Parallel Computing Using Java Mobile Agents

Panayiotou Christoforos*, George Samaras*, Evaggelia Pitoura+, Paraskevas Evripidou*

*Department of Computer Science, University of Cyprus

CY-1678 Nicosia, Cyprus, <{cssamara, skevos}@cs.ucy.ac.cy>

+ Department of Computer Science, University of Ioannina

GR 45110, Ioannina, Greece, <pitoura@zues.cs.uoi.gr>

Abstract

The wide acceptance of Java technology as the de facto standard for the development of distributed application on the Web, and the emerging technology of Java Mobile Agents Frameworks, has motivated the creation of a new methodology for the creation of parallel applications. We introduce a methodology for the creation of parallel applications on the Web. The proposed Mobile-Agent parallel processing framework uses multiple Java-mobile Agents that each one utilizes multithreading. Each mobile agent can travel anywhere in the web to perform its tasks. We also introduce the concept of task handlers, which are Java objects capable of implementing a particular task of the target application. TaskHandlers are dynamically assigned to mobile agents. We have developed and tested a prototype application: Parallel Web Querying as proof of concept of our proposed framework. Boosted by the inherited benefits of using Java and Mobile Agents, our proposed methodology brakes the barriers between the environments, and could potentially exploit in a parallel manner all the available computational resources on the World Wide Web.

Keywords: Web, Java, Java Threads, Parallel Processing, Distributed Computing, Mobile Agent, Aglets.

1. Introduction

This paper describes a framework for the development of Parallel Applications on the Web using Java Mobile Agents. The mobile agent execution environment used to realize our proposed framework is based on the Aglet Technology [4], developed by IBM Tokyo, which is a Java based framework for building mobile agent objects. Our proposed framework enhances the capabilities of the Aglets with parallel processing constructs. We have applied this framework for the development of a parallel Web-based Computing system and we demonstrate it with a parallel Web Querying prototype. With this prototype Java Mobile agents are launched in the Web to query in parallel distributed databases. Java multithreading is then employed to combine the partial results of the queries; thus a second level of concurrency is employed. A prototype has been developed and successfully tested, thus providing proof of concept for the proposed framework.

The undeniable eminence of Java technology [1] in networking performance over other respected programming languages like C++, its global portability and security control system gives Java the lead in Client/Server programming and mobile computing [2]. The World Wide Web (simply Web) [6, 7, 8] is rapidly being accepted as a universal access mechanism for network information. This popularity of the Web suggests that Web browsers may offer a compelling end-user interface for a large class of applications [13]. Indeed, their widespread availability, the availability of the Internet to offer world-wide any-to-any connectivity, the ease with which users can create forms using HTML, makes the Web very attractive (and inexpensive) for a large class of client/server applications.

The objective is to combine these two technologies, namely Java Mobile Agents and Web, for the solution of large problems in parallel. The real challenge in integrating Java and Parallel Processing is the formation of smart, lightweight, flexible, independent and portable Java Parallel processing programs, with maximum performance and security standards, that will support efficient parallel processing communication and synchronization over the Internet.

The driving force motivating the use of mobile agents is twofold. First, mobile agents provide an efficient, flexible and asynchronous method for searching for information or services in rapidly evolving networks: mobile agents are launched into the unstructured network and roam around to gather information or make other computations. Second, mobile agents support intermittent connectivity, slow networks, and lightweight devices. This second property makes the use of mobile agents very attractive [2]. In our case, it relieves the remote client from any unnecessary overhead by “moving” it to the heavyweight servers at the fixed network. Furthermore, it allows a straightforward adaptation of our approach to the, emerging and very popular, wireless environments.

[image: image1.wmf]Prototype's Performance

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

200

400

600

800

1000

Average

Sample Size

Speedup

Speedup between mode 0 and 1

Speedup between mode 0 and 2

Speedup between mode 1 and 2

Here we introduce a new approach for the development of Java-based Parallel Processing applications over the Web. Our approach is based on the idea of using mobile agents [3]. These agents are launched to different hosts on Web and they cooperate and communicate among themselves in order to solve large problems fast. To realize our framework, new components are defined to complement the existing agent execution environment (i.e., the IBM aglets). In particular the existing aglets need to be extended with parallel processing, synchronization and communication capabilities. In addition a library of task specific objects, called Task_handlers, are implemented to realize the computation portion of the application. The generality of our approach with the concept of Task_Handlers makes it very easy in expanding it with new elements to cover almost any possible parallel application

The remaining sections of this paper are organized as follows. Section 2 presents a short introduction to the mobile agents’ paradigm and the Aglet Technology. Section 3 and 4 presents the proposed framework. Section 3 describes in detail the concepts behind the framework and section 4 gives more emphasis on the technical side of the framework. Section 5 demonstrates the generality of the proposed framework. Section 6 presents the implemented prototype our experimentation and performance analysis. While section 6 summarizes the advantages of the proposed framework. Finally section 7 concludes this report.

2. The Aglet Technology
The Aglet Technology [4] (also known as the Aglets Workbench) is a framework for programming mobile network agents in Java. Developed by the IBM Japan research group, the aglet technology was first released on July 28, 1996. From a technical point of view, the IBM’s mobile agent called ‘Aglet’ (agile applet), is a lightweight Java object that can move autonomously from one computer host to another for execution, carrying along its program code and state as well as the so far obtained data.

Unlike an applet’s short and boring period of execution, an aglet can exist and execute tasks forever. One of the main differences between an aglet and the simple mobile code of Java applets, is the itinerary that is carried along with the aglet (figure 1). The itinerary can change dynamically giving the aglet the sense of self-governing and the look of an intelligent agent.

Figure 1: An Aglet Template
An aglet can be dispatched to any remote host that supports the Java Virtual Machine. This requires from the remote host to have preinstalled Tahiti, a tiny aglet server program implemented in Java. A running Tahiti server listens to the host’s ports for incoming aglets, captures them, and provides them with an aglet context (i.e., an agent execution environment) in which they can run their code from the state that it was halted before they were dispatched. Within its context, an aglet can communicate with other aglets, collect local information and when convenient halt its execution and be dispatched to another host. An aglet can also be cloned or disposed.

To allow aglets to be fired from within applets, the IBM Aglet team provided the so-called ‘FijiApplet’, an abstract applet classes that is part of a Java package called ‘Fiji Kit’. The FijiApplet maintains some kind of an aglet context (like the Tahiti aglet server). From within this context, aglets can be created, dispatched from, retracted back to the FijiApplet and of course communicate.

For a Java-enabled Web browser to host and fire aglets to various destinations, besides the FijiApplet applet class, two more components are required and are also provided by the Aglet’s Framework. These are an aglet plug-in to allow the browser to host aglets and an aglet router that must be install at the Web server. The aglet router is implemented in Java and it is available as a standalone Java program or as a servlet component for Web servers that support servlets
. Its sole purpose is to capture incoming aglets and forward them to their destination.

Potential uses of aglets include data collection from many places, searching, filtering and monitoring resources on the Web, parallel processing, entertainment and electronic commerce. Our intention in this paper, is the employment of aglets in order to provide a new approach for the development of parallel, Java based Parallel applications. The approach is generic and it can be employed not only for the development of parallel application within a local network of workstations, but for the development of parallel applications accessible to the public on the Web.

3. Parallel Processing with Mobile Agents

Motivated by the promising technology of mobile agents, the power and capabilities of Java threads, we develop a framework for the development of parallel applications on the Web. Our approach employs Java-mobile agents for parallel computing that breaks the barriers of non-homogenous environments.

In our framework we launch multiple Java mobile agents that travel in designated hosts on the web where they perform their tasks. Each agent supports the basic communication and synchronization tasks of the classical parallel worker. In short each agent assumes the role of a process in a parallel processing application. There is also a second degree of parallelism achieved by the use of threads inside each agent that strengthens the concurrent execution of an application. Our approach suggests that there is one agent chosen as a leader who dynamically creates and dispatches to several workstations-hosts, a variable number of mobile agents to work in parallel (Figure 2). These workstations-hosts can be either computers in the fixed local network or they can be computers along the Internet.

[image: image2.wmf]Workstation that hosts the

leader Parall-aglet

Internet

Chaos

Workstation-host #1

that hosts

Parallel-aglet(s)

Internet

Chaos

Workstation-host #2

that hosts

Parallel-aglet(s)

Host #3

Parallel-aglet

dispatched by

the leader

Parallel-aglet

dispatched by

the leader

Figure 2: The proposed framework
Furthermore in our proposed framework we generalize the parallel agent by separating the mobile shell from the specific task code of the target application. We achieve this with the introduction of TaskHandlers, which are Java objects capable of performing the various tasks. TaskHandlers are dynamically assigned to our agents. Each agent can carry with him any number of TaskHandlers and it can dynamically choose when and where to use them.

3.1 The Mobile Parallel Processing Framework
To realize our approach, a number of processes are defined to complement the existing agent execution environment (i.e., the aglets). In particular the existing aglets need to be extended with parallel processing capabilities. In addition a library of task specific objects, called TaskHandlers, are implemented to realize the computation portion of the application. Specifically the following components comprise the proposed framework:

Parallel-aglet: it must be a computational unit, able of creating and launching other Parallel-aglets. It is a descendant of IBM’s Aglet object. The coordination between the various parallel aglets is an additional responsibility. It must be able to create TaskHandler objects from the TaskHandler library that travel along with him. The decision of which object, from the TaskHandler library, will be initiated is done dynamically at runtime based on the current demands. In short the main responsibility of the parallel aglet is first to create and coordinate other parallel aglets and then to initiate a variable number of TaskHandler objects to perform a specific job. The parallel-aglet has all the capabilities of the IBM’s Aglet object, which can be used as necessary (e.g. Cloning etc). The mode of operation of the Parallel-aglet is similar in concept with the SPMD (Single Program Multiple Data) parallel model; the Parallel-aglet runs in all the hosts of our application, the same code/process running in all the hosts, but it can perform different tasks in each host.
TaskHandler Library: it is a collection of Java objects that are serialazable, and thus can travel along with our aglet. TaskHandler is an object that is in the disposal of our agent to use when it needs to perform a specific computational task. For example, when the need arise for a database query it could utilize the DBMS_TaskHandler. These objects are instantiated by our agents in new separate threads that run along with our agents. At the beginning this library can have only our TaskHandler abstract class but it can be enriched with other TaskHandler objects that must be descendants of our TaskHandler abstract class (this is done both for technical reasons and to ensure a common interface, although it can be overridden).

[image: image3.wmf]Prototype's Performance

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

200

400

600

800

1000

Average

Sample Size

Speedup

Speedup between mode 0 and 1

Speedup between mode 0 and 2

Speedup between mode 1 and 2

Figure 3: The hierarchy of the TaskHandler library
The workstation-host: it must be a Java enabled computer (has installed the Java runtime environment) that runs the Tahiti Aglet server, in order to host incoming Parallel-aglets.

Both, the Parallel-aglet and the TaskHandler, compose the suggested framework, called “The Mobile Parallel Processing Framework”, and it is completely written in Java. Table 1 summarizes this agent-based parallel-processing infrastructure which is composed of (a) the Aglets Framework, and (b) our proposed Mobile Parallel Processing Framework.

Table 1: The Mobile parallel-processing infrastructure.
The Aglet Framework
The Mobile Parallel Processing Framework

A Tahiti aglet server at each Workstation-host
The Parallel-aglet

The TaskHandler library

3.2 Enhancing the Framework to Utilize the Web

One of the biggest improvements of our suggested framework is its capability to be initiated from within a Web page, making it accessible to the public through the Web. The key for that is the ability of the Parallel-aglet to be initiated within a Java enabled browser that has the FijiApplet plug-in.

To achieve that, we expand our proposed framework as follows (table 2):

· We create a descendant of the FijiApplet abstract class. We name this applet-based process ‘Parallel-applet’. This applet can create and communicate with a Parallel-aglet (the web server must have the code of the Parallel-aglet).

· By adding the aglet router and the aglet plug-in in the aglet framework.

· By adding a third framework, the Standard Web infrastructure.

The new Web-enabled Framework is consequently called “The Web-Mobile Parallel Processing Framework”.

Table 2: The new Mobile Web-based parallel-processing infrastructure
The Aglet Framework
The Standard Web Infrastructure
The Mobile Web Parallel Processing Framework

A Tahiti aglet server at each Workstation-host
A Web Server
The Parallel-applet

An aglet router installed at the Web server machine
A Java powered Web Browser with the aglet plug-in.
The Parallel-aglet

An aglet plug-in for Java-enabled browsers to enable a Web browser to host aglets

The TaskHandler library

3.3 Execution Roadmap

As we have described above, the framework has a great degree of generality and freedom. The static part of our agent is responsible for the mobility, the general coordination, the creation and manipulation of other aglets and of course the dynamic assignment of TaskHandlers, which compose the dynamic part of our agents. This assignment is achieved with the following steps:

i. The parallel aglet is created
ii. If necessary creates and fires other parallel aglets
iii. The parallel aglet dispatches itself to the appropriate host.
iv. It creates a TaskHandler object and initiates it in new separate thread
v. The TaskHandler perform its task in concurrently with the parallel aglet.
vi. The parallel aglet requests from the TaskHandler to perform a specific task. While waiting the first TaskHandler to performed its tasks more TaskHandler objects can be launched to accomplish other tasks
vii. Finally the parallel-aglet collects, in coordination with the other parallel-aglets, the results and returns them to the user. In other words the results are channeled through various aglets back to the leader aglet and then to the user.
This class hierarchy is depicted in Figure 4 with the dashed lines we represent the dynamic assignment.

Figure 4: The class hierarchy of the various agents
3.4 Utilizing the Web-Mobile Parallel Framework

The steps that a developer must follow in order to create a parallel processing application, according to the Web-Mobile Parallel Processing Framework are the following. Note that these steps only realize a specific parallel scenario. In section 6 we present and compare various scenarios.

· Extend the Parallel-aglet class or implement our Parallel-aglet interface
.

· Program his own Parallel-applet either by extending our Parallel-applet class or writing a new one which extends the IBM’s FijiApplet abstract class. (This applet is used as the interface between the user and the Parallel-aglet).

· Program the TaskHandler objects by extending our TaskHandler abstract class (thus adding the necessary objects in the TaskHandler library) or use an existing one from the current TaskHandler library.

· Include the Parallel-applet in an html page, and install it on a Web server.

· Install the Parallel-aglet and the TaskHandlers on the Web server in order to be accessible to the Parallel-Applet.

In order to setup the necessary infrastructure we must:

· Setup a number workstations-hosts by installing on them the JVM and a Tahiti Server.

· Install the aglet router on the Web server.

· Install Java enabled Web browser that has the aglet plug-in.

To initiate the application, the user points his Web browser to the html page of the Web-Mobile Parallel Processing Framework. The leader (the first) Parallel-aglet creates a number of other Parallel-aglets and dispatches them to some hosts in the Web to work in parallel. The Parallel-aglets must first go through the aglet router that is installed on the Web server.

4. Extending the Agent-based Parallel Frameworks

“Each mobile agent is a computation along with its own data and execution state”

In the Java agent based technology, an agent can be further viewed as an object that can be inherited, enhanced or refined just like any other object. The Aglets can be viewed as the basic abstract object that provides us with the basic capabilities of mobility, communication, ability to cloning themselves, i.e., implementing all the capabilities supported by the Aglets Framework.

The parallel Frameworks enhance these capabilities with the addition of parallel processing features. We create a hierarchy that can be later on used to create more complex and sophisticated applications. Figure 5 shows the aglets hierarchy.

Figure 5: The agents’ hierarchy
To enhance the new aglets with other capabilities is now straightforward. For example, to extend the parallel framework with database capabilities we only have to create a database TaskHandler [11], make it descendant of the TaskHandler class and extend the Parallel-aglet in order to use the DBMS TaskHandler (which could be any of the Developer’s TaskHandler in Figure 5). Such a scenario is demonstrated in the section below.

5. Prototype Implementation: Parallel Web Querying

As proof of concept for our methodology we have setup a Mobile parallel-processing infrastructure network and created Parallel Web Querying application. The goal of this application was to provide the user the capability of querying a number of distributed databases, and join the result tables of each query. The application has been tested under various configurations on a number of distributed databases.

5.1 Implementation Roadmap

The first step was to write the necessary TaskHandlers that our Parallel aglet will use:

· DBMS_TaskHandler class, which has database capabilities, and the

· Join_TaskHandler class, which joins the results of two tables.

This amounts to effectively writing two Developer’s_TaskHandler classes. Then we extend our parallel aglet to make him understand and handle the messages that he might receive. Finally we did design a user interface of our application which was composed by an applet, descendant of Fiji applet, that serves as an interface between the user and our parallel-aglet.

The second step is to store the compiled code of the parallel aglet along with the necessary TaskHandlers and the html page with the applet on host A (web server) The TaskHandler objects must be in the same file with the parallel-aglets and serializable to travel with the aglet.

The third step is to install on each host of the distributed databases a Tahiti server in order to accept and host incoming aglets, and an SQL server (e.g. Microsoft Access). We also need to install on host A an aglet router to route the mobile agents.

The experiment can be initiated on any computer on the WWW that has Netscape Communicator 4.0 and above, with the Fiji plug-in. By pointing to the html page of our prototype host A it downloads the applet that will start our prototype. Through the applet’s graphical interface, the user can issue a number of SQL sub-queries. The user must also provide the IP addresses of the machines that host the each distributed database to be queried. As soon as the user issues the “execute” command, the applet creates the parallel aglet (which will be the leader) on host A and gives him vital information including:

· The number of hosts, and thus the number of parallel aglets.

· The IP addresses of the remote hosts to be visited by other parallel aglets (aglets he will create).

· The queries to be executed with the database server on each host.

· The names of the TaskHandlers objects that each aglet must create and use (including the ones for itself).

· The information that he is the leader.

· His personal task (in other words, the IP address of a remote host that he’s supposed to visit along with the appropriate query).

· Application specific information (e.g. database username and password).

Immediately after that, while still on the web server (host A), the leader creates all the other necessary parallel aglets (which are identical with him as far as their capabilities are concerned) and then it dispatches itself to the appropriate host. Each parallel aglet that is created by the leader has the following information:

· The location of the leader and all other parallel aglets that the leader created.

· The names of the TaskHandlers that it must use.

· The information that he is NOT the leader.

· His personal task (in other words, the IP address of a remote host that he’s supposed to visit along with the appropriate query).

· Application specific information.

Each parallel aglet dispatches itself to the appropriate remote host. Arriving at the remote host, each parallel aglet initiates its main task. In this case it creates in a new thread the DBMS_TaskHandler object. Please note that the initiation of the DBMS_TaskHandler and not of some other TaskHandler is a decision which was taken dynamically (the aglet was instructed to do so – it was not hardcoded to do so). The DBMS_TaskHandler connects to the local SQL database server, performs its query and gets the results. As soon as the results are available, the parallel aglet gets them (requests them) from its DBMS_TaskHandler and then it terminates the TaskHandler’s thread. After that the parallel-aglets co-operate to perform the join of the result tables. In order to join two result tables, a parallel-aglet initiates the Join_TaskHandler, which does all the dirty work of the joining. When this is finished it sends the new results to the applet.

5.2 Experimentation and analysis of results

We contacted experiments on a local network and involved 4 hosts with distributed databases. We used medium size databases (about 50-Mb) which had some tables having more than half a million records. However the SQL was designed to limit the intermediate results. We perform experiments under three scenarios:

i) We have just one parallel-aglet (the leader) which goes from host to host performs the queries and joins the results at the end.

ii) We have four parallel-aglets, each one visit and perform the queries at a different host. The joining is done by the leader.

iii) We have four parallel-aglets, each one visits and perform the queries at a different host, but the joining is done in a tree-reduction fashion.

[image: image4.wmf]Workstation that hosts the

leader Parall-aglet

Internet

Chaos

Workstation-host #1

that hosts

Parallel-aglet(s)

Internet

Chaos

Workstation-host #2

that hosts

Parallel-aglet(s)

Host #3

Parallel-aglet

dispatched by

the leader

Parallel-aglet

dispatched by

the leader

Figure 6: Performance of the various scenarios.

Figure 6 shows the performance as implied by the timing results of our prototype under the three scenarios outlined above. As it can be seen from the results the use of multiple agents in parallel improves the performance of the prototype. Improvement is achieved both in the query phase and the join phase. The performance improvement of scenario ii and scenario iii compared with scenario i is due to the fact that the queries are performed in parallel. The improvement of scenario iii compared to scenario ii is due to the fact that the joining is done in parallel in tree-reduction fashion. It is our estimation that the speedups achieved are the maximum possible according to the ahmdahls law.

6. Advantages of using Mobile Agents for Parallel Processing
A parallel processing application that is implemented accordingly to our suggested Web-Mobile Parallel Processing Framework is boosted by the inherited benefits of using Java and Java mobile agents.

An important advantage is that the number of processes in a Mobile Web Parallel Processing Framework can change dynamically. After initiating the application with a number of aglets serving it, the leader parallel aglet can create, at run time, as many other parallel aglets as necessary. The workstations that will host the parallel aglets can be decided at run time, after considering the network traffic or the workload of the available workstations [12]. Parallel aglets can be reused as they can receive new instructions and then use new tasks i.e., initiate different TaskHandler objects according to the its instructions. Furthermore, the workstations that hosts worker processes are not required to be part of the same local network in which the workstation that hosts the leader parallel aglet belongs to. A workstation-host can be located anywhere in the entire Web.

By using Java, the Web-Mobile Parallel Processing Framework breaks the homogeneity barriers enabling all kinds of workstations to be part of the framework. The application based on this framework can be initiated from within a Web page. Thus, unlike to other parallel processing implementations, an application of the Mobile Web Parallel Processing Framework can be accessible to the public on the Web with zero configuration.
Our framework can be further benefited from the inherent advantages of the mobile technology itself, for example:

· A parallel aglet, having a certain load of work, can split up the workload by cloning itself. The clones created are parallel aglets that participate in the computation.

· A parallel aglet can dispatch to another host, if its current host is powerless or if it has a heavy workload.

· A parallel aglet can move to workstations where the available resources and environment are suitable for its kind of work. For example, a parallel aglet that has to perform queries from a database server can be dispatched directly to the database server and get as closed to data as it is possible.

· Parallel aglets can be launched (and forgotten) by the leader parallel aglet initialized from a laptop or a palmtop computer during a short Web session. The parallel aglet can roam around the unstructured network to perform its tasks and then wait until the communication link is again available to return home with their task results.

7. Other approaches

Other approaches for Java high perfomance include the following:
· Expansion of the Java Virtual Machine to support virtual shared memory. (Java/DSM)

· Expansion of Java language (by implementing a compiler) with parallel execution models and constructs. (Titanium)

· Java bytecode optimizers that discover implicit parallelism (javab)

· Tools that automate binding of native libraries (JCI: Java-to-C interface generator)

· Sharing of single-user Java applications for synchronous collaboration by propagating AWT events (JCE - Tango)

· The implementation of software components (in Java) that give the basic communication functionality needed by distributed or parallel computing (A World-Wide Distributed System Using Java and the Internet - JPVM)

· Using a collection of applets with brokers that route the messages between the applets (Javelin - Charlotte)

· Load balancing by relocating Java agents (Adaptive Placement of Parallel Java Agents in a Scalable Computing Cluster)

8. Conclusions

In this paper, we have introduced a new approach for developing parallel applications on the Web using Java mobile agents and Java threads. Our approach employees and extends the power of Java programming language, and the flexibility of Java-based mobile agents to provide a new framework for parallel Web development. Compared with the conventional implementations, our approach, is far more convenient for serving the Web Internet user, especially in cases when the client is a mobile or wireless machine. We have utilized the IBM Aglets Framework and extend it to create an efficient and flexible Web-based framework for parallel processing using Java mobile agents. Furthermore the generality of our approach with the concept of TaskHandlers makes it very easy in expanding it with new elements to cover almost any possible parallel application. A prototype application, of Parallel Query has been implemented and tested. We performed several experiments with different combinations of number of parallel-aglets and methods of joining the resulting tables. The results showed that our proposed framework can achieved respectable speedups.

This framework, named “the Mobile Web Parallel Processing Framework”, utilizes the newest technology of mobile agents. This framework is portable and it can be used not only within the Web but stand-alone as well. Furthermore, the various mobile agents of our framework are light and thus very suitable for low bandwidth environments, such as wireless Wide Area Networks (WANs). In general, even though the parallel aglet must follow certain directions, this framework allows it to be portable, light, independent, autonomous, flexible and robust.
References

[1]
G. Cornel and C. Horstman. Core Java. SunSoft Press, 1996.

[2]
Evaggelia Pittura and George Samaras. Data Management for Mobile Computing. Kluwer Academic Publishers, 1997

[3]
Colin G. Harrison, David M. Chessm, Aaron Kershenbaum. Mobile Agents: are they a good idea? Research Report, IBM Research Division.

[4]
Aglets Workbench, by IBM Japan Research Group. Web site: <http:/ aglets.trl.ibm.co.jp>

[5]
Ed Anuff. Java sourcebook. Whiley Computer Publishing, 1996.

[6]
T. Berners-Lee and D. Connolly, Hypertext Markup Language Specification 2.0, Internet Draft, Internet Engineering Task Force (IETF), HTML Working Group. Available at <www.ics.uci.edu/ietf/html/html2spec.ps.gz>, June 1995.

[7]
T. Berners-Lee, R. Fielding, H. Frystyk. Hypertext Transfer Protocol - HTTP/1.0 Specification, Internet Draft, Internet Engineering Task Force (IETF). Available at <www.ics.uci.edu/pub/ietf/http/draft-fielding-http-spec-01.ps.Z>, August 1995.

[8]
T. Berners-Lee and R. Caililiau and A. Luotonen and H.F. Nielsen and A. Secret, The World Wide Web, Journal Communications of the ACM, Vol. 37, No 8, pp. 76-82, August, 1994.

[9]
D. Chess, B. Grosof, C. Harrison, D.Levine, C. Parris, G. Tsudik. Itinerant Agents for Mobile Computing. Journal IEEE Personal Communications, Vol. 2, No. 5, October 1993.

[10]
J. E. White. Mobile Agents. General Magic White Paper. Web site <http://www.genmagic.com/agents>, 1996.

[11]
S. Papastavrou, G. Samaras, and E. Pitoura, “Mobile Agents for WWW Distributed Database Access”, Proc. 15th International Data Engineering Conference, Sydney, Australia, March 1999.

[12]
Barelos, D., E. Pitoura, G. Samaras, “Mobile Agents Procedures: Metacomputing in Java”, Proc. Of the ICDCS Workshop on Distributed Middleware (in conjuction with the 19th IEEE International Conference on Distributed Computing Systems (ICDCS99)) Austin, TX USA, June 1999

[13] N. Neophytou and P. Evripidou ``Net-dbx: A Java Powered tool for Interactive Debugging of MPI programs across the Internet'', Proceedings of Euro-Par 98 Conference, 1998
Variables

Data-

TaskHandler

DBMS_TH	Func1_TH	Func2_TH	 …

SubDBMS_TH	SubA_TH	SubB_TH	…	…

Itinerary

� EMBED Excel.Chart.8 \s ���

�EMBED Visio.Drawing.4���

Identifier

Aglet Code

Aglet Object

� Servlet: a server-side applet that dynamically extends the functionality of a Web server (like a CGI).

� We give this option for reasons of compatibility and combination with other frameworks that use IBM’s Aglets.

_992037703.xls
Γράφημα1

		200		200		200

		400		400		400

		600		600		600

		800		800		800

		1000		1000		1000

		Average		Average		Average

Speedup between mode 0 and 1

Speedup between mode 0 and 2

Speedup between mode 1 and 2

Sample Size

Speedup

Prototype's Performance

3.8070207184

3.8673774183

1.0158540508

2.9908053023

3.3113891835

1.1071898197

2.8107836571

3.1047551789

1.1045870326

2.4093278278

2.9505927215

1.2246539004

2.1188966725

2.5160176761

1.1874187679

2.8273668356

3.1500264357

1.1279407143

Φύλλο1

		Μεγ. Δείγμ.		Speedup 0-1		Speedup 0-2		Speedup 1-2

		200		3.807		3.867		1.016

		400		2.991		3.311		1.107

		600		2.811		3.105		1.105

		800		2.409		2.951		1.225

		1000		2.119		2.516		1.187

		Average		2.827		3.150		1.128

_975942542.vsd

