptions about transac-
tion processing, i.e., concurrency control or recovery, at the
server.

Clients do not need to listen to the broadcast continu-
ously. Instead, they can tune-in to read specific items. Se-
lective tuning is important especially in the case of portable
mobile computers, since they most often rely for their oper-
ation on the finite energy provided by batteries and listening
to the broadcast consumes energy. However, for selective
tuning, clients must have some prior knowledge of the struc-
ture of the broadcast to determine when the item of interest
appears on the channel. Alternatively, the broadcast can be
self-descriptive, in that, some form of directory information
is broadcast along with data (see for instance [11]). In this

case, the client first gets this information from the broadcast
and use it in subsequent reads.

The smallest logical unit of a broadcast is calledbucket.
Buckets are the analog to blocks for disks. Each bucket has
a header that includes useful information. Information in
the header usually includes the position of the bucket in the
bcast as an offset from the beginning of the bcast as well
as the offset to the beginning of the next bcast. Data items
correspond to database records (tuples). We assume that
users access data by specifying the value of one attribute
of the record, the search key. Each bucket contains several
items.

2.2. Consistency of Read-Only Transactions

We assume that the server broadcasts the content of a
database. A database consists of a finite set of data items.
A database state is typically defined as a mapping of every
data to a value of its domain. Thus, a databases state, de-
notedDS, can be defined as a set of ordered pairs of data
items inD and their values. In a database, data are related
by a number of integrity constraints that express relation-
ships of values of data that a database state must satisfy. A
database state isconsistentif it does not violate the integrity
constraints [6].

While data items are being broadcast, transactions exe-
cuted at the server may update their values. We assume that
the content of the broadcast at each cycle is guaranteed to
be consistent. In particular, we assume that the values of
data items that are broadcast during each bcycle correspond
to the state of the database at the beginning of the cycle, i.e.,
the values produced by all transactions that have been com-
mitted by the beginning of the bcycle. Thus, a read-only
transaction that reads all its data within a single bcycle can
be executed without any concurrency overhead at all. We
make this assumption for clarity of presentation.

Since the set of items read by a transaction is not known
at static time and access to data is sequential, transactions
may read data items from different bcasts, that is values
from different database states. As a simple example, con-
sider the transaction that corresponds to the following pro-
gram:if a> 0 then read b else read c, whereb andc precede
a in the broadcast. Then, a client transaction has to reada

first and wait for the next bcycle to readb or c. We define
thespanof a transactionT , span(T), to be the maximum
number of the different bcycles from whichT reads data.

Since client transactions read data from different cycles,
there is no guarantee that the values they read are consis-
tent. We define thereadsetof a transactionT , denoted
Read Set(T), to be the set of items it reads. In particu-
lar,Read Set(T) is a set of ordered pairs of data items and
their values thatT read. Our correctness criterion for read-
only transactions is that each transaction reads consistent

data. Specifically, the readset of each read-only transaction
must form a subset of a consistent database state [17]. We
assume that each server transaction preserves database con-
sistency. Thus, a state produced by a serializable execution
(i.e., an execution equivalent to a serial one [6]) of a number
of server transactions produces a consistent database state.
The goal of the methods presented in this paper is to ensure
that the readset of each read-only transaction corresponds
to such a state.

3. Read-Only Transaction Processing

3.1. The Invalidation-Only Method

Each bcast is preceded by an invalidation report in the
form of a list that includes all data items that were updated
at the server during the previous bcycle. For each active
read-only transactionR, the client maintains a setRS(R)
of all data items thatR has read so far. At the beginning of
each bcast, the client tunes in and reads the invalidation re-
port. A read transactionR is aborted if an itemx 2 RS(R)
was updated, that is ifx appears in the invalidation report.
Clearly,

Theorem 1 The invalidation-only method produces correct
read-only transactions.

Proof. In [14].

With the invalidation-only method, a read-only transac-
tion R reads the most current values, in particular the last
values written by transactions committed by the beginning
of the bcycle at whichR commits. The increase in the size
of the broadcast is equal toduk

b
e, whereu is the number of

items updated,k is the size of the key andb the bucket size.

3.2. Multiversion Broadcast

The invalidation-only method is prone to starvation of
queries by update transactions. To minimize the number of
invalidated and aborted read-only transactions, older ver-
sions of data items are retained temporarily. In particu-
lar, the server, instead of broadcasting the last committed
value for each data item, maintains and broadcasts multi-
ple versions per item. Multiversion schemes, where older
copies of items are kept for concurrency control purposes,
have been successfully used to speed-up processing of on-
line read-only transactions in traditional pull-based systems
(e.g., [13]). Letc0 be the bcycle during which a client trans-
actionR performs its first read operation. Duringc0, trans-
actionR reads the most up-to-date value for each data item,
that is, the value having the largest version number. In later
cycles,R reads the value with the largest version number
cn, such thatcn � c0. If such a value exists,R proceeds,
elseR aborts.

header k1 P k2 P k3 P

to overflow buckets

bucket

.. .d d d k1 v k3 v

overflow bucket

d d

Notation: k (key fields) d (other fields) v (version) P (pointer)

Figure 1. Multiversion broadcast

Theorem 2 The multiversion broadcast method produces
correct read-only transactions.

Proof. In [14].

In terms of currency, the data items read byR correspond
to the database state at the beginning ofc0. If for each data
item, all itsS previous values, i.e., the values during the
previousS bcycles, are available, whereS is the maximum
transaction span among all read-only transactions, then, all
read-only transactions can proceed successfully by reading
older versions of data when necessary. If, instead, the server
broadcastsV older versions, for some constantV < S,
then some read-only transactions may be aborted. A server
can either maintain a constant numberV of versions per
item or just the different values of each item during theV

previous cycles (that may be less thanV). In any case, the
numberV of older versions that are retained can be seen
as a property of the server. In this sense, aV -multiversion
server, i.e., a server that broadcasts the previousV values, is
one that guarantees the consistency of all transactions with
spanV or smaller. The amount of broadcast reserved for old
versions can be adapted depending on various parameters,
such as the allowable bandwidth, feedback from clients, or
update rate at the server.

Multiversion Broadcast Organization. There are various
ways to organize a multiversion broadcast [14]. One ap-
proach is to broadcast old versions at the end of the bcast.
In particular, instead of broadcasting with each data item all
its versions, a single version, the most recent one, is broad-
cast along with a pointer. The pointer points to the older
versions of the item, if any, that are broadcast at the end
of the bcast inoverflowbuckets (Figure 1). This way, for
each data item, the offset of its position in the bcast from
the beginning of the bcast remains fixed. Thus, the server
needs not recompute and broadcast an index at each bcycle.
Instead, the client may use a locally stored directory to lo-
cate the first appearance of a data item in the broadcast and,
if needed, follow the pointer to locate older versions in the
overflow bucket. The drawback is that long-running read-
only transactions that read old versions are penalized since
they have to wait for the end of the bcast. However, trans-
actions that are satisfied with current versions do not suffer
from a similar increase in latency.

Let v be the size of the version number,k the size of the
key,d the size of the other attributes andu the mean num-

ber of updates per bcycle andS the maximum transaction
span. The size of the data buckets isD(k + d+ P), where
P is the size of the pointer, while the total size of the over-
flow buckets isB = du(S�1)(k+v+d)

b
e. The pointer is kept

as the offset of the beginning of the overflow bucket from
the end of the bcast, and thus be analog to the number of
overflow buckets, in particularP = log(B). To allocate
less space for version numbers, instead of broadcasting the
number of the bcycle during which a version was created,
we broadcast the difference between the current bcycle and
the bcycle during which the version was created, i.e., how
old the version is. For example, if the current bcycle is cycle
30, and a version was created during bcycle 27, we broad-
cast 3 as the version of the data value instead of 27. Then,
log(S) bits are sufficient forv.

3.3. Serialization-Graph Testing

Both the invalidation-only and the multiversion schemes
ensure that transactions read consistent values, i.e., values
produced by a serializable execution, by enforcing transac-
tions to read values that correspond to the content of a single
bcast. However, it suffices for transactions to read values
that correspond to any consistent database state not neces-
sarily one that is broadcast. To this end, we use a conflict
serialization graph testing (SGT) method.

The serialization graph for a historyH , denotedSG(H),
is a directed graph whose nodes are the committed transac-
tions inH and whose edges are allTi! Tj (i 6= j) such that
one ofTi’s operations precedes and conflicts with one ofTj
operations inH [6]. According to the serialization theorem,
a historyH is serializable iffSG(H) is acyclic. We assume
that each transaction reads a data item before it writes it, that
is, the readset of a transaction includes its writeset. Then,
in the serialization graph, there are two types of edgesTi!
Tj between any pair of transactionsTi andTj : dependency
edges that express the fact thatTj read the value written by
Ti andprecedenceedges that express the fact thatTj wrote
an item that was previously read byTi.

In brief, the SGT method works as follows. Each client
maintains a copy of the serialization graph locally. The seri-
alization graph at the server includes the transactionscom-
mittedat the server, while the local copy at a client site in-
cludes in addition all active read-only transactions issued at
the site. At each cycle, the server broadcasts any updates
of the serialization graph. Upon receipt of the updates, the
client integrates them into its local copy of the graph. A
read operation at a client is accepted only if it does not cre-
ate a cycle in the local serialization graph. Else, the issuing
transaction is aborted. The serialization graph at the server
is not necessarily used for concurrency control at the server,
instead a more practical method, e.g., two-phase locking,

SG SG SG SG SGk

Tf Tl

R

..

c 0 m im+ 1

Figure 2. At bcycle i + 1, R reads x from Tl
committed during bcycle k (c0 � k � i). Tf
committed during bcycle m (c0 � m � i) over-
wrote an item previously read by R.

may be employed.

Implementation of the SGT Method. Next, we describe
an implementation of the SGT method based on the assump-
tion that histories are strict. A history isstrict if no data may
be read or overwritten until the transaction that previously
wrote into it terminates. The SGT method is applicable to
other cases as well but with additional overhead. At the be-
ginning of bcasti + 1, the server broadcasts the following
control information:

� thedifference from the previous serialization graph
In particular, the server broadcasts for each transac-
tion that was committed during bcyclei, a list of the
transactions with which it conflicts, i.e., it is connected
through a direct edge.

� anaugmented invalidation report
The report includes all data written during bcyclei
along with an identification of the first transaction that
wrote each of them during bcyclei.

In addition, the content of the broadcast is augmented
so that along with each item, the identification of the last
transaction that wrote it is also broadcast.

At the beginning of each bcyclei + 1, each client tunes
in to obtain the control information and updates its local
copySG of the serialization graph to include any additional
edges and nodes. In addition, the client adds precedence
edges for all its active read-only transactions as follows. Let
R be an active transaction andRSi(R) be the set of items
thatR has read so far. For each itemx in the augmented
invalidation report such thatx 2 RSi(R), the client adds a
precedence edgeR! Tf , whereTf is the first transaction
that wrotex during bcyclei. AlthoughR conflicts with all
transactions that wrotex during bcyclei, it suffices to just
add one edge toTf (see [14] for a proof).

WhenR reads an itemy, a dependency edgeTl ! R is
added in SG, whereTl is the last transaction that wrotey.
The read operation is accepted, only if no cycle is formed.
It can be shown that it suffices to just add one edgeTl !
R instead of adding edgesT 0 ! R from all transactions

T 0 that wrotey. To prove that the SGT method detects all
cycles that include a read-only transactionR, we will use
the following lemma. LetSGi be the subgraph ofSG that
includes only the transactions committed during bcyclei.

Lemma 1 Let c0 be the first broadcast cycle during which
an item read byR is overwritten.

(a) During broadcast cyclei + 1, the only type of cycle
that can be formed that includes R is of the formR!
Tj1 ! Tj2 ! : : : Tjk ! R, where for anyTjp 2 SG

m,
it holdsc0 �m � i.

(b) The SGT method detects all such cycles.

Proof. In [14].

Figure 2 shows graphically the formation of such a cycle.

Theorem 3 The SGT method produces correct read-only
transactions.

Proof. In [14].

Regarding the database state seen byR, R is serialized
before all update transactions that overwrote items read by
R and after all update transactions from whichR read from.
This is similar to the approximation criterion of [18] when
applied to read-only transactions. The main difference is
that to implement the method, we broadcast control infor-
mation in a form of a serialization graph, while they broad-
cast information per pair of data items.

Space Efficiency.Instead of keeping a complete copy of the
serialization graph at each client, by Lemma 1, it suffices to
keep for each read-only transactionR only the subgraphs
SGm with m � c0, wherec0 is the bcycle when the first
item read byR was invalidated, i.e., overwritten. Thus, if
no items are updated, there is no space or processing over-
head at the client. Furthermore, at mostS subgraphs are
maintained, whereS is the maximum transaction span of
queries at each client. Also, by Lemma 1, we need keep
only the outgoing edges ofR.

The volume of control information is considerable. Let
tid be the size of a transaction identifier,N the maximum
number of transactions committed per bcycle, andc the
maximum number of operations per server transaction. We
assume that transaction identifiers are unique within each
bcycle, thus it suffices to allocatelog(N) bits per transac-
tion identifier when the bcycle is known. To distinguish be-
tween transactions at different bcycles, a version number is
broadcast indicating the bcycle at which the transaction was
committed; the size of such version number islog(S) bits,
since only the lastS bcycles are relevant. The size of the
broadcast data isdD(d+k+log(N))

b
e, while the size of the in-

validation report isdu(k+log(N))
b

e. Since, there are at most
c operations per transaction, each transaction participates in

at mostc conflicts with other transactions. Thus, the differ-
ence from the previous graph has at mostN c edges. The
total size of the difference is:d cN(log(N)+(log(S)+log(N)))

b
e,

assuming that we broadcast pair of conflicting transactions
where the first transaction in the pair is a newly committed
transaction, and the second one any previously committed
transaction with which it conflicts. If we broadcast the con-
trol information at the end of the previous bcast, then the
offset of each item from the beginning of each bcast remains
fixed and a locally stored directory can be used.

4. Caching

To reduce latency in answering queries, clients can cache
items of interest locally. Caching reduces not only the la-
tency but also the span of transactions, since transactions
find data of interest in their local cache and thus need to
access the broadcast channel for a smaller number of cy-
cles. We assume that each page, i.e., the unit of caching,
corresponds to a bucket, i.e., the unit of broadcast. In the
presence of updates, the value of cached items may become
stale. There are various approaches to communicating up-
dates to the client. We assume invalidation combined with
a form of autoprefetching [2]. Other approaches are also
applicable. In particular, we assume that at the beginning
of each bcycle, the server broadcasts an invalidation report,
which is a list of the pages that have been updated. This
report is used to invalidate those pages in cache that appear
in the invalidation report. The invalidated pages remain in
cache. When the new value of an invalidated page appears
in the broadcast, the client fetches the new value and re-
places the old one. Thus, a page in cache either has a current
value (the one in the current bcast) or is marked for auto-
prefetching. The cache invalidation report is similar to the
invalidation reports in our methods. However, the two re-
ports differ in granularity. The cache invalidation report in-
cludes pages (buckets) that have been updated, whereas the
query-processing invalidation report includes data items.

The proposed read-only transaction processing tech-
niques can be easily extended to accommodate caching. For
the invalidation-onlyscheme, each read first checks whether
the item is in cache. If the item is found in cache and the
page is not invalidated, the item is read from the cache.
Otherwise, the item is read from the broadcast. A simple
enhancement to the above scheme is to extend the cache so
that along with each item, it also includes the bcycle dur-
ing which the item was inserted in the cache. LetR be a
query andu0 the first bcycle at which an itemx 2 RS(R)
is invalidated. Instead of abortingR,R is marked abort and
continues operation as long as old enough values are found
in cache. In particular, a read operation is accepted if the
item is in cache and has version numberc, c < u0. We call
this method invalidation-only with versioned cache.

Table 1. Performance model parameters

Server Parameters

UpdateRange

theta (zipf distribution parameter)

1000

500

0.95

0 - 250 (100)

1000

10

0

Client Parameters

theta (zipf distribution parameter)

Think Time (time between client
reads in broadcast units)

Number of reads per quey

S (transaction span)

0.95

250

5 - 50 (10)

2

Cache

CacheSize

Cache replacement policy

Cache invalidation

125

LRU

varies

autoprefetch
invalidation +

Offset (update and
client-read access deviation)

ServerReadRange

N (number of server transactions)

Offset (update and

k (size of the key field)

b (bucket size)

server-read access deviation)

d (size of the other fields)

ReadRange (range of client reads)D (BroadcastSize)

c (Number of operations per server trans)

u (Number of updates at the server) 50 - 500 (50)

(u + 4 * u) / N

1 unit

5 * k

d units

Theorem 4 The invalidation-only with versioned cache
method produces correct read-only transactions.

Proof. In [14].

To support the multiversion broadcast method, the cache
must also include the version number for each item. Anal-
ogously, for the SGT method, the cache must be extended
to include for each item the last transaction that wrote it; in-
formation that is broadcast anyway. In addition, each time
an item is read from the cache, the same test for cycles as
when the item is read from the broadcast is performed.

5. Performance Evaluation

5.1. The Performance Model

Our performance model is similar to the one presented in
[1]. The server periodically broadcasts a set of data items in
the range of1 toBroadcastSize. We assume for simplic-
ity a flat broadcast organization in which the server broad-
casts cyclicly the set of items. The client accesses items
from the range 1 toReadRange, which is a subset of the
items broadcast (ReadRange � BroadcastSize). Within
this range, the access probabilities follow a Zipf distribu-
tion with a parametertheta to model non-uniform access.
Access patterns become increasingly skewed astheta in-
creases. The client waitsThinkT ime units and then makes
the next read request. Similarly, updates at the server are
generated following a Zipf distribution. The write distribu-
tion is across the range1 to UpdateRange. We use a pa-
rameter calledOffset to model disagreement between the
client access pattern and the server update pattern. When
the offset is zero, the overlap between the two distribu-
tions is the greatest, that is the client’s hottest pages are also
the most frequently updated. An offset ofk shifts the up-
date distribution k items making them of less interest to the
client.

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

T
ra

ns
ac

tio
ns

 A
bo

rt
ed

 (
%

)

Number of Client Reads

Invalidation-Only+Cache
Invalidation-Only+Version Cache

SGT+Cache
Multiversion + Cache

Figure 3. Abort rate with the number of read
operations per client transaction

We assume that during each bcycle,N transactions
are committed at the server. All server transactions have
the same number of update and read operations, where
read operations are four times more frequent than up-
dates. Read operations at the server are in the range1 to
BroadcastSize, follow a Zipf distribution, and have zero
offset with the update set at the server. The client main-
tains a local cache that can hold up toCacheSize pages.
The cache replacement policy is LRU: when the cache is
full, the least recently used page is replaced. When pages
are updated, the corresponding cache entries are invalidated
and subsequently autoprefetched. Table 1 summarizes the
parameters. Values in parenthesis are the default.

5.2. Comparison of the Methods

Concurrency. Updates at the server may invalidate data
values read by read-only transactions and cause them to
be aborted and reissued anew. Figure 3 depicts the abort
rate for the schemes presented with caching at the client.
Caching reduces the number of transactions aborted since
it reduces their span and thus the probability of invalida-
tion. For the multiversion scheme, a total of three versions
per item is maintained. The abort rate also depends on the
update rate and the overlap between the client read and the
server update pattern. For results refer to [14].

Broadcast Size. The increase of the broadcast volume
is an important measure of the efficiency of the proposed
schemes, in terms of bandwidth. Furthermore, the volume
of the broadcast data affects the response time of client
transactions. Since access to data is sequential, the larger
the volume of the broadcast, the longer the clients need to
wait until the data of interest appear on the channel. Figure
4 shows the increase of the broadcast size as a function of
the maximum transaction span and the number of updates

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

(%
)

of
 In

cr
ea

se
 in

 S
iz

e

Transaction Span

Invalidation-Only
Multiversion Broadcast

SGT Method

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

(%
)

of
 In

cr
ea

se
 in

 S
iz

e

Number of Updates

Invalidation-Only
Multiversion Broadcast

SGT Method

Figure 4. Increase in the size of the broadcast: (left) with the transaction span (for U = 50 updates
per bcycle) (right) with the number of updates (for span = 3)

using the formulas developed in the previous sections.

Latency. We quantify latency, the mean duration of read-
only transactions, as the mean number of bcycles per trans-
action. Besides reading control information at each bcy-
cle, from the methods presented, multiversion broadcast im-
poses an additional increase in latency, since long-running
read-only transactions wait for old versions to appear at the
end of the bcast. For quantitative results refer to [14].

Currency Read-only transactions can be classified based on
their currency requirements [10].Currency requirements
specify what update transactions are reflected by the data
read by read-only transactions. Table 2 summarizes the
currency properties of read-only transaction in each of the
methods.

Disconnections. The techniques presented differ on
whether they require active clients to monitor the broadcast
continuously. Raising the continuous monitoring require-
ment is desirable in various settings. For example, in the
case of mobile clients, operation relies on the finite power
provided by batteries, and since listening to the broadcast
consumes energy, selective tuning is required. Besides, ac-
cess to the broadcast is monetarily expensive, and thus min-
imizing access to the broadcast is sought for. Finally, client
disconnections [16] are very common when the data broad-
cast are delivered wirelessly.

In the invalidation-only scheme, a client has to tune-
in at each and every cycle to read the invalidation report.
Otherwise, it cannot ensure the correctness of any active
read-only transaction. In multiversion broadcast, clients
can refrain from listening to the broadcast for a number of
cycles and resume execution later as long as the required
versions are still on air. In general, a transactionR with
span(R) = sR can tolerate missing up toV � sR broad-
cast cycles in anyV -multiversion broadcast. The tolerance
to disconnections depends also on the rate of updates, i.e.,
the creation of new versions. For example, if the value of

an item does not change duringk, k > V , cycles, this value
will be available to any read-only transactions for more than
V cycles. The SGT method does not tolerate any client dis-
connections. If a client misses a broadcast cycle, it can-
not anymore guarantee serializability. Thus, any active read
transactions must be reissued anew. To increase tolerance
to disconnections, version numbers could be broadcast. In
this case, a read operation is accepted iff its version num-
ber is smaller than the version of the last broadcast that
the transaction has listen to. This guarantees that the client
has all the information required for cycle detection. In all
the schemes, periodic retransmission of control information
can increase their tolerance to intermittent connectivity. For
instance, an invalidation report of the items updated dur-
ing the lastw bcycles may be broadcast to allow clients to
resynchronize. Finally, caching improves tolerance to dis-
connections.

6. Conclusions and Future Work

We have presented a suite of processing techniques to
provide support for consistent queries for broadcast push
in both wired and wireless settings with mobile or station-
ary clients. The techniques are scalable in that their perfor-
mance is independent of the number of clients. We have
compared the proposed techniques both quantitatively and
through simulation and show their relative advantages. The
proposed techniques can be extended in various ways. First,
we may raise the assumption that the values broadcast at
each bcycle are those at the beginning of the cycle. Sec-
ond, possible refinements of the proposed schemes refer to
the supported granularity. For example, invalidation reports
may include buckets instead of items. Finally, another pos-
sible extension is to consider a broadcast-disk organization
[1], where specific items are broadcast more frequently than
others, i.e., are placed on “faster disks”. Along this line, in
[15] we address the problem of determining the optimal fre-

Table 2. Summary

transactions accepted)

Minimum

Multiversion BroadcastInvalidation-Only SGT Method

broadcast volume)
(increase of the

Size

(1% for U = 50 updates (2.5 % for N = 10 server

Not affected Not affected

(percentage of
Moderate
(depends on the trans
activity at the server) size)

(depends on the cache

Processing Overhead Moderate
Considerable (includes
maintaining SGs at both
the server and the client)

Small Small

depends on the activitydepends on the update

(12 % for U = 50 updates
rate and the span at the server

trans and U = 50 updates)

rate
depends on the update

and span = 3)

transactions
Increases for long

(number of bcycles)
Latency

Caching

Maximum (depends on
number of versions)

and V = 3)

(small, for

reports for buckets)
transmitting invalidation

Decreases

versioned caching)
the state when an item
previously read is

Concurrency

Tolerance to
Disconnections

None
Some, depends on the
individual transaction’s
span and the update rate

None, unless Some, depends
on the update rate and
the cache size

additional information
is broadcasted

overwritten for the
first time

(for invalidation with

by the clients)

(database state seen

Currency

read is performed

The state when the last

performed

read operation is and the last operation

A state between the firstThe state when the first

quency for transmitting old versions.

References

[1] S. Acharya, R. Alonso, M. J. Franklin, and S. Zdonik.
Broadcast Disks: Data Management for Asymmetric Com-
munications Environments. InProc. of SIGMOD, 1995.

[2] S. Acharya, M. J. Franklin, and S. Zdonik. Disseminating
Updates on Broadcast Disks. InProc. of VLDB, 1996.

[3] S. Banerjee and V. O. K. Li. Evaluating the Distributed Dat-
acycle Scheme for a High Performance Distributed System.
Journal of Computing and Information, 1(1), 1994.

[4] D. Barbará. Certification Reports: Supporting Transactions
in Wireless Systems. InProc. of the IEEE Int. Conf. on
Distributed Computing Systems, 1997.

[5] D. Barbará and T. Imielinski. Sleepers and Workaholics:
Caching Strategies in Mobile Environments. InProc. of
SIGMOD,1994.

[6] P. A. Bernstein, V. Hadjilacos, and N. Goodman.Con-
currency Control and Recovery in Database Systems.
Addisson-Wesley, 1987.

[7] A. Bestavros and C. Cunha. Server-initiated Document Dis-
semination for the WWW.IEEE Data Engineering Bulletin,
19(3), September 1996.

[8] T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee,
W. Mansfield, J. Raitz, and A. Weinrib. The Datacycle Ar-
chitecture.CACM, 35(12), December 1992.

[9] A. Datta, A. Celik, J. Kim, D. VanderMeer, and V. Kumar.
Adaptive Broadcast Protocols to Support Efficient and En-
ergy Conserving Retrieval from Databases in Mobile Com-
puting Environments. InProc. of the 13th IEEE Int. Conf.
on Data Engineering, 1997.

[10] H. Garcia-Molina and G. Wiederhold. Read-Only Transac-
tions in a Distributed Database.ACM TODS, 7(2), 1982.

[11] T. Imielinski, S. Viswanathan, and B. R. Badrinanth. Data
on Air: Organization and Access.IEEE TKDE, 9(3):353–
372, 1997.

[12] J. Jing, A. K. Elmargarmid, S. Helal, and R. Alonso. Bit-
Sequences: An Adaptive Cache Invalidation Method in Mo-
bile Client/Server Environments.ACM/Baltzer Mobile Net-
works and Applications, 2(2), 1997.

[13] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and Flexi-
ble Methods for Transient Versioning to Avoid Locking by
Read-Only Transactions. InProc. of SIGMOD, 1992.

[14] E. Pitoura and P. K. Chrysanthis. Scalable Process-
ing of Read-Only Transaction in Broadcast Push (ex-
tended version). Tech. Report TR: 98-26, Univ. of Ioan-
nina, Computer Science Dept, 1998. Also available
at:www.cs.uoi.gr/˜ pitoura/pub.html.

[15] E. Pitoura and P. K. Chrysanthis. Exploiting Versions for
Handling Updates in Broadcast Disks. Tech. Report TR: 99-
02, Univ. of Ioannina, Computer Science Dept, 1999.

[16] E. Pitoura and G. Samaras.Data Management for Mobile
Computing. Kluwer Academic Publishers, 1998.

[17] R. Rastogi, S. Mehrotra, Y. Breitbart, H. F. Korth, and A. Sil-
berschatz. On Correctness of Non-serializable Executions.
In Proc. of ACM PODS, 1993.

[18] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran,
and K. Ramamritham. Efficient Concurrency Control for
Broadcast Environments. InACM SIGMOD, 1999.

[19] T. Yan and H. Garcia-Molina. SIFT – A Tool for Wide-area
Information Dissemination. InProc. of the 1995 USENIX
Technical Conference, 1995.

