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Abstract

Result diversification has recently attracted much attention as a means of increasing user satisfaction
in recommendation systems and web search. In this work, we focus on achieving content diversity in
the case of continuous data delivery, such as in the context of publish/subscribe systems. We define
sliding-window diversity and present a suite of heuristics for its efficient computation along with some
performance results.

1 Introduction

With the explosion of the amount of information currently available online, publish/subscribe systems offer an
attractive alternative to searching by providing a proactive model of information supply. In such systems, users
express their interest in specific pieces of data (or events) via subscriptions. Then, they are notified whenever
some other user generates (or publishes) an event that matches one of their subscriptions. Typically, all sub-
scriptions are considered equally important and users are notified whenever a published event matches any of
their subscriptions. However, getting notified about all matching events may lead to overwhelming the users
with large amounts of notifications, thus hurting the acceptability of publish/subscribe systems.

Today, most user searches have an exploratory nature, in the sense that users are mostly interested in re-
trieving various information about their search topic. Therefore, recently, result diversificationhas attracted
considerable attention as a means of enhancing user satisfaction in recommender systems and web search (e.g.
[18, 14]). We argue that diversification could also be employed in the context of publish/subscribe systems to
improve the overall quality of notifications delivered to users.

In this paper, we tackle the problem of selectingk diverse information pieces (oritems) among the infor-
mation content being forwarded to users and delivering only these items to theusers instead of overwhelming
them with all relevant information. Diverse items may be defined in three different ways, namely in terms of
(i) novelty, i.e. choosing to deliver items that contain new information when compared to previously delivered
ones (e.g. [5, 17]), (ii)coverage, i.e. choosing to deliver items that belong to different categories (e.g. [3]) and
(iii) content(or similarity), i.e. choosing to deliver items that are dissimilar to each other (e.g. [16]). Motivated
by the fact that publish/subscribe systems are simultaneously used by many different publishing sources that
often publish overlapping information, in this work, we focus on content diversity among the items (i.e. events)
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of a publish/subscribe system and seek to process the continuous flow ofinformation in such a way as to locate
and deliver to users events that are distant (dissimilar) to each other, given a budget ofk.

In this paper, we introduce the problem of diversity over continuous data, present initial algorithms and
suggest issues for further research. The rest of this paper is structured as follows. In Section 2, we define the
k-diversity problem and present efficient solutions, while in Section 3, weadapt these solutions for continuous
data. Section 4 focuses on the combination of multiple criteria, namely diversity and relevance, for the final
ranking of information. Section 5 briefly reviews related work and, finally,Section 6 concludes this paper.

2 Content Diversity

There are various forms of diversity. Here, we focus on content diversity, so that the users receive dissimilar
content. Specifically, given a set ofn items, we aim at selectingk items out of them, such that, the average
pairwise distance between the selected items is maximized. More formally:

Definition 1: Let P = {p1, . . . , pn} be a set ofn items andk an integer withk ≤ n. Let alsod(pi, pj),
pi, pj ∈ P , be a distance metric between itemspi andpj . Thek-diversity problem is to locate a subsetS∗ of P ,
such that:

S∗ = argmax
S⊆P
|S|=k

fD(S), wherefD(S) =
1

k(k − 1)

k∑

i=1

k∑

j>i

d(pi, pj) andpi, pj ∈ S (1)

The problem of selecting thek items having the maximum average pairwise distance out ofn items is similar
to thep-dispersionproblem. This problem, as well as a number of its variations (e.g. selectp out of n items so
that the minimum distance between any two of them is maximized), have been extensively studied in operations
research and are in general known to be NP-hard [8, 9]. Thus, to solve large instances of the problem, we
need to rely on heuristics. A number of heuristics have been proposed in the literature (e.g. [9]), ranging from
applying exhaustive algorithms to adapting traditional optimization techniques. Ageneral issue that hinders
the development of efficient incremental solutions to the problem is that thek − 1 most diverse items of a set
P are not necessarily a subset of itsk most diverse items. For example, consider as items the points on the
circumstance of a circle and their euclidean distances. The two furthest apart points are (any) two antidiametric
ones. However, no antidiametric points belong to the three most diverse points.

There are two families of heuristics that locate good solutions for thek-diversity problem at a reasonable
time: greedyheuristics andinterchangeheuristics (the reader is referred to [6] for a study of various heuristics
and their behavior). Greedy heuristics make use of two sets: the initial setP and a setS which will eventually
contain the selected items. Items are iteratively moved fromP to S and vice versa until|S| = k and|P | = n−k.
There are two main variations. In theGreedy Constructionheuristic, initially,|P | = n and|S| = 0. First, the
two furthest apart items ofP are added toS. Then, at each iteration, one more item is added toS. The item that is
added is the one that has the maximum item-set distance fromS. We define theitem-set distancesetdist(pi, S)
between an itempi and a set of itemsS as the average distance betweenpi and the items inS, that is:

setdist(pi, S) =
1

|S|

∑

pj∈S

d(pi, pj) (2)

In theGreedy Deletionheuristic, initially, |P | = 0 and|S| = n. At each iteration, the two closest items ofS

are located. One of them is then moved toP . The choice is based on the minimum item-set distance from the
remaining items ofS.

Generally, the Greedy Construction heuristic (denoted GC, Algorithm 1) performs better, both in terms of
the achieved diversity as well as in terms of execution time. Therefore, we will consider it further in this work.
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Algorithm 1 Greedy Construction
Heuristic (GC).

Input: The initial set of itemsP , the number
of wanted itemsk and a thresholdr.

Output: The setS with the k most diverse
items.

1: SetR to be a random subset ofP with
|R| = r

2: find p1, p2, s.t.d(p1, p2) =
max{d(p1, p2) : p1, p2 ∈ R, p1 6= p2}

3: S ← {p1, p2}
4: while |S| < k do
5: find pi ∈ P\S, s.t. setdist(pi, S) =

max{setdist(pj , S) : pj ∈ P\S}
6: S ← S ∪ {pi}
7: end while
8: return S

Algorithm 2 First Pairwise Interchange Heuristic (FI).

Input: The initial set of itemsP , the number of wanted itemsk and a
thresholdh.

Output: The setS with thek most diverse items.

1: SetS to be a random solution
2: while less thanh iterations have been performeddo
3: find p1, p2, s.t.d(p1, p2) = min{d(p1, p2) : p1, p2 ∈ S, p1 6= p2}
4: for all pi ∈ P\S do
5: S′ ← {S\{p1}} ∪ {pi}
6: S′′ ← {S\{p2}} ∪ {pi}
7: if f(S′) > f(S) andf(S′) ≥ f(S′′) then
8: S ← S′; break
9: end if

10: if f(S′′) > f(S) andf(S′′) > f(S′) then
11: S ← S′′; break
12: end if
13: end for
14: end while
15: return S

The complexity of GC isO(n2). However, this is due to the first step of the algorithm where the two furthest
apart items have to be located. The rest of the algorithm takesO(k2n) time. Therefore, to reduce the distance
computations required by GC, we opt to initializeS by selecting the two furthest apart items from a randomly
selected subset ofP with size equal tor, r < n, instead of using the whole set.

Interchange heuristics are initialized with a random solutionS and then iteratively attempt to improve that
solution by interchanging an item in the solution with another item that is not in the solution. The item that is
eliminated from the solution at each iteration is one of the two closest items in it. Again, there are two main
variations. TheFirst Pairwise Interchangeheuristic (denoted FI) performs at each iteration the first interchange
that improves the solution, while theBest Pairwise Interchangeheuristic (denoted BI) considers all possible
interchanges and performs the one that improves the solution the most.

None of the two algorithms clearly outperforms the other, while their worst case complexity isO(nk). Each
distinct iteration of FI is on average faster than an iteration of BI. However, FI is more likely to perform more
iterations. Even though there is no clear winner in terms of execution time, FI usually locates better solutions
[9, 6]. This is the reason we will focus on this variation (Algorithm 2) in the rest of this work. There are
two ways to limit the iterations performed by FI. We can either set a bound, sayh, on the maximum number
of possible interchanges to be performed or allow interchanges to continueas long as the solution improves
by a given threshold. In this paper, we choose to directly control the number of iterations, so that we can get
reasonable execution times.

Next, we provide experimental results to evaluate the performance of theseheuristics, both in terms of effi-
ciency (execution time) as well as effectiveness (achieved diversity).Our goal is not to provide a comprehensive
evaluation of the two heuristics but to present a couple of experiments to provide some insight about their per-
formance. We create synthetic datasets consisting of 200 data points in the euclidean space, where the values of
each dimension are in[0, 1000] and use as distanced the euclidean distance. The heuristics were implemented
in JDK 6 and run on a Windows XP PC with a 2.4 GHz Intel Core 2 Processor and 2.00 GB of RAM. In the fol-
lowing, we show results averaged over 500 runs for 5-dimensional dataitems drawn from a normal distribution.
Figure 1 shows results for various values ofk for the two heuristics. For GC, we user = 200 (i.e. initializing the
heuristic with the whole setP ), r = 100 andr = 2 (i.e. initializing the heuristic with two random items), while
for FI, we either allow a certain number of iterations (h = 60 or h = 70) or allow the algorithm to run until
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Figure 1: Average achieved diversity and execution time for GC and FI.

convergence (h = ∞). We also report the average diversity ofk randomly selected items (denoted RA). Both
heuristics achieve comparable diversity with GC slightly outperforming FI. GCis much faster that FI. Also, note
that reducing the initial itemsr considered by GC does not affect the achieved diversity considerably.

3 Content Diversity in Publish/Subscribe Systems

Publish/subscribe systems provide an alternative way of receiving data of interest. In such systems, users ex-
press their interests in items through subscriptions. New items (or events) published by an information source
(or publisher) are matched against the subscriptions and those items that match subscriptions are delivered
to the corresponding users. Some examples of publish/subscribe systems or proactive delivery include news
alerts, RSS feeds and notification services in social networks. As with websearch, user subscriptions are often
exploratory in nature, in the sense that users do not really know what they want and may not be precise on
expressing their information needs. Thus, recent works have suggested that event matching should also be best
effort [13, 19]. For this reason, to further enhance user satisfaction, we consider the case where not all matching
items are forwarded to the subscribers but just thek most diverse of them.

This is an instance of continuous data delivery. Since events are published and matched in a continuous
manner, we need to define over which subsets of data we apply diversification. In our previous work [7], we
have considered three fundamental models for item delivery: (i)periodic, (ii) sliding-windowand (iii) history-
based filteringdelivery. Given a budget ofk, with periodic delivery, thek most diverse items are computed over
disjoint periods of lengthT and are forwarded to the subscribers at the end of the period. With sliding-window
delivery, thek most diverse items are computed over sliding windows of lengthw, so that, an item is forwarded,
if and only if, it is part of thek most diverse items in any of the windows it belongs to. Finally, history-based
filtering forwards new items as they are matched, if and only if, they are dissimilar enough to thek most diverse
items recently delivered. The lengthsT andw can be defined either in time units (e.g. as “the 10 most diverse
items matched per hour” and, respectively, “the 10 most diverse items matched in the last hour”) or in number
of items (e.g. as “the 10 most diverse items per 100 matched ones” and, respectively, “the 10 most diverse items
among the 100 most recently matched ones”).

Figure 2: A jumping window
with w = 5 andj = 3.

Here, we allow windows not only to slide but also to “jump”, i.e. move
forward more than one position in the stream of matching items each time.
We call these windowsjumping windows(Figure 2). Assuming windows of
length w and a jump step of lengthj, with j < w, consequent windows
overlap and sharew− j common items. Note that, forw = 1, we get sliding-
window delivery, while forw = T , we get periodic delivery. We denote the
ith window asWi and writeWi = {p1, . . . , pw}, wherep1, . . . , pw are the items that belong toWi. Next, we
define thek-diversity problem over continuous data:
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Definition 2: Let W be a stream of items and consider a window sliding overW. The sliding-windowk-
diversity problem is the following: In each windowWi of W, locate and forward to the user a setS∗

i , such
that:

S∗
i = argmax

Si⊆Wi

|Si|=k

fD(Si) (3)

One difficulty of computing diverse items over continuous data is that it cannot be done incrementally.
Let S and S′ be two sets that differ at only one item. Then, thek most diverse items ofS are in general
completely different than thek most diverse items ofS′. As a simple example, consider 2-dimensional points in
the euclidean space and the setsS = {(0, 0), (3, 3), (5, 6), (1, 7)} andS′ = {(3, 3), (5, 6), (1, 7), (4, 4)}. Then,
the 2 most diverse items ofS are(0, 0) and(5, 6), while the 2 most diverse items ofS′ are(1, 7) and(3, 3).

The straightforward solution to the problem is to re-compute thek most diverse items at each window. To
do this, we will consider the GC heuristic, since, as we showed in Section 3, itconsistently outperforms FI,
especially in terms of execution time, which is crucial in real-time systems such as publish/subscribe. We also
consider the following variation. After each window jump, some of the previous k most diverse items (saym
of them) leave the window. Therefore, we initialize the GC algorithm with thek −m remaining most diverse
items from the previous window and then let the algorithm addm items from the new window based on their
item-set distances. We denote this variation as SGC.

Next, we evaluate the performance of GC versus SGC. We examine GC forr = w andr = 2. We use a
stream of 10000 5-dimensional data points drawn from a normal distributionand varyk, w andj. In Figure 3,
we report the average diversity achieved in each window of the stream and the corresponding average execution
time. We observe that SGC constantly behaves better than both versions of GC, both in terms of diversity and
time. The achieved diversity of both heuristics decreases for larger values ofk and smaller values ofw, as
expected. SGC performs better ask increases (orw decreases), since there are more diverse items from the
previous window that still remain in the new one. For the same reason, a largejump step causes the performance
of SGC to degrade. The behavior of GC does not depend on the length ofthe jump, as thek most diverse items
are recomputed at every window.

4 Content Diversity and Relevance

Often, diversity is just one of the quality aspects in information delivery. Ingeneral, items are also ranked based
on their relevance to a user query or subscription. Besides relevance,the ranking of an item may be an indicator
of its importance associated, for example, with the authority of the publisher orwith the specific preferences or
interests of the user. We assume that this ranking is expressed using a numeric value (or score) associated with
each itempi through some ranking functionfR(pi) that takes values in [0,1]. Then, the score of a set of items is
the average score of its members.

This creates a multi-criteria problem, since we want to deliver the set ofk items that are both highly preferred
and diverse. There are basically two approaches to combine the two criteria, i.e. diversity and relevance: (i) em-
ploying a weighted combination of the two criteria through a weightσ and (ii) a threshold variation where we
seek to maximize diversity given a minimum required score for the selected setof items (or, the dual, maximize
the score of the selected items given a minimum required diversity). Placing a threshold on diversity however
may be hard, since it requires an estimation of the achievable diversity.

In this work, we focus on a weighted combination of relevance and diversity. Assuming that items of interest
take values from a non-infinite domain, we useM to denote the maximum possible distance between any two
items. Then, we redefine thek-diversity problem as locating a subsetS∗ of P , such that:
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Figure 3: Average achieved diversity and execution time for the GC and SGC heuristics.

S∗ = argmax
S⊆P
|S|=k

g(S), whereg(S) = σ ·
1

|S|

∑

pi∈S

fR(pi) + (1− σ) ·
1

M
fD(S), with σ ∈ [0, 1] (4)

Many interesting questions arise concerning the best way to combine the two measures, such as, what is the
best value for the weight and whether we can adjust it dynamically based on the dataset. Here, we assume that
items are associated with uniformly distributed scores. Also, the item-set distance setdist(pi, S) between an
itempi and a set of itemsS (Equation 2) used by SCG is re-defined accordingly to Equation 4 to consider both
measures. In Figure 4, we show the average archived diversity and relevance for the windows of our stream of
10000 data items when varyingσ for the SGC heuristic and for the various values ofk. Figure 4 also shows
the corresponding results whenk random items are chosen in each window (denoted RA). Naturally, by varying
the value ofσ, we can tune the trade-off between the achieved diversity and relevance. We notice that when
choosing items based solely on relevance (σ = 1.00), the achieved diversity drops below that of the random
case (RA). In this setting, we observe a great increase in relevance asσ increases, even forσ = 0.25, while the
reduction of diversity is more gradual. In this case, there is no reason to useσ > 0.50 since this results in further
reduction of diversity without an analogous gain of relevance.

5 Related Work

Although the combination of diversity and relevance has attracted considerable attention recently, it is not a
new concept. [4] proposed a linear combination of the two measures back in1998, similar to the approaches
more recently followed in [18, 7]. In [18], a method for topic diversification is proposed for recommendations
based on the intra-list similarity, a permutation-insensitive metric introduced to assess the topical diversity of a
given recommendation list. The proposed algorithm also considers the relevance of the candidate items when
creating recommendation lists. [7] applies the concept of ranking based onboth relevance and diversity in the
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Figure 4: Average achieved diversity and relevance for various values ofσ.

context of publish/subscribe systems. The notion of diversity is also explored in database systems. Motivated
by the fact that some database relation attributes are more important to the user, [14] proposes a method where
recommendation lists consisting of database tuples are diversified by first varying the values of higher priority
attributes before varying the values of lower priority ones. When the tuplesare associated with scores, a scored
variation of the method picks more relevant to the query tuples first. [12] tackles the problem of automatically
extracting a set of features from the items of interest that is capable of differentiating the items from each other.
[16] formulates thek-diversity problem as an optimization problem. Given then × n distance matrix of the
candidate items, the goal is to find a binary vector of sizen that represents which items belong to the most
diverse subset of sizek. This is a binary problem which has to be relaxed to a real-valued problem tobe solved.
Recently, [10] defined a set of natural, intuitive axioms that a diversification system is expected to satisfy. The
authors prove that all axioms cannot hold simultaneously and show which ofthem are satisfied by three main
diversification methods.

Besides using content diversity, there is also related work based on different definitions of diversity. [15]
proposes computing diversity based on the notion of explanations. The explanation of a given item for a user is
the set of similar items the user has rated in the past. Distances between two items are measured based on their
corresponding explanations. [11] proposes algorithms to capture diverse concepts in text documents, aiming at
retrieving diverse sentences that can be used as snippets from search engines. These algorithms are based on
coverage, i.e. how many terms of the document appear in the selected sentences, and orthogonality, i.e. how
much the terms appearing in such a sentence differ from those appearing inthe rest. Coverage is also considered
in [3], which aims at locating diverse documents to answer a user query. Given a taxonomy of topics and a
probability distribution for topics relevant to the query, thek-diversity problem is formulated as the location
of a set of documents with cardinalityk that maximizes the probability of as many topics as possible being
represented by that set. In [5], a distinction is made between novelty, i.e. avoiding redundancy, and diversity, i.e.
resolving ambiguity. Both user queries and documents are broken down intosmall pieces of information, called
nuggets. Then, diverse documents are retrieved based on a probabilistic model of nuggets being contained in the
various queries and documents.

6 Conclusions

Deriving efficient and effective algorithms for content diversity, let alone continuous content diversity, is still
an open problem; we believe as broad as clustering. This paper attempts to serve as one step towards exploring
some of the issues involved. To this end, we have focused on two intuitive heuristic solutions to the problem,
namely a greedy and an interchange one, and their variants. Information filtering as in publish/subscribe is an
instance where the need for continuous diversity arises. Publish/subscribe delivery also raises issues related to
distributed data management, since both the publishers of items and the subscribers are distributed. In addition,
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for performance and reliability, the matching of subscriptions and publications is often done distributed. We
have implemented diversity and ranking based on user preferences in our prototype, called PrefSIENA [1], that
extends SIENA [2], a popular publish/subscribe system. We are currently working on distribution issues.
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