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IntroductIon 

A web service is typically defined in the litera-
ture –for example, see Alonso, Casati, Kuno 
and Machiraju (2004)—as an interface that 
describes a collection of operations provided 
through the internet and accessed through 
standard XML messages. The appropriate de-
ployment of web service operations at a service 
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provider site plays a critical role in the efficient 
provision of services to clients. To effectively 
provide solutions to users’ tasks, web services 
are composed in workflows (see Chen, Zhou, 
& Zhang, 2006) that combine intermediate ser-
vice results towards achieving a more complex 
goal. Such workflows are typically specified 
in appropriate languages such as BPEL (see 
Andrews, et al., 2003).
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Motivating example

Assume an electronic system that assigns rendez-
vous for patients that need to consult doctors. A 
workflow that arranges a meeting depending on 
the availability of a doctor is depicted in Figure 
1. Once the meeting has been conducted, the 
system registers any prescribed medicines and 
communicates via operations with social security 
agencies to register the assignment of medicines 
to patients. The detailed description of these 
operations is not necessary for the purpose of the 
paper; still it is important to note that there are 
operational services that receive requests (in the 
form of XML messages) to which they react (by 
sending XML messages) and decision operations 
that regulate which operations are to be invoked 
depending on the state of the workflow.

The whole workflow is supported by web 
service operations, deployed by the ministry of 
health and social security. The ministry has 5 
servers that can host any of the 15 operations 
of the workflow and the problem is to decide 
which of the possible 515 configurations of the 
deployment of operations to servers (a) provides 
the fastest closing of each patient case and (b) 
loads each server in a fair way, so that whenever 
additional workflows are deployed, or a server 
fails, a reasonable load scale-up is still possible.

background and Problem 
Statement

In the problem we are dealing with in this paper, 
we assume that a service provider has several 

servers over which web service operations can 
be deployed. Then, given a workflow and the 
topology of the servers, the most efficient de-
ployment of the operations must be discovered. 
Different topologies refer to the possibility of 
different networking infrastructure for the serv-
ers; this might include particularities relating to 
the characteristics of the machinery of the data 
center, its geographical distribution, etc. The 
workflows of the organization that we need to 
deploy might be of arbitrary complexity; rang-
ing from simple linear workflows to graphs of 
large complexity.

Unfortunately, so far, related work has not 
equipped us with efforts towards the solution 
of the problem. There are several works in the 
area of design, composition and security of web 
services as well as works on the fine tuning of 
web service workflows. Concerning the latter, 
there are several works that deal with the regula-
tion of the parameters of a previously obtained 
server configuration in order to achieve Quality 
of Service characteristics (see for example, Gill-
mann, Weikum and Wonner (2002)). However, 
none of the related research efforts covers the 
problem of the placement of web services to 
servers, once the operations and the topology 
of the servers are given. In other words, we 
provide the initial step for the administrator or 
engineer who wants to fine tune the architecture 
of his system: before fine-tuning for quality 
of service an initial, high quality allocation of 
operations to servers must be given; if such an 
allocation is unsatisfactory, then the approaches 
of the related work can be used.

Figure 1. Exemplary workflow
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contributions

In our approach, efficiency is measured in terms 
of two cost functions that concern the execu-
tion time of the workflow and the fairness of 
the load distribution among the servers. The 
latter means that all servers spend the same 
amount of time for processing the workflow. 
This results in a double optimization problem 
with antagonistic individual measures. We study 
different topologies for both the workflow and 
the network of servers and propose algorithms 
for each case. The contribution of this work lies 
in (a) the definition of a model which describes 
the problem, and (b) the proposed algorithms 
for its solution. Moreover, we have thoroughly 
experimented and assessed all the proposed 
algorithms.

This paper is organized as follows: First, 
we discuss related work. We then start with a 
formal definition of the problem and introduce 
algorithms for the deployment of web service 
operations at the appropriate servers. We also 
present experimental results, summarize our 
findings, and discuss issues of future research.

reLAted Work

Service-Oriented computing has been a very 
active field of research over the past few 
years (for general reading around the context 
of Service Oriented Architectures (SOA) see 
Erickson & Siau, 2008; Papazoglou & van den 
Heuvel, 2007; Papazoglou, Traverso, Dustdar, 
& Leymann, 2007).

The approach proposed in this paper, 
focuses at the deployment stage of the Web 
services development lifecycle. Concerning 
the development of Web services, Yu, Liu, 
Bouguettaya, and Medjahed (2008) proposed a 
comparison framework for relevant approaches. 
The proposed framework consists of a number 
of key properties involved in facilitating the 
development of Web services and shall be 
used hereafter towards orienting the proposed 
approach with respect to these features and 
comparing it with other related approaches. 

Briefly, the key properties identified by Yu et 
al. (2008) are interoperability, security and pri-
vacy, quality of Web services and management.

Interoperability, refers to the ability of 
Web services to collaborate towards achieving 
a particular goal. As pointed out by Medjahed, 
Benatallah, Bouguettaya, Ngu, and Elmagar-
mid, (2003), the basic means for achieving this 
property are standards and ontologies (e.g. Ding, 
Fensel, & Klein, 2002), from a specification 
point-of-view, and mediation, from a technical 
point of view (e.g. Gravano & Papakonstan-
tinou, 1998). Our approach does not specifi-
cally contribute in achieving interoperability. 
Nevertheless, we rely on the assumption that 
the composite services that serve as input to the 
proposed algorithms are able to interoperate as 
they conform to widely accepted standards such 
as WSDL, SOAP and BPEL.

As discussed by Geer (2003), security in 
the field of Web services management is mainly 
focused in managing the trade-off between high 
interoperability and low security risks. Privacy, 
on the other hand relates to careful reasoning 
about the data that can be released via Web 
services (Rezgui, Bouguettaya, & Eltoweissy, 
2003). The algorithms proposed by our approach 
do not embed means for dealing with security 
and privacy. Despite their importance, these is-
sues are orthogonal to the issue of scheduling the 
deployment of Web services, which is our main 
concern. Nevertheless, we assume that the use 
of the proposed algorithms shall be employed 
in well controlled environments consisting of 
secure servers. Moreover, we assume that the 
design and implementation of the composite 
services that serve as input to the proposed 
algorithms shall account for privacy issues.

The field of quality of Web services relates 
to the problem of selecting a Web service out 
of a set of available competing services with 
respect to particular quality characteristics 
(Vinoski, 2002). Quality management is very 
important for the interaction of the users with 
web services. As Burstein et al. (2005) men-
tion: “QoS metrics can affect how services 
are advertised, can be the topic of negotiation 
processes, and must be monitored during 
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enactment; thus, when clients’ procedures or 
workflows involve multiple services, the un-
derlying discovery, coordination, and execution 
systems must be able to monitor QoS measures 
and control the services accordingly”. Various 
quality characteristics of interest that can be 
used to characterize Web services can be found 
in the literature (e.g., Maximilien & Singh, 
2004; Conti, Kumar, Das & Shirazi, 2002; 
Zeng, Benatallah, Ngu, Dumas, Kalagnanam, 
& Chang, 2004) and a very useful taxonomy 
of them has been proposed by Yu et al. (2008). 
The proposed taxonomy distinguishes between 
runtime quality characteristics such as execu-
tion time, availability, reliability, integrity and 
business quality characteristics such as financial 
costs, reputation and conformance to standards. 
In our approach we consider the overall quality 
of a composite service that should be deployed 
over a set of available servers. The quality 
characteristic of interest to us is the composite 
service execution time. Our approach is com-
plimentary to approaches related to service 
selection out of a set of competing services. In 
particular, the proposed algorithms for schedul-
ing the deployment of composite Web services 
are employed right after the selection of the 
constituent services that are going to be used in 
a composite service. The quality characteristics 
of the constituent services as well as the qual-
ity characteristics of the underlying available 
infrastructure (i.e. servers and network) are the 
main input parameters of the cost model used 
by the proposed algorithms.

Our approach is most closely related to the 
management of Web services. Nevertheless, as 
Yu et al. (2008) discuss, this issue is also quite 
broad and encompasses many different dimen-
sions including control management, change 
management and optimization.

Control management mainly refers to the 
coordination of Web services towards provid-
ing certain dependability guarantees such as 
the ones achieved through atomicity, isola-
tion and other transactional properties (for a 
discussion of the related issues and protocols 
see Papazoglou, 2003; Papazoglou & Kratz, 
2007). This issue is orthogonal to our approach 

that deals with the deployment of composite 
Web services. We assume that any required 
coordination logic is already embedded in the 
Web services workflows that serve as input to 
the proposed algorithms.

Change management deals with the main-
tenance and configuration management of Web 
service workflows. Related approaches deal 
with changes in Web service workflows trig-
gered either by evolving business requirements 
or by the evolving quality characteristics of the 
participating services.

Our work falls in the category of optimi-
zation where the general objective is to tune a 
Web service composition towards achieving a 
number of desired quality characteristics. Into 
this context, Cardoso, Sheth, Miller, Arnold, 
and Kochut (2004) provide a model that char-
acterizes the quality of a composite service 
based on response time, cost and reliability. The 
workflows considered include AND and OR 
decision nodes. The authors discuss METEOR, a 
system that traces the behavior of the workflow 
over time and warns users whenever the QoS 
dangerously reaches the thresholds originally set 
by the users. Gillmann, Weikum, and Wonner 
(2002) present tuning techniques for a workflow 
management system. The goal of the paper is 
the optimal tuning of the parameters of an en-
vironment where composite workflows are to 
be executed over a network of servers, in a way 
that quality of service concerning response time, 
availability and throughput is guaranteed. There 
is a huge number of configurable parameters, 
several architectural options for the involved 
servers (workflow servers, application servers, 
communication servers), and most importantly, 
service replicas. A Markov model is used for 
the determination of the quality of a workflow 
and a heuristic algorithm for the overall tun-
ing of the system. Zeng et al. (2004) propose a 
method that, given a desired quality of service 
for a composite web service, the most ap-
propriate elementary web services are chosen 
out of a set of candidate services with similar 
functionality. Appropriateness is decided on the 
grounds of execution cost, duration, reliability, 
availability and reputation. Finally, Salellariou 
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and Zhao (2004) propose a method for the 
reconfiguration of a system whenever the ob-
served quality of service is not satisfactory. A 
scheduling algorithm involving the starting and 
ending timepoints for a workflow is employed. 
The paper proposes the reallocation of tasks 
through this scheduling algorithm only when-
ever changes in the monitored system measures 
are significant. All these works investigate the 
problem of dynamically tuning workflows to 
achieve desired quality characteristics; still 
none of them deals with the deployment stage 
of the composite services lifecycle, which must 
take place beforehand. Composite service de-
ployment is taken for granted, with extensions 
involving service replicas by Gillmann et al. 
(2002) or communities of similar operations 
by Zeng et al. (2003). Hence, our approach 
is complementary to the aforementioned ap-
proaches. More specifically, it does not aim at 
providing specific quality guarantees during 
the execution of composite services. On the 
contrary, it aims at providing a starting point to 
such approaches with tuneable configurations 
concerning the load characteristics of deployed 
services.

A final point in the related literature 
concerns approaches outside the context of 
service-oriented computing from which we 
were generally inspired such as replication, 
workflow management, and load balancing. 
In particular, Leff, Wolf, and Yu (1993) and 
Laoutaris, Telelis, Zissimopoulos, and Stavraka-
kis (2005) deal with the problem of object 
replication and provide interesting insights on 
the dimensions of the problem and the gain 
functions. Constantinescu, Binder, and Faltings 
(2005) and Srivastava, Widom, Mhnagala, and 
Motwani (2005) assume the continuous execu-
tion of a workflow: the former deals with the 
deployment of triggers to allow for the efficient 
execution of the workflow, whereas the second 
deals with the order of activity execution to 
achieve the optimal throughput. Concerning 
load balancing to ensuring quality properties 
for clients in the context of the web where 
unpredicted loads can occur, see Cherkasova 
and Peter Phaal (2002) as well as Cherkasova 

and Gupta (2004) for interesting facts and 
scheduling tactics. Moreover, large transac-
tion processing systems distribute transaction 
processing to a number of servers, in order to 
increase the availability and efficiency of the 
overall system. Transaction Processing moni-
tors (TP-monitors) regulate the assignment of 
requests and load balancing is one of the several 
criteria they employ. The main techniques used 
involve simple algorithms (since the employed 
algorithm must be simple, fast and lightweight) 
such as round-robin or randomized methods. A 
more elaborate technique is a workload-aware 
method, where the TP-monitor tracks the in-
dividual load of each server and assigns a new 
transaction to the server with the smallest load. 
An excellent source of reference for the topic 
is Lewis, Bernstein, and Kifer (2001).

ProbLeM forMuLAtIon

In this section, we formally define the problem 
under consideration. The objective is to provide 
algorithms that take as input a workflow of 
web service operations along with a topology 
of servers and compute an appropriate map-
ping of operations to servers. In the rest of our 
deliberations, we will employ the terminology 
of WSDL. We will also use the terms composite 
web service, orchestration, and workflow of web 
service operations interchangeably.

formal definition of the Problem

Assume a finite set of web service operations 
O= {Ο1, Ο2, …, ΟM} and a finite set of servers 
S= {S1, S2, …, SN}. The term “operation” refers 
to WSDL operations (i.e., modules that may 
receive an input XML message and produce a 
result in the form of an output XML message). 
A transition (op, on) is a message sent by the web 
service operation op to the operation on, i.e., op 
invokes operation on through the submission 
of an XML message. We call operations op 
and on neighboring operations. A workflow is 
a directed graph of operations W(Ο, E), where 
E={(op, on) | op,on ∈ O, ∃ a transition from op 
to on}. Intuitively, a workflow is a graph, with 
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operations being the nodes of the graph and 
XML messages being modeled as the edges of 
the graph. A network of servers is an undirected 
graph N(S, L), where L={(si, sj) | si, sj ∈ S, 
∃ connection between servers si and sj}. The 
deployment of an operation o to a server s is 
denoted by o→ s.

The operations of O can be distinguished 
into decision and operational ones. This follows 
the classification proposed by Leymann and 
Roller (2004), where a workflow comprises a 
control flow and a data flow subgraph. The op-
erational nodes are the ones performing specific 
tasks for the workflow, whereas the decision 
nodes control the flow of execution. Following 
the fundamental distinction of Leymann and 
Roller (2004) for control nodes to forks (control 
nodes with multiple outputs, acting as routers 
for the execution flow) and joins (control nodes 
acting as rendezvous points that synchronize 
multiple parallel execution flows), we consider 
three types of decision operations/nodes, namely 
AND, OR, and XOR, as forks. We also assume 
three complementary types, denoted /AND, /OR 
and /XOR respectively, to allow the definition 
of well-formed workflows. A workflow is well-
formed if for every decision node a, there exists 
a complement node /a, and all paths stemming 
from a also pass from /a. Intuitively, decision 
nodes and their compliments act as parentheses. 
The reasons for this requirement are hidden in 
the semantics of the graph. Assuming a decision 
node, the semantics are as follows: (a) AND 
nodes involve the execution of all their outgoing 
paths with a rendezvous barrier at /AND, (b) 
OR nodes do the same, but it suffices that one 
of the paths successfully reaches /OR and (c) 
XOR nodes involve a probabilistically weighted 
pick of a path to be executed. In BPEL, AND 
nodes may correspond to plain flow activities, 
OR nodes may correspond to flow activities 
with conditional attributes and XOR nodes may 
correspond to switch or pick activities.

Assume a cost model Cost(W) that com-
putes the cost of successfully completing the 
workflow W. More details on the alternative 
costs that can be used are provided in the sequel. 
In the broadest possible variant of the problem, 

we can also assume a set of user constraints 
C, concerning for example an upper bound on 
the completion time of a workflow or on the 
distribution of load among the servers.

The desideratum is a mapping of the 
operationsOof a workflowWto the set of 
serversS, such that the operational cost is 
minimized (and the constraintsCare met). For-
mally, this optimum assignment of operations  
to servers is modeled as a finite set M= {r1, r2, 
…, rΜ | ∀ i=1,2,…,Μ: ri a rule of the form o→ 
s, o∈O and s∈S} with the minimal Cost(W) 
that respects C. Obviously, more than one map-
ping can be derived; we are interested in the 
one with the lowest possible cost. Depending on 
the algorithm employed this can be the overall 
optimal value (e.g., in the case of an exhaustive 
algorithm), or a local optimum (e.g., in the case 
of a greedy algorithm).

ProPoSed ALgorItHMS

In this section, we present our proposed algo-
rithms for determining an appropriate deploy-
ment of web service operations to servers.

We have experimented with different  
types of workflow and server topologies. We 
have considered random graph topologies as 
well as the special, simple case of linear work-
flows. The latter, being the most simple case, 
has served both the purpose of providing initial 
foresights for our experimental configuration 
and as an intuitive aid in the explanation of 
more complex cases. The network of servers 
forms either a linear topology (mainly for ini-
tial experimental reasons) or a bus topology. 
In Figure 2, we depict the combinations that 
were eventually considered as valid cases. In 
all our deliberations, we assume N servers and 
M operations.

exhaustive Algorithm, Metrics and 
notation

The exhaustive algorithm considers all pos-
sible mappings and outputs the one having the 
minimum cost. Due to the exponential search 
space of the exhaustive algorithm (for Ν servers 
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and Μ operations, we have NM configurations), 
we proceed with a set of heuristic solutions.

Regarding cost, we focus mainly on two 
cost metrics: execution time of the workflow 
and load distribution. Concerning the execution 
time of the workflow, the obvious desideratum 
is its minimization. Concerning the fairness of 
the distribution of load to servers, we want to 
guide our algorithms to fair solutions where the 
amount of work (i.e., the sum of computational 
cycles due to the assigned operations) is pro-
portional to the computational power of each 
server. Details on the two metrics are given in 
Table 1. Unless otherwise stated, in the sequel, 
we will assume an equally weighted sum of the 
execution time and load distribution as our cost 
model. To use the same units, we assess fairness 
in the form of a time penalty that measures the 
deviation of the load of each server from the 
average load (which is the average time needed 
for a server to complete its workload). In a fair 
situation, all servers dedicate to the workflow 
the same amount of time. This is particularly 
important since an unbalanced network of serv-
ers has to deal with (a) possible bottlenecks due 
to some overloaded server in peak time and (b) 
difficulties in managing any other tasks, such as 
operation migration in cases of failures.

Clearly, the two metrics are antagonistic 
to each other. Take the case of a linear workflow 
(where each operation waits its preceding one 

to complete before it starts) where all operations 
are assigned to the most powerful server. Then, 
although the completion time is optimized (since 
no server communication costs are involved), 
the fairness of load distribution is destroyed. 
Inverse situations can also be encountered.

We have experimented with the exhaustive 
algorithm in small configurations to identify the 
properties that characterize the solutions that 
are close to the optimal one. These properties 
can be summarized as follows:

1.  Analogy between load and computational 
power of a server. This clearly affects the 
fairness of load distribution.

2.  Minimization of the size of messages 
exchanged between servers. The desid-
eratum here is to distribute the operations 
to servers in such a way that neighboring 
operations are preferably assigned to the 
same server. By doing so, the fraction of 
messages sent over each communication 
line is expected to be reduced. At the same 
time, there is an antagonistic concern of 
not overloading anyone server too much; 
in fact, the desideratum is to preserve the 
aforementioned analogy between load and 
computational power of a server. Similarly 
to the minimization of the size of messages 
among servers, the minimization of the 

Figure 2. Examined configurations
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number of messages exchanged between 
servers is also desirable.

Algorithms for a Line-Line  
configuration

The case where both the workflow and the server 
topology are lines is the simplest possible one. 
Still, it is briefly mentioned here because of the 
simple observations and heuristics that can be 
applied to it.

The Line-Line algorithm receives a work-
flow of web service operations W(O, E), and 
a server configuration N(S, L) as its input. The 
algorithm operates in two discrete phases. In 
the first phase, the algorithm tries to produce 
a load distribution as fair as possible, while at-
tempting to minimize the number of exchanged 
messages. In the second phase, the algorithm 
tries to move operations to neighboring serv-
ers to avoid sending large messages over low 
capacity links. For Ν servers and Μ operations, 

Table 1. Notation and cost formulae 

Symbol Description

C(op) The cycles necessary for operation op to complete

P(s) Computational power of server s (Hz)

Server(op) The server where operation op is deployed

Tprop(si, sj) Propagation time of the link between servers si and sj.

Path(si, sj) The path followed by a message from si to server sj.

Ttrans(opi, opj)

Transmittance time needed for the communication of operations opi and opj.

Ttrans(opi, opj) = 
MsgSize(opi,opj)

Line_Speed(s , s )a ba
å , (sa,sb) ∈ Path(Server(opi), Server(opj))

Tproc(op)

Processing time of a deployed operation op.

Tproc(op)=
C(op)

P(Server (op))

MsgSize(opi, opj) Message size sent from operation opi to operation opj, assuming (opi,opj) ∈ Ε.

Line_Speed(si, sj) Line speed (bps) between servers si and sj.

Load(s)

Total load of server s, as the sum of the processing time of operations deployed to it.

Load(s) = T (O )proc j

j
å

Tcomm(opi, opj)
Assuming (opi, opj) ∈E, the communication time between operations opi and opj, Tcomm(opi, 
opj) = T (s , s )prop

a

a bå + Ttrans(opi, opj), (sa,sb) ∈ Path(Server(opi), Server(opj))

Time_Penalty

A translation of “fairness” to the time that a server needs to conclude its work, as opposed 
to the avg. such time among all servers 

Time_Penalty = 
|Load(s ) Load(s )|

(1/2) N (N 1)

i j

j i 1

N

i 1

N −
× × −= +=

−

∑∑
1

Texecute

Execution time of workflow W.

Texecute = T (O )proc j

j 1

M

=
∑ + Tcomm

(total)
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the complexity of the first phase is O(M) and 
the complexity of the second one is O(N). The 
algorithm is depicted in Figure 4.

First, the algorithm computes the ideal load 
per server (Line 7). The ideal load is computed 
as the fraction of the total workload that cor-

responds to the server given the percentage of 
the computational power the server can con-
tribute to the overall computational power. 
Then, it starts assigning the operations of W to 
the servers of N starting from the first operation/
server on the left. When a server comes as close 

Figure 4. Algorithm Line-Line

Figure 3. Critical bridge
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as possible to its ideal load (test in lines 11-12), 
the algorithm considers the next server. The 
algorithm makes also some provision for the 
case when the operations are less than the 
number of servers (Lines 20-28). The first phase 
ends, when all operations have been allocated. 
The second phase of the Line-Line algorithm 
is based on the idea of a critical bridge, which 
is a link between two servers of the network 
with (a) a small capacity and a large message 
load (in bytes), plus (b) a small-sized message 
concerning an adjacent operation. Figure 3 
depicts such a case. Whenever a critical bridge 
is detected, the algorithm deploys the receiver 
of the large message to the server of the 
sender of the message (or vice-versa). This is 
achieved through the call of function Fix Bad 
Bridges (Line 30) which is detailed in Figure 
5.

The algorithm Line-Line (Figure 4) comes 
with variants. The first variation simply avoids 
the second phase of the algorithm. A second 
variation considers the assignment of operations 
to servers both from left-to-right and from 
right-to-left and maintains the better of the two. 
The combination of these variants produces 
four alternatives for the computation of the best 
configuration with the obvious complexities.

Algorithms for a Line – bus 
configuration

In this subsection, we move to a more realistic 
case, where all servers are connected to each 
other through a network bus. The workflow 
is still a simple line. We can produce several 
greedy variants of a simple algorithm, which 
are subsequently listed.

Fair Load. The simplest of all the involved 
variants is tuned to obtain the best pos-
sible load distribution. Fair Load (Figure 
7) starts by computing the ideal number 
of cycles that should be assigned to a 
server based on its capacity. Then, it sorts 
servers by their capacity and operations 
by their execution cost. The algorithm 
processes the sorted list of operations, 
each time, assigning the next heaviest 
operation to the most appropriate server. 
The most appropriate server is the server 
that needs the most cycles to complete 
its ideal number of cycles, at the time of 
the assignment. Fair Load is a variant 
of the worst-fit algorithm for the bin 
packing problem.

Figure 5. Function fix bad bridges
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Fair Load – Tie Resolver for Cycles. Fair Load 
does not take execution time into consid-
eration. A simple extension involves re-
solving any ties that may come up during 
the selection process among operations 
with the same number of cycles. The 
algorithm Fair Load – Tie Resolver for 
Cycles, (or, FLTR1 for brevity), depicted 
in Figure 8, operates as Fair Load with 
respect to its basic principle. The differ-
ence lies in the fact that whenever we 
need one among a number of operations 
with the same cost, we no longer pick 
one at random. Instead, we employ a gain 
function, Gain_Of_Operation_At_Serv-
er that returns the communication savings 
(i.e., how many bytes will not be put on 
the bus), if the next operation is deployed 
to a certain server (Figure 9). The best 
such assignment among all candidate 
operations and servers is picked. The 
algorithm uses two lists, Servers_List και 
Operations_List, with pointers to the 
respective sets. The algorithm also needs 
to initialize the mapping Μ to a random 
configuration, or else, the first calls of 
function Gain_Of_Operation_At_Server 
would not return any gain at all.

Fair Load – Tie Resolver for Cycles and Serv-
ers. The algorithm Fair Load – Tie Re-
solver for Cycles can be extended to also 
handle ties among servers. The algorithm 
Fair Load – Tie Resolver for Cycles and 
Servers, (or, FLTR2 for brevity), depicted 
in Figure 10, simply customizes appro-
priately the previous gain function to also 
consider the case in which there is a tie 
among the servers to be chosen next, with 
respect to their distance from their ideal 
load.

Summarizing, both Tie Resolver algorithms 
handle practically the same configurations with 
Fair Load, with the only difference that special 
attention is paid to situations where ties occur, 
with the overall goal to reduce the communica-
tion cost. However, it is still possible to send 
large messages over the network. The following 
extension tries to alleviate this problem.

Fair Load–Merge Messages’ Ends. Algorithm 
Fair Load–Merge Messages’ Ends (or, 
FLMME for brevity), depicted in Figure 
11, extends FLTR2 by adding an extra test 
during the deployment decision. If the 
assignment of an operation to a server 

Figure 6. Function is critical bridge
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results in a large message, the assignment 
is cancelled and the operation is assigned 
to the sender of the message, thus allevi-
ating the need to send the message (see 
function There Is Constraint in Figure 12). 
A message is considered large whenever 
the time needed to transfer it is larger 
than the execution time of the costliest 
group of operations over the server with 
the most available cycles at the time the 
decision is made.

Heavy Operations – Large Messages. Algo-
rithm Heavy Operations–Large Mes-
sages (Figure 13) operates like Fair Load, 
with the fundamental difference that 
operations are not treated separately, but 
as groups. Two operations are clustered 
in the same group if they exchange a large 
message. As in the previous case, a mes-
sage is considered large whenever the 
time needed to transfer it is larger than 
the execution time of the costliest group 

of operations over the server with the 
most available cycles at the time the 
decision is made. Recall that, in the bus 
topology, the communication cost be-
tween every pair of servers is considered 
the same. Activities that have been 
grouped together are always assigned to 
the same server.

Initially, each operation constitutes a group 
by itself. The algorithm employs three lists, one 
for the available cycles of each server, one for 
the size of each message and one for the cycles 
of each group. In the beginning of each step, 
these lists are sorted. In each step, the algorithm 
decides whether (a) to assign the most expensive 
group of operations to the server with the most 
available cycles, or (b) to avoid the exchange 
of a large message over the network. The deci-
sion is taken on the basis of the existence of a 
large message on the top of the list of the mes-
sages. If such a message exists, then option (b) 

Figure 7. Algorithm fair load
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is followed. In this case, either (b1) both mes-
sage ends are placed at the same server, or (b2) 
the two groups are merged. Option (b1) is fol-
lowed, if one of the two operations that com-
municate through the large message is already 
placed at a server. Otherwise, the groups to 
which the communicating operations belong 
are merged. Note that messages must be re-

moved from the list whenever both their ends 
are placed at the same server.

The complexities of the algorithms are 
Ο(Μ×logM+Ν×logN+ΜN) for Fair Load, 
and O(Μ×(Μ×logM+Ν×logN+ΜΝ)) for the 
rest of the algorithms. In the algorithm Heavy 
Operations–Large Messages, instead of the 

Figure 8. Algorithm fair load – tie resolver for cycles

Figure 9. Function gain of operation at server
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last operand of the sum (i.e., ΜΝ) the cost to 
be added is 1.

3.4 Algorithms for a random 
graph – bus configuration

In this third family of algorithms, we consider 
the case where the servers are still connected 
through a bus but the workflow is a random 
graph. All algorithms are practically the same 
with the category Line-Bus, with simple modi-
fications that take the structure of the workflow 
into account. The algorithms must take into 
consideration that an operation can receive 
more than one message and that decision nodes 

possibly imply the execution of a subset of the 
workflow. Remember that decision nodes (AND, 
OR, XOR) start subgraphs of the workflow that 
are executed in parallel for AND, OR nodes. For 
XOR nodes, one of the alternatives is chosen. 
At the same time, the /AND, /OR, /XOR nodes 
act as rendezvous points (and thus, they need 
to wait for at least two messages in the case of 
/AND, /OR flows).

The extension to the algorithms is quite 
simple: all the algorithms of this family (with 
the exception of algorithm Fair Load that 
remains exactly the same) assign an execution 
probability to each operation (and thus, each 
message) due to the existence of XOR decision 

Figure 10. Algorithm fair load – tie resolver for cycles and servers
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nodes. The determination of this probability is 
based on monitoring initial executions of the 
workflow or simple prediction mechanisms. 
Thus, the execution cost is a practically a 
weighted cost, amortized for a large number 
of workflow executions (as opposed to a single 
execution as in the case of linear workflows).

exPerIMentS

In this section, we present experimental results 
for the assessment of the proposed algorithms. 
First, we present an experiment for the validation 
of the cost model. Then, we discuss experiments 
for each of the three workflow-network con-
figurations explored in the previous sections, 

Figure 11. Algorithm fair load – merge messages’ ends
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and finally, we summarize our experimental 
findings.

cost Model Validation

To validate our cost model we performed an 
experiment that relied on the reference example 
discussed previously. More specifically, we 
implemented the workflow schema of Figure1 
using a widely-used infrastructure that supports 
the development of web services. Then, we 
executed this implementation in a configuration 
of three servers S1, S2, S3, and compared the 
mean execution time of the workflow (calcu-
lated over 100 executions of the workflow) with 
the execution time that is estimated based on 
the proposed cost model.

To implement the web service operations 
that constitute the examined workflow we 

used AXIS v1.1. The web service operations 
that concern the patient, the secretary and the 
doctor were deployed, respectively, on a P-IV 
3.4 GHz, a P-IV 1.6 GHz and a P-IV 2.13 GHz 
server. The application server that we used in 
all three servers was Apache Tomcat 4.1. The 
three servers were connected through a typical 
100 Mbps Ethernet.

Concerning the cost model, we measured 
the cycles required for each web service op-
eration by executing the workflow on a single 
server (i.e., the P-IV 1.6 GHz). In this context, 
we measured the time required by each opera-
tion to perform its computations, along with the 
time required for preparing its invocations to 
the web service operations with which it com-
municates (e.g., for the web service operation 
3, we measured the time required for its internal 
computation and the time required for preparing 

Figure 12. Function there is constraint
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the invocation of web service operation 4). The 
sum of the aforementioned execution times was 
transformed into computational cycles based 
on the server’s computational power. It should 
be further noted that in the calculation of the 
estimated execution time of the examined work-
flow we assumed that the decision operations 
(operations 5 and 9 of the reference example) 
do not require any computational cycles. The 

parameters used in our cost model are given in 
more detail in Table 2.

The mean execution time that was experi-
mentally measured for the examined workflow 
was 187 msec. The estimated execution time that 
was calculated with respect to the parameters 
of Table 2 was 192 msec, i.e., the cost model 
overestimated the execution time with the ac-
ceptably small error of 2%.

Figure 13. Algorithm heavy operations - large messages
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Table 2. Cost Model Parameters for our motivating example 
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experimental Methodology

We have varied several parameters of the 
workflow-network configurations used. We use 
the results of Head et al. (2005) and Ng, Chen, 
and Greenfield (2004) to determine appropriate 
values for our experiments. In Ng et al. (2004), 
three types of SOAP messages are used: simple 
messages of 873 bytes (0.00666 Mbits), medium 
messages of 7581 bytes (0.057838 Mbits), and 
complex messages of 21392 bytes (0.163208 
Mbits). We assume 4, 10, and 20 ms as the 
time needed for the execution of a web service 
operation (this includes the serialization, net-
work time, deserialization and server execution 
time). Assuming a value of 37% for the parsing 
of a message, this results in 2.5, 6.3 and 12.7 
M cycles for simple, medium and complex 
messages, respectively (over a 1.6 MHz CPU). 
Based on the previous in our experiments we 
assume simple, medium and heavy web service 
operations, requiring respectively, 10, 20 and 
30 M cycles.

In each experiment we considered a 
specific workflow of web service operations 
deployed over a specific network of servers. 
The operations’ cost, the associated messages, 
the computational power of the servers and the 
network characteristics were randomly selected 
based on the probabilities given in Table 3.

In all the graphical representations, the 
horizontal axis of each diagram depicts the 
execution time and the vertical axis the time 

penalty. The closer a solution to point (0, 0), 
the better. Assuming different weights for the 
two measures, different distance measures could 
also be considered. The average point of the 
search space of solutions is also depicted as a 
measure of how a “random” choice of deploy-
ment would possibly be. In small configurations 
this involves all the solutions of the search 
space; in large configurations a sample of 32,000 
solutions.

experiments for a Line: 
Line configuration

The experiments performed for this con-
figuration involve all four variants of the 
proposed algorithm. Specifically, we have 
experimented with (a) single dimension (left-
to-right) Line-Line algorithm with the ap-
plication of Fix_Bad_Bridges (denoted as 1d 
with Fix), (b) single dimension (left-to-right) 
Line-Line algorithm without the application 
of Fix_Bad_Bridges (denoted as 1d no Fix), 
(c) double dimension (left-to-right and right 
to left) Line-Line algorithm with the applica-
tion of Fix_Bad_Bridges (denoted as 2d with 
Fix), and (d) double dimension (left-to-right 
and right to left) Line-Line algorithm without 
the application of Fix_Bad_Bridges (denoted 
as 2d no Fix).

Figure 14 presents four experiments for 
larger configurations (each reported in the 
figure). Due to the vastness of the search space, 

Table 3. Experimental configuration 

MsgSize(Oi, Oi+1) 0.006660 Mbits with probability 25%
0.057838 Mbits with probability 50%
0.163208 Mbits with probability 25%

Line_Speed(Si, Si+1) (for Line topolo-
gies)

10 Mbps with probability 25%
100 Mbps with probability 50%
1000 Mbps with probability 25%

C(Oi) 10 M cycles with probability 25%
20 M cycles with probability 50%
30 M cycles with probability 25%

P(Si) 1 GHz with probability 25%
2 GHz with probability 50%
3 GHz with probability 25%
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the reported average concerns 32,000 randomly 
sampled solutions. Τhe different variants of the 
algorithm do not show significant differences, 
while presenting satisfactory solutions with re-
spect to both the time penalty and the execution 
time. Observe how far from the optimal solution 
the average solution is placed (upper right part 
of each figure). Similar behaviour was obtained 
in experiments for smaller configurations of 
workflows with 8 operations over network 
topologies of 3 servers.

experiments for a Line – bus 
configuration

We have conducted all classes of experiments 
with all the proposed algorithms participat-
ing for the configuration of linear workflows 
executed over a network bus. In Figure 15, we 
depict comparative results of the employed 
algorithms by computing the average solution 
of 50 experiments. We test workflows of 19 

operations over network topologies of (a) 5, (b) 
10, and (c) 15 servers connected through a bus 
whose line speed takes one out of the follow-
ing values: 1, 10, 100 Mbps. Both Tie Resolver 
algorithms provide some improvements in both 
dimensions, whereas the FL- Merge Message’s 
Ends improves the execution time to a certain 
extent by deteriorating the load balance. The 
HeavyOps-LargeMsgs algorithm produces quite 
acceptable execution times, esp. for small bus 
capacities and practically seems to be the more 
stable solution compared to all the others. It is 
interesting that the behavior of the HeavyOps-
LargeMsgs algorithm remains quite stable 
even when the fraction of operations to servers 
(denoted as K) increases.

In terms of the quality of the solution, 
HeavyOps-LargeMsgs produces (2.9%, 12%) 
deviations for execution time/time penalty for 
1Mbps bus, and (29%,0.3%) for 100 Mbps bus.

As an overall result, we can safely argue 
that FL-Tie Resolver2 seems to provide quite fair 

Figure 14. Results for the Line-Line Algorithm in various configurations
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solutions, whereas the HeavyOps-LargeMsgs 
algorithm is slightly worse in this category, but 
provides consistently good execution times in 
all configurations.

experiments for a random 
graph – bus configuration

In the case of workflows with random graph 
structures, we have discerned three cases: (a) 
bushy, (b) lengthy and (c) hybrid graphs. Bushy 
graphs have a high percentage of decision 
nodes (and are therefore shorter in length, but 
with a higher fan-out). Lengthy graphs have a 
small percentage of decision nodes and involve 
lengthy paths. Hybrid graphs are somewhere in 
the middle. Specifically, bushy graphs involve 

a 50%-50% balance of decision/operational 
nodes, lengthy graphs involve a 16%-84% 
balance and hybrid graphs a 35%-65% one.

In Figure 16 we see four experiments for 
bushy workflows of 19 operations over topolo-
gies of (a) 5 or (b) 10 servers connected through 
a bus whose line speed takes one out of the 
following values: 1, 100 Mbps. The difference 
is in the number of servers and the speed of the 
bus. Algorithm Fair Load–Merge Messages’ 
Ends seems to perform better than the rest, 
especially when the speed of the bus is slow.

In Figure 17 we see the respective experi-
ment for lengthy workflows. It is interesting to 
see that in contrary with the previous experi-
ment, Fair Load–Merge Messages’ Ends can 

Figure 15. Line – Bus algorithms with 19 operations in the workflow
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give very bad solutions. The most reliable al-
gorithm for this category seems to be HeavyOps-
LargeMsgs. It is also interesting that Fair Load 
can be better than its tie-resolver improvements.

In Figure 18, we depict the average values 
of 50 experiments for workflows of 19 opera-
tions over 10 servers. As one can see, the results 
are not very different from the ones for the 
previous topology. For almost all configura-
tions, the HeavyOps-LargeMsgs algorithm 
appears to be a clear winner: it is consistently 
the best choice in terms of execution time and 
it also appears to be the quite close to the best 
solutions in terms of fairness. FL-Merge Mes-
sage’s Ends appears to be quite close in terms 

of execution time (in fact, in individual ex-
periments it has occasionally outperformed 
HeavyOps-LargeMsgs), still it is quite unstable 
with respect to its fairness.

In terms of the quality of the solution, 
HeavyOps-LargeMsgs produces (29%, 1.8%) 
deviations for execution time/time penalty for 
the 1Mbps bus, and (0%, 0%) for the 100 Mbps 
bus.

Summary of experimental 
findings

In summary, our experimental findings are as 
follows:

Figure 16. Graph – bus algorithms for bushy workflows
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1.  In the Line-Line configurations, all algo-
rithms behave well and give a solution 
quite close to the optimal one. The variant 
of double direction Line-Line algorithm 
appears to perform slightly better, whereas 
the fixing of bad bridges appears to work 
only when the messages are really heavy 
for the network connections involved.

2.  In the Line-Bus configurations, the algo-
rithm Fair Load–Tie Resolver2 is the most 
appropriate for fair solutions, whereas the 
algorithm Fair Load–Merge Messages’ 
Ends and Heavy Operations–Large Mes-
sages are the most appropriate whenever 
execution time is more important.

3.  In the case of Graph-Bus configurations, 
the same observations still hold. In the 
case of bushy workflows, the algorithm 
Fair Load–Merge Messages’ Ends is better 
than Heavy Operations–Large Messages, 
especially with respect to the execution 
time.

dIScuSSIon

Summary of findings, importance and im-
plications. Summarizing the proposed 
method, we can argue that there is in-
deed the possibility of finding efficient 
deployments of services to servers for 
composite web service workflows. We 
have examined different, reasonable 
topologies of servers and discovered that 
more than one algorithm can be applied 
to provide good solutions to the service 
deployment problem.

This result is important since it covers an open 
gap in the related literature. As already men-
tioned, although related research deals with the 
problems of guaranteeing quality-of-service 
characteristics once the allocation of services 
to servers is performed. This work provides 
the means to the administrator to explore al-
ternative possibilities for this deployment and 
in fact, it produces solutions of good quality 
as already demonstrated at the experimental 

section. Both researchers and practitioners can 
employ the proposed algorithms as a first step 
before the subsequent fine tuning that the rest 
of the methods discussed in the related work 
section provide.

Fitness within the broader perspective. Tak-
ing a step back and looking at the wider 
view of both research and practice in the 
area of software systems engineering, the 
software challenge of the near future is 
dealing with the dramatically increasing 
complexity and scale of the systems 
that we build (Northrop et al., 2006). 
Software systems that rely on Internet 
technologies in particular must cope with 
various constantly growing dimensions of 
scale including load, heterogeneity, broad 
distribution, cardinality of services that 
are available and should be coordinated. 
Therefore, from this boarder perspective 
the most important factor that affects the 
way web services should evolve in the 
near future is the matter of scale. Appar-
ently, the movement towards a service-
oriented architecture of software at the 
web will drive more and more people and 
organizations to export functionality at the 
web. As a service provider exports more 
and more functionality via services over 
the web, the more popular, complicated 
and sophisticated the composite work-
flows that the users construct will be. 
Thus, it is highly important that efficient 
execution is achieved in the back-stage 
infrastructure of a service provider.

The contribution of this work can serve as 
the basis for pursuing performance improvements 
in the case of service compositions that span the 
borders of several systems. The advent of Web 
2.0 brought us the notion of user-defined mash-
ups (see Benslimane, Dustdar, & Sheth, 2008; 
Maximilien, Ranabahu, & Gomadam, 2008) that 
integrate services possibly from several provid-
ers via a user-friendly graphical user interface 
that allows a naïve user to try and construct 
an application in an on-line fashion. Thus, the 
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development task moves from the experienced 
programmer to the less skilled users (see Firat, 
Wu, & Madnick, 2009; Kongdenfha, Benatal-
lah, Vayssière, Saint-Paul, & Casati, 2009). 
There is a plethora of mashup applications like 
Yahoo Pipes (http://pipes.yahoo.com/), Google 
Maps (http://maps.google.com/), IBM Damia 
(http://services.alphaworks.ibm.com/damia/), 
and Microsoft Popfly (http://www.popfly.com/). 
The on-line nature of such applications makes 
the optimization of the execution of a workflow 
more and more important. Fast algorithms that 
deduce memory allocation, execution and choice 
of services in an on-line fashion, appropriate for 
end-users are highly important. This paper can 

provide a useful basis for subsequent research 
in this direction.

Limitations and possibilities for further re-
search. A clear limitation of the existing 
method is the fact that related research has 
not matured with respect to the cost models 
for web service execution. Currently, we 
do not have the experimental findings (also 
due to the youth of this technology) to be 
able to predict with accuracy the behavior 
of a web service. Therefore the designer 
needs to perform micro-benchmarks to 
assess the cost of the operations. More-
over, phenomena of load bursts are very 

Figure 17. Graph – bus algorithms for lengthy workflows
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common in the internet; this is where the 
fine-tuning fits. Still, some considerations 
for burst-handling have not been covered 
and could be explored as part of future 
work. Again, before that, we need some 
good experimental evidence of how bursts 
happen over the internet – to the best of 
our knowledge no such data sets exist.

Further Extensions Other extensions for this 
work involve the case of multiple work-
flows (instead of just a single one) and the 
detailed study of the proposed algorithms 
whenever user-defined constraints are 

given. For instance, apart from the overall 
execution time, the response time of indi-
vidual operations can also be considered 
as part of the cost model.

concLuSIon

In this paper, we have dealt with the problem of 
discovering the best possible deployment of the 
operations of a certain workflow given its struc-
ture and a topology of servers. To the best of our 
knowledge, this is the first attempt towards the 

Figure 18. Graph – bus algorithms organized per graph structure
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issue. Thus, our approach fits nicely with existing 
efforts that are concerned with the fine-tuning of 
the workflow to obtain desired levels of quality 
of service as it provides the necessary first step 
of service deployment, before the fine-tuning 
can start. We have measured efficiency in terms 
of two cost functions that concern the execution 
time of the workflow and the fairness of the load 
on the servers. We have studied different topolo-
gies for the workflow structure and the server 
connectivity and proposed greedy algorithms for 
each combination. Our experiments indicate that 
algorithm HeavyOps-LargeMsgs is a good choice 
for all the considered configurations.
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APPendIx A: bAckground terMInoLogy And StAndArdS

SOAP. The Simple Object Access Protocol (SOAP) is the means that facilitates web service 
communication and the basis for the development of practically all other protocols in the 
area. SOAP specifies a message format for the communication with Web services along 
with the bindings to HTTP and SMTP protocols for the delivery of messages. The com-
munication in SOAP is one-way and asynchronous. The messages are XML documents, 
consisting of envelopes comprising a header, with meta-information for the processing of 
the message and a body with the actual contents of the message.

WSDL. The Web Services Description Language (WSDL) is a specification language for the 
generation of XML documents that (a) describe and (b) automate the deployment of web 
services. In practice, WSDL documents play the role of IDL’s in conventional middleware: 
they provide a description of the available interfaces of a web service and at the same 
time, they can serve as an input to the appropriate compiler to generate client stubs and 
server skeletons.

WSDL descriptions are decomposed into two parts, or perspectives. In the logical perspec-
tive, α WSDL document specifies the interface of a web service. In the case of web services, the 
traditional middleware interface is replaced by a set of messages that the web service generates or 
receives. In practice, there are four modes that a service can use to interact with other programs: 
one-way (simply receives messages), request-response (sends a request message and waits for an 
answer), solicit-response (receives a message and responds appropriately) and notification (sends 
a message). A fault message can be sent, in some of these cases, whenever an error is encoun-
tered. This kind of modus operandi in WSDL is regulated by operations. In fact, operations are 
the counterpart of “interface” in traditional middleware. Operations are grouped by port types. 
Intuitively, a port type is a collection of operations, offered by the same organization, towards 
semantically similar functionalities. Port types are the coarser granule of logical organization 
in the WSDL specification. At the other end of the spectrum, the finest granule in the logical 
perspective involves message parts. Each message is an XML document organized in parts. Each 
part is assumed to be a typed granule of information; still, complex parts can be defined, too.

The logical perspective of WSDL documents is accompanied by the physical perspective, 
responsible for the description of the communication protocols and the ports where functionality 
is exposed. A binding specifies how a certain operation will communicate with the rest of the 
world; this is typically done via the HTTP or the SMTP (e-mail, that is) protocols. Technicalities 
of the message that is transported are also hidden behind the style of the binding. At the same 
time, a port (or end-point) offers a URI for a certain binding. Naturally, more than one bindings 
can be offered for the same operation and consequently, more than one ports. A WSDL service 
is a collection of ports, i.e., a set of URI’s where functionality of the organization is exported. It 
is interesting that, in the WSDL specification, a service is an object in the physical perspective: 
the logical definitions are part of the specification but embodied in the overall service.

WSDL acts both as a service description language and a service definition language. As 
a description language, the WSDL documentation is a form of contract that describes the set 
of messages that the services guarantees to receive (input messages) and deliver (output mes-
sages). As a definition language, WSDL is employed as the means to generate the actual code 
that is exported in order to invoke the service. This follows a traditional IDL approach, where 
the development and invocation of an application are guided through an IDL definition both at 
the server and at the client (through the well-known stub/skeleton mechanism).
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BPEL. The Business Process Execution Language (BPEL) is employed in order to specify abstract 
compositions of web services as well as their concrete coordination. The basic entity in 
the component model of BPEL is the activity. Activities can be classified as basic (simple, 
that is) and structured (composite). The orchestration of web service scenarios involves 
the possibility of combining services through sequence, switch (conditional routing), pick 
(non-deterministic choice), while and flow (parallel) activities. Data management is handled 
through a blackboard approach, where a set of “global” variable names handles the flow 
of data among activities. The selection of services involves the introduction of partner 
link types, i.e., roles that exchange messages and partner links, which are specific services 
materializing these roles. Exceptions are managed in a try-catch approach.

APPendIx b: detAILed InforMAtIon on 
deVIAtIonS for tHe derIVed SoLutIonS

Table 4, 5 and 6 depict detailed results for the deviation from the optimal values for a large-size 
configuration.

Table 4. Line-Bus configuration. All solutions for 100 experiments with 8 operations, 3 servers 

1 Mbps Bus 100 Mbps Bus

Texecute Time Penalty Texecute Time Penalty

Fair Load 70% 0.2% 44% 1%

FL-Tie Resolver1 52% 0.2% 40% 1%

FL-Tie Resolver2 48% 0.2% 37% 1%

FL-MergeMsgEnds 37% 34% 39% 32%

HeavyOps-LargeMsgs 17% 19% 42% 2%

Table 5. Line-Bus configuration. Sampling of 32,000 solutions for 50 experiments with 19 op-
erations, 5 servers

1 Mbps Bus 100 Mbps Bus

Texecute Time Penalty Texecute Time Penalty

Fair Load 75% 0.08% 31% 0%

FL-Tie Resolver1 32% 0.08% 26% 0%

FL-Tie Resolver2 24% 0.08% 25% 0%

FL-MergeMsgEnds 26% 34% 32% 36%

HeavyOps-LargeMsgs 2.9% 12% 29% 0.3%
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Table 6. Graph-Bus configuration. Sampling of 32,000 solutions for 50 experiments with 19 
operations (65% operational, 35% conditional), 5 servers

1 Mbps bus 100 Mbps bus

Texecute Time Penalty Texecute Time Penalty

Fair Load 63% 0% 1.7% 0%

FL-Tie Resolver1 56% 0% 1.7% 0%

FL-Tie Resolver2 53% 0% 0.9% 0%

FL-MergeMsgEnds 34% 32% 4.5% 30%

HeavyOps-LargeMsgs 29% 1.8% 0% 0%


