
J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD) 1

A Context-Aware Preference Database System
Kostas Stefanidis

Department of Computer Science, University of Ioannina, Greece, kstef@cs.uoi.gr
Evaggelia Pitoura

Department of Computer Science, University of Ioannina, Greece, pitoura@cs.uoi.gr
Panos Vassiliadis

Department of Computer Science, University of Ioannina, Greece, pvassil@cs.uoi.gr

Received: January XX 2005; revised: November XX 2005

Abstract— A context-aware system is a system that uses context
to provide relevant information or services to its users. While
there has been a variety of context middleware infrastructures
and context-aware applications, little work has been done on
integrating context into database management systems. In this
paper, we consider a preference database system that supports
context-aware queries, that is, queries whose results depend on
the context at the time of their submission. We propose using
data cubes to store the dependencies between context-dependent
preferences and database relations and OLAP techniques forpro-
cessing context-aware queries. This allows for the manipulation
of the captured context data at various levels of abstraction, for
instance, in the case of a context parameter representing location,
preferences can be expressed for example at the level of a city,
the level of a country or both. To improve query performance,we
use an auxiliary data structure, called context tree. The context
tree stores results of past context-aware queries indexed by the
context of their execution. Finally, we outline the implementation
of a prototype context-aware restaurant recommender.

Index Terms— context, preference, OLAP, context-awareness,
querying processing

I. I NTRODUCTION

Contextis any information that can be used to characterize
the situation of an entity. An entity is a person, place or
object that is considered relevant to the interaction between a
user and an application, including the user and the application
themselves [1]. There are various types of context including
time, location, and available computing and communication
resources. A system iscontext-aware, if it uses context to
provide relevant information and/or services to the user, where
relevancy depends on the user’s task. Although there has been
a lot of work on developing a variety of context infrastructures
and context-aware middleware and applications (for example,
the Context Toolkit [2] and the Dartmouth Solar System
[3]), there has been only little work on integrating context
information into databases. Most of this work has focused on
a particular type of context, that of location, mainly in the
context of moving object databases.

In this paper, we investigate the use of context in relational
database management systems. We considercontext-aware
queries which are queries whose results depend on the context
at the time of their submission. In particular, users express
their preferences on specific attributes of a relation. Such

Restaurant(rid, name, phone, region, cuisine)
User(uid, name, phone, address, e-mail)

Fig. 1. The database schema of our running example.

preferences depend on context, that is, they may have different
values depending on context.

We model context as a finite set of special-purpose at-
tributes, calledcontext parameters. Examples of context pa-
rameters are location, weather and the type of computing
device in use. Acontext stateis an assignment of values to
context parameters. Users express their preferences on specific
database instances based on a single context parameter. Such
basic preferences, i.e., preferences associating database rela-
tions with a single context attribute, are combined to compute
aggregate preferencesthat include more than one context
parameter.

As an example, consider a database schema with informa-
tion about restaurants and users (Fig. 1). In this application,
we consider two context parameters as relevant:location and
weather. Users have preferences about restaurants that they
express by providing a numerical score between 0 and 1 that
quantifies their degree of interest for a restaurant. The degree
of interest of a user for a restaurant depends on the values
of the two relevant context parameters. For instance, a user
may want to eat different kinds of food depending on the
current weather conditions. For example, userMary may give
to restaurantZoloushkathat serves “Russian” food a higher
score when the weather israiny than when the weather is
sunny. Furthermore, the current user’s location affects the
result of a query, for example, a user may prefer restaurants
that are nearby her current location. The user provides such
preference scores that depend on a single context parameter,
in this example, preference scores that depend on location
and preference scores that depend on weather. These basic
preferences are then combined to produce an aggregate score
that depends on more than one context parameter. In addition,
a user can specify preferences without giving values for all
context parameters. In particular, the special value ‘*’ for a
context parameter denotes that the user preference does not
depend on it.

We store simple preferences in data cubes, following the
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OLAP paradigm. An advantage of using cubes and OLAP
techniques is that they provide the capability of using hi-
erarchies to introduce different levels of abstraction forthe
captured context data. For instance, this allow us to aggregate
data along say the location context parameter, by for example,
grouping preferences for all cities of a specific country. We
show how context-aware preference queries are processed and
the role of OLAP techniques in their manipulation.

Aggregate preferences are not explicitly stored. To im-
prove performance, we propose storing aggregate preferences
computed as results of previous queries using an auxiliary
data structure calledcontext tree. A path in the context tree
corresponds to an assignment of values to context parameters,
that is, to a context state, for which the aggregate score has
been previously computed. Results stored in a context tree
are re-used to speed-up query processing. We also show how
search in the context tree can be improved using a variation
of a Bloom-based filter for testing membership in the tree.

As a proof-of-concept, we have implemented a simple
application that allows users to express their preferences
regarding our running example of a restaurant database. These
preferences depend on two context parameters, location and
weather. Users can pose preference queries whose results
depend on context.

Contributions. Summarizing, we make the following contri-
butions:

• We provide a logical model for the representation of
user preferences and context-related information. The
impact of context information on the evaluation of user
preferences is explicitly traced.

• We demonstrate how our model can be integrated in a
relational DBMS using data cubes for storing context-
dependent preferences.

• We investigate the usage of On-Line Analytical Process-
ing (OLAP) techniques for the manipulation of context-
aware query operations.

• We propose a special data structure termedcontext tree
for storing previously computed aggregate scores that
indexes these results based on the context parameters.

Paper Organization. The rest of this paper is structured as
follows. Section II introduces our preference model, while
Section III focuses on how preferences are stored. Section
IV discusses query processing in our framework. Section V
introduces the context tree for storing aggregate preferences.
Our prototype implementation is outlined in Section VI, while
related work is presented in Section VII. Section VIII con-
cludes the paper with a summary of our contributions.

II. A L OGICAL MODEL FORCONTEXT AND USER

PREFERENCES

Our model is based on relating context and database rela-
tions through preferences. First, we present the fundamental
concepts related to context modeling. Then, we proceed to
define user preferences.

A. Modeling Context

The modeling of context relies on several fundamental
concepts. As usual, domains represent the available types and
collections of values of the system. Context parameters refer
to the available set of attributes that the database designer will
chose to represent context. At any point in time, a context state
refers to an instantiation of the context parameters at thispoint.
Context parameters are extended with OLAP-like hierarchies,
in order to enable a richer set of query operations to be applied
over them.

Domains. A domain is an infinitely countable set of values.
All domains are enriched with a special value for representing
NULL, the semantics of which refers to our lack of knowledge.

Attributes and Relations. As usual, we assume a countable
collection of attribute names. Each attributeAi is characterized
by a name and a domaindom(Ai). A relation schema is a finite
set of attributes and a relation instance is a finite subset ofthe
Cartesian product of the domains of the relation schema [4].

Context Parameters.Context is modeled through a finite set
of special-purpose attributes, calledcontext parameters(ci).
For a given applicationX , we define its context environment
CX as a set ofn context parameters{c1, c2, . . . , cn}.

Context State.In general, acontext stateis an assignment of
values to context parameters. The context state at time instant
t is a tuple with the values of the context parameters at time
instantt, CSX(t) = {c1(t), c2(t), . . . cn(t)}, whereci(t) is the
value of the context parameterci at timepointt. For instance,
assuminglocation and weather as context parameters, a
context state can be:CS(current) = {Acropolis, sunny}.

Hierarchies for Attributes. It is possible for an attribute to
participate in an associatedhierarchy of levelsof aggregated
data i.e., it can be viewed from different levels of detail.
Formally, an attribute hierarchy is a lattice of attributes
– called levels for the purpose of the hierarchy –L =
(L1, . . . , Lm, ALL). We require that the upper bound of the
lattice is always the levelALL, so that we can group all the
values into the single valueall. The lower bound of the lattice
is called the detailed level of the parameter. For instance,let us
consider the hierarchylocation of Fig. 2. Levels oflocation
areRegion, City, Country, andALL. Region is the most
detailed level. LevelALL is the most coarse level for all
the levels of a hierarchy. Aggregating to the levelALL of
a hierarchy ignores the respective parameter in the grouping
(i.e., practically groups the data with respect to all the other
parameters, except for this particular one).

The relationship between the values of the context levels
is achieved through the use of the set ofancL2

L1
functions. A

functionancL2

L1
assigns a value of the domain ofL2 to a value

of the domain ofL1. For instance,ancCity
Region(Acropolis) =

Athens. A formal definition of these hierarchies can be found
in [5].

Dynamic and Static Context Parameters.We distinguish
between two kinds of context parameters: (a) static and (b)
dynamic context parameters.Static context parameterstake
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Ioannina

ALL    all

Kifisia

Fig. 2. Hierarchies onlocation.

as value a simple value out of their domain.Dynamic context
parameterson the other hand, are instantiated by the appli-
cation of a function, the result of which is an instance of the
domain of the context parameter. In our example, we assume
that weather is a static parameter, i.e., each new value for
weather is derived by an explicit update. On the other hand,
location is a dynamic parameter. In particular,location is
defined as a function of time and in that way, we can compute
the value of this parameter at the point we want to use it,
without the need for continuous explicit updates. Defining
appropriate functions and procedures for determining the value
of a dynamic context parameter in the current or some future
time instant is beyond the scope of this paper. There has been
related work in the context of managing the location of moving
objects [6].

B. Contextual Preferences

In this section, we define how a context state affects the
results of a query. In our model, each user expresses his/her
preference by providing a numerical score between0 and 1
[7]. This score expresses a degree of interest, which is a real
number. Value1 indicates extreme interest. In reverse, value
0 indicates no interest for a preference. The special value
‘�’ for a preference means that there is a user’s veto for
the preference. Furthermore, the value ‘∗’ represents that any
value is acceptable.

More specifically, we divide preferences into basic (con-
cerning a single context parameter) and aggregate ones (con-
cerning a combination of context parameters):

1) Basic Preferences:Each basic preference is described by
(a) a context parameterci, (b) a set of non-context parameters
Ai, and (c) a degree of interest, i.e., a real number between 0
and 1. So, for the context parameterci, we have:

preferencebasici
(ci, Ak+1, . . . , An) = interest scorei.

In our reference example (Fig 1), there are two context pa-
rameters,location andweather. Also, the set of non-context
parameters are attributes aboutrestaurants and users. As-
sume a userMary and a restaurant calledBeauBrummel
located nearAcropolis in Athens that servesFrench cuisine.
Mary likes to eat French cuisine when the weather is
cloudy, so she assigns high scores toBeauBrummel when
she is inAcropolis and the weather iscloudy expressed by
the following basic preferences:
preferencebasic1

(Acropolis, BeauBrummel, Mary) = 0.8,
preferencebasic2

(cloudy, BeauBrummel, Mary) = 0.9.
2) Aggregate preferences:Each aggregate preference is de-

rived from a combination of basic preferences. The aggregate

TABLE I

NOTATIONS

Name Notation

Attribute Ai

Domain ofAi dom(Ai)
Context parameter ci

Context environment for an applicationX CX

Context state at time instantt CS(t)
Weight for a context parameterci wi

  
. . . . . .

 

L1

L2 . . .

ALL

Fig. 3. The hierarchy tree for parameterL.

preference is expressed by a set of context parametersci and a
set of non-context parametersAi and has a degree of interest:

preference(c1, . . . ck, Ak+1, . . . , An) = interest score.
The interest score of the aggregate preference is avalue

function of the individuals scores (the degrees of the basic
preferences). The value function prescribes how to combine
basic preferences to produce the aggregate score, according to
the user’s profile. In this paper, we assume that value functions
are based on a weighted average of the simple preferences.
Users define in their profile how the basic scores contribute
to the aggregate ones, by giving a weight to each context
parameter. So, if the weight for a context parameter iswi and
interest scorei is the score defined by the associated basic
preference, then the aggregate interest score will be:

interest score =
w1 × interest score1 + . . . + wk × interest scorek.

For instance, in the previous example if the weight of
location is 0.6 and the weight ofweather is 0.4, the prefer-
ence has score:0.6× 0.8 + 0.4× 0.9 = 0.84 (from the above
value function). That is, we have:
preference(Acropolis, cloudy, BeauBrummel, Mary) =

0.84.
Table I summarizes all notations used in our model.

C. Inheriting Preferences

When the context parameter of a basic preference partici-
pates in different levels of a hierarchy, users can express their
preference in any level, as well in more than one level. For
example,Mary can denote that the restaurantBeau Brummel
has interest score 0.8 when she is atKifisia and 0.6 when
she is inAthens. Note that in the hierarchy of location the
city of Athens is one level up the region ofKifisia.

The tree of Fig. 3 represents the different levels of hierarchy
for a context parameter. For the parameterL, let L1, L2,. . . ,
Lm, ALL be the different levels of the hierarchy, which can
take various different values. There is a hierarchy tree, for
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all

Greece

Athens

Acropolis

0.8

  Salonica

Cyprus

Perama

Ioannina

0.7

0.9

0.5

Kifisia ...

...

...

Fig. 4. The hierarchy tree of location.

each combination of non-context parameters. In our reference
example (Fig. 4), there is a hierarchy tree for each user profile
and for a specific restaurant that represents the interest scores
of the user for the restaurants, accordingly to the context
parameter’s hierarchy. The root of the tree concerns levelALL
with the single valueall. The values of a certain dimension
level L are found in the same level of the tree (e.g.,Athens
and Ioannina, being both members of the dimension level
City, are found at the same level of the tree in Fig. 4).
The ancestor relationshipsancL2

L1
are translated to parent-child

relationships in the tree (e.g., the nodeGreece is the parent
of the nodeAthens). Each node is characterized by a score
value for the preference concerning the combination of the
non-context attributes with the context value of the node.

If the query conditions refer to a level of the tree in which
there is no explicit score given by the user, we propose three
ways to find the appropriate score for a preference. In the first
approach, we traverse the tree upwards until we find the first
predecessor for which a score is specified. In this case, we
assume that, a user that defines a score for a specific level,
implicitly defines the same score for all the lower levels.
In the second approach, we compute the average score of
all the successors of the immediately lower level. Finally,
following a hybrid approach, we can compute a weighted
average score combining the scores from both the predecessor
and the successors. In any of the above cases, if no score is
defined at any level of the hierarchy, there is a default score
of 0.5 for valueall.

Take for example, Fig. 4 that depicts a hierarchy for auser
(Mary) and arestaurant (BeauBrummel). So, for instance
the restaurantBeau Brummelhas score0.8 when Mary is
nearAcropolis, 0.7 when she is inKifisia, and 0.9 when
she is inIoannina. The root of the hierarchy has the default
score0.5. These degrees of interest scores, except the last
one, have been explicitly defined by the user in her profile.
If the query conditions refer toAthens, for which there is no
score, the first approach gives score 0.5, because this is the
first available predecessor’s score. If we choose the second
approach, this leads to score(0.8 + 0.7)/2 = 0.75, while
the third one produces a weighted combination of the above
scores.

D. Discussion

To facilitate the procedure of expressing interests, the sys-
tem may provide sets of pre-specified profiles with specific

   Restaurants  Restaurants

UserUser

Location Weather

Fig. 5. Data cubes for each context parameter.

context-dependent preference values for the non-context pa-
rameters as well as default weights for computing the aggre-
gate scores. In this case, instead of explicitly specifyingbasic
and aggregate preferences for the non-context parameters,
users may just select the profile that best matches their interests
from the set of the available ones. By doing so, the user adopts
the preferences specified by the selected profile.

Finally, since the focus of this work is on efficiently
combining preferences and database operations, our working
assumption is that preferences are explicitly specified by users.
Alternatively, preferences may be deduced by the previous
behavior of the user, for instance by using data mining
techniques on the history of the user database accesses. The
issue of implicitly inferring preferences is orthogonal tothe
work presented in this paper. There has been some previous
work on the topic [8], that can be integrated in our approach.

III. T HE STORAGE MODEL

In this section, we discuss the implementation of our
context model in relational DBMS structures. First, we discuss
the storage of preferences and then the storage of attribute
hierarchies.

A. Storing Basic Preferences

There is a straightforward way to store our context and
preference information in the database. We organize prefer-
ences as data cubes, following the OLAP paradigm [5]. In
particular, we store basic user preferences inhypercubes,
or simply, cubes. The number of data cubes is equal with
the number of context parameters, i.e., we have one cube
for each parameter, as shown in Fig. 5. In each cube, there
is a dimension for restaurants, a dimension for users and a
dimension for the context parameter. In each cell of the cube,
we store the degree of interest for a specific preference. This
way, we maintain the score for a user, a restaurant and a
context parameter. Formally, acube is defined as a finite set
of attributesC = (ci, A1, . . . , An, M), whereci is a context
parameter,A1, . . . , An are non-context attributes andM is
the interest score. The values of a cube are the values of the
corresponding preference rules. A relational table implements
such a cube in a straightforward fashion. The primary key
of the table isci, A1, . . . , An. If there exist dimension tables
representing hierarchies (see next), we employ foreign keys
for the attributes corresponding to these dimensions.

Our schema which is based on the classical star schema is
depicted in Fig. 6. As we can see, there are two fact tables,
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       uid

        rid

score

rid

uid

score

uid

phone

address

e−mail

 name

   weather

 rid

 name

 phone

  region

 cuisine

region

 city

country

    lid

    lid

Restaurants

Location

 Users

 Fact_Location

Fact_Weather

Fig. 6. The two fact tables of our schema (one for each contextparameter)
and the dimension tables forUsers andRestaurants.

Fact Location and Fact Weather. The dimension tables
are:Users andRestaurants. These are dimension tables for
both fact tables.

B. Storing Context Hierarchies

An advantage of using cubes to store user preferences is that
they provide the capability of usinghierarchies to introduce
different levels of abstractions of the captured context data
[9]. In that way, we can have a hierarchy on a given context
dimension. Context dimension hierarchies give the opportunity
to the application to use a combination of data between the
fact and the dimension tables on one of the context parameters.
The typical way to store data in databases is shown in Fig. 7
(left). In this modeling, we assign an attribute for each level
in the hierarchy. We also assign an artificial key to efficiently
implement references to the dimension table. The contents
of the table are the values of theancL2

L1
functions of the

hierarchy. The denormalized tables of this kind, participating
in a database schema (often called astar schema) suffer from
the fact that there exists exactly one row for each value of the
lowest level of the hierarchy, but no rows explicitly represent-
ing values of higher levels of the hierarchy. Therefore, if we
want to express preferences at a higher level of the hierarchy,
we need to extend this modeling (assume for example that
we wish to express the preferences ofMary when she is
in Cyprus, independently of the specific region, or city of
Cyprus she is found at).

To this end, in our model, we use an extension of this
approach, as shown in the right of Fig. 7. In this kind of
dimension tables, we introduce a dedicated tuple for each value
at any level of the hierarchy. We populate attributes of lower
levels withNULLs. To explain the particular level that a value
participates at, we also introduce a level indicator attribute.
Dimension levels are assigned attribute numbers through a
topological sort of the lattice.

C. Storing the Value Functions

The computation of aggregate preferences refers to the
composition of simple basic preferences, in order to compute
the aggregate ones. The technique used for this involves using
weights for each of the parameters. Each aggregate preference
involves (a) a set ofk context parameters -i.e., cubes and (b) a

  1

2

3

G_ID Region   City Country

Greece

Greece

Greece

 Acropolis

  Kefalari

Athens

Athens

...
 Perama Ioannina

  1

2

3

G_ID Region   City Country

Greece

Greece

Greece

 Acropolis

  Kefalari

 Polichni

Athens

Athens

Salonica

...
101

102

120

NULL

NULL

NULL NULL

Salonica

Athens Greece

Greece

Greece

Level

1

1

1

2

2

3

...

3CyprusNULLNULL121

...

Fig. 7. A typical (left) and an extended dimension table (right).

set ofn non-context parameters, common to all context cubes:
preference(c1, . . . ck, Ak+1, . . . , An) = interest score

The non-context parameters pin the values of the aggregate
scores to specific numbers and then, the individual scores for
each context parameter are collected from each context table.
Recall that the formula for computing an aggregate preference
is: interest score = w1 × interest score1 + . . . + wk ×
interest scorek.

Therefore, the only extra information that needs to be stored
concerns the weights employed for the computation of the
formula. To this end, we employ a special purpose table
AggScores(wc1

, . . . , wck
, Ak+1, . . . , An). The value for each

context parameterwci
is the weight for the respective interest

score and the value for each non-context attributeAj is the
specific value uniquely determining the aggregate preference.
For instance, in our running example, the tableAggScores has
the attributesLocation weight, Weather weight andUser
andRestaurant. A record in this table can be(0.6, 0.4, Mary,
Beau Brummel). Assume that fromMary′s profile, we know
that Beau Brummelhas interest score at the current location
0.8 and at the current weather0.9, then, the aggregate score
is: 0.6 × 0.8 + 0.4 × 0.9 = 0.84.

D. Storing Aggregate Preferences

Aggregated preferences are not explicitly stored in our
system. The main reason is space and time efficiency, since this
would require maintaining a context cube for each context state
and for each combination of non-context attributes. Assume
that the context environmentCX has n context parameters
{c1, c2, . . . , cn} and that the cardinality of the domaindom(ci)
of each parameterci is (for simplicity) m. This means that
there aremn potential context states, leading to a very large
number of context cubes and prohibitively high costs for their
maintenance.

Note that some of themn context states may not be
useful, since they may correspond to combinations of values
of context parameters that represent context states that are
not valid or have a very small probability of being queried.
Furthermore, some context parameters or context states may
be more popular for some non-context parameters (e.g., users)
than for others, thus making the storage of all states for
all non-context parameters unjustifiable. Finally, retrieving
specific entries of such cubes is not very efficient, since it
would require building and maintaining indexes on various
combinations of the context parameters.

For these reasons, we choose to store only previously
computed aggregate scores. We also propose using an auxiliary
data structure that we call thecontext treeto index them
(described in Section V).
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IV. QUERYING CONTEXT

In this section, we classify the query operations that can be
posed to our context-aware DBMS, by exploiting the combined
information on preferences and context.

A. Queries with Basic Preferences

Firstly, there are queries executed without the need for
the computation of an aggregate score. In this category of
queries, users explicitly define that they are not interested in
specific context parameters. For example, the following query
computes the users’ preferences directly.

Query 1 Look forMary′s most preferable restaurants near
Acropolis, independently of the status of weather.
In SQL, the query is:

• SELECTR.name, FL.score
FROM Users U, Restaurants R,Fact Location FL,
Location L
WHERE U.uid = FL.uid AND R.rid = FL.rid
AND L.lid = FL.lid AND U.name =′Mary′ AND
L.location =′Acropolis′

ORDER BY FL.score DESC;

Another similar query would be “Look for the users near
Acropolis that prefer restaurant Beau Brummel independently
of weather” that may be used for instance to advertise a
specific restaurant to the visitors of “Acropolis”.

B. Queries with Aggregate Preferences

Another type of queries involves the computation of
aggregate scores from simple ones. For example, the
following query needs to compute an aggregate score:

Query 2 Look for Mary′s most preferable restaurants (in
the current context).

The execution ofQuery 2 leads to the execution of
the following subqueries (we suppose thatCS(current) =
{Acropolis, sunny}):

• SELECTR.name, FL.score
FROM Users U, Restaurants R,Fact Location FL,
Location L
WHERE U.name =′Mary′ AND U.uid = FL.uid
AND R.rid = FL.rid AND L.lid = FL.lid AND
current location =′Acropolis′;
and

• SELECTR.name, FW.score
FROM Users U, Restaurants R,Fact Weather FW
WHEREU.name =′Mary′ ANDU.uid = FW.uid AND
R.rid = FW.rid AND current weather =′sunny′;

Using the results of subqueries, we calculate the aggregate
scores for restaurants using the value function, as described
above. In this case, we obtain the most preferable Mary’s
restaurants.

C. Computing Aggregate Scores

The technique used for processing queries involving aggre-
gate scores (e.g.,Query 2above) is the following.

1) First, we select specific values forUsers and for the
context parameter. For instance, for the first cube a se-
lection could be on a value oflocation, e.g.,Acropolis
and for a value ofuser, e.g.,Mary.

2) Second, having pinned all dimension attributes to a
specific value, we have all the preference interest scores
available. In fact, the individual scores for each con-
text parameter are collected from each context table
(although this practically involves a relational join on all
non-context parameters, it is quite more easy to simply
collect the values from the respective cubes from a set
of point queries over them). So, we can compute the
aggregate score of a preference by using a value function
(as described in the previous sections).

3) In the context of an OLAP session, the aggregate scores
just computed for a user can be stored in a new transient
cube. As with cubes concerning basic preferences, a
cube concerning aggregate preferences has one attribute
for each context and non-context parameter and an extra
attribute for the interest score. Then, the user can reuse
the result of a query, by just using the last cube, without
executing all the above steps. In Section V, we describe
a space-efficient structure for storing such results.

D. Traditional OLAP operators

OLAP provides a principled way of querying information.
The traditional techniques for relational querying are enriched
with special purpose query operators, such as roll-up and
drill-down [10], [5].

Slice-n-Dice. The dice operator on a data set corresponds
to a selection (in the relational sense) of values on each
dimension. Aslice is a selection on one of the N dimensions
of the cube. A dice operator can be implemented as
a sequence of slices. Simple preference queries can be
computed using slice operators. For instance,Query 1 can
be implemented using slice operations onUser andLocation.

Roll-up. Theroll-up operation provides an aggregation on one
dimension. Assume that the user has executedQuery 1over
the database and receives an unsatisfactory small number of
answers. Then, she can decide that is worth broadening the
scope of the search and investigate the broader Athens area
for interesting restaurants. In this case, aroll-up operation
on location can generate a cube that usescities instead of
regions. The following query express this roll-up operation
in SQL:

Query 3
• SELECTR.name, FL.score

FROM Users U, Restaurants R,Fact Location FL,
Location L
WHERE U.uid = FL.uid AND R.rid = FL.rid
AND L.lid = FL.lid AND U.name =′Mary′ AND
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L.city =′Athens′

ORDER BY FL.score DESC;

Drill-down. Similarly, drill-down is the reverse operation,
i.e., when we have the result of a query which includes
restaurants that are located inAthens, we can take a result
that includesrestaurants located atAcropolis, using the
drill-down operator.

V. CACHING CONTEXT STATES

In this section, we discuss issues regarding improving the
performance of our system. In particular, we discuss how we
can store (cache) results about previous queries executed at a
specific context, so that these results can be re-used. First, we
describe a hierarchical data structure, called context tree, that
is used to index these results. Then, we show how search in
this data structure can be improved using an additional hash-
based index to test for membership in the context tree.

A. The Context Tree

Assume that the context environmentCX has n context
parameters{c1, c2, . . . , cn}. An alternative way to store ag-
gregate preferences uses acontext tree, as shown in Fig. 8.
The context tree is used to store aggregate preferences that
were computed as results of previous queries, so that these
results can be re-used by subsequent ones. There is one context
tree per user or per system-defined profile (i.e., per group of
users with similar interests, see Section II-D). The maximum
height of the context tree is equal to the number of context
parameters plus one. Each context parameter is mapped onto
one of the levels of the tree and there is one additional level
for the leaves. For simplicity, assume that context parameter
ci is mapped to leveli. A path from the root to a leaf of the
context tree corresponds to acontext state, i.e., an assignment
of values to context parameters.

At the leaf nodes, we store a list of ids, e.g., restaurant ids,
along with their aggregate scores for the associated context
state, that is, for the path from the root leading to them. Instead
of storing aggregate values for all non-context parameters, to
be storage-efficient, we just store the top-k ids (keys), that is
the ids of the items having thek-highest aggregate scores for
the path leading to them. The motivation is that this allows
us to provide users with a fast answer with the data items
that best match their query. Only if more thank-results are
needed, additional computation will be initiated. The listof
ids is sorted in decreasing order according to their scores.

The context tree is constructed incrementally each time a
context-aware query is computed. Each non-leaf node at level
k contains cells of the form[key, pointer], wherekey is equal
to ckj ∈ dom(ck) for a value of the context parameterck

that appeared in some previously computed context query.
The pointer of each cell points to the node at the next lower
level (level k + 1) containing all the distinct values of the
next context parameter (parameterck+1) that appeared in
the same context query withckj . In addition,key may take
the special valueany, which corresponds to the lack of the
specification of the associated context parameter in the query.

c    c     c               any...

...c    c              any ...

c            any c            any... ... ... ...c            

21    23 21    23     25

11    12     14

n2    n2    n3    

c    c     c            22    ...c          

c1

c2

cn

top_k list {(id, score)}

Fig. 8. A context tree.

For example, assume two context parameters,location and
weather and thatweather is assigned to levelm of the
tree andlocation to the level just below it, levelm + 1.
Then, take for instance a query, where the user specifies
weather = cloudy, but gives no value for location. Then,
there will be a cell[cloudy, pointer] at levelm pointing to a
node at levelm+1 containing a cell[any, pointer]. Initially,
the context tree is empty, that is the root node contains a single
cell of the form[any, null].

The way that the context parameters are assigned to the
levels of the context tree affects its size. As a simple heuristic,
context parameters are assigned to levels based on the cardi-
nality of their domains: the smaller the number of distinct
values a context parameter takes, the higher it appears in the
context tree.

In summary, a context tree forn context parameters satisfies
the following properties:

• It is a directed acyclic graph with a single root node.
• There are at mostn+1 levels, each one of the firstn of

them corresponding to a context parameter and the last
one to the level of the leaf nodes.

• Each non-leaf node at levelk maintains cells of the form
[key, pointer] wherekey ∈ dom(ck) for some value of
ck that appeared in a query orkey = any. No two cells
within the same node contain the same key value. The
pointer points to a node at levelk + 1 having cells with
key values which appeared in the same query with the
key.

• Each leaf node stores a set of sorted pointers to data.
In Fig. 9, we present a set of context preferences as

expressed in four previously submitted queries. Assume again
that we have two context parameters,weather and location
and for the sake of the example thatweather is assigned to the
first level of the tree andlocation to the next one. Leaf nodes
store the ids of the top-k restaurants, that is the restaurants
with the top-k highest aggregate scores. For these preference
queries, the context tree of Fig. 10 is constructed as follows.

For the first preference (cloudy/P laka), the first path of
the tree (the leftmost one) is constructed. The next preference
(cloudy/Acropolis) has the same value for the context param-
eterweather with the first one, so we do not add any new cell
to the root node. Next, we add a cell forAcropolis to the node
that the root points to. The third preference (sunny/P laka)
has valuesunny for weather and this leads to the creation
of a new cell in the root node. As before, the last preference
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query 1 / cloudy / Plaka
query 2 / cloudy / Acropolis

query 4 / cloudy / *
query 3 / sunny / Plaka

Fig. 9. A set of aggregate preferences.

Plaka      Acropolis    any

top_k top_k top_k

Plaka

top_k

 cloudy         sunny

Fig. 10. The context tree for the preference of Fig 9.

(/cloudy/∗) has acloudy value and so, the remaining path
for that preference has as a predecessor thecloudy cell of the
root. Theany cell is added at the corresponding node of the
second level for the∗ operator of this preference.

When a query is issued, we first check whether there exists
a context state that matches it in the context tree. If so,
we retrieve the top-k results from the associated leaf node.
Otherwise, we compute the answer and insert the new context
state in the tree. There is a number of interesting variations.
For instance, instead of storing the results of all queries,we
may just store the results of the most frequently requested
ones. This can be easily implemented by associating a counter
with each path and replacing (deleting) from the tree the path
that is less frequently used.

The context tree resembles the Dwarf data structure [11]
used to compute and store data cubes. Whereas Dwarf is
built by scanning the fact table and includes all existing
combinations of values for all cube dimensions, the context
tree is incrementally computed, each time a preference query
is evaluated and includes only paths (context states) previously
queried. Furthermore, Dwarf leaf nodes contain aggregate
values, whereas the context tree leaf nodes contain ordered
sets.

B. Bloom-Based Index for the Context Tree

In order to improve the query performance of the context
tree, we propose using Bloom filters [12]. A Bloom filter
is a main-memory data structure that supports very efficient
membership queries. When a new query for a context state
is submitted by the user, instead of searching the context tree
for a matching context state, the Bloom-based data structure
is conducted first. Given a context state, the Bloom-based data
structure provides a quick answer on whether this state exists
in the tree. If the context state does not exist, then retrieving
the entire context tree is avoided.

1) Bloom Filters Preliminaries:A Bloom filter is a space-
efficient probabilistic data structure that is used to test whether
or not an element is a member of a set. This method is used for
representing a setA = a1, a2, . . . , al of l elements (also called

4

3

2

1 1

2

3

4

Bit vector v

1

1

H (a) = P

H (a) = P 

H (a) = P

H  (a) = P

 Element a

1

1

Fig. 11. A Bloom filter withf=4 hash functions.

keys) to support membership queries (is elementa in setA?).
The idea is to allocate a vectorv of m bits (Fig. 11), initially
all set to 0, and then choosef independent hash functions,
h1, h2, . . . , hf , each with range 1 to m. For each elementa,
the bits at positionsh1(a), h2(a), . . . , hf (a) in v are set to 1.
A particular bit might be set to 1 multiple times, but only the
first change has an effect. Given a query forb we check the bits
at positionsh1(b), h2(b), . . . , hf (b). If any of them is 0, then
certainlyb is not in the setA. Otherwise we conjecture thatb
is in the set although there is a certain probability that we are
wrong. This is called afalse positive(or a false drop) and it
is the payoff for Bloom filters’ compactness. The parameters
k andf should be chosen such that the probability of a false
positive (and hence a false hit) is acceptable. Although false
positives are possible, there are no false negatives.

The probability of a false positive for an element not
in the set, or the false positive rate, can be calculated in
a straightforward fashion, given the assumption that hash
functions are perfectly random. After all the elements ofA
are hashed into the Bloom filter, the probability that a specific
bit is still 0 is (1 − 1/m)f l ' e−f l/m, wherem is the size
of the Bloom filter,f is the number of hash functions andl
is the number of elements that we index in the filter.

In their original form, Bloom filters provided support only
for simple keyword queries and not for path queries such as
those representing context states. To this end, in our previous
work we have introduced multi-level Bloom filters, namely
Breadth and Depth Bloom filters [13], [14] to test for
membership of path queries.

2) Multi-level Bloom Filters: Let a context treeT for n
context parameters and let the level of the root be level 1.
There are two ways to hash the tree, corresponding to its
breadth and depth first traversal.

The Breadth Bloom Filter (BBF) for a context tree
T for n context parameters is a set ofn Bloom fil-
ters {BBF1, BBF2, . . . , BBFn}, where each Bloom filter,
BBFi, corresponds to an internal (i.e., non leaf) leveli of
the context tree, that is, there is one filter for each context
parameterci. In eachBBFi, we insert allkeys that appear in
cells in nodes at leveli of the context tree. For example, the
BBF for the context tree of Fig. 10 is a set of two Bloom
filters (Fig. 12).

Depth Bloom filters provide an alternative way to summa-
rize context trees. We use different Bloom filters to hash paths
of different lengths. TheDepth Bloom Filter(DBF ) for a
context treeT for n context parameters is a set of Bloom filters
{DBF0, DBF1, DBF2, . . . , DBFm−1}, m ≤ n. There is one
Bloom filter, denotedDBFi, for each path of the tree with
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1      0     0    0     1    0     1     0     0     0    0    0

0      1     1    1     1    0     0     0     1     0    0    1

BBF

BBF

 1

 2

Plaka OR Acropolis

OR any

OR any

cloudy OR sunny

Fig. 12. The BBF for the context tree of Fig 10.

1      0     0    0     1    0     1     0    0     1     0    1

DBF

DBF

 1     1     1    1     1    0     1     0    1     1     1    1

0

1 (cloudy / Plaka OR
cloudy / Acropolis OR

Paths of length 0

Paths of length 1

OR Plaka OR Acropolis
OR any)

cloudy / any)

(cloudy OR sunny

sunny / Plaka OR

Fig. 13. The DBF for the context tree of Fig 10.

lengthi, that is, having (i+1) nodes, where we insert all paths
of length i. Note that a path with lengthi < n corresponds
to a context state in which there are values specified only for
the first i parameters. Note that we insert paths as a whole,
we do not hash each element of the path separately; instead,
we hash their concatenation. TheDBF for the context tree in
Fig. 10 is a set of two Bloom filters (Fig. 13).

Let a a patha1/a2/ . . . /ap corresponding to a context state
with p context parameters. In the case of aBBF , to check
whether a patha1/a2/ . . . /ap corresponding to a context state
exists, each leveli from 1 to p of the filter is checked for the
correspondingai. The test is positive, if we have a hit for
all elements in the path. In the case ofDBF , we first check
whether all elements in the path expression appear inDBF0.
Then, for a query of lengthp, every sub-path of the query
with length 2 top is checked at the corresponding level. If we
have a match for all sub-paths, then we conclude that the path
may exist in the context tree, else we have a miss.

When comparing the two filters, DBF works better (has
a smaller false positive ratio) than BBF [13]. The reason is
that when usingBBFs, a new kind of false positive appears.
Consider the tree of Fig. 10 and the query:sunny/Acropolis.
We have a match forsunny at BBF1 and forAcropolis at
BBF2; thus we falsely deduce that the path exists. However,
DBFs is less space efficient, since the number of paths is very
large. This the reason, that we may not keep Bloom filters for
paths of all lengths but instead we may keep paths up to a
maximum lengthm.

VI. PROTOTYPE IMPLEMENTATION: PREFERENCE

RESTAURANT GUIDE

Figure 14 depicts the overall system architecture of a
preference database system. The Context-Aware Preference
Database Management System (DBMS) stores both database
relations and preferences that relate the context-dependent
attributes of the relations with the context parameters. To
process context-dependent queries, preferences are takeninto
account to present the results based on their preference score
at the specified context state. We assume that the values of the
current context state are provided as input to our system.

   Data

Results  Query User Input

  Preferences
     Context

Context−Aware
Preference
DBMS

  State
Context

      Processing
     Query

Fig. 14. Overall system architecture of a Context-Dependent Preference
Database.

To demonstrate the feasibility of our approach, we have
developed a prototype application based on our reference ex-
ample. The application is calledPreference Restaurant Guide
and maintains information about restaurants and users. Its
schema is the one depicted in Fig. 6. We consider two context
parameters as relevant:location andweather. The prototype
application is build on top of Oracle 8i, using Borland JBuilder
7. The prototype implements all modules of our approach
except of the context tree.

When a user joins the system, she registers her attributes
and then, she selects which context parameters she consid-
ers as relevant. Then, users express their preferences about
restaurants by providing a numerical score between 0 and 1.
The degree of interest that a user expresses for a restaurant
depends on the values of the context parameters, she considers
as relevant. If more than one context parameter is defined as
relevant, i.e, bothlocation andweather, weights are specified
to express how each parameter affects the computation of the
aggregate score.

Besides user registration, the other part of the application in-
cludes query processing. Query processing runs in two modes:
context-aware and non context-aware. In the non context-
aware mode, preferences are ignored. In the context-aware
mode, the user specifies the values of the context parameters
she is interested in, and the results are sorted according to
the user’s preference in the specified context state. When no
values are specified for the context parameters, the default
context state that corresponds to the current context stateis
used. In addition, a user may use an OLAP operator to execute
a roll-up or adrill-down to the results of a query. For example,
suppose a result that contains restaurants located in the region
of Acropolis. A single roll − up provides restaurants in the
city of Athens.

Suppose that userMary is at Acropolis and the weather
is sunny, i.e., the current context state is CS(current) =
{Acropolis, sunny}. Mary would like to know the best
restaurants, according to her preferences, that are located at
Acropolis, independently of the weather. This is an example
of a query involving only basic preferences. The result of
this query is depicted in Fig. 15 (left). In Fig. 15 (center)
the results of a query involving aggregate preferences in the
current context are depicted. IfMary chooses to use an OLAP
operator to execute aroll−up to the results of the query, the
application returns the restaurants that are located in thecity
of Athens. The results of this operation are shown Fig. 15
(right).
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Fig. 15. The results of a query involving a basic preference on location (left), on bothlocation andweather (center), and aroll − up to include results
in Athens (right).

VII. R ELATED WORK

Although, there is much research on location-aware query
processing in the area of spatio-temporal databases, integrating
other forms of context in query processing is a rather new
research topic.

A. Context and Queries

In the context-aware querying processing framework of
[15], there is no notion of preferences, instead context at-
tributes are treated as normal attributes of relations. Query
processing is divided into three-phases: query pre-processing,
query execution and query post-processing. Query pre-
processing is performed in two steps: a query refinement and
a context binding step. The goal of the query refinement
step is to further constraint the query condition by means
of different contextual information. Context binding instan-
tiates the contextual attributes involved in the refined query
with exact values. After query execution, at the query post-
processing phase, the results are sorted. External services may
then be invoked for the delivering of results to the users.
Five context-aware strategies are defined. Strategy 1 refers
to queries that consider the current value of context as their
reference point, for example such queries include looking
for the closest restaurant, the next flight, the shortest route.
To implement them, the contextual attributes are bound to
their current values. Strategy 2 includes queries that access
facts about the past (i.e., history data) which are recalled
based on the relevant context. In this case, archived data are
linked based on their common contextual attributes. Strategy
3 considers context as an additional constraint to the query.
A given query is refined to include relevant constraint rules.
Strategy 4 reduces the result set by ordering the produced
results based on the user profile. This is achieved by using
an associated sorting rule. Strategy 5 considers the delivery
and presentation of results to the user by observing related
delivery rules. This framework is orthogonal to our approach
and a potential extension of our work includes enriching our
model with constraints involving context attributes.

The Context Relational Model (CR) introduced in [16] is
an extended relational model that allows attributes to exist
under some contexts or to have different values under different
contexts. CR treats context as a first-class citizen at the
level of data models, whereas in our approach, we use the

traditional relational model to capture context as well as
context-dependent preferences.

B. Preferences in Databases

In this paper, we use context to confine database querying
by selecting as results the best matching tuples based on the
user preferences. This is achieved by defining preferences
based on context, so that under a specific context a tuple is
preferred over another. The research literature on preferences
is extensive. In particular, in the context of database queries,
there are two different approaches for expressing preferences:
a quantitative and a qualitative one.

With the quantitative approach, preferences are expressed
indirectly by using scoring functions that associate a numerical
score with every tuple of the query answer. In our work,
we have adapted the general quantitative framework of [7],
since it is more easy for users to employ. In this framework,
a preference is expressed by the user for an entity. Entities
are described by record types which are sets of named fields,
where each field can take values from a certain type. The *
symbol is used to match any elements of that type. Preferences
are expressed as functions that map entities of a given record
type to a numerical score. A set of preferences can be com-
bined using a generic combine operator which is instantiated
with a value function. For example, the preference of a user
for restaurants can be expressed as preference(cuisine), with
values preference(Chinese) = 0.1, preference(Greek) = 0.8and
preference(other) = 0.1.

In the quantitative framework of [17], user preferences are
stored as degrees of interest inatomic query elements(such as
individual selection or join conditions) instead of interests in
specific attribute values. The degree of interest expressesthe
interest of a person to include the associated condition into
the qualification of a given query. Specific rules are specified
for deriving preference of complex queries by building on
stored atomic ones. The results of a query are ranked based
on the estimated degree of interest in the combination of
preferences they satisfy. Our approach can be generalized
for this framework as well, either by including contextual
parameters in the atomic query elements or by making the
degree of interest for each atomic query element depend on
context.

There is also some similarity with the work done in the
context of the PREFER system [18] for processingranked
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queriesthat is, queries that return the top objects of a database
according to a preference function. The focus of this work
is on a different topic: how to answer ranked queries using
materialized ranked views.

In the qualitative approach(for example, [19]), the pref-
erences between the tuples in the answer to a query are
specified directly, typically using binary preference relations.
For example, one may express thatrestaurant1 is preferred
from restaurant2 if their opening hours are the same and
its price is lower. This framework can also be readily ex-
tended to include context. For instance, one may express that
restaurant1 is preferred fromrestaurant2 if their opening
hours are the same, its price is lower and it is closer to
the current user’s location. A logical qualitative framework
is presented in [19] for formulating preferences aspreference
formulas. The preference formula is a first-order formula
defining a preference relation between two tuples.

Both the quantitative and the qualitative approached can be
integrated with query processing. Relevant in this respectis
research on top-k matching results and on skylines. Intop-k
queries [20], users specify target values for certain attributes,
without requiring exact matches to these values in return.
Instead, the result to such queries is typically a rank of the
“top-k” tuples that best match the given attribute values. The
skyline [21] is defined as those tuples of a relation that are
not dominated by any other tuple. A tuple dominates another
tuple if it is as good or better in all dimensions and better in
at least one dimension.

Finally, the work in [22] focuses on inductively constructing
complex preferences by means of various preference construc-
tors.

C. Storing Context

An important issue is what is an appropriate model for
storing context. Besides storing the current context for building
context-aware systems and applications, there is growing ef-
fort to extract interesting knowledge (such rules, regularities,
constraints, patterns) from large collections of context data.
Storing context data using data cubes, called context cubes,
is proposed in [9] for developing context-aware applications
that use archive sensor data. The context cube provides a
multidimensional model of context data where each dimension
presents a context dimension of interest. The context cube
also provides a number of tools for accessing, interpreting
and aggregating context data by using concept relationships
defined within the real context of the application. In this work,
data cubes are used to store historical context data and to
extract interesting knowledge from collections of contextdata.
Also, a cube can be used to create new context from analysis
of the existing data. In our work, we use data cubes for storing
context-dependent preferences and answering related queries.

Besides queries, context parameters, such aslocation and
time, have been used to determine which data to replicate
in mobile information systems [23]. In this approach, context
parameters are calledextensions. Finally, context has been
used in the area of multidatabase systems to resolve semantic
differences, e.g., [24], [25], [26] and as a general mechanism
for partitioning information bases [27].

VIII. S UMMARY

The use of context is important in many applications such
as in pervasive computing where it is important that users
receive only relevant information. In this paper, we consider
integrating context with query processing, so that when a user
poses a query in a database, the result depends on context. In
particular, each user indicates preferences on specific attribute
values of a relation. Such preferences depend on context.
We store preferences in data cubes and show how OLAP
techniques can be used to compute context-aware queries, that
is queries whose results depend on context. In order to improve
the performance of our system, we introduce a hierarchical
data structure, called context tree. We use this tree to index
results from previous queries. Finally, we demonstrate the
feasibility of our approach through a prototype application
regarding a context-aware preference restaurant guide.
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