
60 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Composite Web Services, Service Providers, Service Provision, Web Services, Web Services
Deployment

IntroductIon

A web service is typically defined in the litera-
ture –for example, see Alonso, Casati, Kuno
and Machiraju (2004)—as an interface that
describes a collection of operations provided
through the internet and accessed through
standard XML messages. The appropriate de-
ployment of web service operations at a service

Accelerating Web Service
Workflow Execution via
Intelligent Allocation of

Services to Servers
Konstantinos Stamkopoulos, University of Ioannina, Greece

Evaggelia Pitoura, University of Ioannina, Greece

Panos Vassiliadis, University of Ioannina, Greece

Apostolos Zarras, University of Ioannina, Greece

AbStrAct
The appropriate deployment of web service operations at the service provider site plays a critical role in the
efficient provision of services to clients. In this paper, the authors assume that a service provider has several
servers over which web service operations can be deployed. Given a workflow of web services and the topol-
ogy of the servers, the most efficient mapping of operations to servers must then be discovered. Efficiency is
measured in terms of two cost functions that concern the execution time of the workflow and the fairness of
the load distribution among the servers. The authors study different topologies for the workflow structure and
the server connectivity and propose a suite of greedy algorithms for each combination.

provider site plays a critical role in the efficient
provision of services to clients. To effectively
provide solutions to users’ tasks, web services
are composed in workflows (see Chen, Zhou,
& Zhang, 2006) that combine intermediate ser-
vice results towards achieving a more complex
goal. Such workflows are typically specified
in appropriate languages such as BPEL (see
Andrews, et al., 2003).

DOI: 10.4018/jdm.2010100104

Journal of Database Management, 21(4), 60-90, October-December 2010 61

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Motivating example

Assume an electronic system that assigns rendez-
vous for patients that need to consult doctors. A
workflow that arranges a meeting depending on
the availability of a doctor is depicted in Figure
1. Once the meeting has been conducted, the
system registers any prescribed medicines and
communicates via operations with social security
agencies to register the assignment of medicines
to patients. The detailed description of these
operations is not necessary for the purpose of the
paper; still it is important to note that there are
operational services that receive requests (in the
form of XML messages) to which they react (by
sending XML messages) and decision operations
that regulate which operations are to be invoked
depending on the state of the workflow.

The whole workflow is supported by web
service operations, deployed by the ministry of
health and social security. The ministry has 5
servers that can host any of the 15 operations
of the workflow and the problem is to decide
which of the possible 515 configurations of the
deployment of operations to servers (a) provides
the fastest closing of each patient case and (b)
loads each server in a fair way, so that whenever
additional workflows are deployed, or a server
fails, a reasonable load scale-up is still possible.

background and Problem
Statement

In the problem we are dealing with in this paper,
we assume that a service provider has several

servers over which web service operations can
be deployed. Then, given a workflow and the
topology of the servers, the most efficient de-
ployment of the operations must be discovered.
Different topologies refer to the possibility of
different networking infrastructure for the serv-
ers; this might include particularities relating to
the characteristics of the machinery of the data
center, its geographical distribution, etc. The
workflows of the organization that we need to
deploy might be of arbitrary complexity; rang-
ing from simple linear workflows to graphs of
large complexity.

Unfortunately, so far, related work has not
equipped us with efforts towards the solution
of the problem. There are several works in the
area of design, composition and security of web
services as well as works on the fine tuning of
web service workflows. Concerning the latter,
there are several works that deal with the regula-
tion of the parameters of a previously obtained
server configuration in order to achieve Quality
of Service characteristics (see for example, Gill-
mann, Weikum and Wonner (2002)). However,
none of the related research efforts covers the
problem of the placement of web services to
servers, once the operations and the topology
of the servers are given. In other words, we
provide the initial step for the administrator or
engineer who wants to fine tune the architecture
of his system: before fine-tuning for quality
of service an initial, high quality allocation of
operations to servers must be given; if such an
allocation is unsatisfactory, then the approaches
of the related work can be used.

Figure 1. Exemplary workflow

62 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

contributions

In our approach, efficiency is measured in terms
of two cost functions that concern the execu-
tion time of the workflow and the fairness of
the load distribution among the servers. The
latter means that all servers spend the same
amount of time for processing the workflow.
This results in a double optimization problem
with antagonistic individual measures. We study
different topologies for both the workflow and
the network of servers and propose algorithms
for each case. The contribution of this work lies
in (a) the definition of a model which describes
the problem, and (b) the proposed algorithms
for its solution. Moreover, we have thoroughly
experimented and assessed all the proposed
algorithms.

This paper is organized as follows: First,
we discuss related work. We then start with a
formal definition of the problem and introduce
algorithms for the deployment of web service
operations at the appropriate servers. We also
present experimental results, summarize our
findings, and discuss issues of future research.

reLAted Work

Service-Oriented computing has been a very
active field of research over the past few
years (for general reading around the context
of Service Oriented Architectures (SOA) see
Erickson & Siau, 2008; Papazoglou & van den
Heuvel, 2007; Papazoglou, Traverso, Dustdar,
& Leymann, 2007).

The approach proposed in this paper,
focuses at the deployment stage of the Web
services development lifecycle. Concerning
the development of Web services, Yu, Liu,
Bouguettaya, and Medjahed (2008) proposed a
comparison framework for relevant approaches.
The proposed framework consists of a number
of key properties involved in facilitating the
development of Web services and shall be
used hereafter towards orienting the proposed
approach with respect to these features and
comparing it with other related approaches.

Briefly, the key properties identified by Yu et
al. (2008) are interoperability, security and pri-
vacy, quality of Web services and management.

Interoperability, refers to the ability of
Web services to collaborate towards achieving
a particular goal. As pointed out by Medjahed,
Benatallah, Bouguettaya, Ngu, and Elmagar-
mid, (2003), the basic means for achieving this
property are standards and ontologies (e.g. Ding,
Fensel, & Klein, 2002), from a specification
point-of-view, and mediation, from a technical
point of view (e.g. Gravano & Papakonstan-
tinou, 1998). Our approach does not specifi-
cally contribute in achieving interoperability.
Nevertheless, we rely on the assumption that
the composite services that serve as input to the
proposed algorithms are able to interoperate as
they conform to widely accepted standards such
as WSDL, SOAP and BPEL.

As discussed by Geer (2003), security in
the field of Web services management is mainly
focused in managing the trade-off between high
interoperability and low security risks. Privacy,
on the other hand relates to careful reasoning
about the data that can be released via Web
services (Rezgui, Bouguettaya, & Eltoweissy,
2003). The algorithms proposed by our approach
do not embed means for dealing with security
and privacy. Despite their importance, these is-
sues are orthogonal to the issue of scheduling the
deployment of Web services, which is our main
concern. Nevertheless, we assume that the use
of the proposed algorithms shall be employed
in well controlled environments consisting of
secure servers. Moreover, we assume that the
design and implementation of the composite
services that serve as input to the proposed
algorithms shall account for privacy issues.

The field of quality of Web services relates
to the problem of selecting a Web service out
of a set of available competing services with
respect to particular quality characteristics
(Vinoski, 2002). Quality management is very
important for the interaction of the users with
web services. As Burstein et al. (2005) men-
tion: “QoS metrics can affect how services
are advertised, can be the topic of negotiation
processes, and must be monitored during

Journal of Database Management, 21(4), 60-90, October-December 2010 63

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

enactment; thus, when clients’ procedures or
workflows involve multiple services, the un-
derlying discovery, coordination, and execution
systems must be able to monitor QoS measures
and control the services accordingly”. Various
quality characteristics of interest that can be
used to characterize Web services can be found
in the literature (e.g., Maximilien & Singh,
2004; Conti, Kumar, Das & Shirazi, 2002;
Zeng, Benatallah, Ngu, Dumas, Kalagnanam,
& Chang, 2004) and a very useful taxonomy
of them has been proposed by Yu et al. (2008).
The proposed taxonomy distinguishes between
runtime quality characteristics such as execu-
tion time, availability, reliability, integrity and
business quality characteristics such as financial
costs, reputation and conformance to standards.
In our approach we consider the overall quality
of a composite service that should be deployed
over a set of available servers. The quality
characteristic of interest to us is the composite
service execution time. Our approach is com-
plimentary to approaches related to service
selection out of a set of competing services. In
particular, the proposed algorithms for schedul-
ing the deployment of composite Web services
are employed right after the selection of the
constituent services that are going to be used in
a composite service. The quality characteristics
of the constituent services as well as the qual-
ity characteristics of the underlying available
infrastructure (i.e. servers and network) are the
main input parameters of the cost model used
by the proposed algorithms.

Our approach is most closely related to the
management of Web services. Nevertheless, as
Yu et al. (2008) discuss, this issue is also quite
broad and encompasses many different dimen-
sions including control management, change
management and optimization.

Control management mainly refers to the
coordination of Web services towards provid-
ing certain dependability guarantees such as
the ones achieved through atomicity, isola-
tion and other transactional properties (for a
discussion of the related issues and protocols
see Papazoglou, 2003; Papazoglou & Kratz,
2007). This issue is orthogonal to our approach

that deals with the deployment of composite
Web services. We assume that any required
coordination logic is already embedded in the
Web services workflows that serve as input to
the proposed algorithms.

Change management deals with the main-
tenance and configuration management of Web
service workflows. Related approaches deal
with changes in Web service workflows trig-
gered either by evolving business requirements
or by the evolving quality characteristics of the
participating services.

Our work falls in the category of optimi-
zation where the general objective is to tune a
Web service composition towards achieving a
number of desired quality characteristics. Into
this context, Cardoso, Sheth, Miller, Arnold,
and Kochut (2004) provide a model that char-
acterizes the quality of a composite service
based on response time, cost and reliability. The
workflows considered include AND and OR
decision nodes. The authors discuss METEOR, a
system that traces the behavior of the workflow
over time and warns users whenever the QoS
dangerously reaches the thresholds originally set
by the users. Gillmann, Weikum, and Wonner
(2002) present tuning techniques for a workflow
management system. The goal of the paper is
the optimal tuning of the parameters of an en-
vironment where composite workflows are to
be executed over a network of servers, in a way
that quality of service concerning response time,
availability and throughput is guaranteed. There
is a huge number of configurable parameters,
several architectural options for the involved
servers (workflow servers, application servers,
communication servers), and most importantly,
service replicas. A Markov model is used for
the determination of the quality of a workflow
and a heuristic algorithm for the overall tun-
ing of the system. Zeng et al. (2004) propose a
method that, given a desired quality of service
for a composite web service, the most ap-
propriate elementary web services are chosen
out of a set of candidate services with similar
functionality. Appropriateness is decided on the
grounds of execution cost, duration, reliability,
availability and reputation. Finally, Salellariou

64 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and Zhao (2004) propose a method for the
reconfiguration of a system whenever the ob-
served quality of service is not satisfactory. A
scheduling algorithm involving the starting and
ending timepoints for a workflow is employed.
The paper proposes the reallocation of tasks
through this scheduling algorithm only when-
ever changes in the monitored system measures
are significant. All these works investigate the
problem of dynamically tuning workflows to
achieve desired quality characteristics; still
none of them deals with the deployment stage
of the composite services lifecycle, which must
take place beforehand. Composite service de-
ployment is taken for granted, with extensions
involving service replicas by Gillmann et al.
(2002) or communities of similar operations
by Zeng et al. (2003). Hence, our approach
is complementary to the aforementioned ap-
proaches. More specifically, it does not aim at
providing specific quality guarantees during
the execution of composite services. On the
contrary, it aims at providing a starting point to
such approaches with tuneable configurations
concerning the load characteristics of deployed
services.

A final point in the related literature
concerns approaches outside the context of
service-oriented computing from which we
were generally inspired such as replication,
workflow management, and load balancing.
In particular, Leff, Wolf, and Yu (1993) and
Laoutaris, Telelis, Zissimopoulos, and Stavraka-
kis (2005) deal with the problem of object
replication and provide interesting insights on
the dimensions of the problem and the gain
functions. Constantinescu, Binder, and Faltings
(2005) and Srivastava, Widom, Mhnagala, and
Motwani (2005) assume the continuous execu-
tion of a workflow: the former deals with the
deployment of triggers to allow for the efficient
execution of the workflow, whereas the second
deals with the order of activity execution to
achieve the optimal throughput. Concerning
load balancing to ensuring quality properties
for clients in the context of the web where
unpredicted loads can occur, see Cherkasova
and Peter Phaal (2002) as well as Cherkasova

and Gupta (2004) for interesting facts and
scheduling tactics. Moreover, large transac-
tion processing systems distribute transaction
processing to a number of servers, in order to
increase the availability and efficiency of the
overall system. Transaction Processing moni-
tors (TP-monitors) regulate the assignment of
requests and load balancing is one of the several
criteria they employ. The main techniques used
involve simple algorithms (since the employed
algorithm must be simple, fast and lightweight)
such as round-robin or randomized methods. A
more elaborate technique is a workload-aware
method, where the TP-monitor tracks the in-
dividual load of each server and assigns a new
transaction to the server with the smallest load.
An excellent source of reference for the topic
is Lewis, Bernstein, and Kifer (2001).

ProbLeM forMuLAtIon

In this section, we formally define the problem
under consideration. The objective is to provide
algorithms that take as input a workflow of
web service operations along with a topology
of servers and compute an appropriate map-
ping of operations to servers. In the rest of our
deliberations, we will employ the terminology
of WSDL. We will also use the terms composite
web service, orchestration, and workflow of web
service operations interchangeably.

formal definition of the Problem

Assume a finite set of web service operations
O= {Ο1, Ο2, …, ΟM} and a finite set of servers
S= {S1, S2, …, SN}. The term “operation” refers
to WSDL operations (i.e., modules that may
receive an input XML message and produce a
result in the form of an output XML message).
A transition (op, on) is a message sent by the web
service operation op to the operation on, i.e., op
invokes operation on through the submission
of an XML message. We call operations op
and on neighboring operations. A workflow is
a directed graph of operations W(Ο, E), where
E={(op, on) | op,on ∈ O, ∃ a transition from op
to on}. Intuitively, a workflow is a graph, with

Journal of Database Management, 21(4), 60-90, October-December 2010 65

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

operations being the nodes of the graph and
XML messages being modeled as the edges of
the graph. A network of servers is an undirected
graph N(S, L), where L={(si, sj) | si, sj ∈ S,
∃ connection between servers si and sj}. The
deployment of an operation o to a server s is
denoted by o→ s.

The operations of O can be distinguished
into decision and operational ones. This follows
the classification proposed by Leymann and
Roller (2004), where a workflow comprises a
control flow and a data flow subgraph. The op-
erational nodes are the ones performing specific
tasks for the workflow, whereas the decision
nodes control the flow of execution. Following
the fundamental distinction of Leymann and
Roller (2004) for control nodes to forks (control
nodes with multiple outputs, acting as routers
for the execution flow) and joins (control nodes
acting as rendezvous points that synchronize
multiple parallel execution flows), we consider
three types of decision operations/nodes, namely
AND, OR, and XOR, as forks. We also assume
three complementary types, denoted /AND, /OR
and /XOR respectively, to allow the definition
of well-formed workflows. A workflow is well-
formed if for every decision node a, there exists
a complement node /a, and all paths stemming
from a also pass from /a. Intuitively, decision
nodes and their compliments act as parentheses.
The reasons for this requirement are hidden in
the semantics of the graph. Assuming a decision
node, the semantics are as follows: (a) AND
nodes involve the execution of all their outgoing
paths with a rendezvous barrier at /AND, (b)
OR nodes do the same, but it suffices that one
of the paths successfully reaches /OR and (c)
XOR nodes involve a probabilistically weighted
pick of a path to be executed. In BPEL, AND
nodes may correspond to plain flow activities,
OR nodes may correspond to flow activities
with conditional attributes and XOR nodes may
correspond to switch or pick activities.

Assume a cost model Cost(W) that com-
putes the cost of successfully completing the
workflow W. More details on the alternative
costs that can be used are provided in the sequel.
In the broadest possible variant of the problem,

we can also assume a set of user constraints
C, concerning for example an upper bound on
the completion time of a workflow or on the
distribution of load among the servers.

The desideratum is a mapping of the
operationsOof a workflowWto the set of
serversS, such that the operational cost is
minimized (and the constraintsCare met). For-
mally, this optimum assignment of operations
to servers is modeled as a finite set M= {r1, r2,
…, rΜ | ∀ i=1,2,…,Μ: ri a rule of the form o→
s, o∈O and s∈S} with the minimal Cost(W)
that respects C. Obviously, more than one map-
ping can be derived; we are interested in the
one with the lowest possible cost. Depending on
the algorithm employed this can be the overall
optimal value (e.g., in the case of an exhaustive
algorithm), or a local optimum (e.g., in the case
of a greedy algorithm).

ProPoSed ALgorItHMS

In this section, we present our proposed algo-
rithms for determining an appropriate deploy-
ment of web service operations to servers.

We have experimented with different
types of workflow and server topologies. We
have considered random graph topologies as
well as the special, simple case of linear work-
flows. The latter, being the most simple case,
has served both the purpose of providing initial
foresights for our experimental configuration
and as an intuitive aid in the explanation of
more complex cases. The network of servers
forms either a linear topology (mainly for ini-
tial experimental reasons) or a bus topology.
In Figure 2, we depict the combinations that
were eventually considered as valid cases. In
all our deliberations, we assume N servers and
M operations.

exhaustive Algorithm, Metrics and
notation

The exhaustive algorithm considers all pos-
sible mappings and outputs the one having the
minimum cost. Due to the exponential search
space of the exhaustive algorithm (for Ν servers

66 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and Μ operations, we have NM configurations),
we proceed with a set of heuristic solutions.

Regarding cost, we focus mainly on two
cost metrics: execution time of the workflow
and load distribution. Concerning the execution
time of the workflow, the obvious desideratum
is its minimization. Concerning the fairness of
the distribution of load to servers, we want to
guide our algorithms to fair solutions where the
amount of work (i.e., the sum of computational
cycles due to the assigned operations) is pro-
portional to the computational power of each
server. Details on the two metrics are given in
Table 1. Unless otherwise stated, in the sequel,
we will assume an equally weighted sum of the
execution time and load distribution as our cost
model. To use the same units, we assess fairness
in the form of a time penalty that measures the
deviation of the load of each server from the
average load (which is the average time needed
for a server to complete its workload). In a fair
situation, all servers dedicate to the workflow
the same amount of time. This is particularly
important since an unbalanced network of serv-
ers has to deal with (a) possible bottlenecks due
to some overloaded server in peak time and (b)
difficulties in managing any other tasks, such as
operation migration in cases of failures.

Clearly, the two metrics are antagonistic
to each other. Take the case of a linear workflow
(where each operation waits its preceding one

to complete before it starts) where all operations
are assigned to the most powerful server. Then,
although the completion time is optimized (since
no server communication costs are involved),
the fairness of load distribution is destroyed.
Inverse situations can also be encountered.

We have experimented with the exhaustive
algorithm in small configurations to identify the
properties that characterize the solutions that
are close to the optimal one. These properties
can be summarized as follows:

1. Analogy between load and computational
power of a server. This clearly affects the
fairness of load distribution.

2. Minimization of the size of messages
exchanged between servers. The desid-
eratum here is to distribute the operations
to servers in such a way that neighboring
operations are preferably assigned to the
same server. By doing so, the fraction of
messages sent over each communication
line is expected to be reduced. At the same
time, there is an antagonistic concern of
not overloading anyone server too much;
in fact, the desideratum is to preserve the
aforementioned analogy between load and
computational power of a server. Similarly
to the minimization of the size of messages
among servers, the minimization of the

Figure 2. Examined configurations

Journal of Database Management, 21(4), 60-90, October-December 2010 67

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

number of messages exchanged between
servers is also desirable.

Algorithms for a Line-Line
configuration

The case where both the workflow and the server
topology are lines is the simplest possible one.
Still, it is briefly mentioned here because of the
simple observations and heuristics that can be
applied to it.

The Line-Line algorithm receives a work-
flow of web service operations W(O, E), and
a server configuration N(S, L) as its input. The
algorithm operates in two discrete phases. In
the first phase, the algorithm tries to produce
a load distribution as fair as possible, while at-
tempting to minimize the number of exchanged
messages. In the second phase, the algorithm
tries to move operations to neighboring serv-
ers to avoid sending large messages over low
capacity links. For Ν servers and Μ operations,

Table 1. Notation and cost formulae

Symbol Description

C(op) The cycles necessary for operation op to complete

P(s) Computational power of server s (Hz)

Server(op) The server where operation op is deployed

Tprop(si, sj) Propagation time of the link between servers si and sj.

Path(si, sj) The path followed by a message from si to server sj.

Ttrans(opi, opj)

Transmittance time needed for the communication of operations opi and opj.

Ttrans(opi, opj) =
MsgSize(opi,opj)

Line_Speed(s , s)a ba
å , (sa,sb) ∈ Path(Server(opi), Server(opj))

Tproc(op)

Processing time of a deployed operation op.

Tproc(op)=
C(op)

P(Server (op))

MsgSize(opi, opj) Message size sent from operation opi to operation opj, assuming (opi,opj) ∈ Ε.

Line_Speed(si, sj) Line speed (bps) between servers si and sj.

Load(s)

Total load of server s, as the sum of the processing time of operations deployed to it.

Load(s) = T (O)proc j

j
å

Tcomm(opi, opj)
Assuming (opi, opj) ∈E, the communication time between operations opi and opj, Tcomm(opi,
opj) = T (s , s)prop

a

a bå + Ttrans(opi, opj), (sa,sb) ∈ Path(Server(opi), Server(opj))

Time_Penalty

A translation of “fairness” to the time that a server needs to conclude its work, as opposed
to the avg. such time among all servers

Time_Penalty =
|Load(s) Load(s)|

(1/2) N (N 1)

i j

j i 1

N

i 1

N −
× × −= +=

−

∑∑
1

Texecute

Execution time of workflow W.

Texecute = T (O)proc j

j 1

M

=
∑ + Tcomm

(total)

68 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the complexity of the first phase is O(M) and
the complexity of the second one is O(N). The
algorithm is depicted in Figure 4.

First, the algorithm computes the ideal load
per server (Line 7). The ideal load is computed
as the fraction of the total workload that cor-

responds to the server given the percentage of
the computational power the server can con-
tribute to the overall computational power.
Then, it starts assigning the operations of W to
the servers of N starting from the first operation/
server on the left. When a server comes as close

Figure 4. Algorithm Line-Line

Figure 3. Critical bridge

Journal of Database Management, 21(4), 60-90, October-December 2010 69

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

as possible to its ideal load (test in lines 11-12),
the algorithm considers the next server. The
algorithm makes also some provision for the
case when the operations are less than the
number of servers (Lines 20-28). The first phase
ends, when all operations have been allocated.
The second phase of the Line-Line algorithm
is based on the idea of a critical bridge, which
is a link between two servers of the network
with (a) a small capacity and a large message
load (in bytes), plus (b) a small-sized message
concerning an adjacent operation. Figure 3
depicts such a case. Whenever a critical bridge
is detected, the algorithm deploys the receiver
of the large message to the server of the
sender of the message (or vice-versa). This is
achieved through the call of function Fix Bad
Bridges (Line 30) which is detailed in Figure
5.

The algorithm Line-Line (Figure 4) comes
with variants. The first variation simply avoids
the second phase of the algorithm. A second
variation considers the assignment of operations
to servers both from left-to-right and from
right-to-left and maintains the better of the two.
The combination of these variants produces
four alternatives for the computation of the best
configuration with the obvious complexities.

Algorithms for a Line – bus
configuration

In this subsection, we move to a more realistic
case, where all servers are connected to each
other through a network bus. The workflow
is still a simple line. We can produce several
greedy variants of a simple algorithm, which
are subsequently listed.

Fair Load. The simplest of all the involved
variants is tuned to obtain the best pos-
sible load distribution. Fair Load (Figure
7) starts by computing the ideal number
of cycles that should be assigned to a
server based on its capacity. Then, it sorts
servers by their capacity and operations
by their execution cost. The algorithm
processes the sorted list of operations,
each time, assigning the next heaviest
operation to the most appropriate server.
The most appropriate server is the server
that needs the most cycles to complete
its ideal number of cycles, at the time of
the assignment. Fair Load is a variant
of the worst-fit algorithm for the bin
packing problem.

Figure 5. Function fix bad bridges

70 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Fair Load – Tie Resolver for Cycles. Fair Load
does not take execution time into consid-
eration. A simple extension involves re-
solving any ties that may come up during
the selection process among operations
with the same number of cycles. The
algorithm Fair Load – Tie Resolver for
Cycles, (or, FLTR1 for brevity), depicted
in Figure 8, operates as Fair Load with
respect to its basic principle. The differ-
ence lies in the fact that whenever we
need one among a number of operations
with the same cost, we no longer pick
one at random. Instead, we employ a gain
function, Gain_Of_Operation_At_Serv-
er that returns the communication savings
(i.e., how many bytes will not be put on
the bus), if the next operation is deployed
to a certain server (Figure 9). The best
such assignment among all candidate
operations and servers is picked. The
algorithm uses two lists, Servers_List και
Operations_List, with pointers to the
respective sets. The algorithm also needs
to initialize the mapping Μ to a random
configuration, or else, the first calls of
function Gain_Of_Operation_At_Server
would not return any gain at all.

Fair Load – Tie Resolver for Cycles and Serv-
ers. The algorithm Fair Load – Tie Re-
solver for Cycles can be extended to also
handle ties among servers. The algorithm
Fair Load – Tie Resolver for Cycles and
Servers, (or, FLTR2 for brevity), depicted
in Figure 10, simply customizes appro-
priately the previous gain function to also
consider the case in which there is a tie
among the servers to be chosen next, with
respect to their distance from their ideal
load.

Summarizing, both Tie Resolver algorithms
handle practically the same configurations with
Fair Load, with the only difference that special
attention is paid to situations where ties occur,
with the overall goal to reduce the communica-
tion cost. However, it is still possible to send
large messages over the network. The following
extension tries to alleviate this problem.

Fair Load–Merge Messages’ Ends. Algorithm
Fair Load–Merge Messages’ Ends (or,
FLMME for brevity), depicted in Figure
11, extends FLTR2 by adding an extra test
during the deployment decision. If the
assignment of an operation to a server

Figure 6. Function is critical bridge

Journal of Database Management, 21(4), 60-90, October-December 2010 71

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

results in a large message, the assignment
is cancelled and the operation is assigned
to the sender of the message, thus allevi-
ating the need to send the message (see
function There Is Constraint in Figure 12).
A message is considered large whenever
the time needed to transfer it is larger
than the execution time of the costliest
group of operations over the server with
the most available cycles at the time the
decision is made.

Heavy Operations – Large Messages. Algo-
rithm Heavy Operations–Large Mes-
sages (Figure 13) operates like Fair Load,
with the fundamental difference that
operations are not treated separately, but
as groups. Two operations are clustered
in the same group if they exchange a large
message. As in the previous case, a mes-
sage is considered large whenever the
time needed to transfer it is larger than
the execution time of the costliest group

of operations over the server with the
most available cycles at the time the
decision is made. Recall that, in the bus
topology, the communication cost be-
tween every pair of servers is considered
the same. Activities that have been
grouped together are always assigned to
the same server.

Initially, each operation constitutes a group
by itself. The algorithm employs three lists, one
for the available cycles of each server, one for
the size of each message and one for the cycles
of each group. In the beginning of each step,
these lists are sorted. In each step, the algorithm
decides whether (a) to assign the most expensive
group of operations to the server with the most
available cycles, or (b) to avoid the exchange
of a large message over the network. The deci-
sion is taken on the basis of the existence of a
large message on the top of the list of the mes-
sages. If such a message exists, then option (b)

Figure 7. Algorithm fair load

72 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

is followed. In this case, either (b1) both mes-
sage ends are placed at the same server, or (b2)
the two groups are merged. Option (b1) is fol-
lowed, if one of the two operations that com-
municate through the large message is already
placed at a server. Otherwise, the groups to
which the communicating operations belong
are merged. Note that messages must be re-

moved from the list whenever both their ends
are placed at the same server.

The complexities of the algorithms are
Ο(Μ×logM+Ν×logN+ΜN) for Fair Load,
and O(Μ×(Μ×logM+Ν×logN+ΜΝ)) for the
rest of the algorithms. In the algorithm Heavy
Operations–Large Messages, instead of the

Figure 8. Algorithm fair load – tie resolver for cycles

Figure 9. Function gain of operation at server

Journal of Database Management, 21(4), 60-90, October-December 2010 73

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

last operand of the sum (i.e., ΜΝ) the cost to
be added is 1.

3.4 Algorithms for a random
graph – bus configuration

In this third family of algorithms, we consider
the case where the servers are still connected
through a bus but the workflow is a random
graph. All algorithms are practically the same
with the category Line-Bus, with simple modi-
fications that take the structure of the workflow
into account. The algorithms must take into
consideration that an operation can receive
more than one message and that decision nodes

possibly imply the execution of a subset of the
workflow. Remember that decision nodes (AND,
OR, XOR) start subgraphs of the workflow that
are executed in parallel for AND, OR nodes. For
XOR nodes, one of the alternatives is chosen.
At the same time, the /AND, /OR, /XOR nodes
act as rendezvous points (and thus, they need
to wait for at least two messages in the case of
/AND, /OR flows).

The extension to the algorithms is quite
simple: all the algorithms of this family (with
the exception of algorithm Fair Load that
remains exactly the same) assign an execution
probability to each operation (and thus, each
message) due to the existence of XOR decision

Figure 10. Algorithm fair load – tie resolver for cycles and servers

74 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

nodes. The determination of this probability is
based on monitoring initial executions of the
workflow or simple prediction mechanisms.
Thus, the execution cost is a practically a
weighted cost, amortized for a large number
of workflow executions (as opposed to a single
execution as in the case of linear workflows).

exPerIMentS

In this section, we present experimental results
for the assessment of the proposed algorithms.
First, we present an experiment for the validation
of the cost model. Then, we discuss experiments
for each of the three workflow-network con-
figurations explored in the previous sections,

Figure 11. Algorithm fair load – merge messages’ ends

Journal of Database Management, 21(4), 60-90, October-December 2010 75

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and finally, we summarize our experimental
findings.

cost Model Validation

To validate our cost model we performed an
experiment that relied on the reference example
discussed previously. More specifically, we
implemented the workflow schema of Figure1
using a widely-used infrastructure that supports
the development of web services. Then, we
executed this implementation in a configuration
of three servers S1, S2, S3, and compared the
mean execution time of the workflow (calcu-
lated over 100 executions of the workflow) with
the execution time that is estimated based on
the proposed cost model.

To implement the web service operations
that constitute the examined workflow we

used AXIS v1.1. The web service operations
that concern the patient, the secretary and the
doctor were deployed, respectively, on a P-IV
3.4 GHz, a P-IV 1.6 GHz and a P-IV 2.13 GHz
server. The application server that we used in
all three servers was Apache Tomcat 4.1. The
three servers were connected through a typical
100 Mbps Ethernet.

Concerning the cost model, we measured
the cycles required for each web service op-
eration by executing the workflow on a single
server (i.e., the P-IV 1.6 GHz). In this context,
we measured the time required by each opera-
tion to perform its computations, along with the
time required for preparing its invocations to
the web service operations with which it com-
municates (e.g., for the web service operation
3, we measured the time required for its internal
computation and the time required for preparing

Figure 12. Function there is constraint

76 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the invocation of web service operation 4). The
sum of the aforementioned execution times was
transformed into computational cycles based
on the server’s computational power. It should
be further noted that in the calculation of the
estimated execution time of the examined work-
flow we assumed that the decision operations
(operations 5 and 9 of the reference example)
do not require any computational cycles. The

parameters used in our cost model are given in
more detail in Table 2.

The mean execution time that was experi-
mentally measured for the examined workflow
was 187 msec. The estimated execution time that
was calculated with respect to the parameters
of Table 2 was 192 msec, i.e., the cost model
overestimated the execution time with the ac-
ceptably small error of 2%.

Figure 13. Algorithm heavy operations - large messages

Journal of Database Management, 21(4), 60-90, October-December 2010 77

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Table 2. Cost Model Parameters for our motivating example

Sy
m

bo
l

D
es

cr
ip

tio
n

C
(o

p)
 -

T
he

 c
yc

le
s n

ec
es

sa
ry

 fo
r

op
er

at
io

n
op

 to
 c

om
pl

et
e

C
(1

)
C

(2
)

C
(3

)
C

(4
)

C
(6

)
C

(7
)

C
(8

)
C

(1
0)

C
(1

1)
C

(1
2)

C
(1

3)

24
99

20
00

39
63

20
00

39
63

20
00

54
27

20
00

24
99

20
00

39
63

20
00

54
27

20
00

24
99

20
00

39
63

20
00

24
99

20
00

24
99

20
00

P(
s)

 -
C

om
pu

ta
tio

na
l p

ow
er

 o
f s

er
ve

r
s (

H
z)

P(
S1

)
P(

S2
)

P(
S3

)

3.
4

*
10

6
1.

6
*

10
6

2.
13

 *
 1

06

Se
rv

er
(o

p)
 -

T
he

 se
rv

er
 w

he
re

 o
pe

ra
tio

n
op

 is
 d

ep
lo

ye
d

Se
rv

er
(1

)
Se

rv
er

(2
)

Se
rv

er
(3

)
Se

rv
er

(4
)

Se
rv

er
(6

)
Se

rv
er

(7
)

Se
rv

er
(8

)
Se

rv
er

(1
0)

Se
rv

er
(1

1)
Se

rv
er

(1
2)

Se
rv

er
(1

3)

S1
S2

S3
S2

S3
S1

S3
S2

S1
S2

S1

M
sg

iz
e(

op
i, o

p j)
- M

es
sa

ge
 si

ze
 se

nt

fr
om

 o
pe

ra
tio

n
op

i t
o

op
er

at
io

n
op

j,
as

su
m

in
g

(o
p i,o

p j)
∈

 Ε
 (M

bi
ts

)

Li
ne

 sp
ee

d
(M

bp
s)

 b
et

w
ee

n
se

rv
er

s
s i a

nd
 s j

T co
m

m
(o

p i, o
p j)

- C
om

m
un

ic
at

io
n

tim
e

ne
ed

ed
 fo

r
th

e
co

m
m

un
ic

at
io

n
of

 o
pe

ra
-

tio
ns

 o
p i a

nd
 o

p j (
m

se
c)

0.
00

66
6

10
0

0.
06

66

78 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

experimental Methodology

We have varied several parameters of the
workflow-network configurations used. We use
the results of Head et al. (2005) and Ng, Chen,
and Greenfield (2004) to determine appropriate
values for our experiments. In Ng et al. (2004),
three types of SOAP messages are used: simple
messages of 873 bytes (0.00666 Mbits), medium
messages of 7581 bytes (0.057838 Mbits), and
complex messages of 21392 bytes (0.163208
Mbits). We assume 4, 10, and 20 ms as the
time needed for the execution of a web service
operation (this includes the serialization, net-
work time, deserialization and server execution
time). Assuming a value of 37% for the parsing
of a message, this results in 2.5, 6.3 and 12.7
M cycles for simple, medium and complex
messages, respectively (over a 1.6 MHz CPU).
Based on the previous in our experiments we
assume simple, medium and heavy web service
operations, requiring respectively, 10, 20 and
30 M cycles.

In each experiment we considered a
specific workflow of web service operations
deployed over a specific network of servers.
The operations’ cost, the associated messages,
the computational power of the servers and the
network characteristics were randomly selected
based on the probabilities given in Table 3.

In all the graphical representations, the
horizontal axis of each diagram depicts the
execution time and the vertical axis the time

penalty. The closer a solution to point (0, 0),
the better. Assuming different weights for the
two measures, different distance measures could
also be considered. The average point of the
search space of solutions is also depicted as a
measure of how a “random” choice of deploy-
ment would possibly be. In small configurations
this involves all the solutions of the search
space; in large configurations a sample of 32,000
solutions.

experiments for a Line:
Line configuration

The experiments performed for this con-
figuration involve all four variants of the
proposed algorithm. Specifically, we have
experimented with (a) single dimension (left-
to-right) Line-Line algorithm with the ap-
plication of Fix_Bad_Bridges (denoted as 1d
with Fix), (b) single dimension (left-to-right)
Line-Line algorithm without the application
of Fix_Bad_Bridges (denoted as 1d no Fix),
(c) double dimension (left-to-right and right
to left) Line-Line algorithm with the applica-
tion of Fix_Bad_Bridges (denoted as 2d with
Fix), and (d) double dimension (left-to-right
and right to left) Line-Line algorithm without
the application of Fix_Bad_Bridges (denoted
as 2d no Fix).

Figure 14 presents four experiments for
larger configurations (each reported in the
figure). Due to the vastness of the search space,

Table 3. Experimental configuration

MsgSize(Oi, Oi+1) 0.006660 Mbits with probability 25%
0.057838 Mbits with probability 50%
0.163208 Mbits with probability 25%

Line_Speed(Si, Si+1) (for Line topolo-
gies)

10 Mbps with probability 25%
100 Mbps with probability 50%
1000 Mbps with probability 25%

C(Oi) 10 M cycles with probability 25%
20 M cycles with probability 50%
30 M cycles with probability 25%

P(Si) 1 GHz with probability 25%
2 GHz with probability 50%
3 GHz with probability 25%

Journal of Database Management, 21(4), 60-90, October-December 2010 79

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the reported average concerns 32,000 randomly
sampled solutions. Τhe different variants of the
algorithm do not show significant differences,
while presenting satisfactory solutions with re-
spect to both the time penalty and the execution
time. Observe how far from the optimal solution
the average solution is placed (upper right part
of each figure). Similar behaviour was obtained
in experiments for smaller configurations of
workflows with 8 operations over network
topologies of 3 servers.

experiments for a Line – bus
configuration

We have conducted all classes of experiments
with all the proposed algorithms participat-
ing for the configuration of linear workflows
executed over a network bus. In Figure 15, we
depict comparative results of the employed
algorithms by computing the average solution
of 50 experiments. We test workflows of 19

operations over network topologies of (a) 5, (b)
10, and (c) 15 servers connected through a bus
whose line speed takes one out of the follow-
ing values: 1, 10, 100 Mbps. Both Tie Resolver
algorithms provide some improvements in both
dimensions, whereas the FL- Merge Message’s
Ends improves the execution time to a certain
extent by deteriorating the load balance. The
HeavyOps-LargeMsgs algorithm produces quite
acceptable execution times, esp. for small bus
capacities and practically seems to be the more
stable solution compared to all the others. It is
interesting that the behavior of the HeavyOps-
LargeMsgs algorithm remains quite stable
even when the fraction of operations to servers
(denoted as K) increases.

In terms of the quality of the solution,
HeavyOps-LargeMsgs produces (2.9%, 12%)
deviations for execution time/time penalty for
1Mbps bus, and (29%,0.3%) for 100 Mbps bus.

As an overall result, we can safely argue
that FL-Tie Resolver2 seems to provide quite fair

Figure 14. Results for the Line-Line Algorithm in various configurations

80 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

solutions, whereas the HeavyOps-LargeMsgs
algorithm is slightly worse in this category, but
provides consistently good execution times in
all configurations.

experiments for a random
graph – bus configuration

In the case of workflows with random graph
structures, we have discerned three cases: (a)
bushy, (b) lengthy and (c) hybrid graphs. Bushy
graphs have a high percentage of decision
nodes (and are therefore shorter in length, but
with a higher fan-out). Lengthy graphs have a
small percentage of decision nodes and involve
lengthy paths. Hybrid graphs are somewhere in
the middle. Specifically, bushy graphs involve

a 50%-50% balance of decision/operational
nodes, lengthy graphs involve a 16%-84%
balance and hybrid graphs a 35%-65% one.

In Figure 16 we see four experiments for
bushy workflows of 19 operations over topolo-
gies of (a) 5 or (b) 10 servers connected through
a bus whose line speed takes one out of the
following values: 1, 100 Mbps. The difference
is in the number of servers and the speed of the
bus. Algorithm Fair Load–Merge Messages’
Ends seems to perform better than the rest,
especially when the speed of the bus is slow.

In Figure 17 we see the respective experi-
ment for lengthy workflows. It is interesting to
see that in contrary with the previous experi-
ment, Fair Load–Merge Messages’ Ends can

Figure 15. Line – Bus algorithms with 19 operations in the workflow

Journal of Database Management, 21(4), 60-90, October-December 2010 81

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

give very bad solutions. The most reliable al-
gorithm for this category seems to be HeavyOps-
LargeMsgs. It is also interesting that Fair Load
can be better than its tie-resolver improvements.

In Figure 18, we depict the average values
of 50 experiments for workflows of 19 opera-
tions over 10 servers. As one can see, the results
are not very different from the ones for the
previous topology. For almost all configura-
tions, the HeavyOps-LargeMsgs algorithm
appears to be a clear winner: it is consistently
the best choice in terms of execution time and
it also appears to be the quite close to the best
solutions in terms of fairness. FL-Merge Mes-
sage’s Ends appears to be quite close in terms

of execution time (in fact, in individual ex-
periments it has occasionally outperformed
HeavyOps-LargeMsgs), still it is quite unstable
with respect to its fairness.

In terms of the quality of the solution,
HeavyOps-LargeMsgs produces (29%, 1.8%)
deviations for execution time/time penalty for
the 1Mbps bus, and (0%, 0%) for the 100 Mbps
bus.

Summary of experimental
findings

In summary, our experimental findings are as
follows:

Figure 16. Graph – bus algorithms for bushy workflows

82 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

1. In the Line-Line configurations, all algo-
rithms behave well and give a solution
quite close to the optimal one. The variant
of double direction Line-Line algorithm
appears to perform slightly better, whereas
the fixing of bad bridges appears to work
only when the messages are really heavy
for the network connections involved.

2. In the Line-Bus configurations, the algo-
rithm Fair Load–Tie Resolver2 is the most
appropriate for fair solutions, whereas the
algorithm Fair Load–Merge Messages’
Ends and Heavy Operations–Large Mes-
sages are the most appropriate whenever
execution time is more important.

3. In the case of Graph-Bus configurations,
the same observations still hold. In the
case of bushy workflows, the algorithm
Fair Load–Merge Messages’ Ends is better
than Heavy Operations–Large Messages,
especially with respect to the execution
time.

dIScuSSIon

Summary of findings, importance and im-
plications. Summarizing the proposed
method, we can argue that there is in-
deed the possibility of finding efficient
deployments of services to servers for
composite web service workflows. We
have examined different, reasonable
topologies of servers and discovered that
more than one algorithm can be applied
to provide good solutions to the service
deployment problem.

This result is important since it covers an open
gap in the related literature. As already men-
tioned, although related research deals with the
problems of guaranteeing quality-of-service
characteristics once the allocation of services
to servers is performed. This work provides
the means to the administrator to explore al-
ternative possibilities for this deployment and
in fact, it produces solutions of good quality
as already demonstrated at the experimental

section. Both researchers and practitioners can
employ the proposed algorithms as a first step
before the subsequent fine tuning that the rest
of the methods discussed in the related work
section provide.

Fitness within the broader perspective. Tak-
ing a step back and looking at the wider
view of both research and practice in the
area of software systems engineering, the
software challenge of the near future is
dealing with the dramatically increasing
complexity and scale of the systems
that we build (Northrop et al., 2006).
Software systems that rely on Internet
technologies in particular must cope with
various constantly growing dimensions of
scale including load, heterogeneity, broad
distribution, cardinality of services that
are available and should be coordinated.
Therefore, from this boarder perspective
the most important factor that affects the
way web services should evolve in the
near future is the matter of scale. Appar-
ently, the movement towards a service-
oriented architecture of software at the
web will drive more and more people and
organizations to export functionality at the
web. As a service provider exports more
and more functionality via services over
the web, the more popular, complicated
and sophisticated the composite work-
flows that the users construct will be.
Thus, it is highly important that efficient
execution is achieved in the back-stage
infrastructure of a service provider.

The contribution of this work can serve as
the basis for pursuing performance improvements
in the case of service compositions that span the
borders of several systems. The advent of Web
2.0 brought us the notion of user-defined mash-
ups (see Benslimane, Dustdar, & Sheth, 2008;
Maximilien, Ranabahu, & Gomadam, 2008) that
integrate services possibly from several provid-
ers via a user-friendly graphical user interface
that allows a naïve user to try and construct
an application in an on-line fashion. Thus, the

Journal of Database Management, 21(4), 60-90, October-December 2010 83

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

development task moves from the experienced
programmer to the less skilled users (see Firat,
Wu, & Madnick, 2009; Kongdenfha, Benatal-
lah, Vayssière, Saint-Paul, & Casati, 2009).
There is a plethora of mashup applications like
Yahoo Pipes (http://pipes.yahoo.com/), Google
Maps (http://maps.google.com/), IBM Damia
(http://services.alphaworks.ibm.com/damia/),
and Microsoft Popfly (http://www.popfly.com/).
The on-line nature of such applications makes
the optimization of the execution of a workflow
more and more important. Fast algorithms that
deduce memory allocation, execution and choice
of services in an on-line fashion, appropriate for
end-users are highly important. This paper can

provide a useful basis for subsequent research
in this direction.

Limitations and possibilities for further re-
search. A clear limitation of the existing
method is the fact that related research has
not matured with respect to the cost models
for web service execution. Currently, we
do not have the experimental findings (also
due to the youth of this technology) to be
able to predict with accuracy the behavior
of a web service. Therefore the designer
needs to perform micro-benchmarks to
assess the cost of the operations. More-
over, phenomena of load bursts are very

Figure 17. Graph – bus algorithms for lengthy workflows

84 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

common in the internet; this is where the
fine-tuning fits. Still, some considerations
for burst-handling have not been covered
and could be explored as part of future
work. Again, before that, we need some
good experimental evidence of how bursts
happen over the internet – to the best of
our knowledge no such data sets exist.

Further Extensions Other extensions for this
work involve the case of multiple work-
flows (instead of just a single one) and the
detailed study of the proposed algorithms
whenever user-defined constraints are

given. For instance, apart from the overall
execution time, the response time of indi-
vidual operations can also be considered
as part of the cost model.

concLuSIon

In this paper, we have dealt with the problem of
discovering the best possible deployment of the
operations of a certain workflow given its struc-
ture and a topology of servers. To the best of our
knowledge, this is the first attempt towards the

Figure 18. Graph – bus algorithms organized per graph structure

Journal of Database Management, 21(4), 60-90, October-December 2010 85

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

issue. Thus, our approach fits nicely with existing
efforts that are concerned with the fine-tuning of
the workflow to obtain desired levels of quality
of service as it provides the necessary first step
of service deployment, before the fine-tuning
can start. We have measured efficiency in terms
of two cost functions that concern the execution
time of the workflow and the fairness of the load
on the servers. We have studied different topolo-
gies for the workflow structure and the server
connectivity and proposed greedy algorithms for
each combination. Our experiments indicate that
algorithm HeavyOps-LargeMsgs is a good choice
for all the considered configurations.

AcknoWLedgMent

We would like to thank the anonymous reviewers
of this paper, as well as the reviewers of the first
version of this paper (accepted in SEIW 2007)
for their constructive comments. This research
was co-funded by the European Union in the
framework of the program “Pythagoras IΙ” of the
“Operational Program for Education and Initial
Vocational Training” of the 3rd Community
Support Framework of the Hellenic Ministry
of Education, funded by 25% from national
sources and by 75% from the European Social
Fund (ESF).

referenceS

Alonso, G., Casati, F., Kuno, H., & Machiraju, V.
(2004). Web Services concepts, architecture and
applications. New York: Springer.

Andrews, T., Curbera, F., Dholakia, H., Golang, Y.,
Klein, J., Leymann, F., et al. (2003). Business process
execution language for Web services version 1.1. Re-
trieved from http://www.ibm.com/developerworks/
library/ws-bpel/

Benslimane, D., Dustdar, S., & Sheth, A. (2008).
Services Mashups: The New Generation of Web Ap-
plications. IEEE Internet Computing, 12(5), 13–15.
doi:10.1109/MIC.2008.110

Burstein, M., Bussler, C., Finin, T., Huhns, M.,
Paolucci, M., & Sheth, A. (2005). A semantic Web
services architecture. IEEE Internet Computing, 9,
52–61. doi:10.1109/MIC.2005.96

Cardoso, J., Sheth, A., Miller, J., Arnold, J., & Ko-
chut, K. (2004). Quality of service for workflows and
Web service processes. Journal of Web Semantics,
1(3), 281–308. doi:10.1016/j.websem.2004.03.001

Chen, Y., Zhou, L., & Zhang, D. (2006). Ontology-
supported Web service composition: An approach
to service-oriented knowledge management in cor-
porate services. Journal of Database Management,
17(1), 67–84.

Cherkasova, L., & Gupta, M. (2004). Analysis of
enterprise media server workloads: access patterns,
locality, content evolution, and rates of change. ACM/
IEEE Transactions on Networking, 12(5), 781-794.

Cherkasova, L., & Phaal, P. (2002). Session-based
admission control: A mechanism for peak load man-
agement of commercial web sites. IEEE Transac-
tions on Computers, 51(6), 669–685. doi:10.1109/
TC.2002.1009151

Constantinescu, I., Binder, W., & Faltings, B. (2005).
Optimally distributing interactions between com-
posed semantic Web services. In A. Gomez-Perez &
J. Euzenat (Eds.), Proceedings of the 2nd European
Semantic Web Conference (pp. 32-46).

Conti, M., Kumar, M., Das, S. K., & Shirazi, B. A.
(2002). Quality of service issues in internet Web
services. IEEE Transactions on Computers, 51(6),
593–594. doi:10.1109/TC.2002.1009145

Ding, Y., Fensel, D., & Klein, A. B. O. (2002). The
semantic Web: yet another hip? Data & Knowledge
Engineering, 41(3), 205–227. doi:10.1016/S0169-
023X(02)00041-1

Erickson, J., & Siau, K. (2008). Web Services,
service-oriented computing, and service-oriented
architecture: separating hype from reality. Journal
of Database Management, 19(3), 42–54.

Firat, A., Wu, L., & Madnick, S. (2009). General
Strategy for Querying Web Sources in a Data Federa-
tion Environment. Journal of Database Management,
20(2), 1–18.

Geer, D. (2003). Taking steps to secure web services.
IEEE Computer, 36(10), 14–16.

Gillmann, M., Weikum, G., & Wonner, W. (2002).
Workflow management with service quality guaran-
tees. In D. DeWitt (Ed.), ACM SIGMOD International
Conference on Management of Data (pp. 228-239).

86 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Gravano, L., & Papakonstantinou, Y. (1998). Mediat-
ing and meta searching on the internet. A Quarterly
Bulletin of the Computer Society of the IEEE Techni-
cal Committee on Data Engineering, 21(2), 28–36.

Head, M., Govindaraju, M., Slominski, A., Liu, P.,
Abu-Ghazaleh, N., van Engelen, R., et al. (2005). A
benchmark suite for SOAP-based communication in
Grid Web services. In W. Kramer (Ed.), ACM/IEEE
Conference on High Performance Networking and
Computing (pp. 19-20).

Kongdenfha, W., Benatallah, B., Vayssière, V., Saint-
Paul, R., & Casati, F. (2009). Rapid development of
spreadsheet-based web mashups. In Proceedings of
the 18th International Conference on the World Wide
Web (pp. 851-860).

Laoutaris, N., Telelis, O., Zissimopoulos, V., &
Stavrakakis, I. (2006). Distributed selfish replica-
tion. IEEE Transactions on Parallel and Distrib-
uted Systems, 17(12), 1401–1413. doi:10.1109/
TPDS.2006.171

Leff, A., Wolf, J. L., & Yu, P. S. (1993). Replication
algorithms in a remote caching architecture. IEEE
Transactions on Parallel and Distributed Systems,
4(11), 1185–1204. doi:10.1109/71.250099

Lewis, P. M., Bernstein, A. J., & Kifer, M. (2001). Da-
tabases and transaction processing: An application-
oriented approach. Reading, MA: Addison-Wesley.

Leymann, F., & Roller, D. (2000). Production work-
flow: concepts and techniques. Upper Saddle River,
NJ: Prentice Hall.

Maximilien, E. M., Ranabahu, A., & Gomadam, K.
(2008). An Online Platform for Web APIs and Service
Mashups. IEEE Internet Computing, 12(5), 32–43.
doi:10.1109/MIC.2008.92

Maximilien, E. M., & Singh, M. P. (2004). A
framework and ontology for dynamic web services
selection. IEEE Internet Computing, 8(5), 84–93.
doi:10.1109/MIC.2004.27

Northrop, L., Feiler, P., Gabriel, R. P., Goodenough,
J., Linger, R., & Longstaff, T. (2006). Ultra Large
Scale Systems. The Software Challenge of the Fu-
ture. Software Engineering Institute. Pittsburgh, PA:
Carnegie Mellon.

Papazoglou, M. (2003). Web services and business
transactions. World Wide Web (Bussum), 6(1), 49–91.
doi:10.1023/A:1022308532661

Papazoglou, M., & Kratz, B. (2007). Web services
technology in support of business transactions.
Service Oriented Computing and Applications, 1(1),
51–63. doi:10.1007/s11761-007-0002-3

Papazoglou, M., Traverso, P., Dustdar, S., & Ley-
mann, F. (2007). Service-oriented computing: State
of the art and research directions. IEEE Computer,
40(11), 64–71.

Papazoglou, M., & van den Heuvel, W. J. (2007). Ser-
vice oriented architectures: Approaches, technologies
and research issues. Very Large Database Journal,
16(3), 389–415. doi:10.1007/s00778-007-0044-3

Rezgui, A., Bouguettaya, A., & Eltoweissy, M. Y.
(2003). Privacy on the Web: facts, challenges, and
solutions. IEEE Security and Privacy, 1(6), 40–49.
doi:10.1109/MSECP.2003.1253567

Sakellariou, R., & Zhao, H. (2004). A low-cost re-
scheduling policy for efficient mapping of workflows
on Grid systems. Science Progress, 12(4), 253–262.

SOAP. (2003). Simple Object Access Protocol ver-
sion 1.2. Retrieved from http://www.w3.org/TR/
soap12-part0

Srivastava, U., Widom, J., Munagala, K., & Motwani,
R. (2005). Query optimization over Web services.
Retrieved from http://dbpubs.stanford. edu:8090/
pub/2005-30

Vinoski, S. (2002). Web services interaction models,
part 1: current practice. IEEE Internet Computing,
6(3), 89–91. doi:10.1109/MIC.2002.1003137

WSDL. (2003). Web services description language
version 2.0. Retrieved from http://www.w3.org/
TR/wsdl20

Yu, Q., Liu, X., Bouguettaya, A., & Medjahed, B.
(2008). Deploying and managing Web services: is-
sues, solutions, and directions. Very Large Database
Journal, 17, 537–572. doi:10.1007/s00778-006-
0020-3

Zeng, L., Benatallah, B., Ngu, A., Dumas, M.,
Kalagnanam, J., & Chang, H. (2004). Qos-aware
middleware for web services composition. IEEE
Transactions on Software Engineering, 30(5),
311–327. doi:10.1109/TSE.2004.11

Journal of Database Management, 21(4), 60-90, October-December 2010 87

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Konstantinos Stamkopoulos received his Bachelor’s degree from the Department of Computer
Science of the University of Ioannina, Greece in 2004 and his MSc in Computer Science from
the same department in 2006. His research interests include web services, especially in their
interaction with databases.

Evaggelia Pitoura received her B.Sc. from the University of Patras, Greece in 1990 and her
M.Sc. and Ph.D. in computer science from Purdue University in 1993 and 1995, respectively.
Since June 2005, she is an associate professor at the Department of Computer Science of the
University of Ioannina, Greece where she leads the distributed data management group. Her
publications include more than 70 articles in international journals and conferences and a book
on mobile computing. She has also co-authored two tutorials on mobile computing for IEEE
ICDE 2000 and 2003. She is recipient of the best paper award of IEEE ICDE 1999 and two
“Recognition of Service Awards” from ACM.

Panos Vassiliadis received his PhD from the National Technical University of Athens in 2000.
He joined the Department of Computer Science of the University of Ioannina in 2002. Currently,
Dr. Vassiliadis is also a member of the Distributed Management of Data (DMOD) Laboratory
(http://www.dmod.cs.uoi.gr/). His research interests include data warehousing, web services and
database design and modeling. Dr. Vassiliadis has published more than 25 papers in refereed
journals and international conferences in the above areas.

Apostolos Zarras received his B.Sc. in Computer Science in 1994 from the Computer Science
Department, University of Crete. From the same department he received his M.Sc. in Distributed
Systems and Computer Architecture. In 1999 he received his Ph.D in Distributed Systems and
Software Architecture from the University of Rennes I. From 2004 until now he holds a position
at the Department of Computer Science of the University of Ioannina. Apostolos Zarras has
published over 20 papers in international conferences, journals and magazines. He is currently
a member of the IEEE computer society. His research interests include middleware, model-driven
architecture development, quality analysis of software systems and pervasive computing.

88 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

APPendIx A: bAckground terMInoLogy And StAndArdS

SOAP. The Simple Object Access Protocol (SOAP) is the means that facilitates web service
communication and the basis for the development of practically all other protocols in the
area. SOAP specifies a message format for the communication with Web services along
with the bindings to HTTP and SMTP protocols for the delivery of messages. The com-
munication in SOAP is one-way and asynchronous. The messages are XML documents,
consisting of envelopes comprising a header, with meta-information for the processing of
the message and a body with the actual contents of the message.

WSDL. The Web Services Description Language (WSDL) is a specification language for the
generation of XML documents that (a) describe and (b) automate the deployment of web
services. In practice, WSDL documents play the role of IDL’s in conventional middleware:
they provide a description of the available interfaces of a web service and at the same
time, they can serve as an input to the appropriate compiler to generate client stubs and
server skeletons.

WSDL descriptions are decomposed into two parts, or perspectives. In the logical perspec-
tive, α WSDL document specifies the interface of a web service. In the case of web services, the
traditional middleware interface is replaced by a set of messages that the web service generates or
receives. In practice, there are four modes that a service can use to interact with other programs:
one-way (simply receives messages), request-response (sends a request message and waits for an
answer), solicit-response (receives a message and responds appropriately) and notification (sends
a message). A fault message can be sent, in some of these cases, whenever an error is encoun-
tered. This kind of modus operandi in WSDL is regulated by operations. In fact, operations are
the counterpart of “interface” in traditional middleware. Operations are grouped by port types.
Intuitively, a port type is a collection of operations, offered by the same organization, towards
semantically similar functionalities. Port types are the coarser granule of logical organization
in the WSDL specification. At the other end of the spectrum, the finest granule in the logical
perspective involves message parts. Each message is an XML document organized in parts. Each
part is assumed to be a typed granule of information; still, complex parts can be defined, too.

The logical perspective of WSDL documents is accompanied by the physical perspective,
responsible for the description of the communication protocols and the ports where functionality
is exposed. A binding specifies how a certain operation will communicate with the rest of the
world; this is typically done via the HTTP or the SMTP (e-mail, that is) protocols. Technicalities
of the message that is transported are also hidden behind the style of the binding. At the same
time, a port (or end-point) offers a URI for a certain binding. Naturally, more than one bindings
can be offered for the same operation and consequently, more than one ports. A WSDL service
is a collection of ports, i.e., a set of URI’s where functionality of the organization is exported. It
is interesting that, in the WSDL specification, a service is an object in the physical perspective:
the logical definitions are part of the specification but embodied in the overall service.

WSDL acts both as a service description language and a service definition language. As
a description language, the WSDL documentation is a form of contract that describes the set
of messages that the services guarantees to receive (input messages) and deliver (output mes-
sages). As a definition language, WSDL is employed as the means to generate the actual code
that is exported in order to invoke the service. This follows a traditional IDL approach, where
the development and invocation of an application are guided through an IDL definition both at
the server and at the client (through the well-known stub/skeleton mechanism).

Journal of Database Management, 21(4), 60-90, October-December 2010 89

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

BPEL. The Business Process Execution Language (BPEL) is employed in order to specify abstract
compositions of web services as well as their concrete coordination. The basic entity in
the component model of BPEL is the activity. Activities can be classified as basic (simple,
that is) and structured (composite). The orchestration of web service scenarios involves
the possibility of combining services through sequence, switch (conditional routing), pick
(non-deterministic choice), while and flow (parallel) activities. Data management is handled
through a blackboard approach, where a set of “global” variable names handles the flow
of data among activities. The selection of services involves the introduction of partner
link types, i.e., roles that exchange messages and partner links, which are specific services
materializing these roles. Exceptions are managed in a try-catch approach.

APPendIx b: detAILed InforMAtIon on
deVIAtIonS for tHe derIVed SoLutIonS

Table 4, 5 and 6 depict detailed results for the deviation from the optimal values for a large-size
configuration.

Table 4. Line-Bus configuration. All solutions for 100 experiments with 8 operations, 3 servers

1 Mbps Bus 100 Mbps Bus

Texecute Time Penalty Texecute Time Penalty

Fair Load 70% 0.2% 44% 1%

FL-Tie Resolver1 52% 0.2% 40% 1%

FL-Tie Resolver2 48% 0.2% 37% 1%

FL-MergeMsgEnds 37% 34% 39% 32%

HeavyOps-LargeMsgs 17% 19% 42% 2%

Table 5. Line-Bus configuration. Sampling of 32,000 solutions for 50 experiments with 19 op-
erations, 5 servers

1 Mbps Bus 100 Mbps Bus

Texecute Time Penalty Texecute Time Penalty

Fair Load 75% 0.08% 31% 0%

FL-Tie Resolver1 32% 0.08% 26% 0%

FL-Tie Resolver2 24% 0.08% 25% 0%

FL-MergeMsgEnds 26% 34% 32% 36%

HeavyOps-LargeMsgs 2.9% 12% 29% 0.3%

90 Journal of Database Management, 21(4), 60-90, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Table 6. Graph-Bus configuration. Sampling of 32,000 solutions for 50 experiments with 19
operations (65% operational, 35% conditional), 5 servers

1 Mbps bus 100 Mbps bus

Texecute Time Penalty Texecute Time Penalty

Fair Load 63% 0% 1.7% 0%

FL-Tie Resolver1 56% 0% 1.7% 0%

FL-Tie Resolver2 53% 0% 0.9% 0%

FL-MergeMsgEnds 34% 32% 4.5% 30%

HeavyOps-LargeMsgs 29% 1.8% 0% 0%

