

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 59–76, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Communities: Concept-Based Querying for
Mobile Services

Chara Skouteli1, Christoforos Panayiotou1, George Samaras1, and Evaggelia Pitoura2

1 Department of Computer Science, University of Cyprus,
CY-1678 Nicosia, Cyprus

{chara, cs95gp1, cssamara}@cs.ucy.ac.cy
2 Department of Computer Science, University of Ioannina,

GR 45110, Ioannina, Greece
pitoura@cs.uoi.gr

Abstract. In this paper, we consider semantic service discovery in a global
computing environment. We propose creating a dynamic overlay network by
grouping together semantically related services. Each such group is termed a
community. Communities are organized in a global taxonomy whose nodes are
related contextually. The taxonomy can be seen as an expandable, flexible and
distributed semantic index over the system, which aims at improving service
discovery. We present a distributed service discovery mechanism that utilizes
communities for context-based service discovery. To demonstrate the viability
of our approach, we have implemented an infrastructure for supporting
communities as well as a prototype application that utilizes communities.

1 Introduction

Nowadays, a significant amount of data is stored on a variety of small devices, such
as smart phones, palmtops and personal computers. These small devices are inter-
connected, thus composing a global network that is characterized by (i) device
heterogeneity, (ii) large-scale data distribution, (iii) data heterogeneity, (iv) device
mobility, and (v) a variety of communication protocols. Data stored on these small
diverse devices creates what we call a global or universal database. Our goal in the
DBGlobe project is to provide both the theoretical foundations and the system
infrastructure for effectively querying this database [21].

To overcome differences in the communication protocols used by mobile devices
and data and device heterogeneity, we employ a service oriented approach in that data
are wrapped in services [14]. In this paper, we focus on the fundamental issue of how
to efficiently query for services in such a global database. Service discovery in this
dynamic environment, where providers and requestors are mobile, is more exigent
than in the classic mobile environment where only the requestors can change location.
Furthermore, the huge number of available mobile services demands an efficient
service discovery mechanism.

We propose creating a dynamic overlay network above the core system to group
together semantically related services, effectively creating a network of communities.

C. Skouteli et al. 60

Each of these communities is a set of pointers to semantically or contextually related
services that are distributed over the global mobile environment (for example, a
community of weather services, or a community of services provided by PDAs).
Communities are distributed and are effectively organized in a global taxonomy
whose nodes are related contextually. This taxonomy can be seen as an expandable,
flexible and distributed semantic index over the core system, which aims at
decreasing the cost of service discovery. Providing flexible service discovery over
communities allows us to expand the notion of context beyond the usual concept of
location. In our work, a user’s context is a set of mobile services belonging to a
number of different communities. Having the communities managing concept-related
services provides for a more efficient service discovery.

In a nutshell, in this paper, we propose: (i) a semantic grouping of mobile services
over the global computational net, effectively creating a network of communities, and
(ii) a distributed service discovery mechanism that utilizes these communities for
context-based service discovery. We also study two types of context-based queries,
containment and continuous queries that are central in this context. To demonstrate
the viability of our approach, we have implemented the infrastructure for supporting
communities as well as a prototype application that utilizes this infrastructure.

The remainder of this paper is organized as follows. Section 2 gives an overview of
the core system architecture, while Section 3 describes mobile service directory in
terms of communities and presents the types of queries we support. Section 4
describes the taxonomy and community architecture as an overlay network. Section 5
provides examples of query execution using communities. Section 6 presents our
prototype implementation. Section 7 discusses related work and finally, Section 8
presents conclusions and future work.

2 Core System Architecture

DBGlobe is a global data and service management system [21]. It connects a number
of autonomous devices and provides support for describing, indexing and querying
their data and services (Fig. 1). DBGlobe employs a service-oriented approach in that
data are wrapped as services. The mobile devices at the perimeter of the architecture
are called Primary Mobile Objects (PMOs). They may function as service providers
(servers), service requestors (clients) or both. They connect to the DBGlobe system
and possibly directly to each other to exchange data through services. They register
by providing appropriate metadata information depending on their role. Their number
and location may change over time, as new PMOs enter or leave the system and
existing PMOs relocate.

Besides these “walking” miniature databases of PMOs, DBGlobe system
components, dispersed throughout the stationary network, store metadata information
about PMOs, users and services, provide index and directory information, and query
processing capabilities. These components are called Cell Administration Server
(CAS). CASs also provide low-level functionality, such as network connectivity and
mobility support.

Communities: Concept-Based Querying for Mobile Services 61

Fig. 1. The DBGlobe Layer

2.1 Primary Mobile Objects (PMOs)

A Primary Mobile Object (PMO) is any autonomous, electronic device capable of
communicating independently with the CAS via some communication channel. The
basic functionality of a PMO includes the ability to (a) request and retrieve data, (b)
produce and share data, (c) create and publish a service and (d) communicate with a
DBGlobe server and function as a source. We assume that every PMO has built-in a
globally unique identity (like Ethernet adapter addresses or IMEIs in GSM phones)
and possibly incorporates components that can capture context (such as GPS
receivers, digital compasses and temperature sensors). In addition, it may host an
application server (e.g, a web server) for executing services.

2.2 Cell Administration Servers (CAS)

The Cell Administration Servers (CASs) provide the basic DBGlobe functionality,
including: (a) connectivity and addressing scheme, (b) service publication, (c) context
determination support, (d) mobility support, (e) service life cycle tracking, and (f)
service discovery.

We adopt a hybrid (partially ad-hoc) architecture where geographical 2-D space is
divided into adjacent administrative areas (similar to GSM cells) each managed by a
Cell Administration Server (Fig. 2). A network of CASs constitutes the backbone that
makes it possible for the PMOs to communicate and share data and services with each
other. The CASs are interconnected through a network, e.g. the Internet. Although
they can function autonomously, they are also aware of their neighbors (that manage
geographically adjacent cells) and cooperate to increase the range of requests. In our
current design [3], each cell represents the area of coverage of s network access point.
We assume that every PMO (including stationary devices) is associated with at most
one cell at any given time (e.g., by keeping a live connection to the cell’s defining
network access point).

Each CAS can independently manage the PMOs which enter its area of authority.
It keeps track of the PMOs that enter or leave the cell’s boundaries. It stores metadata
describing each PMO, the context and the resources offered and assists the user to
locate services by semantically matching requests with existing service descriptions.
It also provides basic services to visiting PMOs such as network addressing, session
management and positioning. Each cell can support large numbers of PMOs moving

C. Skouteli et al. 62

inside its area and acting as sources or requestors of information. The CAS module
consists of:

Fig. 2. The System Geographical Distribution CAS manage the covered PMOs

1. A service directory that lists all the services offered by PMOs in the cell.
2. A service description repository of the local services
3. A CAS directory, containing addresses of other CASs.
4. A community directory, containing addresses of the available communities
5. A location management sub-system that keep tracks of the location of the

registered to that cell PMOs
6. A device type and a PMO repository containing the list of device types and PMOs

available in the cell and their profiles,
7. A temporal profile manager for storing the connection times of devices,

discovering patterns and estimating probabilities of next appearance. A server can
also keep historical data and compute statistics about their mobility habits to assist
proactive behavior.

8. A service discovery mechanism for locally residing services.

The distributed nature of the system, however, requires an efficient distributed
service discovery mechanism which is maintained collaboratively among the various
CASs. The basic idea is to use a global service director that utilizes a distributed
hierarchical service taxonomy structure to assist the user to locate services by
semantically matching requests with existing service descriptions. This is achieved
using service communities described next.

3 Service Discovery Based on Concepts in Mobile Environment

Most common service discovery approaches are based on service registries that match
service requests with available service descriptions [19]. However, in a global
computing environment, where (i) service providers and requestors are mobile and (ii)
service unavailability (due, for example, to wireless disconnections) occurs
frequently, there is a need for more sophisticated service discovery mechanisms. For
instance, users may want the results of service discovery to be adapted to their current
state and be updated in a continuous fashion, e.g. if a user is driving, she is not able to
type, but still wishes to find with minimum efforts results which are useful to her at
the current time. To achieve this, we need an infrastructure that can collect and
manage context information about the various system entities.

Communities: Concept-Based Querying for Mobile Services 63

Context information is defined as: any information that can be used to characterize
the situation of an entity, where an entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and the application themselves [17]. In the mobile environment, the most
common context information includes location, user preferences, user situation and
device characteristics. This information can be used to filter the results and provide
more accurate and useful services. However, context information alone is not able to
minimize the searching domain; in the case of a distributed system such as DBGlobe,
we need to query and apply the user’s context on all available service directories in
each CAS. To avoid this, we use the notions of concept and communities, which
allow us to contain any query within a concept efficiently and in a distributed manner.

Communities group semantically related services that are distributed over the
network. Which services belong to a particular community (i.e., which services are
semantically similar) is built around the notion of a concept. Concept is a semantic
notion and describes a specific property, for example, “traveling”, “weather” or “taxi
reservation”. Each concept is described through a set of keywords. Then, given a set
of appropriate keywords, the matching concept or concepts (and thus communities),
are identified and the appropriate services are selected. Having the universe of
services divided and grouped into concepts allows a distributed and efficient
implementation. Thus, if we wish to find a “weather” service for Cyprus, we just
forward the query to the “weather” community and filter the results by using the
location context.

3.1 Context Aware Queries

In a mobile environment, where users are moving, it is critical to provide context
aware queries that (a) give concept information in a contained fashion and (b) provide
results in a continuous fashion. Contained queries aim at containing the results usually
within location boundaries (e.g., location-based queries). In our environment,
however, the results are contained around a more general context not just location.
Continuous queries are always active and aim to inform the user whenever the
conditions posted in a query are satisfied (e.g. “Find services which provide videos
from Greece and alert me when a new one appears”).

Definition 1: A Concept Containment Query is a query that contains the results
within the boundaries of a specific contextual concept. The services that are queried
are related to a specific concept. Concept Containment Queries (Qccq) are composed
from concept keywords and context pairs:

Qccq = <Concept{keywords}, Context{(attribute, value)}>

Concept keywords are used to identify the concept and (attribute, value) pairs are
used to define the user context.

As an example, consider the case of a service for sports news. The concept in this
example can be sports; the execution of the query “find me all services which provide
sports news” should return all services which are related with the “sports news”
concept, or a concept that is characterized by both these keywords. Depending on the

C. Skouteli et al. 64

query, the size of the result can be very large. Our goal is to contain the results by
using the context information that characterizes the current environment of the user.
For instance, in this example, if the user carries an iPAQ device, the discovered
services should be suitable for it, that is, an appropriate query can be “find me all
services which provide sport news displayable on an iPAQ PDA”. This is expressed
through the following query: Qccq = <Concept{sports, news}, Context{(device,
iPAQ)}>.

In addition to containment queries, we are also interested in keeping the result of a
query updated as the result set might change due to service and user mobility. This is
essential since services are mobile and dynamic as PMOs may move, join or leave the
system. Continuous queries aim at keeping the results of a query up-to-date. The
ability to satisfy concept containment continuous queries in a global mobile
environment is critical.

Definition 2: Concept containment continuous queries (Qcccq) are containment
queries that notify the user for changes in the result set in a continuous fashion.

Qcccq=< Concept{keyword }, Frequency{types}, Context{(attribute, value)}>

Frequency types define the frequency by which the user should be alerted.
Currently we support the “onFound” and “near by” type. An example concept
containment continuous query is: “Find close by services that provide photos of
Greece displayable on an iPAQ and alert me whenever a new one becomes available”.
This is expressed as <Concept{Greece, photos}, Frequency{onFound},
Context{(location, “current location”), (device, iPAQ)}>. This query alerts the user
whenever a service which provides photos displayable on an iPAQ is near by.

Assuming that concepts are organized in some order, the order of keywords can
direct query processing. Keywords following a concept ordering may improve service
discovery. For example, the query “find me all services which provide sports news
displayable on an iPAQ PDA” should return all services which are related with the
“sports news” concept where the concept “sports news “ is a sub-concept of sports.
An order-preserving query language could indicate this as follows: sports | news.
Other constructs such as “or”, “and” could also be defined. Thus, the query above
would be expressed as: <Concept{sports | news}, Context{(device, iPAQ)}>.

An important issue is how to distribute the service directories so that both
containment and continuous queries are efficiently supported. CASs provide a level of
distribution for the service directories, since each CAS maintains a local directory
with the description of the services provided by the mobile devices (PMOs) in its
coverage. By doing so, we are able to efficiently support location-based queries, that
is, queries with a single location attribute. However, it is not possible to efficiently
support more general concept queries, since a matching service may be registered at
any CAS directory and thus all of them need to be queried. To avoid this overhead,
we need a mechanism that will group services in multiple ways not only based on
their location. To this end, we propose a query mechanism based on virtual
directories, called communities, that cluster similar services. Communities are
interconnected, creating a semantic overlay network that can be used for efficient
service discovery.

Communities: Concept-Based Querying for Mobile Services 65

3.2 Organizing Communities Using Taxonomies

Just having a collection of communities does not entirely solve the problem. We also
need to organize the communities. To do so, we need a way to classify and inter-relate
communities. We assume that communities are described through ontologies.
Ontologies are used to fully describe entities [6, 7, 8, 10, 20], in our case,
communities and services. In order to express such classifications and interrelations,
we use taxonomies whose elements are the aforementioned ontologies.

Table 1. Community Ontology Properties

communityName The name of the community
textDescription A brief description summarizing the concept of the

community
keywordsDescription Keywords used to describe semantically the

community
Parent Reference to the parent community
Children Reference to the children communities

Such taxonomies take the form of a tree (Fig. 3). Each internal node of the tree
corresponds to an ontology that describes a community (Table 1). The node also
refers to its children which are under its contextual umbrella as well as its parent
node. Recursively this leads to a hierarchy of ontologies where each (deeper) level of
the hierarchy provides a more refined and focused description of the concept. Each
leaf of the taxonomy tree contains a subset of the description properties and functional
attributes of the service’s profile [20] that belongs to the (parent) community. This
profile summary can be used to determine whether the service satisfies the query
criteria and also to provide information for accessing the actual service (Table 2).

Given a taxonomy (i.e. a tree structure of concepts) we can run an inquiry for a
specific topic by performing a top down search for matching ontologies within the
taxonomy tree. During search, the parent ontologies are used to narrow down the
contextual domain of the children nodes. In this way, we only get related services. For
instance, we avoid asking for Asian culture services and getting hotel reservation
services; we always get services from the right concept.

Using communities allows queries to run faster. The efficiency comes from the fact
that communities are a collection of pointers to services belonging to a particular
concept which may reside anywhere in the network. The question here is why not
using one centralized unified index instead of communities. The first reason is
scalability. The other one stems from the heterogeneity of the environment. A third
factor is the semantic nature of the required index. We need an index that can give as
the location of a service based on its semantic description, thus complicating the
structure of the index. Finally, as the complexity of the index increases the cost of
updating it becomes prohibiting. Communities, which are in essence a semantic
index, tackle all these problems:

C. Skouteli et al. 66

Table 2. Summary Service Profile Properties

serviceName The name of the service
keywordsDescription A keywords description summarizing semantically

what service offers or what capabilities are being
requested.

providedBy A sub-property of role referring to the service
provider

geographicRadius Geographical scope of the service, either at the
global scale (e.g. e-commerce) or at a regional scale
(e.g. pizza delivery)

Pointer An abstract link to the full service ontology.

− Heterogeneity in the environment does not affect communities as long as we use a
standardized way of describing the available resources/data.

− Communities provide semantic based indexing of services.
− Updating a community (which has much fewer members than a unified index) is

more cost effective. The updates are distributed to a number of communities, a fact
that limits the load on each individual community.

− Communities can relocate as needed, thus providing load balancing.
− The CASs infrastructure provides a local index. That is, it is able to efficiently

support context aware queries based on location, because the notion of location
restricts the number of CASs that we have to contact.

− The ability to distribute communities provides scalability.

Fig. 3. Global Taxonomy of Communities and Services

Organizing the service directory around concepts and communities allows us to
efficiently distribute the directory (i.e., distribute the communities) over the network.

4 Communities as an Overlay Network Over CAS

To implement communities, we introduce the notion of a Community Administrator
Server (CoAS). CoASs are responsible for the creation and management of

Communities: Concept-Based Querying for Mobile Services 67

communities. Each CoAS maintains a community, which groups similar services
provided by different CASs, and it can be located anywhere in the system. As the
CoASs represent all communities, the complete taxonomy of the CoASs can be seen
as an overlay network over the core system of CASs (Fig. 4). This overlay network
instead of grouping services located in the same geographical domain, it groups
services which are semantically related independently of their location. To create the
overlay network of CoAs, each CAS propagates a summary of description ontologies
of the services that it hosts (see Table 2) to the appropriate CoASs. Identifying the
appropriate CoASs is achieved by using routing indexes based on Bloom filters [4]
described in Section 4.2. The complete overlay network of CoASs constitutes a global
distributed taxonomy tree of communities. Figure 4 shows a possible configuration
and distribution of such a network.

4.1 Managing the CoAS Taxonomy Tree

The CoAS topology is a hierarchy of ontologies. For managing this distributed
topology, important operations include (i) updating its content when a new service is
registered to the system or a PMO disconnects and thus its services become
unavailable and (ii) load-balancing the taxonomy when a node/community becomes
overloaded with service descriptions.

Construction: As an initial global taxonomy tree, we use a basic classification of
services taken from Google (e.g. a subset of Google’s classification of urls). Using
this classification we create the initial network of CoASs.

Fig. 4. Distribution of CASs and CoASs

New Service Registration: This operation takes place when a PMO registers its
services to the CAS. The CAS stores locally the service ontology provided by the
user, and propagates the service description to the communities (it could be more than

C. Skouteli et al. 68

one) which share the same concept with the service. Utilizing Bloom filters [4, 5] in
combination with the services’ descriptions and the community concepts allow the
CAS to identify the appropriate CoASs. Deletion of a service is handled in a similar
manner.

Service Unavailability: A service provided by a PMO may become unavailable at
any given time either voluntarily by its owner or because the PMO becomes
unreachable due, for example, to network disconnections. In such cases, we do not
delete the service, so during service discovery we check for the actual service
availability. The CAS is responsible to detect unavailability or availability and
inform the appropriate CoAS.

Service Update: An update operation at the community level takes place only when
the semantic description of the service changes. In such cases, when the service
profile changes, the CAS will propagate the changes only to the communities which
store a summary of the service and only if this summary must be updated. Note that
service mobility does not affect the community taxonomy. This is because location
based queries are handled by the CASs, thus we do not have to update the
communities whenever the PMO that owns the service changes location.

Balancing Communities: In case where a community becomes too large, reducing its
efficiency, it can be split into two sub-communities. To decide which concept should
be used to build the new community, we cluster the existing community and select the
concept of the largest cluster. Two new CoASs are created to manage the new sub-
communities.

Service Discovery: Querying for a service takes place when a CAS forwards a query
to the CoAS that manages the community that serves the concept of the query. The
CoAS is responsible to find all services which satisfy the contextual condition posted
with the query. In Section 5, we present the query mechanism in more detail.

4.2 Using Bloom Filters to Locate a Community

To identify which CoAS match a given query, we use indexes based on Bloom filters.
Bloom filters are compact data structures for probabilistic representation of a set that
supports membership queries, that is queries on whether a given element belongs to a
set. A Bloom filter BF of size m is a vector of m bits. Initially, all m bits are set to 0.
Consider a set A = {a1, a2, …, an} of n elements. A number of k independent hash
functions, h1, h2, …, hk, each with range 1 to m are used as follows. For each
element a ∈ A, the bits at positions h1(a), h2(a), ..., hk(a) of BF are set to 1. Note that
a particular bit may be set to 1 many times. Given a query for an element b, we check
the bits at positions h1(b), h2(b), ..., hk(b). If any of them is 0, then certainly b is not
in the set A. Otherwise we conjecture that b is in the set, although there is a
probability that this is not the case. This is called a false positive. Parameters k and m
can be chosen so that the probability of a false positive is acceptable.

Communities: Concept-Based Querying for Mobile Services 69

Bloom filters are used to determine which CoAS should be updated when a new
service is added, deleted or becomes unavailable from the system. They are also used
to find which CoASs are relevant to a given query. In particular, given a service
description, using Bloom filters, we can efficiently locate the appropriate CoASs.

At each CAS, there is one Bloom filter for each CoAS; we call this filter a
community Bloom filter. Let CBF(A) be the community Bloom filter that corresponds
to CoAS A. To construct the CBF(A), the k hash functions are applied to all concepts
(keywords) that describe community A, and the associated bits of the filter are set to
1. Given a service s, to find the CoASs that match the service s, we apply the hash
functions to each of the keywords that describe the service. For each such keyword of
the service, we apply the hash functions and check which community Bloom filters
match it. A filter matches the service, if all bits at the corresponding positions are set
to 1. The communities that match the service s are the communities whose
community Bloom Filters match all keywords describing the service.

In case that there is order among the keywords that follows the ontology schemas,
we may use a query language that takes advantage of this order. This should most
likely be a query language based on XPath [3] that allows us to exploit the structure
of the schemas as well as their content. To this end, we have introduced multi-level
Bloom filters [5] that extend Bloom filters for supporting the efficient evaluation of
path expressions including partial match and containment queries. Multi-level Bloom
filters are used to represent the CoAS taxonomy. In particular, instead of maintaining
a simple Bloom filter for each CoAS, we maintain a multi-level one.

5 Servicing a Query Via the CoAS Network

In this section, we present how the system supports concept and continuous
containment queries.

5.1 Concept Containment Queries

The query execution steps are performed in collaboration between the CAS and the
CoAS components.

1. A PMO, service or user compose a query by providing the concept keywords and
submit the query to the associated CAS. The order of the keywords corresponds to
the concept hierarchy. The CAS composes the query by appending the context
keywords which define the user current environment. As an example, consider the
following request: “Find a service providing pop music clips for an iPAQ media
player”. This request is formulated as follows:

Qcq=<Concept{music, pop, clip}, Context{(device, iPAQ)}>

2. If the receiving CAS can satisfy the query then it returns the results to the issuing
PMO, service or user and the process terminates (location-based queries might be
satisfied this way). If the request can not be satisfied locally by the CAS, the CAS

C. Skouteli et al. 70

uses the Bloom Filters to identify which community (i.e., CoAS) serves the query
concept, in this example, the community “music clips”. We assume that the
community taxonomy contains such a community. In this case the concept
hierarchy is music | pop | clips; this hierarchy is used to better direct the query to
the appropriate community. In case that there is no community to serve the exact
concept, we search for a community that serves the more general concept, in our
example “music pop” and the keyword “clips” is submitted as a context constraint
in the query. Upon finding the appropriate CoAS, the CAS forwards the query to it.
If there is no community to serve the concept, the request is forwarded to the root
community for a top down search.

3. A CoAS upon receiving a query identifies all matching services. Matching is
performed at a semantics level. All matching services are reported in a list. For the
example query, the resulted list will contain all services which provide pop music
clips currently registered in the CoAS unless other constraints are also imposed.

Example Query 1: “Find all services providing photographs of Parthenon”.
Assuming that there is no community to serve the concept “Photographs of
Parthenon” the keyword Parthenon becomes a context keyword and is used to filter
the services which are registered to the photograph community. To this end, we use a
reserved attribute name, called “concept”. This query is formulated as follows:
Q1 = <Concept{photograph}, Context(concept, Parthenon)}>

5.2 Concept Containment Continuous Queries

These types of queries differ from the previous ones in that they must be stored into
the CoAS. Depending on the frequency condition, the CoAS will periodically push
the results to the issuing PMO. To better understand this mechanism, consider the
following request: “Give me all services providing music clips for an iPAQ device
and alert me when a new one is available”. This request is formulated as follows:

<Concept{music, clip}, Frequency{new, onFound}, Context{(device, iPAQ)}>.

The PMO submits the query to its current CAS. The CAS forwards the query to all
appropriate CoASs, using the mechanism described earlier.

Each CoAS registers the query locally. Whenever a new service is registered to the
CoAS, the CoAS checks whether there is any continuous query whose conditions may
be satisfied by the new service. If this is the case, the query results are updated and
the issuing PMO is notified.

There is an overhead for supporting concept containment continuous queries, since
we need to check whether a new service match any continuous queries registered at
the corresponding CoAS. However, this overhead is small considering the overhead to
provide this capability in the absence of the CoASs. In this case, all CAS would have
to be checked whenever a new service is registered.

Example Query 2: “Give me services providing photographs of Parthenon and alert
me when a new one is available”. This query is expressed as follows:

Communities: Concept-Based Querying for Mobile Services 71

Q2 = <Concept{photograph}, Frequency{new, onFound}, Context{(concept,
Parthenon}>

Example Query 3: “Give me services providing finance services and alert me when a
new one is submitted by the user “xak”. This query must be forwarded to community
managing the concept “Finance” and with context the service provider. This is
expressed as:

Q3 = <Concept{finance}, Frequency{new, onFound}, Context{(provider, “xak”)}>

6 Implementation and Prototype

The core system infrastructure is composed by a set of CASs. These CASs are
distributed across the network and independently manage the PMOs under their area
of coverage. Low level communication between the available CASs is achieved by
using RMI. For extensibility, we also manipulate CASs as web services. The CAS
interface includes methods for (i) registering a new service, (ii) locating a service and
(iii) retrieving context information (e.g. location).

We implemented the Community Administrator Servers (CoASs) on top of the
core system infrastructure. CoASs are also distributed across the network and can be
manipulated as web services. The main system components which have direct access
to the CoASs are the CASs. Communication of these components is achieved either
with RMI or web services technology. The interface provide by a CoAS consists of
the following methods: (i) register a new service, (ii) locate a service, and (iii) get the
results of a continuous query.

Fig. 5. The CAS and CoAS Server Architecture

C. Skouteli et al. 72

6.1 Community Administrator Server (CoAS) Architecture

The components that comprise a CoAS are the following (Fig. 5):
Service Ontology Directory: lists all the service ontologies summaries currently
handled by the specific CoAS.

1. CoAS directory: lists children CoAS.
2. Query executor: the most important component of the CoAS, as it is responsible

for matching an incoming query’s criteria with service describing ontologies. In
effect, it is the context awareness query processor.

3. Concept Alerts Directory: used to better support continuity for incoming queries by
providing triggers for them.

4. CAS Directory: lists all the CAS of the system.

a. Clips of SpotMe Application Running on a Sony Clie : Colleagues displaying

b. Creation of a Concept Containment
Continuous Query

c. View the Results of the Alert

Fig. 6. SpotMe Prototype

Communities: Concept-Based Querying for Mobile Services 73

6.2 SpotMe: A Context Aware Application

One of the main objectives of our infrastructure is to support the development of
context aware applications. To demonstrate the capabilities of our system, especially
distributed service discovery, we implemented a context aware prototype application
called SpotMe on top of the CAS and CoAS infrastructure. The goal of the
application is to create a collaborative environment where groups of users connect to
the system to share their services. The prototype application is web-based and
supports both continuous and containment queries.

Figure 6 exhibits some of the application capabilities. Fig. 6.a shows the basic
screen of the application where a user has organized her friends into groups. As
shown in Fig. 6.c, the user is able to view the local available services; this option
exhibits the infrastructure capabilities to provide location-based queries. Moreover,
the user has the option to register her services and search for services. Figure 6.b
details the search capability where the user selects a list of friends and also submits a
set of keywords which define the concept of the services. A possible concept
containment continuous query example is “Inform me when one of my friends
submits a new financial service” where the concept of this query is “financial” and the
context is the selected list of users. To demonstrate concept containment continuous
queries, the application offers the option to users to be alerted whenever one of their
selected friends registers a related service. Thus, the search in Fig. 6.b is translated to
the query:

<Concept{financial}, Frequency{new, onFound}, Context{(users, friends)}.

The following environment has been used to test the prototype implementation: a
CAS network consisting of three CAS interconnected through the internet. All of
them are also internet gateways, two of them allowing near-by users to access the
network via wifi and one of them via Bluetooth. The initial overlay network of
communities, shown in Fig. 7, is also interconnected through the internet. We used
the following mobile devices: a Sony Clie, a Toshiba and an iPAQ connected via wifi
and Bluetooth. Figure 6.a shows clips of the application’s interface on a Sony clie.

Fig. 7. Initial Community Hierarchy

7 Related Work

GloServ [12] is a service discovery system for a mobile environment that shares same
common design issues with our work. More specifically, GloServ uses a hierarchical

C. Skouteli et al. 74

schema to classify the registered services. Its architecture is similar to DNS in that it
contains root name servers and authoritative name servers that manage information
about services. GloServ classifies the hierarchy of services and establishes RDF
schemas that describe each type of service. The SLM system [18] is another service
discovery architecture that shares some ideas with our approach. The SLM service
discovery system consists of SLM servers, services and SLM clients. An SLM server
is a service information repository, providing SLM clients with access to all available
services. SLM clients can search for services on behalf of end users. The system
adopts a distributed hierarchical tree structure to organize SLM servers which may
physically be located in wide-area networks. Both approaches create a hierarchy
between the directory servers where the services are registered, while, in our approach
the directory servers (CASs) are interconnect in a graph structure; but we provide the
hierarchy of the available services on top of this graph structure. Our approach is
more scalable because when a CAS does not respond, we are still able to find a
service because all services are indexed by the taxonomy tree. Conversely in the case
that a CoAS is not available, the query can be executed by the CAS.

The SCAM [13] context model is based on an ontology which provides a
vocabulary for representing and sharing context knowledge in a pervasive computing
domain, including machine-interpretable definitions of basic concepts in the domain
and relations among them. To capture a great variety of context, they divide a
pervasive computing domain into several sub-domains, e.g., home domain, office
domain, vehicle domain, etc; and define individual low-level ontology in each
domain. The separation of domains reduces the burden of context processing and
makes context interpretation possible on mobile thin clients. The important difference
with our approach and SCAM is that SCAM uses a centralized architecture, OSGi-
compliant, mobile service gateway.

8 Conclusions and Future Work

In this paper, we consider semantic service discovery in a global computing
environment. We described a low-level architecture of directory servers, each one of
which maintains information about the services offered by the devices inside its area
of coverage. We proposed creating a dynamic overlay network above this network of
servers that groups semantically related services, effectively creating a network of
communities. Each community is a set of pointers to semantically or contextually
related services (for example, a community of weather services). Communities are
organized in a global taxonomy whose nodes are related contextually. This taxonomy
can be seen as an expandable, flexible and distributed semantic index over the core
system, which aims at improving service discovery. We also presented a distributed
service discovery mechanism that utilizes these communities for context-based
service discovery. To demonstrate the viability of our approach, we have
implemented the infrastructure for supporting communities as well as a prototype
application that utilizes this infrastructure. As future work, we plan to explore the

Communities: Concept-Based Querying for Mobile Services 75

effectiveness of a query language for managing context. We also plan to study load-
balancing by relocating communities close to their most frequent requestors.

References

1. Samaras,G., Spyrou,K., Pitoura,E., Dikaiakos, M.: Tracker: A Universal Location
Management System for Mobile Agents. Proc. The European Wireless 2002 Conference,
Next Generation Wireless Networks: Technologies, Protocols, Services and Applications,
Florence, Italy (2002) 572–580

2. Bray, T., Paoli , J., Sperberg-McQueen, C. M.: Extensible Markup Language (XML) 1.0
Specifications. World Wide Web Consortium, http://ww.w3.org/TR/Rec-xml

3. XML Path Language (XPath). World Wide Web Consortium, http://www.w3.org/TR/
xpath

4. Koloniari, G., Pitoura, E.: Content-Based Routing of Path Queries in Peer-to-Peer
Systems. EDBT Heraclio Greece (2004) 29–47

5. Koloniari,G., Pitoura, E.: Bloom-Filters for Hierarchical Data, Proceeding of the 5th
Workshop on Distributed Data and Structures (WDAS) (2003)

6. Services Definition Language (WSDL), Web page, http://www.w3.org/TR/WSDL.
7. Ouzzani, M., Benatallah, B., Bouguettaya, A.: Ontological Approach for Information

Discovery in Internet Databases. Distributed and Parallel Databases an International
Journal, Volume 8, Issue 3 (2000) 367–392

8. Levy, A. , Srivastava, D., Kirk., T.: Data model and query evaluation in global information
systems. Intelligent Information Systems, 5(2) (1996)

9. Lee,C., Helal, D.: Context Attributes: An Approach to Enable Context-awareness for
Service Discovery. In the Proceedings of the 2003 Symposium on Applications and the
Internet,(SAINT'03), Orlando, FL, USA, (2003)

10. Pfoser,D., Tryfona, N.,Verykios, V.: Services-Based Data Management in a Global
Computing Environment. Workshops (WISEW'03) Roma (2003) 45-53

11. XML Query (XQuery). World Wide Web Consortium, http://www.w3.org/XML/Query
12. Arabshian ,K., Schulzrinne, H.: GloServ: Global Service Discovery Architecture,

Department of Computer Science, Columbia University, New York (2004)
13. Tao Gu , Xiao Hang Wang , Hung Keng Pung , Da Qing Zhang : A Middleware for

Context-Aware Mobile Services, IEEE Vehicular Technology Conference (VTC Spring
2004), Milan, Italy (2004)

14. http://www.w3.org/2002/ws/
15. http://www.w3.org/2001/04/30-tbl
16. Pitoura,E., Samaras, G., :Locating Objects in Mobile Computing. IEEE Transactions on

Knowledge and Data Engineering Journal (TKDE). Vol. 13, No. 4 (2001) 571–592
17. Dey, A.K. , Abowd, G.D.: Towards a Better Understaning Context and Context-

Awareness. In the Workshop on The What, Who, Where, When, and How of Context-
Awareness, The Hague, The Netherlands (2000)

18. Gu,T., Qian, H. C. ,Yao, J. K., Pung, H. K. :An Architecture for Flexible Service
Discovery in OCTOPUS", Proc. of the 12th International Conference on Computer
Communications and Networks (ICCCN), Dallas, Texas (2003)

19. UDDI: The UDDI Technical White Paper. http://www.uddi.org

C. Skouteli et al. 76

20. DAML-S Coalition:DAML-S Service Description for the Semantic Web, In Proceedings
of The First International Semantic Web Conference (ISWC) Sardinia, Italia (2002)

21. Pitoura,E.,Abiteboul, S., Pfoser, D.,Samaras, G., Vazirgiannis, M., et. al. : DBGlobe: a
Service-Oriented P2P System for Global Computing, SIGMOD Record 32(3) (2003) 77–
82

	Introduction
	Core System Architecture
	Primary Mobile Objects (PMOs)
	Cell Administration Servers (CAS)

	Service Discovery Based on Concepts in Mobile Environment
	Context Aware Queries
	Organizing Communities Using Taxonomies

	Communities as an Overlay Network Over CAS
	Managing the CoAS Taxonomy Tree
	Using Bloom Filters to Locate a Community

	Servicing a Query Via the CoAS Network
	Concept Containment Queries
	Concept Containment Continuous Queries

	Implementation and Prototype
	Community Administrator Server (CoAS) Architecture
	SpotMe: A Context Aware Application

	Related Work
	Conclusions and Future Work

