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Abstract— A context-aware system is a system that uses context Restaurap Yriginame, phone, region, CUISI.ne)
to provide relevant information or services to its users. Whie User(uid name, phone, address, e-mail)
there has been a variety of context middleware infrastructues
and context-aware applications, little work has been done ro
integrating context into database management systems. Irhis
paper, we consider a preference database system that supper
context-aware queries, that is, queries whose results depe on  preferences depend on context, that is, they may have eiffer
the context at the time of their submission. We propose using values depending on context.

data cubes to store the dependencies between context-degdent We model context as a finite set of special-purpose at-

preferences and database relations and OLAP techniques fqro- tributes. calledcontext parametersExamples of context pa-
cessing context-aware queries. This allows for the manipation ibutes, xtp xamp xtp

of the captured context data at various levels of abstractio, for fameters are location, weather and the type of computing
instance, in the case of a context parameter representingdation, device in use. Acontext statds an assignment of values to
preferences can be expressed for example at the level of aycit context parameters. Users express their preferences ofifigpe
the level of a country or both. To improve query performancewe  gatapase instances based on a single context parametar. Suc
use an auxiliary data structure, called context .tree.. The cotext basic preferences.e., preferences associating database rela-
tree stores results of past context-aware queries indexedylthe ™ a . = . 0
context of their execution. Finally, we outline the implematation ~ tions with a single context attribute, are combined to cotapu
of a prototype context-aware restaurant recommender. aggregate preferencethat include more than one context
Index Terms— context, preference, OLAP, context-awareness, parameter. . o
querying processing As an example, consider a database schema with informa-
tion about restaurants and users (Fig. 1). In this apptioati
we consider two context parameters as relevamtition and
weather. Users have preferences about restaurants that they
Contextis any information that can be used to characterizxpress by providing a numerical score between 0 and 1 that
the situation of an entity. An entity is a person, place ajuantifies their degree of interest for a restaurant. Theegdeg
object that is considered relevant to the interaction betwee of interest of a user for a restaurant depends on the values
user and an application, including the user and the apjgitat of the two relevant context parameters. For instance, a user
themselves [1]. There are various types of context inclydimay want to eat different kinds of food depending on the
time, location, and available computing and communicatiaurrent weather conditions. For example, uk&iry may give
resources. A system isontext-aware if it uses context to to restauranZoloushkathat serves “Russian” food a higher
provide relevant information and/or services to the uskene score when the weather isiiny than when the weather is
relevancy depends on the user’s task. Although there has beenny. Furthermore, the current user’s location affects the
a lot of work on developing a variety of context infrastruetsi result of a query, for example, a user may prefer restaurants
and context-aware middleware and applications (for exampthat are nearby her current location. The user provides such
the Context Toolkit [2] and the Dartmouth Solar Systermpreference scores that depend on a single context parameter
[3]), there has been only little work on integrating contexin this example, preference scores that depend on location
information into databases. Most of this work has focused @amd preference scores that depend on weather. These basic
a particular type of context, that of location, mainly in th@references are then combined to produce an aggregate score
context of moving object databases. that depends on more than one context parameter. In addition
In this paper, we investigate the use of context in relationa user can specify preferences without giving values for all
database management systems. We considetext-aware context parameters. In particular, the special value *f #o
queries which are queries whose results depend on the ¢contmntext parameter denotes that the user preference does not
at the time of their submission. In particular, users expredepend on it.
their preferences on specific attributes of a relation. SuchWe store simple preferences in data cubes, following the

Fig. 1. The database schema of our running example.

I. INTRODUCTION
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OLAP paradigm. An advantage of using cubes and OLAR. Modeling Context

techniques is that they provide the capability of using hi- The modeling of context relies on several fundamental
erarchies to introduce different levels of abstraction tioe concepts. As usual, domains represent the available typbs a
captured context data. For instance, this allow us to ag@eedco|lections of values of the system. Context parameters ref
data along say the location context parameter, by for eX@mpp, the available set of attributes that the database desighe
grouping preferences for all cities of a specific country. Wenose to represent context. At any point in time, a contetest
show how context-aware preference queries are processed @fers to an instantiation of the context parameters apibiist.

the role of OLAP techniques in their manipulation. Context parameters are extended with OLAP-like hierasshie

Aggregate preferences are not explicitly stored. To inin order to enable a richer set of query operations to be egpli
prove performance, we propose storing aggregate prefesengver them.

computed as results of previous queries using an auxiliary

data structure calledontext tree A path in the context tree Domains. A domainis an infinitely countable set of values.
corresponds to an assignment of values to context parasnetéfl domains are enriched with a special value for represgnti
that is, to a context state, for which the aggregate score MJLL, the semantics of which refers to our lack of knowledge.

been previously computed. Results stored in a context trggyihtes and Relations. As usual, we assume a countable

are re-used to speed-up query processing. We also show h@action of attribute names. Each attributeis characterized

search in the context tree can be improved using a variatigga name and a domaiein (4, ). A relation schema is a finite
. . . . 1)
of a Bloom-based filter for testing membership in the tree. ot of attributes and a relation instance is a finite substteof

As a proof-of-concept, we have implemented a simplgartesian product of the domains of the relation schema [4].
application that allows users to express their preferences

regarding our running example of a restaurant databasseThgontext Parameters.Context is modeled through a finite set
preferences depend on two context parameters, location &hcspecial-purpose attributes, calledntext parametergc; ).

weather. Users can pose preference queries whose redufsa given applicatiorX, we define its context environment
depend on context. Cx as a set oh context parametersey, ca, ..., ¢n}-

Contributions. Summarizing, we make the following contri-Context State.In general, acontext statés an assignment of
butions: values to context parameters. The context state at timarninst

Wi id logical | for th i t is a tuple with the values of the context parameters at time
« We provide a logical model for the representation %stantt, CSx(t) = {e1(t), ca(t), - .. en(t)}, whereci(t) is the

user preferences and context-related information. TQg) e of the context parameter at timepointt. For instance,
impact of context information on the evaluation of USelssuminglocation and weather as context parameters, a

preferences is explicitly traced. ) _ context state can b&'S(current) = {Acropolis, sunny}.
« We demonstrate how our model can be integrated in a

relational DBMS using data cubes for storing contextierarchies for Attributes. It is possible for an attribute to
dependent preferences. participate in an associatdderarchy of levelof aggregated
« We investigate the usage of On-Line Analytical Procesdata i.e., it can be viewed from different levels of detail.
ing (OLAP) techniques for the manipulation of contextFormally, an attribute hierarchyis a lattice of attributes
aware query operations. — called levels for the purpose of the hierarchy £ =
« We propose a special data structure termedtext tree (L1,..., Ly, ALL). We require that the upper bound of the
for storing previously computed aggregate scores thattice is always the levelLL, so that we can group all the
indexes these results based on the context parameteryalues into the single valug!. The lower bound of the lattice
is called the detailed level of the parameter. For instaleteis
Paper Organization. The rest of this paper is structured asonsider the hierarchjpcation of Fig. 2. Levels oflocation
follows. Section Il introduces our preference model, whilare Region, City, Country, and ALL. Region is the most
Section 1l focuses on how preferences are stored. Sectidetailed level. LevelALL is the most coarse level for all
IV discusses query processing in our framework. Section tfie levels of a hierarchy. Aggregating to the leveLL of
introduces the context tree for storing aggregate preteren a hierarchy ignores the respective parameter in the grgupin
Our prototype implementation is outlined in Section VI, iehi (i.e., practically groups the data with respect to all thieeot
related work is presented in Section VII. Section VIII conparameters, except for this particular one).
cludes the paper with a summary of our contributions. The relationship between the values of the context levels
is achieved through the use of the setamfcfj functions. A
functionancy? assigns a value of the domain b§ to a value

Il. AL OGICAL MODEL FORCONTEXT AND USER of the domain ofL,. For instanceanci s, (Acropolis) =
PREFERENCES Athens. A formal definition of these hierarchies can be found

Our model is based on relating context and database ré%-[S]'
tions through preferences. First, we present the fundaaheribynamic and Static Context Parameters.We distinguish
concepts related to context modeling. Then, we proceed ldetween two kinds of context parameters: (a) static and (b)
define user preferences. dynamic context parameterStatic context parameterske
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ALL an TABLE |
NOTATIONS
Country Greece
T Name Notation
City Athens loannina -
T Attribute A;
) Acropolis| | Kifisia Perama Domain of A; dom(A;)
Region Context parameter C;
Context environment for an applicatiod C'x
) ) ) ' Context state at time instant CS(t)
Fig. 2. Hierarchies orocation. Weight for a context parametet w;
as value a simple value out of their domaynamic context ALL L X
parameterson the other hand, are instantiated by the appli- P
cation of a function, the result of which is an instance of the R
domain of the context parameter. In our example, we assume !
that weather is a static parameter, i.e., each new value for L2 ®
weather is derived by an explicit update. On the other hand,
location is a dynamic parameter. In particuldncation is L1 ce

defined as a function of time and in that way, we can compute

the value of this parameter at the point we want to use Hig. 3. The hierarchy tree for parameter

without the need for continuous explicit updates. Defining

appropriate functions and procedures for determining &heev

of a dynamic context parameter in the current or some futupeeference is expressed by a set of context parametarsl a

time instant is beyond the scope of this paper. There has bé&eh of non-context parametess and has a degree of interest:

related work in the context of managing the location of mgvin preference(cy,...ck, Ary1, ..., An) = interest_score.

objects [6]. The interest score of the aggregate preference valae

function of the individuals scores (the degrees of the basic

B. Contextual Preferences preferences). The value function prescribes how to combine
basic preferences to produce the aggregate score, acgdodin

In this section, we define how a context state affects e, ,ser's profile. In this paper, we assume that value fonsti

results of a query. In our model, each user expresses his/Br haqeq on a weighted average of the simple preferences.
preference by providing a numerical score betwéemnd 1 ;a5 gefine in their profile how the basic scores contribute
[7]. This score expresses a degree of interest, which isla rga o aggregate ones, by giving a weight to each context
number. Valuel indicates extreme interest. In reverse, Val“ﬁarameter So, if the weight for a context parametenignd

. . . . . il K3
0 indicates no interest for a preference. The special vallig, .. ..; score; is the score defined by the associated basic

‘0" for a preference means that there is a users veto fBfaterence, then the aggregate interest score will be:
the preference. Furthermore, the valuérepresents that any interest_score —

value is acce'p.table. . . . wy X tnterest_scorey + ...+ wi X interest_scorey,.
Mqre spe;mﬂcally, we divide preferences into basic (con- For instance, in the previous example if the weight of
cerning a single context parameter) and aggregate ones (ol 4., is 0.6 and the weight ofveather is 0.4, the prefer-

cerning a combination of context parameters): ence has scoré.6 x 0.8+ 0.4 x 0.9 = 0.84 (from the above
1) Basic PreferencesEach basic preference is described b\y/alue function). That is, we have:

(a) a context paramete{,' (b) a se'g of non-context parameterspreference(Acmpoh.s’ cloudy, BeauBrummel, Mary) =
A;, and (c) a degree of interest, i.e., a real number between 0 0.84.
and 1. So, for the context parametgr we have:
preferencepasic; (Ciy Axt1, - - ., An) = interest_score;.
In our reference example (Fig 1), there are two context pa- N
rametersjocation andweather. Also, the set of non-context C- Inheriting Preferences
parameters are attributes abauttaurants andusers. As- When the context parameter of a basic preference partici-
sume a useiMary and a restaurant calleBeauBrummel pates in different levels of a hierarchy, users can expless t
located nearlcropolis in Athens that served'rench cuisine. preference in any level, as well in more than one level. For
Mary likes to eat French cuisine when the weather isexample,Mary can denote that the restaurd&gau Brummel
cloudy, so she assigns high scoresBeauBrummel when has interest score 0.8 when she iskatfisia and 0.6 when
she is inAcropolis and the weather isloudy expressed by she is in Athens. Note that in the hierarchy of location the
the following basic preferences: city of Athens is one level up the region oK' fisia.
preferencepasic, (Acropolis, BeauBrummel, Mary) = 0.8, The tree of Fig. 3 represents the different levels of hidmarc
preferencepasic, (cloudy, BeauBrummel, Mary) = 0.9. for a context parameter. For the parametedet L, Lo,...,
2) Adggregate preference€ach aggregate preference is dek,,,, ALL be the different levels of the hierarchy, which can
rived from a combination of basic preferences. The aggeegéake various different values. There is a hierarchy tree, fo

Table | summarizes all notations used in our model.
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// Location Weather
User User
Cyprus
. loannina
Salonica g
Acropolis o Peram Restaurants Restaurants
Kifisia
0.7 Fig. 5. Data cubes for each context parameter.

0.8

Fig. 4. The hierarchy tree of location.
context-dependent preference values for the non-contxt p
o rameters as well as default weights for computing the aggre-
each combination of non-context parameters. In our re(xere;gate scores. In this case, instead of explicitly specifyiagic
example (Fig. 4), there is a hierarchy tree for each userlerofg,q aggregate preferences for the non-context parameters,
and for a specific restaurant that represents the interestsc ,gers may just select the profile that best matches theieste

of the user for the restaurants, accordingly to the contgxbm the set of the available ones. By doing so, the user adopt
parameter’s hierarchy. The root of the tree concerns l&el  he preferences specified by the selected profile.

with the single valueull. The values of a certain dimension Finaly, since the focus of this work is on efficiently

level L are found in the same level of the tree (edthens  combining preferences and database operations, our veprkin
and oannina, being both members of the dimeqsioq levedssumption is that preferences are explicitly specifieddeys

City, are found at the same level of the tree in Fig. 4hternatively, preferences may be deduced by the previous
The ances.tor.relationshipsacff are translated to parent-childpenayvior of the user, for instance by using data mining
relationships in the tree (e.g., the noGeecce is the parent techniques on the history of the user database accesses. The
of the nodeAthens). Each node is characterized by a scorggye of implicitly inferring preferences is orthogonal ttee

value for the preference concerning the combination of thg) presented in this paper. There has been some previous

non-context attributes with the context value of the node. \york on the topic [8], that can be integrated in our approach.
If the query conditions refer to a level of the tree in which

there is no explicit score given by the user, we propose three
ways to find the appropriate score for a preference. In the firs ) ] i } )
approach, we traverse the tree upwards until we find the first" this section, we discuss the implementation of our
predecessor for which a score is specified. In this case, GRntext model in relational DBMS structures. First, we dise
assume that, a user that defines a score for a specific lefaf Storage of preferences and then the storage of attribute

implicitly defines the same score for all the lower leveldlierarchies.

In the second approach, we compute the average score of

all the successors of the immediately lower level. Finally. Storing Basic Preferences

following a hybrid approach, we can compute a weighted There is a straightforward way to store our context and
average score combining the scores from both the predecesigterence information in the database. We organize prefer
a”d the successors. In any ‘?f the above cases, if N0 SCOrg{8es as data cubes, following the OLAP paradigm [5]. In
defined at any level of the hierarchy, there is a default SCO¥&rticular, we store basic user preferenceshippercubes,

of 0.5 for valueall. , , or simply, cubes. The number of data cubes is equal with
Take for example, Fig. 4 that depicts a hierarchy farsar o hymber of context parameters, i.e., we have one cube

(Mary) and arestaurant (BeauBrummel). So, forinstance o each parameter, as shown in Fig. 5. In each cube, there
the restauranBeau Brummehas scorel.8 when Mary IS ig 5 dimension for restaurants, a dimension for users and a
near Acropolis, 0.7 when she is infifisia, and0.9 when  gimension for the context parameter. In each cell of the cube
she is infoannina. The root of the hierarchy has the defaullye siore the degree of interest for a specific preferences Thi
score(0.5. These degrees of interest scores, except the I?ﬁy, we maintain the score for a user, a restaurant and a

one, have been explicitly defined by the user in her profilggneyt narameter. Formally, @be is defined as a finite set

If the query conditions refer téthens for which there is no ¢ attributesC' = (ci, Ay, ..., A, M), wherec; is a context
score, the first approach gives score 0.5, because this is 6B?ameterA1, ..., A, are non-context attributes antf is

first available predecessor's score. If we choose the secqpd interest score. The values of a cube are the values of the
approach, this leads to scofe.8 + 0.7)/2 = 0.75, while -5 resnonding preference rules. A relational table imgiets

the third one produces a weighted combination of the abo¥g.h, a cube in a straightforward fashion. The primary key

IIl. THE STORAGE MODEL

scores. of the table isc;, A1, ..., A,. If there exist dimension tables
_ _ representing hierarchies (see next), we employ foreigrs key
D. Discussion for the attributes corresponding to these dimensions.

To facilitate the procedure of expressing interests, ttee sy Our schema which is based on the classical star schema is
tem may provide sets of pre-specified profiles with specifiepicted in Fig. 6. As we can see, there are two fact tables,
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G_ID Region City Country| Level
———— 1 Acropolis Athens | Greece 1
Restaurants 2 Kefalari Athens | Greece 1

3

rid — rid Polichni salonica | Greece 1

A ..
uid name
_ - N 101 NULL Athens Greece 2
G_ID Region City Country

Users weather phone 102 NULL Salonica Greece 2

 E— Acropolis Athens | Greece

uid region " L

score T Kefalari Athens | Greece 120 NULL NULL Greece 3
Perama loannina| Greece 121 NULL NULL Cyprus 3

Fact_Weather

name cuisine

LW IN Rl

phone
address Location
lid

e-mail Fact_Location

Fig. 7. A typical (left) and an extended dimension tableh(tig

countn
vid Y
city

uid

region

e set ofn non-context parameters, common to all context cubes:
o preference(cy, ... cr, Agt1,-- ., An) = interest_score
Fig. 6. The two fact tables of our schema (one for each comasameter) The non-conte_x.t parameters pin the Valu.es .O.f the aggregate
and the dimension tables f@fsers and Restaurants. scores to specific numbers and then, the individual scores fo

each context parameter are collected from each contex.tabl

Recall that the formula for computing an aggregate prefaren
Fact_Location and Fact Weather. The dimension tables js: interest_score = wy x interest_score; + ... + wy X
are:Users and Restaurants. These are dimension tables forpterest_scorey,.

both fact tables. Therefore, the only extra information that needs to be dtore
concerns the weights employed for the computation of the
B. Storing Context Hierarchies formula. To this end, we employ a special purpose table

fﬁg{]Scores(wcl, ey Weyy Akt1, - -, Ap). The value for each

An advantage of using cubes to store user preferences is i th iah h -
they provide the capability of usingierarchies to introduce context parametet, is the weight for the respe.cuve. Interest
score and the value for each non-context attribdjeis the

different levels of abstractions of the captured contextida " . -
sPecmc value uniquely determining the aggregate preteren

[9]' In that way, we can haye a'hlerarghy on a given gonteﬁor instance, in our running example, the talllgy Scores has
dimension. Context dimension hierarchies give the opmitstu he attributeSLocation_weight, Weather weight andUser
to the application to use a combination of data between the o L i

: ) and Restaurant. A record in this table can b@.6, 0.4, Mary,
fact and the dimension tables on one of the context paramet(a?au Brummel)Assume that from\ary's profile, we know
The typical way to store data in databases is shown in Flg'that Beau Brummehas interest score at the current location

) 1 e mosing o s n it o e e s en e e o
y. 9 y e 0.6 0.84+0.4%0.9=0.84.

implement references to the dimension table. The Conter|13t's
of the table are the values of thmcff functions of the D. Storing Aggregate Preferences
hierarchy. The denormalized tables of this kind, partitiga o .

in a database schema (often callestar schempsuffer from  Adgregated preferences are not explicitly stored in our
the fact that there exists exactly one row for each value ef tRYStém. The main reason is space and time efficiency, siie th
lowest level of the hierarchy, but no rows explicitly repees would require malntglmr_\g a context cube for eqch contextéest
ing values of higher levels of the hierarchy. Therefore, & wand for each comblqatlon of non-context attributes. Assume
want to express preferences at a higher level of the hieyarcijiat the context environmertfx hasn context parameters
we need to extend this modeling (assume for example tH&t: 2, ---»¢a} @nd that the cardinality of the domainm(c;)

we wish to express the preferences lfary when she is of each parameter; is (for simplicity) m. This means that

in Cyprus, independently of the specific region, or city ofhere arem™ potential context states, leading to a very large
Cyprus she is found at). number of context cubes and prohibitively high costs foirthe

To this end, in our model, we use an extension of thf§aintenance.
approach, as shown in the right of Fig. 7. In this kind of Note that some of then™ context states may not be
dimension tables, we introduce a dedicated tuple for eactevat'Seful, since they may correspond to combinations of values
at any level of the hierarchy. We populate attributes of low@' context parameters that represent context states teat ar
levels with N U L Ls. To explain the particular level that a valud'0t valid or have a very small probability of being queried.
participates at, we also introduce a level indicator aitgb Furthermore, some context parameters or context states may
Dimension levels are assigned attribute numbers througH’®Mmore popular for some non-context parameters (e.g sjuser
topological sort of the lattice. than for others, thus making t.he's.torage 'of all sta.\t'es for
all non-context parameters unjustifiable. Finally, refrig
, . specific entries of such cubes is not very efficient, since it
C. Storing the Value Functions would require building and maintaining indexes on various
The computation of aggregate preferences refers to thembinations of the context parameters.
composition of simple basic preferences, in order to comput For these reasons, we choose to store only previously
the aggregate ones. The technique used for this involveg ustcomputed aggregate scores. We also propose using an auxilia
weights for each of the parameters. Each aggregate preferesiata structure that we call theontext treeto index them
involves (a) a set of context parameters -i.e., cubes and (b) @escribed in Section V).
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IV. QUERYING CONTEXT C. Computing Aggregate Scores

The technique used for processing queries involving aggre-

te scores (e.gQuery 2above) is the following.

1) First, we select specific values féfsers and for the
context parameter. For instance, for the first cube a se-
lection could be on a value @bcation, e.g.,Acropolis
and for a value oluser, e.g., Mary.

2) Second, having pinned all dimension attributes to a

Firstly, there are queries executed without the need for  specific value, we have all the preference interest scores
the computation of an aggregate score. In this category of available. In fact, the individual scores for each con-

In this section, we classify the query operations that can
posed to our context-aware DBMS, by exploiting the combin
information on preferences and context.

A. Queries with Basic Preferences

queries, users explicitly define that they are not inteckste text parameter are collected from each context table
specific context parameters. For example, the followingyjue  (although this practically involves a relational join ot al
computes the users’ preferences directly. non-context parameters, it is quite more easy to simply
collect the values from the respective cubes from a set
Query 1 Look for Mary’s most preferable restaurants near of point queries over them). So, we can compute the
Acropolis, independently of the status of weather. aggregate score of a preference by using a value function
In SQL, the query is: (as described in the previous sections).

3) In the context of an OLAP session, the aggregate scores
just computed for a user can be stored in a new transient
cube. As with cubes concerning basic preferences, a
cube concerning aggregate preferences has one attribute
for each context and non-context parameter and an extra

) , - attribute for the interest score. Then, the user can reuse

L.location ='Acropolis the result of a query, by just using the last cube, without
ORDER BY FL.score DESC; executing all the above steps. In Section V, we describe

Another similar query would be “Look for the users near a space-efficient structure for storing such results.

Acropolis that prefer restaurant Beau Brummel indeperigent

of weather” that may be used for instance to advertise Traditional OLAP operators

specific restaurant to the visitors of “Acropolis”.

e SELECTR.name, F'L.score
FROM Users U, Restaurants Rfact_Location FL,
Location L
WHERE U.uid = FL.uid AND R.rid = FL.rid
AND L.lid = FL.lid AND U.name ='Mary’ AND

OLAP provides a principled way of querying information.
The traditional techniques for relational querying areared

with special purpose query operators, such as roll-up and
B. Queries with Aggregate Preferences drill-do[\)/vn [10]p [SF;_ query op P

Another type of queries involves the computation of
aggregate scores from simple ones. For example, théce-n-Dice The dice operator on a data set corresponds
fo”owing query needs to Compute an aggregate score: to a SeleCtiOI’] (|n the relational Sense) of Va|ueS on eaCh
dimension. Aslice is a selection on one of the N dimensions
Query 2 Look for Mary's most preferable restaurants (in©f the cube. A dice operator can be implemented as
the current context). a sequence of slices. Simple preference queries can be
fcomputed using slice operators. For instanQeiery 1 can

The execution ofQuery 2 leads to the execution o X . ; . .
be implemented using slice operationsidger and Location.

the following subqueries (we suppose th@af (current) =

Ac li : . . .
{Acropolis, sunny}) Roll-up. Theroll-up operation provides an aggregation on one

o SELECTR.name, F'L.score _ dimension. Assume that the user has exec@edry 1over
FROM Users U, Restaurants Rf'act-Location FL, the database and receives an unsatisfactory small number of
Location L answers. Then, she can decide that is worth broadening the

WHERE U.name ='Mary’ AND Uwid = FL.uid scope of the search and investigate the broader Athens area
AND R.rid = FL.rid AND L.lid = FL.lid AND for interesting restaurants. In this caseyodi-up operation

current_location ='Acropolis’; on location can generate a cube that useses instead of
and regions. The following query express this roll-up operation
o SELECTR.name, FW.score in SQL:

FROM Users U, Restaurants Ract_Weather FW
WHEREU.name ='Mary" AND U.uid = FW.uwid AND  Query 3
R.rid = FW.rid AND current_weather ='sunny’; « SELECTR.name. FL.score

Using the results of subqueries, we calculate the aggregate FROM Users U, Restaurants Rfact_Location FL,
scores for restaurants using the value function, as destrib  Location L

above. In this case, we obtain the most preferable Mary's WHERE U.uid = FL.uid AND R.rid = FL.rid
restaurants. AND L.lid = FL.lid AND U.name ='Mary’ AND
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L.city =" Athens’ [afespesfe] an &
ORDER BY FL.score DESC,;

aled] o [ea]  [edededa] o

Drill-down. Similarly, drill-down is the reverse operation,
i.e., when we have the result of a query which includes
restaurants that are located iMthens, we can take a result
that includesrestaurants located atAcropolis, using the
drill-down operator.

1 KN
CHJ ‘ ‘ HL‘ ar*y G

top_k list {(id, score)}

y
S

V. CACHING CONTEXT STATES

In this section, we discuss issues regarding improving th
performance of our system. In particular, we discuss how we
can store (cache) results about previous queries exectted Ror example, assume two context parametirsgtion and
specific context, so that these results can be re-used, Wt ycq1her and thatweather is assigned to leveln of the
describe a hierarchical data structure, called contegt &t tree andiocation to the level just below it, leveln + 1.

is used to index these results. Then, we show how searchrifen, take for instance a query, where the user specifies
this daFa structure can be improvgd ysing an additional-hashy,¢p0r — cloudy, but gives no value for location. Then,
based index to test for membership in the context tree.  there will be a cellcloudy, pointer] at levelm pointing to a
node at leveln+1 containing a cellany, pointer]. Initially,
A. The Context Tree the context tree is empty, that is the root node containsglesin
Assume that the context environmefity hasn context Cell of the form[any, null]. '
parameters(c;, ¢y, ..., ¢, }. An alternative way to store ag- 1he way that the context parameters are assigned to the
gregate preferences usescantext tree as shown in Fig. 8. levels of the context tree affgcts its size. As a simple stigri .
The context tree is used to store aggregate preferences fipAttext parameters are assigned to levels based on the cardi
were computed as results of previous queries, so that th8adity of their domains: the smaller the number of distinct

results can be re-used by subsequent ones. There is onatcoY@Ues a context parameter takes, the higher it appear=in th

tree per user or per system-defined profile (i.e., per group @ntext tree. o
users with similar interests, see Section II-D). The maximu N summary, a context tree farcontext parameters satisfies
height of the context tree is equal to the number of contetkte following properties:
parameters plus one. Each context parameter is mapped onte It is a directed acyclic graph with a single root node.
one of the levels of the tree and there is one additional levels There are at most+1 levels, each one of the first of
for the leaves. For simplicity, assume that context paramet ~ them corresponding to a context parameter and the last
¢; is mapped to level. A path from the root to a leaf of the one to the level of the leaf nodes.
context tree corresponds tccantext statgi.e., an assignment « Each non-leaf node at levélmaintains cells of the form
of values to context parameters. [key, pointer]| wherekey € dom(cy) for some value of

At the leaf nodes, we store a list of ids, e.g., restaurant ids  ¢x that appeared in a query éey = any. No two cells
along with their aggregate scores for the associated contex Within the same node contain the same key value. The

ig. 8. A context tree.

state, that is, for the path from the root leading to thenrtelas pointer points to a node at levél+ 1 having cells with
of storing aggregate values for all non-context parameters key values which appeared in the same query with the
be storage-efficient, we just store the tojpds (keys), that is key.

the ids of the items having thlehighest aggregate scores for « Each leaf node stores a set of sorted pointers to data.
the path leading to them. The motivation is that this allows In Fig. 9, we present a set of context preferences as
us to provide users with a fast answer with the data iteregpressed in four previously submitted queries. Assum&aga
that best match their query. Only if more tharresults are that we have two context parametets;ather and location
needed, additional computation will be initiated. The k¥t and for the sake of the example thatather is assigned to the
ids is sorted in decreasing order according to their scores.first level of the tree andbcation to the next one. Leaf nodes
The context tree is constructed incrementally each timestore the ids of the top-restaurants, that is the restaurants
context-aware query is computed. Each non-leaf node at lewgth the top% highest aggregate scores. For these preference
k contains cells of the forrfkey, pointer], wherekey is equal queries, the context tree of Fig. 10 is constructed as falow
to cy; € dom(ci) for a value of the context parameteg For the first preferencecloudy/Plaka), the first path of
that appeared in some previously computed context queilye tree (the leftmost one) is constructed. The next pratere
The pointer of each cell points to the node at the next lowétloudy/Acropolis) has the same value for the context param-
level (level k& + 1) containing all the distinct values of theeterweather with the first one, so we do not add any new cell
next context parameter (parameter,;) that appeared in to the root node. Next, we add a cell fdrropolis to the node
the same context query witty,;. In addition, key may take that the root points to. The third preferenceviny/Plaka)
the special valueiny, which corresponds to the lack of thehas valuesunny for weather and this leads to the creation
specification of the associated context parameter in theyquesf a new cell in the root node. As before, the last preference
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Element a Bit vector v

query 1/ cloudy / Plaka
query 2 / cloudy / Acropolis
query 3/ sunny / Plaka
query 4 / cloudy / *

H@=p—| 1
1
H@=R— "

H,é(a) = PS\.' 1

Fig. 9. A set of aggregate preferences. H@=F— 1

cloudy sunny Fig. 11. A Bloom filter with f=4 hash functions.

/

keys) to support membership queries¢lement: in setA?).

‘Plaka ‘ Acropolis| / . . ; sl
The idea is to allocate a vectorof m bits (Fig. 11), initially
¢ all set to 0, and then choosg independent hash functions,
‘top_k top._ m:p_k ioP_ h1,hg, o hy, g_ach with range 1 to m. Fpr each element
the bits at position®; (a), ha(a),...,h¢(a) in v are set to 1.
Fig. 10. The context tree for the preference of Fig 9. A particular bit might be set to 1 multiple times, but only the

first change has an effect. Given a queryifeve check the bits
at positionsh; (b), ha(b), ..., hs(b). If any of them is 0, then

(/cloudy/*) has acloudy value and so, the remaining pathcertainlyb is not in the setd. Otherwise we conjecture that
for that preference has as a predecessoritwedy cell of the is in the set although there is a certain probability that vee a
root. Theany cell is added at the corresponding node of therong. This is called dalse positive(or a false drop) and it
second level for the operator of this preference. is the payoff for Bloom filters’ compactness. The parameters

When a query is issued, we first check whether there exigt@and f should be chosen such that the probability of a false
a context state that matches it in the context tree. If spositive (and hence a false hit) is acceptable. Althougbefal
we retrieve the tope results from the associated leaf nodepositives are possible, there are no false negatives.
Otherwise, we compute the answer and insert the new contexThe probability of a false positive for an element not
state in the tree. There is a number of interesting variatiorin the set, or the false positive rate, can be calculated in
For instance, instead of storing the results of all quenes, a straightforward fashion, given the assumption that hash
may just store the results of the most frequently requestkahctions are perfectly random. After all the elementsAof
ones. This can be easily implemented by associating a courgtee hashed into the Bloom filter, the probability that a sfreci
with each path and replacing (deleting) from the tree thé patit is still 0 is (1 — 1/m)f! ~ e=fV/™ wherem is the size
that is less frequently used. of the Bloom filter, f is the number of hash functions ahd

The context tree resembles the Dwarf data structure [lig]the number of elements that we index in the filter.
used to compute and store data cubes. Whereas Dwarf i$n their original form, Bloom filters provided support only
built by scanning the fact table and includes all existintpr simple keyword queries and not for path queries such as
combinations of values for all cube dimensions, the contetktose representing context states. To this end, in our quevi
tree is incrementally computed, each time a preferenceyqu&ork we have introduced multi-level Bloom filters, namely
is evaluated and includes only paths (context states)quelyi Breadth and Depth Bloom filters [13], [14] to test for
queried. Furthermore, Dwarf leaf nodes contain aggregatembership of path queries.
values, whereas the context tree leaf nodes contain ordere@) Multi-level Bloom Filters: Let a context treel’ for n
sets. context parameters and let the level of the root be level 1.
There are two ways to hash the tree, corresponding to its
breadth and depth first traversal.

The Breadth Bloom Filter (BBF) for a context tree

In order to improve the query performance of the conteft for n context parameters is a set of Bloom fil-
tree, we propose using Bloom filters [12]. A Bloom filteters { BBF,, BBF5,..., BBF,}, where each Bloom filter,
iS a main-memory data structure that supports very efficieBtBF;, corresponds to an internal (i.e., non leaf) levedf
membership queries. When a new query for a context stalte context tree, that is, there is one filter for each context
is submitted by the user, instead of searching the contegt tparameter;. In eachBBF;, we insert allkeys that appear in
for a matching context state, the Bloom-based data streicteells in nodes at level of the context tree. For example, the
is conducted first. Given a context state, the Bloom-bastl d®@ B F for the context tree of Fig. 10 is a set of two Bloom
structure provides a quick answer on whether this statésexifilters (Fig. 12).
in the tree. If the context state does not exist, then rétriev  Depth Bloom filters provide an alternative way to summa-
the entire context tree is avoided. rize context trees. We use different Bloom filters to hashgpat

1) Bloom Filters Preliminaries:A Bloom filter is a space- of different lengths. TheDepth Bloom Filter(DBF) for a
efficient probabilistic data structure that is used to tedsétlver contexttre€l’ for n context parameters is a set of Bloom filters
or not an element is a member of a set. This method is used {@BFy, DBFy, DBF5, ..., DBF,,_1}, m < n. Thereis one
representing a sef = a1, as, ..., a; of | elements (also called Bloom filter, denotedD BF;, for each path of the tree with

B. Bloom-Based Index for the Context Tree
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cloudy OR sunny
BBF[1]0 QQ L D100 OOTTORany

i
i
i

— Plaka OR Acropoli
OR any

o

Ber 0| 1 1 1 L ojojtfo

Query Context
Processing State

Context
Preferences

Fig. 12. The BBF for the context tree of Fig 10.

DBF, — Paths of length 0

(cloudy OR sunny Context-Aware Data
111 1 1 1 0 |1 lol1] 1| 1/ORPlakaOR Acropoli DBMS
OR any)
Fig. 14. Overall system architecture of a Context-Depehdeneference
DBF, — Paths of length 1
: ¢ (cloudy / Plaka OR Database.

clpudy / Acropolis OR
sunny / Plaka OR o
cloudy / any) To demonstrate the feasibility of our approach, we have

developed a prototype application based on our reference ex
ample. The application is calldéreference Restaurant Guide
and maintains information about restaurants and users. Its
schema is the one depicted in Fig. 6. We consider two context
lengths, that is, having{+ 1) nodes, where we insert all path,arameters as relevaritication andweather. The prototype
of lengthi. Note that a path with length < n corresponds g pjication is build on top of Oracle 8i, using Borland JBleil
to a context state in which there are values specified only for 1o prototype implements all modules of our approach
the firsti parameters. Note that we insert paths as a Whol&cept of the context tree.
we do not hash each element of the path separately; insteadyhen a user joins the system, she registers her attributes
we hash their concatenation. TR F" for the context tree in gng then, she selects which context parameters she consid-
Fig. 10 is a set of two Bloom filters (Fig. 13). ers as relevant. Then, users express their preferences abou
Let a a pathu, /as/ ... /a, corresponding to a context stat&estaurants by providing a numerical score between 0 and 1.
with p context parameters. In the case o3& F, to check The degree of interest that a user expresses for a restaurant
whether a path, /as/ ... /a, corresponding to a context statejepends on the values of the context parameters, she conside
exists, each level from 1 top of the filter is checked for the a5 relevant. If more than one context parameter is defined as
correspondingy;. The test is positive, if we have a hit forrelevant, i.e, botlhocation andweather, weights are specified
all elements in the path. In the case BB F', we first check o express how each parameter affects the computation of the
whether all elements in the path expression apped? i¥0. aggregate score.
Then, for a query of lengtlp, every sub-path of the query Besides user registration, the other part of the applinatio
with length 2 top is checked at the corresponding level. If we|,des query processing. Query processing runs in two modes
have a match for all sub-paths, then we conclude that the paihtext-aware and non context-aware. In the non context-
may exist in the context tree, else we have a miss. aware mode, preferences are ignored. In the context-aware
When comparing the two filters, DBF works better (hagode, the user specifies the values of the context parameters
a smaller false positive ratio) than BBF [13]. The reason khe is interested in, and the results are sorted according to
that when using3BF's, a new kind of false positive appearsthe user's preference in the specified context state. When no
Consider the tree of Fig. 10 and the quesynny/Acropolis values are specified for the context parameters, the default
We have a match fosunny at BBF, and for Acropolis at  context state that corresponds to the current context iate
BBF>; thus we falsely deduce that the path exists. Howevefsed. In addition, a user may use an OLAP operator to execute
DBFs is less space efficient, since the number of paths is veybll-up or adrill-down to the results of a query. For example,
large. This the reason, that we may not keep Bloom filters fefippose a result that contains restaurants located in gi@nre
paths of all lengths but instead we may keep paths up tQf Acropolis. A single roll — up provides restaurants in the
maximum lengthm. city of Athens.
Suppose that use¥lary is at Acropolis and the weather
is sunny, i.e., the current context state is CS(current) =
{Acropolis, sunny}. Mary would like to know the best
restaurants, according to her preferences, that are thedte
Figure 14 depicts the overall system architecture of Acropolis, independently of the weather. This is an example
preference database system. The Context-Aware Prefereote@ query involving only basic preferences. The result of
Database Management System (DBMS) stores both databdéde query is depicted in Fig. 15 (left). In Fig. 15 (center)
relations and preferences that relate the context-depéndée results of a query involving aggregate preferenceseén th
attributes of the relations with the context parameters. TBorrent context are depicted.Mary chooses to use an OLAP
process context-dependent queries, preferences are itdken operator to execute @il — up to the results of the query, the
account to present the results based on their preference s@pplication returns the restaurants that are located ircitlye
at the specified context state. We assume that the values ofdh Athens. The results of this operation are shown Fig. 15
current context state are provided as input to our system. (right).

110 00Q L 0 1]0|0|1

o

Fig. 13. The DBF for the context tree of Fig 10.

VI. PROTOTYPEIMPLEMENTATION: PREFERENCE
RESTAURANT GUIDE
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[ show restaurants [=2 show: restaurants [=: show restaurants EJE]H_(—J
R_MAME SCORE F_NAME AGG_SCORE F_MAWE AGG_SCORE_OLAR
BEAL BRUMMEL 0.7 PIAZZAMELA 078 WARDIS 0.60
PIAZZAMELA 0.7 BEAU BRUMMEL 0.74 MILOS ESTIATORIO 0.78
PIAZZAMELA 078
BIG DEALS 0.76
HEAL BRUMMEL 0.74
PINTERNI 0.72
HYTRA 0.68
THE RESTAURANT 0.60
EDWDH 054

Fig. 15. The results of a query involving a basic preferengéoaation (left), on bothlocation andweather (center), and aoll — up to include results
in Athens (right).

VII. RELATED WORK traditional relational model to capture context as well as

. . context-dependent preferences.
Although, there is much research on location-aware query

processing in the area of spatio-temporal databasesratiteg
other forms of context in query processing is a rather néd« Preferences in Databases

research topic. In this paper, we use context to confine database querying
by selecting as results the best matching tuples based on the
user preferences. This is achieved by defining preferences
based on context, so that under a specific context a tuple is
In the context-aware querying processing framework g@feferred over another. The research literature on pretese
[15], there is no notion of preferences, instead context as extensive. In particular, in the context of database igaer
tributes are treated as normal attributes of relations.rQuehere are two different approaches for expressing prefesen
processing is divided into three-phases: query pre-psings a quantitative and a qualitative one.
query execution and query post-processing. Query pre-With the quantitative approachpreferences are expressed
processing is performed in two steps: a query refinement andirectly by using scoring functions that associate a nirag
a context binding step. The goal of the query refinemestore with every tuple of the query answer. In our work,
step is to further constraint the query condition by meange have adapted the general quantitative framework of [7],
of different contextual information. Context binding iagt since it is more easy for users to employ. In this framework,
tiates the contextual attributes involved in the refinedrguea preference is expressed by the user for an entity. Entities
with exact values. After query execution, at the query posire described by record types which are sets of named fields,
processing phase, the results are sorted. External senviag where each field can take values from a certain type. The *
then be invoked for the delivering of results to the usersymbolis used to match any elements of that type. Prefesence
Five context-aware strategies are defined. Strategy lsrefare expressed as functions that map entities of a givendecor
to queries that consider the current value of context ag thgipe to a numerical score. A set of preferences can be com-
reference point, for example such queries include lookif@ned using a generic combine operator which is instamtiate
for the closest restaurant, the next flight, the shortesterouwith a value function. For example, the preference of a user
To implement them, the contextual attributes are bound for restaurants can be expressed as preference(cuisiite), w
their current values. Strategy 2 includes queries thatssccealues preference(Chinese) = 0.1, preference(Greek) ari8
facts about the past (i.e., history data) which are recallpdeference(other) = 0.1.
based on the relevant context. In this case, archived data arln the quantitative framework of [17], user preferences are
linked based on their common contextual attributes. Siyatestored as degrees of interestitomic query elemen{such as
3 considers context as an additional constraint to the quendividual selection or join conditions) instead of intst®in
A given query is refined to include relevant constraint rulespecific attribute values. The degree of interest expretbees
Strategy 4 reduces the result set by ordering the produdatkrest of a person to include the associated conditiom int
results based on the user profile. This is achieved by usithge qualification of a given query. Specific rules are spatifie
an associated sorting rule. Strategy 5 considers the dglivéor deriving preference of complex queries by building on
and presentation of results to the user by observing relaitdred atomic ones. The results of a query are ranked based
delivery rules. This framework is orthogonal to our apptoamn the estimated degree of interest in the combination of
and a potential extension of our work includes enriching opreferences they satisfy. Our approach can be generalized
model with constraints involving context attributes. for this framework as well, either by including contextual
The Context Relational Model (CR) introduced in [16] igparameters in the atomic query elements or by making the
an extended relational model that allows attributes totexidegree of interest for each atomic query element depend on
under some contexts or to have different values under difter context.
contexts. CR treats context as a first-class citizen at theThere is also some similarity with the work done in the
level of data models, whereas in our approach, we use ttentext of the PREFER system [18] for processiagked

A. Context and Queries
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gueriesthat is, queries that return the top objects of a database VIIl. SUMMARY

according to a preference function. The focus of this wqu The use of context is important in many applications such

terialized ranked Vi W in pervasive computing where it is important that users
materialized ranked Views. receive only relevant information. In this paper, we coasid

e B e 1 i g Gontext W ey procesing, s Tt when s
o . ° tuples . query poses a query in a database, the result depends on context. In
specified directly, typically using binary preference tielas.

For example. one mav exoress thakt i is preferred particular, each user indicates preferences on specifibLat
P, Y exp auranty 1S p alues of a relation. Such preferences depend on context.

from .Teﬁ_aumnh i thelr opening hours are the same an%\/e store preferences in data cubes and show how OLAP
its price is lower. This framework can also be readily e

tended to include context. For instance, one may express ﬁ;eé:hniques can be used to compute context-aware quers, th
. : T Ay expr IS queries whose results depend on context. In order to wepro
restaurant, is preferred fromrestaurants if their opening

hours are the same. its price is lower and it is closer E&e performance of our system, we introduce a hierarchical
) 5P . L ata structure, called context tree. We use this tree toxinde
the current user’s location. A logical qualitative frametvo

is presented in [19] for formulating preferencespasference results from previous queries. Finally, we demonstrate the
formulas The preference formula is a first-order formulfeaSIbIIIty of our approach through a prototype applicatio

_ . ?e arding a context-aware preference restaurant guide.
defining a preference relation between two tuples. 9 g P 9

Both the quantitative and the qualitative approached can be
integrated with query processing. Relevant in this respect ACKNOWLEDGMENT
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“top-k” tuples that best match the given attribute valudse T
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Finally, the work in [22] focuses on inductively construngi the Development of Context-Enabled Applicatio@-l Conference on

complex preferences by means of various preference c@Astru  Human Factors in Computing Systerd84—441, 1999.
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