[image: image1.wmf]New Client

Operated by

Dictionary_Vagent

 Central Agent of DVS framework

Operated by

Dictionary_Vagent

Dictionary_Sagent

Dispatches to register

the New Client

&

disposes

itself afterwards

Database Server

accessed through

Assistant Agent

Reply Message

- List of Materialied views

-

 Other Options

Request

for a

new View

DBInfo_Agent

Dispatches to retrieve

Database Meta-Data

DBInfo_Agent

Sends

Meta-Data

Meta-Data is

sent to client

Request

for a

new View

Client constructs

a new View

DBInfo_Agent

queries the

Database Server's

Catalog

View_Agent

Dispatches with

requested View

View_Agent

creates

& maintains View

Client

 can Query the View

Abstract

The Dynamic View System (DVS) is an experimental mobile agent based infrastructure that provides the necessary components for the definition, materialization, storage, maintenance and re-use of views over remote web databases. Through the system, clients identify web databases of interest, access their metadata and create personalized views that can be shared by other clients. Creating personalized views provides a more efficient way of data processing than directly issuing complex queries to the data sources especially in the case of light-weight and wireless clients that suffer from scarce local resources, limited bandwidth and high communication costs. DVS’s multi-tier architecture implemented using mobile Java agents allows automatic code deployment as well as dynamic relocation of views.

1. Introduction

The growing use of the Internet and the web provides users with large amounts of data creating an increasing need for tools that will assist users in their quest for information. Electronic commerce applications and the vast amount of business databases make this need even more important. Since large and complex queries applied directly to the source databases are often quite expensive, the efficient creation and materialization of personalized views provides an efficient and scalable alternative. Such queries are even more expensive for wireless clients due to the severe limitations of the wireless links that are in general characterized by high communication costs, limited bandwidth and high latency [7].

In this demonstration, we will present the Dynamic View System, (DVS), an experimental infrastructure based on mobile agents that allows the definition, creation and maintenance of materialized views over distributed databases. DVS attempts to bring data as close as possible to the clients thus reducing the overhead of transmitting data over slow networks. In addition, it allows the sharing of views among the clients in the system. Access to remote materialized views and databases can be either synchronous or asynchronous [1]. With asynchronous communication, clients can pose queries, disconnect and connect later to receive the results. Analogously, during peak periods, busy servers can postpone processing of some asynchronous queries.
DVS’s multi-tier architecture consists of mobile and stationary agents [11]. It supports dynamic code deployment, thus minimizing the need for a-priori setting-up and installing of client software components. Furthermore, the fact that all system components are extensions of mobile agents [3, 4, 5, 9] allows the system to efficiently adapt to the mobility patterns of its clients.

2. Overview of the Dynamic View System

DVS provides an infrastructure for the dynamic deployment of views over remote databases. It can be viewed as a multilevel dictionary that maintains information about the remote databases to allow clients to define and materialize such views. It also maintains information about previously materialized views, so that they can be subsequently re-used. Materialized views can be mobile; they are dynamically relocated following their clients so that as to stay close to their clients.

2.1 The Dynamic View System Architecture

DVS consists of six types of Java agents: two of them are stationary, namely, the Dictionary_Vagent and the Assistant_Agent, and four are mobile, namely, the Dictionary_Sagent, the Dictionary_Vclient, the DBInfo_Agent, and the View_Agent. The two stationary types constitute the fixed part of the architecture. The four mobile agent types comprise the dynamic part of the architecture. Mobile agents are dynamically created and cooperate with each other and the stationary agents in creating, maintaining, and querying the views.

An Assistant_Agent resides at each database server [6]. Its task is to continuously provide incoming mobile agents with information related to the database itself so they can connect to it and perform SQL queries. Such information may include an appropriate JDBC driver [13], a reference datasource name for the database, and authentication keys.

The Dictionary_Vagent (DVA) is the central agent of the framework. First, it is responsible for keeping track of the locations of the various database servers, and maintaining a snapshot of their metadata. Second, it keeps track of all the materialized views (that is the location of the mobile agents that maintain each materialized view), and the number of clients that are currently using a specific materialized view for load balancing reasons. Finally, DVA serves as a service point (an access point) for clients who wish to query an existing materialized view or create a new one.

A Dictionary_Vclient (DVC) resides at the client side and it downloadable from the Dictionary_Vagent host. It provides the users with a simple GUI for submitting queries on existing materialized views, or defining a new view in SQL.

A Dictionary_Sagent is created on demand by a Dictionary_Vclient and dispatched from the client’s side to the DVA for registration purposes, serving more or less as a messenger between a client and the DVA.

A DBInfo_Agent is created on demand by the DVA and its task is to retrieve metadata from remote databases. It achieves this by dispatching themselves to the remote database and then querying its catalog.

A View_Agent (VA) is also created on demand by the DVA and its functionality is similar to a View Holder [12]. It is capable of creating views on remote databases, executing queries on existing views, and also maintaining materialized views.

Figure 1 illustrates how the various components of the system cooperate to execute a client’s request for the creation and the querying of a view. First, the DVC at the client communicates with the DVA in order to request its services. This request is carried by the Dictionary_Sagent, which is created by the DVC for this purpose. Thus, once it delivers the request to the DVA, it terminates. Subsequently, the DVA contacts the DVC and provides the client with the list of available materialized views, and the option of creating a new view.

If the client selects an existing view, the DVA directs the DVC to either an existing VA that maintains the requested view, or instantiates a new one.

If the client selects to create a new view, the DVC requests from the DVA to retrieve the metadata of the database server involved in the new view. The DVA, in response, creates a DBInfo_Agent, and dispatches it to the database servers where it retrieves their metadata with the assistance of the local Assistant_Agent. The metadata is then sent to the client who uses them to construct the SQL definition of the new view that is subsequently submitted to the DVA. In response, the DVA instantiates a VA, which dispatches itself to the database servers to first create and then maintain the new view. The client can then query the view by contacting the VA directly.

2.2 Other Features

Task Handlers. The mobile shell is separated from the specific task code of the target application via TaskHandlers [2]. A TaskHandler is a Java object that implements a particular task, i.e., a specific view update protocol. A TaskHandler library is a collection of such objects that are serializable and can travel along with the mobile agents. Each mobile object can load one or more TaskHandlers and dynamically choose which one to use. For example, for view maintenance the VA is loaded (and if necessary updated) with the appropriate TaskHandlers implementing various view materialization algorithms [8].

Dynamic Code Deployment. An advantage of our architecture is that there is no need for a priori configuring it [11]. The static agents of the framework can be dynamically sent at the appropriate servers at start-up and disposed when there is no need for them.

Load Balancing. The DVA and the VAs synchronize and coordinate the creation, update and use of each view. Since a view may be shared by multiple clients, in the event that the corresponding VA becomes heavily loaded, the DVA may clone (i.e., create a copy of) the VA. Thus, there may be more that one VA per view. Furthermore, there may be replicas of the view, in which case, the VA is responsible to choose the most appropriate replica for a given request, thus balancing the load on the various replicas.

View Mobility. The VA and the view for a client may move following its clients [12]. A dynamic location management subsystem is under development to aid the automatic acquisition of an agent’s location.

Support for Wireless Clients. DVS is appropriate for light-weight and wireless clients. It supports both synchronous and asynchronous communication, thus a client may pose a request, disconnect and connect later to receive the response [10,12].
3. Demonstration

DVS is implemented in Java on top of an agent execution environment. It is implemented on two mobile agent platforms, namely, the IBM’s Aglets Workbench [4] and Voyager [5]. The system is deployed through the web allowing any user to access it by simply downloading its web page.

We will demonstrate the processes of: attaching a new database to DVS, searching for an existing view, creating a new view, query a view and finally removing a database and deleting a view. In the demonstration, we plan to use our sites in Cyprus, Greece and USA.

4. Conclusion
The Dynamic View System provides the infrastructure for the dynamic creation, materialization, sharing and maintenance of views over web databases. The framework is based on Java mobile agents, thus it takes advantage of the benefits provided by mobile agents including platform independence, mobility, autonomy, reactivity, communication and persistence. The framework is appropriate for light-weight and wireless clients. It supports both synchronous and asynchronous communication, thus a client may pose a request, disconnect and connect later to receive the response. In addition, the framework shares the workload between the clients to the servers, which are rich in recourses. Furthermore, the mobile agent oriented architecture, offers easy extension and improvement. Finally, the framework can be easily deployed through the web.

References
[1] Chrysanthis P. K., T. Znati, S. Banerjee and S.K. Chang. Establishing Virtual Enterprises by means of Mobile Agents. Proc. of the 10th IEEE Workshop on Research Issues in Data Engineering, 1999.

[2] Evripidou P., G. Samaras, E. Pitoura and P. Christoforos. The PacMan Metacomputer: Parallel Computing with Java Mobile Agents. Fifth Generation Computer Systems special issue on JAVA in High Performance Computing, 2000.

[3] Harrison C. G., D. M. Chessm, and A. Kershenbaum. Mobile Agents: are they a good idea? Research Report, IBM Research Division, 1994.

[4] IBM Japan Research Group. The Aglets Workbench Mobile Agents Platform. Available at <http://www.trl.ibm.co.jp/aglets>

[5] Objectspace Inc. The Voyager Mobile Agents Platform. Available at <http://www.objectspace.com/>

[6] Papastavrou S., G. Samaras, and E. Pitoura. Mobile Agents for WWW Distributed Database Access. IEEE Transactions on Knowledge and Data Engineering, 2000.

[7] Pitoura E., and G. Samaras. Data Management for Mobile Computing. Kluwer Academic Publishers, 1998.

[8] Roussopoulos N. Materialized Views and Data Warehouses. Proc. of the 7th International Workshop on Knowledge Representation meets Databases, 1997.

[9] Samaras G., M. Dikaiakos, C. Spyrou and A. Liberdos. Mobile Agent Platforms for Web-Databases: A Qualitative and Quantitative Assessment .The Joint Symposium.on Agent Systems and Applications and on Mobile Agents, 1999.

[10] Samaras G. and A. Pitsillides. Client/Intercept: a Computational Model for Wireless Environments. Proc. of the 4th International Conference on Telecommunications, 1997.

[11] Spyrou C., G. Samaras, E. Pitoura and E. Paraskevas. Mobile Agents for Wireless Computing: The Convergence of Wireless Computational Models with Mobile-Agent Technologies. (To appear in) Journal of ACM/Baltzer Mobile Networking and Applications, 2001.

[12] Weissman Lauzac S., and P. K. Chrysanthis. Programming Views for Mobile Database Clients. Proc. of the 9th International Conference and Workshop on Database and Expert Systems Applications: Mobility in Databases and Distributed Systems, 1998.

[13] Sun Microsystems Inc. JDBC drivers. Available at <http://java.sun.com/products/jdbc/drivers.html>.

The Dynamic View System (DVS):

Mobile Agents to Support Web Views

Constantinos Spyrou,

George Samaras

Dept. of Computer Science

Univ. of Cyprus

CY-1678 Nicosia, Cyprus

{� HYPERLINK "mailto:cssamara@cs.ucy.ac.cy" ��cssamara, cspyrou}@cs.ucy.ac.cy��
Evaggelia Pitoura

Dept. of Computer Science

Univ. of Ioannina

Greece, GR 45110,

Ioannina, Greece

pitoura@cs.uoi.gr�
Stavros Papastavrou,

Panos K. Chrysanthis

Dept. of Computer Science

Univ. of Pittsburgh

Pittsburgh, USA

{panos, stavrosp}@cs.pitt.edu�
�

� EMBED Visio.Drawing.5 ���

Figure 1. The Dynamic View System in Action

_1044616176.vsd
�

New Client
Operated by
Dictionary_Vagent�

 Central Agent of DVS framework
Operated by
Dictionary_Vagent�

Dictionary_Sagent
Dispatches to register
the New Client
& disposes itself afterwards�

Database Server
accessed through
Assistant Agent�

Reply Message
- List of Materialied views
- Other Options �

Request for a
new View�

DBInfo_Agent
Dispatches to retrieve
Database Meta-Data�

DBInfo_Agent
Sends Meta-Data�

Meta-Data is
sent to client�

Request for a
new View�

Client constructs
a new View�

DBInfo_Agent queries the
Database Server's
Catalog�

View_Agent
Dispatches with
requested View�

View_Agent
creates
& maintains View�

Client can Query the View�

