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Abstract

Result diversification has recently attracted much attention as a meansre@sing user satisfaction
in recommendation systems and web search. In this work, we focush@mviag content diversity in
the case of continuous data delivery, such as in the context of publisibfgubd systems. We define
sliding-window diversity and present a suite of heuristics for its efficiemtprgation along with some
performance results.

1 Introduction

With the explosion of the amount of information currently available online, plslisoscribe systems offer an
attractive alternative to searching by providing a proactive model ofrimdition supply. In such systems, users
express their interest in specific pieces of data (or events) via sutimasip Then, they are notified whenever
some other user generates (or publishes) an event that matches oee stibiscriptions. Typically, all sub-
scriptions are considered equally important and users are notified wdrea@ublished event matches any of
their subscriptions. However, getting notified about all matching events maaytéeoverwhelming the users
with large amounts of notifications, thus hurting the acceptability of publishésibessystems.

Today, most user searches have an exploratory nature, in the sahsiséls are mostly interested in re-
trieving various information about their search topic. Therefore, thcenesult diversificatiorhas attracted
considerable attention as a means of enhancing user satisfaction in rectensestems and web search (e.g.
[18, 14]). We argue that diversification could also be employed in théegbof publish/subscribe systems to
improve the overall quality of notifications delivered to users.

In this paper, we tackle the problem of selectingdiverse information pieces (@temg among the infor-
mation content being forwarded to users and delivering only these items ts¢he instead of overwhelming
them with all relevant information. Diverse items may be defined in three diffevays, namely in terms of
(i) novelty i.e. choosing to deliver items that contain new information when compareevpsly delivered
ones (e.g. [5, 17]), (iixoveragei.e. choosing to deliver items that belong to different categories (e.)pafiél
(iii) content(or similarity), i.e. choosing to deliver items that are dissimilar to each other (e.g. [1@fjivaded
by the fact that publish/subscribe systems are simultaneously used by iffangnd publishing sources that
often publish overlapping information, in this work, we focus on contergrdity among the items (i.e. events)
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of a publish/subscribe system and seek to process the continuous filoferafiation in such a way as to locate
and deliver to users events that are distant (dissimilar) to each othen, glbudget ok.

In this paper, we introduce the problem of diversity over continuous, geitsent initial algorithms and
suggest issues for further research. The rest of this paper isisgda@s follows. In Section 2, we define the
k-diversity problem and present efficient solutions, while in Section 3adapt these solutions for continuous
data. Section 4 focuses on the combination of multiple criteria, namely diversityedevance, for the final
ranking of information. Section 5 briefly reviews related work and, fin&ggtion 6 concludes this paper.

2 Content Diversity

There are various forms of diversity. Here, we focus on conterrsiity, so that the users receive dissimilar
content. Specifically, given a set afitems, we aim at selecting items out of them, such that, the average
pairwise distance between the selected items is maximized. More formally:

Definition 1: Let P = {p1,...,p,} be a set oin items andk an integer withk < n. Let alsod(p;,p;),
pi,p; € P, be adistance metric between itemsindp;. Thek-diversity problem is to locate a subsgt of P,
such that:

kook
N 1
S* = ar%rgngx fp(S), wherefp(S) = WD Zl ;d(pi,pj) andp;,p; € S 1)
ISk i= i

The problem of selecting theitems having the maximum average pairwise distance oufteins is similar
to thep-dispersionproblem. This problem, as well as a number of its variations (e.g. setaat of n items so
that the minimum distance between any two of them is maximized), have beenietiessidied in operations
research and are in general known to be NP-hard [8, 9]. Thus,lte frge instances of the problem, we
need to rely on heuristics. A number of heuristics have been proposed litetfature (e.g. [9]), ranging from
applying exhaustive algorithms to adapting traditional optimization techniquegenaral issue that hinders
the development of efficient incremental solutions to the problem is that thé most diverse items of a set
P are not necessarily a subset of itsnost diverse items. For example, consider as items the points on the
circumstance of a circle and their euclidean distances. The two furthestants are (any) two antidiametric
ones. However, no antidiametric points belong to the three most diverss.poin

There are two families of heuristics that locate good solutions fokttersity problem at a reasonable
time: greedyheuristics andnterchangeheuristics (the reader is referred to [6] for a study of various heusistic
and their behavior). Greedy heuristics make use of two sets: the initi# aatl a setS which will eventually
contain the selected items. Items are iteratively moved ffoim.S and vice versa untjlS| = k and|P| = n—k.
There are two main variations. In ti&eedy Constructioheuristic, initially,|P| = n and|S| = 0. First, the
two furthest apart items d? are added t&. Then, at each iteration, one more item is addetl tdhe item that is
added is the one that has the maximum item-set distanceSrdve define thétem-set distanceetdist(p;, S)
between an iterp; and a set of items$' as the average distance betwegand the items iry, that is:

setdist(p;, S |S\ Z d(pi,pj) 2)
p;ES

In the Greedy Deletiorheuristic, initially, |P| = 0 and|S| = n. At each iteration, the two closest items . ®f
are located. One of them is then movedRo The choice is based on the minimum item-set distance from the
remaining items of.

Generally, the Greedy Construction heuristic (denoted GC, Algorithm rfdnoes better, both in terms of
the achieved diversity as well as in terms of execution time. Therefore,ilveonsider it further in this work.



Algorithm 2 First Pairwise Interchange Heuristic (FI).

i i Input: The initial set of itemsP, the number of wanted itenisand a
Algorithm 1 Greedy Construction thresholdh.

Heuristic (GC). Output: The setS with the k most diverse items.
Input: The initial set of items?, the number  1: SetS to be a random solution
of wanted items: and a threshold. 2: while less tham iterations have been performdd
Output: The setS with the k most diverse  3:  find py, pa, S.t.d(p1, p2) = min{d(p1,p2) : p1,p2 € S, p1 # P2}
items. 4: forall p, € P\Sdo
1: SetR to be a random subset éf with 5: S — {S\{p1}} U{p:i}
[R| =7 6: 5" —{5\{p2}} U {p:}
2: find py, ps, S.t.d(p1,p2) = 7: if £(S") > f(S)andf(S") > f(S”)then
max{d(p1, p2) : p1,p2 € R,p1 # pa2} 8 S «— S’; break
30 S —{p1,p2} 9: end if
4: while |S| < k do 10: if £(S”)> f(S)andf(S")> f(S’)then
5. findp;, € P\S, s.t. setdist(p;,S) = 1L S — S”; break
max{setdist(p;,S) : p; € P\S} 12: end if
6: S—SU{p} 13:  end for
7: end while 14: end while
8: return S 15: return S

The complexity of GC i)(n?). However, this is due to the first step of the algorithm where the two furthest
apart items have to be located. The rest of the algorithm t@ké3n) time. Therefore, to reduce the distance
computations required by GC, we opt to initialigeby selecting the two furthest apart items from a randomly
selected subset @ with size equal to, » < n, instead of using the whole set.

Interchange heuristics are initialized with a random soluicend then iteratively attempt to improve that
solution by interchanging an item in the solution with another item that is not in fhé@a The item that is
eliminated from the solution at each iteration is one of the two closest items in it. At&ire are two main
variations. TheFirst Pairwise Interchangéeuristic (denoted FI) performs at each iteration the first interchange
that improves the solution, while tHgest Pairwise Interchangkeuristic (denoted BI) considers all possible
interchanges and performs the one that improves the solution the most.

None of the two algorithms clearly outperforms the other, while their worst casiplexity isO(n*). Each
distinct iteration of FI is on average faster than an iteration of Bl. HowdMes more likely to perform more
iterations. Even though there is no clear winner in terms of execution time ullysocates better solutions
[9, 6]. This is the reason we will focus on this variation (Algorithm 2) in thst ref this work. There are
two ways to limit the iterations performed by Fl. We can either set a boundj,say the maximum number
of possible interchanges to be performed or allow interchanges to comtsleng as the solution improves
by a given threshold. In this paper, we choose to directly control the auwfaterations, so that we can get
reasonable execution times.

Next, we provide experimental results to evaluate the performance oftibasistics, both in terms of effi-
ciency (execution time) as well as effectiveness (achieved diver§ity)goal is not to provide a comprehensive
evaluation of the two heuristics but to present a couple of experimentsytaersome insight about their per-
formance. We create synthetic datasets consisting of 200 data points irclidean space, where the values of
each dimension are i, 1000] and use as distanckthe euclidean distance. The heuristics were implemented
in JDK 6 and run on a Windows XP PC with a 2.4 GHz Intel Core 2 Processb?2#0 GB of RAM. In the fol-
lowing, we show results averaged over 500 runs for 5-dimensionaltdata drawn from a normal distribution.
Figure 1 shows results for various valueg:dor the two heuristics. For GC, we use= 200 (i.e. initializing the
heuristic with the whole s&P), » = 100 andr = 2 (i.e. initializing the heuristic with two random items), while
for FI, we either allow a certain number of iteratioris € 60 or h = 70) or allow the algorithm to run until
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(a) Achieved diversity for GC and FI. (b) Execution time for GC. (c) Execution time for FI.

Figure 1: Average achieved diversity and execution time for GC and FI.

convergencel = oo). We also report the average diversityfofandomly selected items (denoted RA). Both
heuristics achieve comparable diversity with GC slightly outperforming Flig@@uch faster that Fl. Also, note
that reducing the initial items considered by GC does not affect the achieved diversity consigerab

3 Content Diversity in Publish/Subscribe Systems

Publish/subscribe systems provide an alternative way of receiving fatteest. In such systems, users ex-
press their interests in items through subscriptions. New items (or eventghmabby an information source
(or publisher) are matched against the subscriptions and those items that subgcriptions are delivered
to the corresponding users. Some examples of publish/subscribe systenescive delivery include news
alerts, RSS feeds and notification services in social networks. As wittseaieh, user subscriptions are often
exploratory in nature, in the sense that users do not really know whatitaet and may not be precise on
expressing their information needs. Thus, recent works have geggbat event matching should also be best
effort [13, 19]. For this reason, to further enhance user satisfgatie consider the case where not all matching
items are forwarded to the subscribers but justitimeost diverse of them.

This is an instance of continuous data delivery. Since events are pubbsttematched in a continuous
manner, we need to define over which subsets of data we apply divatisific In our previous work [7], we
have considered three fundamental models for item deliveryefipdic (i) sliding-windowand (iii) history-
based filteringdelivery. Given a budget df, with periodic delivery, thé most diverse items are computed over
disjoint periods of lengtil” and are forwarded to the subscribers at the end of the period. With sidirdpw
delivery, thek most diverse items are computed over sliding windows of lengto that, an item is forwarded,
if and only if, it is part of thek most diverse items in any of the windows it belongs to. Finally, history-based
filtering forwards new items as they are matched, if and only if, they are dissiemitaigh to thé: most diverse
items recently delivered. The lengtisandw can be defined either in time units (e.g. as “the 10 most diverse
items matched per hour” and, respectively, “the 10 most diverse items rddtctee last hour”) or in number
of items (e.g. as “the 10 most diverse items per 100 matched ones” anectiesly, “the 10 most diverse items
among the 100 most recently matched ones”).

Here, we allow windows not only to slide but also to “jump”, i.e. move __—
forward more than one position in the stream of matching items each time. " |“‘”""“"M"‘“‘ e
We call these windowpimping windowgFigure 2). Assuming windows of [ Te]eo[e e e ]r[n]n]r]-

lengthw and a jump step of length, with j < w, consequent windows

overlap and share — j common items. Note that, far = 1, we get sliding- Figure 2: A jumping window
window delivery, while forw = T, we get periodic delivery. We denote th#ith w =5 and; = 3.

i" window asW; and writeW; = {p1,...,pw}, Wherepy, ..., p, are the items that belong 1&;. Next, we
define thek-diversity problem over continuous data:



Definition 2: Let W be a stream of items and consider a window sliding dwer The sliding-windowk-
diversity problem is the following: In each windoW; of W, locate and forward to the user a s&t, such
that:

57 = argmax fp(S)) ©)
S; CW;
[Si|=Fk

One difficulty of computing diverse items over continuous data is that it ddoea@one incrementally.
Let S and S’ be two sets that differ at only one item. Then, thenost diverse items of are in general
completely different than the most diverse items of’. As a simple example, consider 2-dimensional points in
the euclidean space and the sgts {(0,0), (3,3), (5,6),(1,7)} andS’ = {(3,3), (5,6), (1,7),(4,4)}. Then,
the 2 most diverse items ofare(0,0) and(5, 6), while the 2 most diverse items 6f are(1,7) and(3, 3).

The straightforward solution to the problem is to re-computektingost diverse items at each window. To
do this, we will consider the GC heuristic, since, as we showed in Sectiorc8ngistently outperforms Fl,
especially in terms of execution time, which is crucial in real-time systems sualbdistgsubscribe. We also
consider the following variation. After each window jump, some of the preiomost diverse items (say
of them) leave the window. Therefore, we initialize the GC algorithm withithem remaining most diverse
items from the previous window and then let the algorithm addems from the new window based on their
item-set distances. We denote this variation as SGC.

Next, we evaluate the performance of GC versus SGC. We examine GCHow andr = 2. We use a
stream of 10000 5-dimensional data points drawn from a normal distribatidrvaryk, w andj. In Figure 3,
we report the average diversity achieved in each window of the stradrtha corresponding average execution
time. We observe that SGC constantly behaves better than both versio®s bbth in terms of diversity and
time. The achieved diversity of both heuristics decreases for largeevalik and smaller values af), as
expected. SGC performs better flasncreases (otv decreases), since there are more diverse items from the
previous window that still remain in the new one. For the same reason, guangestep causes the performance
of SGC to degrade. The behavior of GC does not depend on the lengjid joimp, as thé most diverse items
are recomputed at every window.

4 Content Diversity and Relevance

Often, diversity is just one of the quality aspects in information delivergemeral, items are also ranked based
on their relevance to a user query or subscription. Besides relewaeraanking of an item may be an indicator
of its importance associated, for example, with the authority of the publisheittothe specific preferences or
interests of the user. We assume that this ranking is expressed using @crvahe (or score) associated with
each itenp; through some ranking functiofy (p;) that takes values in [0,1]. Then, the score of a set of items is
the average score of its members.

This creates a multi-criteria problem, since we want to deliver the seiteins that are both highly preferred
and diverse. There are basically two approaches to combine the twaeciieerdiversity and relevance: (i) em-
ploying a weighted combination of the two criteria through a weighind (ii) a threshold variation where we
seek to maximize diversity given a minimum required score for the selecteflisais (or, the dual, maximize
the score of the selected items given a minimum required diversity). Placirrgshtid on diversity however
may be hard, since it requires an estimation of the achievable diversity.

In this work, we focus on a weighted combination of relevance and diyefssuming that items of interest
take values from a non-infinite domain, we ugeto denote the maximum possible distance between any two
items. Then, we redefine thediversity problem as locating a subsgt of P, such that:
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S* = argmax g(5), whereg(S
scp ’S|
S|=k

S Falp) + (1 —0) - - Ip(S), witho € 0,1 (4)

pi€S

Many interesting questions arise concerning the best way to combine the &gwuras, such as, what is the
best value for the weight and whether we can adjust it dynamically bastdtealataset. Here, we assume that
items are associated with uniformly distributed scores. Also, the item-set distatntist(p;, S) between an
item p; and a set of items$' (Equation 2) used by SCG is re-defined accordingly to Equation 4 to cartsadh
measures. In Figure 4, we show the average archived diversityesevénce for the windows of our stream of
10000 data items when varyingfor the SGC heuristic and for the various valuestofFigure 4 also shows
the corresponding results whémandom items are chosen in each window (denoted RA). Naturally, byngary
the value ofg, we can tune the trade-off between the achieved diversity and rekevake notice that when
choosing items based solely on relevanee={ 1.00), the achieved diversity drops below that of the random
case (RA). In this setting, we observe a great increase in relevancimaseases, even far = 0.25, while the
reduction of diversity is more gradual. In this case, there is no reas@eto i 0.50 since this results in further
reduction of diversity without an analogous gain of relevance.

5 Related Work

Although the combination of diversity and relevance has attracted coabldeattention recently, it is not a
new concept. [4] proposed a linear combination of the two measures ba&e#) similar to the approaches
more recently followed in [18, 7]. In [18], a method for topic diversificatie proposed for recommendations
based on the intra-list similarity, a permutation-insensitive metric introducedéssshe topical diversity of a
given recommendation list. The proposed algorithm also considers thamekwof the candidate items when
creating recommendation lists. [7] applies the concept of ranking basbdtbmrelevance and diversity in the
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context of publish/subscribe systems. The notion of diversity is also m@la database systems. Motivated
by the fact that some database relation attributes are more important to thidkproposes a method where
recommendation lists consisting of database tuples are diversified byafiystg the values of higher priority
attributes before varying the values of lower priority ones. When the tapéeassociated with scores, a scored
variation of the method picks more relevant to the query tuples first. [12lesithe problem of automatically
extracting a set of features from the items of interest that is capable efeaditiating the items from each other.
[16] formulates thek-diversity problem as an optimization problem. Given the n distance matrix of the
candidate items, the goal is to find a binary vector of siz#at represents which items belong to the most
diverse subset of siZe This is a binary problem which has to be relaxed to a real-valued problemgolved.
Recently, [10] defined a set of natural, intuitive axioms that a diversidicaystem is expected to satisfy. The
authors prove that all axioms cannot hold simultaneously and show whittewf are satisfied by three main
diversification methods.

Besides using content diversity, there is also related work based emediffdefinitions of diversity. [15]
proposes computing diversity based on the notion of explanations. Pfenation of a given item for a user is
the set of similar items the user has rated in the past. Distances between two #emesagured based on their
corresponding explanations. [11] proposes algorithms to capturesdigencepts in text documents, aiming at
retrieving diverse sentences that can be used as snippets frorh segines. These algorithms are based on
coverage, i.e. how many terms of the document appear in the selectedcssnimnd orthogonality, i.e. how
much the terms appearing in such a sentence differ from those appeatieg@st. Coverage is also considered
in [3], which aims at locating diverse documents to answer a user quavgn @ taxonomy of topics and a
probability distribution for topics relevant to the query, thaliversity problem is formulated as the location
of a set of documents with cardinalify that maximizes the probability of as many topics as possible being
represented by that set. In [5], a distinction is made between novelty, didirmy redundancy, and diversity, i.e.
resolving ambiguity. Both user queries and documents are broken dowsniatbpieces of information, called
nuggets. Then, diverse documents are retrieved based on a prdluainitidel of nuggets being contained in the
various queries and documents.

6 Conclusions

Deriving efficient and effective algorithms for content diversity, llein@ continuous content diversity, is still
an open problem; we believe as broad as clustering. This paper attempteet@asene step towards exploring
some of the issues involved. To this end, we have focused on two intuitivistie solutions to the problem,
namely a greedy and an interchange one, and their variants. Informdtéoimd as in publish/subscribe is an
instance where the need for continuous diversity arises. Publishftédelivery also raises issues related to
distributed data management, since both the publishers of items and the srssamibdistributed. In addition,



for performance and reliability, the matching of subscriptions and publicai®often done distributed. We
have implemented diversity and ranking based on user preferencespnototype, called PrefSIENA [1], that
extends SIENA [2], a popular publish/subscribe system. We are ¢lyrveorking on distribution issues.
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