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ABSTRACT

Keyword-based search in relational databases allows users to dis-
cover relevant information without knowing the database schema or
using complicated queries. However, such searches may return an
overwhelming number of results, often loosely related to the user
intent. In this paper, we propose personalizing keyword database
search by utilizing user preferences. Query results are ranked based
on both their relevance to the query and their preference degree for
the user. To further increase the quality of results, we consider two
new metrics that evaluate the goodness of the result as a set, namely
coverage of many user interests and content diversity. We present
an algorithm for processing preference queries that uses the pref-
erential order between keywords to direct the joining of relevant
tuples from multiple relations. We then show how to reduce the
complexity of this algorithm by sharing computational steps. Fi-
nally, we report evaluation results of the efficiency and effective-
ness of our approach.

1. INTRODUCTION
Keyword-based search is very popular because it allows users to

express their information needs without either being aware of the
underlying structure of the data or using a query language. In re-
lational databases, existing keyword search approaches exploit the
database schema or the given database instance to retrieve tuples
relevant to the keywords of the query. For example, consider the
movie database instance shown in Figure 1. Then, the results of
the keyword query Q = {thriller, B. Pitt} are the thriller movies
Twelve Monkeys and Seven both with B. Pitt.

Keyword search is intrinsically ambiguous. Given the abundance
of available information, exploring the contents of a database is a
complex procedure that may return a huge volume of data. Still,
users would like to retrieve only a small piece of it, namely the
most relevant to their interests. Previous approaches for ranking the
results of keyword search include, among others, adapting IR-style
document relevance ranking strategies (e.g. [18]) and exploiting the
link structure of the database (e.g. [19, 6, 9]). In this paper, we
propose personalizing database keyword search, so that different
users receive different results based on their personal interests. To
this end, the proposed model exploits user preferences for ranking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

keyword results.
In our model, preferences express a user choice that holds un-

der a specific context, where both context and choice are speci-
fied through keywords. For example, consider the following two
preferences: ({thriller}, G. Oldman ≻ W. Allen) and ({comedy},
W. Allen ≻ G. Oldman). The first preference denotes that in the
context of thriller movies, the user prefers G. Oldman over W. Allen,
whereas the latter, that in the context of comedies, the user prefers
W. Allen over G. Oldman. Such preferences may be specified in
an ad-hoc manner when the user submits a query or they may be
stored in a general user profile. Preferences may also be created
automatically based on explicit or implicit user feedback (e.g. [12,
20]) or on the popularity of specific keyword combinations (e.g.
[17, 4]). For example, the first preference may be induced by the
fact that the keywords thriller and G. Oldman co-occur in the query
log more often than the keywords thriller and W. Allen.

Given a set of preferences, we would like to personalize a key-
word query Q by ranking its results in an order compatible with the
order expressed in the user choices for context Q. For example, in
the results of the query Q = {thriller}, movies related to G. Oldman

should precede those related to W. Allen. To formalize this require-
ment, we consider expansions of query Q with the set of keywords
appearing in the user choices for context Q. For instance, for the
query Q = {thriller}, we use the queries Q1 = {thriller, G. Old-

man} and Q2 = {thriller, W. Allen}. We project the order induced
by the user choices among the results of these queries to produce
an order among the results of the original query Q.

Since keyword search is often best-effort, given a constraint k
on the number of results, we would like to combine the order of
results as indicated by the user preferences with their relevance to
the query. Besides preferences and relevance, we also consider the
set of the k results as a whole and seek to increase the overall value
of this set to the users. Specifically, we aim at selecting the k most
representative among the relevant and preferred results, i.e. these
results that both cover different preferences and have different con-
tent. In general, such result diversification, i.e. selecting items that
differ from each other, has been shown to increase user satisfaction
[36, 34].

We propose a number of algorithms for computing the top-k re-
sults. For generating results that follow the preference order, we
rely on applying the winnow operator [11, 32] on various levels
to retrieve the most preferable choices at each level. Then, we in-
troduce a sharing-results keyword query processing algorithm, that
exploits the fact that the results of a keyword query are related with
the results of its superset queries, to avoid redundant computations.
Finally, we propose an algorithm that works in conjunction with
the multi-level winnow and the sharing-results algorithm to com-
pute the top-k representative results.
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m Dracula                             thriller      1992       F.F. Coppola1

idm   title                                   genre        year director

m Twelve Monkeys              thriller      1996 T. Gilliam2

m Seven                                thriller      1996       D. Fincher3

m Schindler’s List                drama       1993       S. Spielberg4

m Picking up the Pieces       comedy     2000 A. Arau5

Movies

m a1 1

idm   ida

m a2 2

m a3 2

m a4 3

m a5 4

Play

a G. Oldman          male         19581

ida     name                  gender dob

a B. Pitt                 male         19632

a L. Neeson           male         19523

a W. Allen             male          19354

Actors

Figure 1: Database instance.

In summary, this paper makes the following contributions:

• it proposes personalizing keyword search through user pref-
erences and provides a formal model for integrating prefer-
ential ranking with database keyword search,

• it combines multiple criteria for the quality of the results that
include the relevance and the degree of preference of each
individual result as well as the coverage and diversity of the
set of results as a whole,

• it presents efficient algorithms for the computation of the top-
k representative results.

We have evaluated both the efficiency and effectiveness of our
approach. Our performance results show that the sharing-results
algorithm improves the execution time over the baseline one by
90%. Furthermore, the overall overhead for preference expansion
and diversification is reasonable (around 30% in most cases). Our
usability results indicate that users receive results more interesting
to them when preferences are used.

The rest of this paper is organized as follows. In Section 2, we in-
troduce our contextual keyword preference model. In Section 3, we
explore the desired properties of search results and define the top-k
representative ones, while in Section 4, we propose algorithms for
preferential keyword query processing within relational databases.
In Section 5, we discuss a number of extensions and in Section 6,
we present our evaluation results. Section 7 describes related work
and finally, Section 8 concludes the paper.

2. MODEL
We start this section with a short introduction to keyword search

in databases. Then, we present our model of preferences and per-
sonalized keyword search.

2.1 Preliminaries
Most approaches to keyword search (e.g. [19, 6]) exploit the de-

pendencies in the database schema for answering keyword queries.
Consider a database R with n relations R1, R2, . . . , Rn. The sche-

ma graph GD is a directed graph capturing the foreign key relation-
ships in the schema. GD has one node for each relation Ri and an
edge Ri → Rj , if and only if, Ri has a set of foreign key attributes
referring to the primary key attributes of Rj . We refer to the undi-
rected version of the schema graph as GU .

Let W be the potentially infinite set of all keywords. A keyword
query Q consists of a set of keywords, i.e. Q ⊆ W . Typically, the
result of a keyword query is defined with regards to joining trees of

tuples (JTTs), which are trees of tuples connected through primary
to foreign key dependencies [19, 6, 9].

DEFINITION 1 (JOINING TREE OF TUPLES (JTT)). Given an

undirected schema graph GU , a joining tree of tuples (JTT) is a tree

of tuples T , such that, for each pair of adjacent tuples ti, tj in T ,

ti ∈ Ri, tj ∈ Rj , there is an edge (Ri, Rj) ∈ GU and it holds that

(ti 1 tj) ∈ (Ri 1 Rj).

Total JTT: A JTT T is total for a keyword query Q, if and only
if, every keyword of Q is contained in at least one tuple of T .

Minimal JTT: A JTT T that is total for a keyword query Q is
also minimal for Q, if and only if, we cannot remove a tuple from
T and get a total JTT for Q.

We can now define the result of a keyword query as follows:

DEFINITION 2 (QUERY RESULT). Given a keyword query Q,

the result Res(Q) of Q is the set of all JTTs that are both total and

minimal for Q.

The size of a JTT is equal to the number of its tuples, i.e. the
number of nodes in the tree, which is one more than the number of
joins. For example, for the database of Figure 1, the result of the
keyword query Q = {thriller, B. Pitt} consists of the JTTs: (i) (m2,
Twelve Monkeys, thriller, 1996, T. Gilliam) − (m2, a2) − (a2, B.

Pitt, male, 1963) and (ii) (m3, Seven, thriller, 1996, D. Fincher) −
(m3, a2) − (a2, B. Pitt, male, 1963), both of size equal to 3.

2.2 Keyword Preference Model
Keyword queries are very general and their result may include

a large number of JTTs. We propose personalizing such results by
incorporating preferences.

DEFINITION 3 (CONTEXTUAL KEYWORD PREFERENCE). A

contextual keyword preference cp is a pair cp = (C, wi ≻ wj),

where C ⊆ W and wi, wj ∈ W. We also write wi ≻C wj .

The intuitive meaning of a contextual keyword preference, or
simply preference, is that, when all keywords in context C are
present, results involving keyword wi are preferred over those in-
volving keyword wj . We refer to wi ≻C wj as the choice part of
the preference. For example, consider the preference cp = ({thriller,

B. Pitt}, T. Gilliam ≻ D. Fincher). Preference cp indicates that, in
the case of thrillers and B. Pitt, movies related to T. Gilliam are
preferred over those related to D. Fincher.

Note that we interpret context using AND semantics. This means
that a choice holds only if all the keywords of the context part are
present (both thriller and B. Pitt in our example). OR semantics
can be achieved by having two or more preferences with the same
choice part (for instance, in our example, one for thriller and one
for B. Pitt).

We call the preferences for which the context part is empty, i.e.
C = {}, context-free keyword preferences. Context-free keyword
preferences may be seen as preferences that hold independently of
context. For example, the preference ({}, thriller ≻ drama) indi-
cates that thrillers are preferred over dramas unconditionally.

We call the set of all preferences defined by a user, user profile,
or simply profile. Let P be a profile, we use PC to denote the set of
preferences with context C and WC to denote the set of keywords
that appear in the choices of PC . We call the keywords in WC

choice keywords for C.
We provide next the formal definition of dominance.

DEFINITION 4 (DIRECT PREFERENTIAL DOMINATION). Gi-

ven a keyword query Q and a profile P , let Ti, Tj be two JTTs total

for Q. We say that Ti directly dominates Tj under PQ, Ti ≻PQ
Tj ,

if and only if, ∃wi in Ti, such that, ∄wj in Tj with wj ≻Q wi and

wi, wj ∈ WQ.

The motivation for this specific formulation of the definition of
dominance is twofold. First, we want to favor JTTs that include at
least one choice keyword over those that do not include any such
keyword. Second, in the case of two JTTs that contain many choice
keywords, we want to favor the JTT that contains the most preferred

586



one among them. To clarify this, consider the following example.
Assume the query Q = {wq}, the choice keywords w1, w2, w3, w4

and the preferences ({wq}, w1 ≻ w2), ({wq}, w2 ≻ w3), ({wq},
w4 ≻ w2). Let T1, T2 be two JTTs in the result set of Q, where
T1 contains, among others, the keywords wq, w1, w3 and T2 the
keywords wq and w2. Then, based on Definition 4, although T1

contains the keyword w3 that is less preferable than w2 contained
in T2, T1 directly dominates T2, because T1 contains w1 which is
the most preferred keyword among them.

In general, direct dominance ≻PQ
defines an order among the

JTTs that contain all keywords in Q. Note that it is possible that,
for two JTTs T1, T2, both T1 ≻PQ

T2 and T2 ≻PQ
T1 hold. For

instance, in the above example, assume T1 with wq and w1 and T2

with wq and w4. We consider such JTTs to be equally preferred. It
is also possible that neither T1 ≻PQ

T2 nor T2 ≻PQ
T1 holds. This

is the case when none of the JTTs contain any choice keywords.
Such JTTs are incomparable; we discuss next how we can order
them.

2.3 Extending Dominance
Definition 4 can be used to order by dominance those JTTs in the

query result that contain choice keywords. For example, given the
preference ({thriller}, F. F. Coppola ≻ T. Gilliam), for the query
Q = {thriller}, the JTT T1 = (m1, Dracula, thriller, 1992, F.

F. Coppola) directly dominates the JTT T2 = (m2, Twelve Mon-

keys, thriller, 1996, T. Gilliam). However, we cannot order results
that may contain choice keywords indirectly through joins. For
example, given the preference ({thriller}, G. Oldman ≻ B. Pitt)
and the same query Q = {thriller}, now T1 and T2 do not contain
any choice keywords and thus are incomparable, whereas again T1

should be preferred over T2 since it is a thriller movie related to G.

Oldman, while T2 is related to B. Pitt.
We capture such indirect dominance through the notion of a JTT

projection. Intuitively, a JTT Ti indirectly dominates a JTT Tj , if
Ti is the projection of some JTT that directly dominates the JTTs
whose projection is Tj .

Projected JTT: Assume a keyword query Q and let Ti, Tj be
two JTTs. Tj is a projected JTT of Ti for Q, if and only if, Tj

is a subtree of Ti that is total and minimal for Q, that is, Tj ∈
Res(Q). The set of the projected JTTs of Ti for Q is denoted by
projectQ(Ti).

For example, assume the query Q = {thriller}. The JTT (m1,
Dracula, thriller, 1992, F. F. Coppola) is a projected JTT of (m1,
Dracula, thriller, 1992, F. F. Coppola) − (m1, a1) − (a1, G. Old-

man, male, 1958) for Q.
We can construct the projected JTTs of a JTT T by appropriately

removing nodes from T as follows. A leaf node of T is called
secondary with respect to Q, if it contains a keyword in Q that is
also contained in some other node of T . All projected JTTs for T
can be produced from T by removing secondary nodes one by one
till none remains.

The following set is useful. It contains exactly the minimal JTTs
that include all keywords in Q and at least one keyword in WQ.

DEFINITION 5 (PREFERENTIAL QUERY RESULT). Given a

keyword query Q and a profile P , the preferential query result

PRes(Q, P ) is the set of all JTTs that are both total and minimal

for at least one of the queries Q
⋃
{wi}, wi ∈ WQ.

Now, we can define indirect dominance as follows:

DEFINITION 6 (INDIRECT PREFERENTIAL DOMINATION).
Given a keyword query Q and a profile P , let Ti, Tj be two JTTs

total for Q. We say that Ti indirectly dominates Tj under PQ,

Ti ≻≻PQ
Tj , if there is a JTT T ′

i ∈ PRes(Q, P ), such that,

R. DeNiro A. Pacino R. Williams

A. Garcia A. Hopkins R. Gere

higher level (l = 1)

lower level (l = 2)

Figure 2: The graph of choices GP{thriller,F.F.Coppola}
.

Ti ∈ projectQ(T ′

i ) and there is no joining tree of tuples T ′

j ∈
PRes(Q, P ), such that, Tj ∈ projectQ(T ′

j) and T ′

j ≻PQ
T ′

i .

Note that the indirect dominance relation is not a superset of
direct dominance, that is, Ti ≻PQ

Tj ; Ti ≻≻PQ
Tj . To see this,

consider the case where Ti contains a choice keyword that precedes
those in Tj but Tj belongs to the project of a JTT that contains an
even more preferred keyword.

Our goal in defining indirect preferential dominance is to impose
an ordering over the results that will follow the preferences given
by the users exactly. Thus, a result that is even only “distantly”
related to a choice keyword (i.e. through many joins) is preferred
over a result that is more closely related to a less preferred choice
keyword. We shall introduce issues of relevance and multi-criteria
ranking later in the paper.

2.4 Processing Dominance
Given a query Q, we would like to generate its results in order

of indirect dominance. To achieve this, we use the fact that, in
general, the trees in the result of Q

⋃
{wi} directly dominate the

trees in the result of Q
⋃
{wj}, for wi ≻Q wj . This suggests that

the order for generating the results for a query Q should follow the
order ≻Q among the choice keywords in WQ. We describe next,
how to organize the choice keywords to achieve this.

Let P be a profile, C a context and PC the related contextual
preferences in P . We organize the choice keywords in WC using
a directed graph GPC

for PC , referred to as graph of choices for
PC . GPC

has one node for each keyword wi ∈ WC and an edge
from the node representing wi to the node representing wj , if and
only if, it holds that wi ≻C wj and ∄wr , such that, wi ≻C wr

and wr ≻C wj . For example, consider the preferences for C =
{thriller, F. F. Coppola}: cp1 = (C, R. DeNiro ≻ A. Garcia), cp2

= (C, A. Pacino ≻ A. Garcia), cp3 = (C, A. Pacino ≻ A. Hopkins)
and cp4 = (C, R. Williams ≻ R. Gere). The graph of choices for
this set of preferences is depicted in Figure 2.

To extract from GPC
the set of the most preferred keywords, we

apply the multiple level winnow operator [11, 32]. This operator
retrieves the keywords appearing in GPC

in order of preference.
Specifically, at level 1, winPC

(1) = {wi ∈ WC | ∄wj ∈ WC ,
wj ≻C wi}. For subsequent applications at level l, l > 1, it holds,
winPC

(l) = {wi ∈ WC | ∄wj ∈ (WC −
⋃l−1

r=1 winPC
(r)) with

wj ≻C wi}.
In the following, we assume that the preference relation ≻C de-

fined over the keywords in WC is a strict partial order. This means
that it is irreflexive, asymmetric and transitive. Irreflexivity and
asymmetry are intuitive, while transitivity allows users to define
priorities among keywords without the need of specifying relation-
ships between all possible pairs. Strict partial order ensures that
there are no cycles in preferences, since that would violate irreflex-
ivity.

Since the relation ≻C is acyclic, this ordering of keywords cor-
responds to a topological sort of GPC

. Therefore, we traverse the
graph of choices GPC

in levels (Algorithm 1) and at each level, we
return the keywords of the nodes with no incoming edges. For ex-
ample, consider the graph of choices of Figure 2 for C = {thriller,

F. F. Coppola}. Then, winPC
(1) = {R. DeNiro, A. Pacino, R. Willi-

ams}, while winPC
(2) = {A. Garcia, A. Hopkins, R. Gere}.

Let T be a JTT that belongs to PRes(Q, P ). To encapsulate the
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Algorithm 1 Multiple Level Winnow Algorithm

Input: A graph of choices GPC
= (VG, EG).

Output: The sets winPC
(l) for the levels l.

1: begin
2: winnow_result: empty list;
3: l = 1;
4: while VG not empty do
5: for all wi ∈ VG with no incoming edges in EG do
6: winPC

(l) = winPC
(l)

⋃
{wi};

7: end for
8: Add winPC

(l) to winnow_result;
9: VG = VG − winPC

(l);
10: for all edges e = (wi, wj) with wi in winPC

(l) do

11: EG = EG − e;
12: end for
13: l++;
14: end while
15: return winnow_result;
16: end

preference order of T with regards to Q and P , we associate with
T a value, called dorder(T, Q, P ), equal to the minimum winnow
level l over all choice keywords wi ∈ WQ that appear in T . Then:

PROPOSITION 1. Let Ti, Tj be two JTTs, Ti, Tj ∈ PRes(Q,

P ), such that, dorder(Ti, Q, P ) < dorder(Tj , Q, P ). Then, Tj

does not directly dominate Ti under PQ.

PROOF. For the purpose of contradiction, assume that Tj ≻PQ

Ti. Then, ∃wj in Tj , such that, ∄wi in Ti with wi ≻Q wj , which
means that dorder(Ti, Q, P )≥ dorder(Tj , Q, P ), which is a con-
tradiction.

Thus, by executing the queries Q
⋃
{w1}, . . ., Q

⋃
{wm}, where

{w1, . . . , wm} are the keywords retrieved by the multiple level
winnow operator, in that order, we retrieve the JTTs of PRes(Q, P )
in an order compatible with the direct dominance relation among
them. Given, for example, the query Q = {thriller, F. F. Coppola}
and the preferences cp1, cp2, cp3 and cp4, we report first the JTTs
in the results of Q ∪ {R. DeNiro}, Q ∪ {A. Pacino}, Q ∪ {R.

Williams} and then, those for Q ∪ {A. Garcia}, Q ∪ {A. Hopkins},
Q ∪ {R. Gere}.

By taking the projection of these JTTs in that order, and re-
moving duplicate appearances of the same trees, we take results
in Res(Q) in the correct indirect dominance order. Note that a
projected result may appear twice as output since it may be related
indirectly, i.e. through joins, with more than one choice keyword.

To see that by projecting the JTTs we get the results in Res(Q)
ordered by indirect dominance, let T be a JTT that belongs to
Res(Q). We define the indirect order of T , iorder(T, Q, P ),
to capture its indirect dominance with respect to Q as follows:
iorder(T, Q, P ) is the minimum dorder(T ′, Q, P ) among all T ′,
such that, T ∈ projectQ(T ′) and ∞ if there is no such T ′. It holds:

THEOREM 1. Let Ti, Tj be two JTTs, Ti, Tj ∈ Res(Q), such

that, iorder(Ti, Q, P ) < iorder(Tj , Q, P ). Then, Tj does not

indirectly dominate Ti under Q.

PROOF. Assume that Tj ≻≻PQ
Ti. Then ∃T ′

j ∈ PRes(Q, P ),
such that, Tj ∈ projectQ(T ′

j) and ∄T ′

i ∈ PRes(Q, P ), such that,
Ti ∈ projectQ(T ′

i ) with T ′

i ≻PQ
T ′

j . Since Ti is a subtree of T ′

i ,
¬(Ti ≻PQ

T ′

j ) (1). Also, since iorder(Ti, Q, P ) < iorder(Tj , Q,
P ) and Tj ∈ projectQ(T ′

j), T ′

j cannot contain any keyword that is
preferred over the keywords of Ti. Therefore, ¬(T ′

j ≻PQ
Ti) (2).

Since T ′

j contains at least one choice keyword, (1) and (2) cannot
hold simultaneously, which is a contradiction.

Note here that there may be results in Res(Q) that we do not get
by projection. Those do not indirectly dominate any result but are
indirectly dominated by those that we have gotten by projection.

THEOREM 2. Let S =
⋃

r projectQ(Tr), ∀Tr ∈ PRes(Q, P ),

and Ti be a JTT, such that, Ti ∈ Res(Q)\S. Then, ∀Tj ∈ S, it

holds that (i) Tj ≻≻PQ
Ti and (ii) ¬(Ti ≻≻PQ

Tj).

PROOF. Since Ti /∈ S, there is no T ′

i , Ti ∈ projectQ(T ′

i ), such
that, T ′

i contains a choice keyword of WQ. However, for every
Tj ∈ S there is at least one T ′

j , Tj ∈ projectQ(T ′

j), such that, T ′

j

contains at least a choice keyword of WQ. Therefore, according to
Definition 6, both (i) and (ii) hold.

We can present to the user the projected result or the original JTT
in PRes(Q, P ), which is not minimal but provides an explanation
of why its projected tree in Res(Q) was ordered this way. For
instance, for the query Q = {thriller}, the preference ({thriller},
G. Oldman ≻ B. Pitt) and the database instance in Figure 1, we
could either present to the user as top result the JTT (m1, Drac-

ula, thriller, 1992, F. F. Coppola) − (m1, a1) − (a1, G. Oldman,

male, 1958) that belongs to PRes(Q, P ) or its projected JTT (m1,
Dracula, thriller, 1992, F. F. Coppola) that belongs to Res(Q).

3. TOP-K PERSONALIZED RESULTS
In general, keyword search is best effort. For achieving useful

results, dominance needs to be combined with other criteria. We
distinguish between two types of properties that affect the goodness
of the result: (i) properties that refer to each individual JTT in the
result and (ii) properties that refer to the result as a whole. The
first type includes preferential dominance and relevance, while the
latter includes coverage of user interests and diversity.

3.1 Result Goodness
Each individual JTT T total for a query Q is characterized by

its dominance with regards to a profile, denoted iorder(T, Q, P ).
In addition, there has been a lot of work on ranking JTTs based
on their relevance to the query. A natural characterization of the
relevance of a JTT (e.g. [19, 6]) is its size: the smaller the size of
the tree, the smaller the number of the corresponding joins, thus the
larger its relevance. The relevance of a JTT can also be computed
based on the importance of its tuples. For example, [9] assigns
scores to JTTs based on the prestige of their tuples, i.e. the number
of their neighbors or the strength of their relationships with other
tuples, while [18] adapts IR-style document relevance ranking. In
the following, we do not restrict to a specific definition of rele-
vance, but instead just assume that each individual JTT T is also
characterized by a degree of relevance, denoted relevance(T, Q).

Apart from properties of each individual JTT, to ensure user sat-
isfaction by personalized search, it is also important for the whole
set of results to exhibit some desired properties. In this paper, we
consider covering many user interests and avoiding redundant in-
formation.

To understand coverage, consider the graph of choices in Figure
2. JTTs for the query Q ={thriller, F. F. Copolla} that include R.

DeNiro and R. Williams have the same degree of dominance and as-
sume, for the purposes of this example, that they also have the same
relevance. Still, we would expect that a good result does not only
include JTTs (i.e. movies) that cover the preference on R. DeNiro

but also JTTs that cover the preference on R. Williams and perhaps
other choices as well. To capture this requirement, we define the
coverage of a set S of JTTs with regards to a query Q as the per-
centage of choice keywords in WQ that appear in S. Formally:

DEFINITION 7 (COVERAGE). Given a query Q, a profile P
and a set S = {T1, . . . , Tz} of JTTs that are total for Q, the cover-

age of S for Q and P is defined as:

coverage(S, Q, P ) =

∣∣⋃z

i=1(WQ ∩ keywords(Ti)
)
|

|WQ|
,

where keywords(Ti) is the set of keywords in Ti.
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High coverage ensures that the user will find many interesting
results among the retrieved ones. However, many times, two JTTs
may contain the same or very similar information, even if they are
computed for different choice keywords. To avoid such redundant
information, we opt to provide users with results that exhibit some
diversity, i.e. they do not contain overlapping information. For
quantifying the overlap between two JTTs, we use a Jaccard-based
definition of distance, which measures dissimilarity between the tu-
ples that form these trees. Given two JTTs Ti, Tj consisting of the
sets of tuples A, B respectively, the distance between Ti and Tj is:

d(Ti, Tj) = 1− |A∩B|

|A∪B|
. We have considered other types of distances

as well, but this is simple, relatively fast to compute and provides a
good indication of the overlapping content of the two trees.

To measure the overall diversity of a set of JTTs, we next define
their set diversity based on their distances from each other. A num-
ber of different definitions for set diversity have been proposed in
the context of recommender systems; here we model diversity as
the average distance of all pairs of elements in the set [35].

DEFINITION 8 (SET DIVERSITY). Given a set S of z JTTs,

S = {T1, . . . , Tz}, the set diversity of S is:

diversity(S) =

∑z

i=1

∑z

j>i d(Ti, Tj)

(z − 1)z/2
.

To summarize, a “good” result S for a query Q includes JTTs
that are preferred and relevant, covers many choices and is diverse.

3.2 Top-k Result Selection
Given a restriction k on the size of the result, we would like to

provide users with k highly preferable and relevant results that also
as a whole cover many of their choices and exhibit low redundancy.
To achieve this, we resort to the following algorithm that offers us
the flexibility of fine-tuning the importance of each of the criteria
in selecting the top-k results.

For a query Q, we use Ress(Q) to denote the set of JTTs with
relevance greater than a threshold s. Given a query Q and a pro-
file P , let l be the maximum winnow level. For 1 ≤ r ≤ l,
let Zr =

⋃
wj∈winPQ

(r) Ress(Q ∪ {wj}). Also, let Zl+1 =

Ress(Q) \
⋃

Te∈PRes(Q,P ) projectQ(Te). We want more pre-
ferred keywords, that is, the ones corresponding to small winnow
values, to contribute more trees to the top-k results than less pre-
ferred ones. The number of trees offered by each level i is cap-
tured by F(i), where F is a monotonically decreasing function
with

∑l+1
i=1 F(i) = k. Each Zi contributes F(i) JTTs. For 1 ≤

i ≤ l, the contributed JTTs are uniformly distributed among the
keywords of level i to increase coverage.

Among the many possible combinations of k trees that satisfy
the constraints imposed by F , we choose the one with the most
diverse results. Next, we define the top-k JTTs.

DEFINITION 9 (TOP-k JTTS). Given a keyword query Q, a

profile P , a relevance threshold s and the sets of results {Z1, . . . , Zl,
Zl+1} with |Z1|+. . .+|Zl|+|Zl+1| = m, the top-k JTTs, k < m,

is the set S∗ for which:

S∗ = argmax

S⊆ ∪l+1
i=1Z

i

|S|=k

diversity(S),

such that, Zi contributes F(i) JTTs to S∗, which, for 1 ≤ i ≤ l, are

uniformly distributed among the keywords of winnow level i and F
is a monotonically decreasing function with

∑l+1
i=1 F(i) = k.

There are two basic tuning parameters: the function F and the
threshold s. Dominance, coverage and relevance depend on how
quickly F decreases. A high decrease rate leads to keywords from
fewer winnow levels contributing to the final result. This means

that coverage will generally decrease. However, at the same time,
the average dominance will increase, since the returned results cor-
respond to high winnow levels only. For example, if a user is pri-
marily interested in dominant results, we retrieve k JTTs corre-
sponding to keywords retrieved by winPQ

(1) by setting, for exam-
ple, F(1) = k, and F(i) = 0, for i > 1. A low decrease rate of F
means that less trees will be retrieved from each winnow level, so
we can retrieve the most relevant ones. Relevance is also calibrated
through the selection of the relevance threshold, s. If relevance
is more important than dominance, a large value for the relevance
threshold in conjunction with an appropriate F will result in re-
trieving the k JTTs that have the largest degrees of relevance, in-
cluding those in Zl+1 that do no have any relation with any choice
keyword. Diversity is calibrated through s that determines the num-
ber m of candidate trees out of which to select the k most diverse
ones.

4. QUERY PROCESSING
In this section, we present our algorithms for processing person-

alized keyword queries. Section 4.1 presents some background,
while in Section 4.2, we first present a baseline algorithm for pro-
cessing keyword queries and then introduce an enhancement that
reuses computational steps to improve performance. In Section 4.3,
we propose an algorithm for computing top-k results.

4.1 Background
We use our movies example (Figure 1) to briefly describe basic

ideas of existing keyword query processing. For instance, consider
the query Q = {thriller, B. Pitt}. The corresponding result consists
of the JTTs: (i) (m2, Twelve Monkeys, thriller, 1996, T. Gilliam) −
(m2, a2) − (a2, B. Pitt, male, 1963) and (ii) (m3, Seven, thriller,

1996, D. Fincher) − (m3, a2) − (a2, B. Pitt, male, 1963). Each
JTT corresponds to a tree at schema level. For example, both of the
above trees correspond to the schema level tree Movies{thriller}−
Play{} − Actors{B.Pitt}, where each RX

i consists of the tuples
of Ri that contain all keywords of X and no other keyword of Q.
Such sets are called tuple sets and the schema level trees are called
joining trees of tuple sets (JTSs).

Several algorithms in the research literature aim at constructing
such trees of tuple sets for a query Q as an intermediate step of
the computation of the final results (e.g. [19, 6]). In the follow-
ing, we adopt the approach of [19], in which all JTSs with size up
to s are constructed (in this case, a JTT’s size determines its rele-
vance). In particular, given a query Q, all possible tuple sets RX

i

are computed, where RX
i = {t | t ∈ Ri ∧ ∀wx ∈ X , t contains

wx ∧ ∀wy ∈ Q\X , t does not contain wy}. After selecting a
random query keyword wz , all tuple sets RX

i for which wz ∈ X
are located. These are the initial JTSs with only one node. Then,
these trees are expanded either by adding a tuple set that contains
at least another query keyword or a tuple set for which X = {}
(free tuple set). These trees can be further expanded. JTSs that
contain all query keywords are returned, while JTSs of the form

RX
i − R

{}

j − RY
i , where an edge Rj → Ri exists in the schema

graph, are pruned, since JTTs produced by them have more than
one occurrence of the same tuple for every instance of the database.

4.2 Processing Preferential Queries
In this section, we present algorithms for computing the prefer-

ential results of a query, ranked in an order compatible with prefer-
ential dominance.

4.2.1 Baseline Approach

The Baseline JTS Algorithm (Algorithm 2) constructs in levels
the sets of JTSs for the queries Q ∪ {wi}, ∀wi ∈ winPQ

(l), start-
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Algorithm 2 Baseline JTS Algorithm

Input: A query Q, a profile P , a schema graph GU and a size s.
Output: A list JTList of JTSs with size up to s for the queries Q

⋃
{wi},

∀wi ∈ WPQ
.

1: begin
2: Queue: queue of JTSs;
3: JTList: empty list;
4: l = 1;
5: while unmarked keywords exist in WPQ

do

6: Compute the set of keywords winPQ
(l);

7: for each wz ∈ winPQ
(l) do

8: Mark wz ;
9: Compute the tuple sets RX

i for Q
⋃
{wz};

10: Select a keyword wt ∈ Q
⋃
{wz};

11: for each RX
i , 1 ≤ i ≤ n, such that, wt ∈ X do

12: Insert RX
i into Queue;

13: end for
14: while Queue 6= ∅ do
15: Remove the head B from Queue;
16: if B satisfies the pruning rule then
17: Ignore B;
18: else if keys(B) = Q

⋃
{wz} then

19: Insert B into JTList;
20: else
21: for each RX

i , such that, there is an RY
j in B and Ri is

adjacent to Rj in GU do
22: if (X = {} OR X − keys(B) 6= ∅) AND (size of

B < s) then

23: Expand B to include RX
i ;

24: Insert the updated B into Queue;
25: end if

26: end for
27: end if
28: end while
29: end for

30: l++;
31: end while
32: return JTList;
33: end

ing with l = 1, i.e. the level with the most preferred keywords.
This way, all JTTs constructed for JTSs produced at level l are re-
trieved before the JTTs of the trees of tuple sets produced at level
l+1. Algorithm 2 terminates when all the JTSs for queries Q ∪
{wi}, ∀wi ∈ WPQ

, have been computed. (In Algorithm 2, we use
the notation keys(B) to refer to the query keywords contained in a
JTS B.)

Based on the completeness theorem of the algorithm introduced
in [19] for computing the JTSs, Theorem 3 proves the completeness
of Algorithm 2.

THEOREM 3 (COMPLETENESS). Every JTT of size si that be-

longs to the preferential query result of a keyword query Q is pro-

duced by a JTS of size si that is constructed by the Baseline JTS

Algorithm.

PROOF. Given a query Q and a profile P , the Baseline JTS

Algorithm constructs independently the JTSs for each query Q ∪
{wt}, ∀wt ∈ WPC

(lines 8-27). Since for each query the algorithm
returns the trees of tuple sets that construct every JTT that belongs
to the corresponding result, every JTT that belongs to PRes(Q, P )
is produced by the JTSs constructed by Algorithm 2 as well.

4.2.2 Result Sharing

Based on the observation that the JTSs for Q may already contain
in their tuple sets the additional keyword wt of a query Qt ∈ KQ,
where KQ contains the queries Qt = Q ∪ {wt}, ∀wt ∈ WPQ

, we
employ such trees to construct those for Qt. To do this, the Sharing

JTS Algorithm (Algorithm 3) constructs first the JTSs for Q using a
selected keyword wr ∈ Q based on the tuple sets RX

i for Q (lines
3-5). Then, for each Qt, we recompute its tuple sets by partitioning
each RX

i for Q into two tuple sets for Qt: RX
i that contains the

tuples with only the keywords X and R
X∪{wt}

i that contains the
tuples with only the keywords X ∪ {wt} (lines 11-13). Using the
JTSs for Q and the tuple sets for Qt, we produce all combinations
of trees of tuple sets (lines 14-17) that will be used next to construct
the final JTSs for Qt. For example, given the JTS for Q RX

i - RY
j ,

we produce the following JTSs for Qt: RX
i - RY

j , R
X∪{wt}

i - RY
j ,

RX
i - R

Y ∪{wt}

j and R
X∪{wt}

i - R
X∪{wt}

j . Note that, such a JTS
is constructed only if all of its tuples sets are non-empty. The JTSs
that contain all keywords of Qt are returned. The rest of them are
expanded as in Algorithm 2 (lines 33-42).

Since for a query Q Algorithm 2 does not construct JTSs of the

form R
{wk}

i - R
{wk}

j , the procedure described above does not con-

struct for Qt JTSs of the form R
{wk}

i - R
{wk,wt}

j . The same also

holds for the JTSs that connect R
{wk}

i , R
{wk,wt}

j via free tuple
sets. To overcome this, we construct all such trees from scratch
(lines 18-32) and then expand them as before (lines 33-42). Theo-
rem 4 proves the completeness of Algorithm 3.

THEOREM 4 (COMPLETENESS). Every JTT of size si that be-

longs to the preferential query result of a keyword query Q is pro-

duced by a JTS of size si that is constructed by the Sharing JTS

Algorithm.

PROOF. Let Q be a query, P a profile and S the set of JTSs,
such that, each JTT in PRes(Q, P ) can be produced by a JTS in
S. S is divided into two sets S1 and S2, such that, S1∩S2 = ∅ and
S1 ∪S2 = S. S1 consists of all JTSs containing both the tuple sets

R
{wr}

i , R
{wr,wt}

j for a selected keyword wr ∈ Q, ∀wt ∈ WPQ
,

and S2 all the rest. With respect to Algorithm 3, JTSs of S2 are
constructed through the lines 3-5, 11-17 and 33-42, while JTSs of
S1 are constructed through the lines 18-42. Therefore, in any case,
every JTT in PRes(Q, P ), can be produced by a JTS constructed
by the Sharing JTS Algorithm.

4.3 Top-k Query Processing
In the previous section, we introduced the Sharing JTS Algo-

rithm that efficiently constructs all JTSs for a query Q. Next, we
focus on how to retrieve the top-k results for Q (see Definition 9).
In general, we use the function F to determine the number of JTTs
each level contributes to the result, thus calibrating preferential
dominance, while the specific trees of the result are selected based
on their relevance, coverage and diversity.

Relevance is tuned through the maximum size s of the JTSs con-
structed with regards to Algorithms 2 and 3, while coverage is en-
sured by selecting trees from each level i, so that, as many key-
words as possible are represented in the final result. Concerning
diversity, we have to identify the trees with the maximum pair-wise
distances.

Given the set Z =
⋃

i Zi of m relevant JTTs, our goal is to
produce a new set S, S ⊂ Z , with the k most diverse JTTs, k < m,
such that, Zi contributes F(i) trees. The problem of selecting the
k items having the maximum average pair-wise distance out of m
items is similar to the p-dispersion-sum problem. This problem
as well as other variations of the general p-dispersion problem (i.e.
select p out of m points, so that, the minimum distance between any
two pairs is maximized) have been studied in operations research
and are in general known to be NP-hard [13].
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Algorithm 3 Sharing JTS Algorithm

Input: A profile P , a set of queries KQ of the form Qt = Q ∪ {wt},
∀wt ∈ WPQ

, a schema graph GU and a size s.
Output: A list JTList of JTSs with size up to s for the queries in KQ.

1: begin

2: Queue1, Q′: queues of JTSs;
3: JTSQ, JTSList: empty lists;
4: Compute the tuple sets RX

i with regards to Q;
5: Select a keyword wr ∈ Q;
6: Construct and insert to JTSQ the JTSs of Q; /* as steps 9-27 of the

Baseline JTS Algorithm */
7: l = 1;
8: while unmarked keywords exist in WPQ

do

9: Compute the set of keywords winPQ
(l);

10: for each Qt ∈ KQ, such that, wt ∈ winPQ
(l) do

11: Mark wt;
12: for each RX

i , 1 ≤ i ≤ n, computed for Q do

13: Construct the tuple sets RX
i and R

X∪{wt}

i for Qt;
14: end for
15: for each JTS in JTSQ do
16: Construct all combinations of trees of tuple sets by replacing

the tuple sets of Q with the relative tuple sets of Qt;
17: Insert those JTSs into Queue1;
18: end for
19: for each R

{wr}

i , 1 ≤ i ≤ n, computed for Qt do

20: Insert R
{wr}

i into Queue2;
21: end for
22: while Queue2 6= ∅ do

23: Remove the head B from Queue2;
24: for each RX

i , such that, there is an RY
j in B and Ri is adja-

cent to Rj in GU do
25: if X = {wr, wt} AND size of B < s − 1 then
26: Expand B to include RX

i ;
27: Insert the updated B into Queue1;
28: else if X = {} AND size of B < s − 1 then
29: Expand B to include RX

i ;
30: Insert the updated B into Queue2;
31: end if
32: end for
33: end while
34: while Queue1 6= ∅ do

35: Remove the head B from Queue1;
36: if T satisfies the pruning rule then
37: Ignore B;
38: else if keys(B) = Q

⋃
{wt} then

39: Insert B into JTList;
40: else
41: /* as steps 21-26 of the Baseline JTS Algorithm */
42: end if

43: end while
44: end for
45: l++;
46: end while
47: return JT list;
48: end

A brute-force method to locate the k most diverse JTTs of Z =⋃
i
Zi, |Z| = m, is to first produce all

(
m

k

)
possible combinations

of trees and then pick the one with the maximum set diversity out
of those that satisfy the constraints of Definition 9. The complex-
ity of this process is exponential and therefore, the computational
cost is too high even for low values of m and k. A number of
lower-complexity heuristics have been proposed to locate subsets
of elements (e.g. in [13]). In this paper, we use the following vari-
ation: we construct a diverse subset of JTTs based on the tree-set
distance.

DEFINITION 10 (TREE-SET DISTANCE). Given a JTT T and

a set of JTTs S = {T1, . . . , Tz}, the tree-set distance between T
and S is:

Algorithm 4 Top-k JTTs Algorithm

Input: The sets of keywords winPQ
(1), . . . , winPQ

(l) and the sets of

JTTs Z1, . . . , Zl, Zl+1.
Output: The set S of the top-k JTTs.

1: begin

2: S = ∅;
3: for i = 1; i <= l; i++ do
4: for each j ∈ winPQ

(i) do

5: counter(i, j) =
F(i)

|winPQ
(i)|

;

6: end for
7: end for

8: Find the trees T1, T2 ∈ Z1 with the maximum distance;
9: S = S ∪ T1;

10: S = S ∪ T2;
11: for i = 1; i <= l + 1; i++ do

12: for j = 0; j < F(i); j++ do
13: Find the tree T ∈ Zi\S with the maximum dist(T, S);
14: S = S ∪ T ;
15: if i < l + 1 then
16: Find the keyword w that T was computed for;
17: counter(i, w) = counter(i, w) − 1;
18: if counter(i, w) == 0 then

19: Remove from Zi all JTTs computed for w;
20: end if
21: end if
22: end for

23: end for
24: end

dist(T, S) = min
1≤i≤z

d(T, Ti).

Initially, we consider an empty set S. We first add to S the
two furthest apart elements of Z1. Then, we incrementally con-
struct S by selecting trees of Z1\S based on their tree-set distance
from the trees already in S. In particular, we compute the distances
dist(Ti, S), ∀Ti ∈ Z1\S and add to S the tree with the maximum

corresponding distance. When F(1)
|winPQ

(1)|
trees have been added to

S for a keyword in winPQ
(1), we exclude JTTs computed for that

keyword from Z1. After F(1) trees have been selected from Z1,
we proceed by selecting trees from Z2\S until another F(2) trees
have been added to S and so on.

We can further reduce the number of performed operations based
on the observation that after the insertion of a tree T to S, the dis-
tances of all other trees that have not yet entered the diverse results
from S′, S′ = S ∪ {T}, are affected only by the presence of T .
This leads us to the following proposition:

PROPOSITION 2. Given a JTT Ti and two sets of JTTs S and

S′, S′ = S ∪ {Ti}, it holds that:

dist(Tj , S
′) = min{dist(Tj , S), d(Tj , Ti)}.

The above process is shown in Algorithm 4. Observe that, thres-
hold-based top-k algorithms (e.g. [14]) cannot be applied to con-
struct diverse subsets of JTTs, since the k− 1 most diverse trees of
Z are not necessarily a subset of its k most diverse ones.

5. EXTENSIONS
In this section, we consider extending the preference model by

relaxing its context part and allowing more keywords in its choice
part. We also discuss a simple approach for deriving preferences.

5.1 Relaxing Context
For a profile P and a query Q, the associated set of preferences

PQ may be empty, that is, there may be no preferences for Q. In
this case, we can use for personalization those preferences whose
context is more general than Q, i.e. their context is a subset of Q.
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cp = ({S. Spielberg}, choice )3 3 cp = ({thriller}, choice )4 4

cp = ({drama, S. Spielberg}, choice )5 5

cp = ({drama, S. Spielberg}, choice )6 6

cp = ({S. Spielberg, L. Neeson}, choice )7 7

cp = ({thriller, S. Spielberg}, choice )8 8

cp = ({thriller, F. F. Coppola}, choice )9 9

cp = ({drama, S. Spielberg, L. Neeson}, choice )10 10

cp = ({}, choice )1 1

cp = ({}, choice )2 2

Figure 3: Context lattice of preferences.

DEFINITION 11 (RELAXED CONTEXT). Given a query Q and

a profile P , a set C ⊂ Q is a relaxed context for Q in P , if and only

if, (i) ∃ (C, choice) ∈ P and (ii) ∄ (C′, choice′) ∈ P , such that,

C′ ⊂ Q and C ⊂ C′.

Given a profile P , the relaxed preferential result of a query Q is
the set of all JTTs that are both total and minimal for at least one
of the queries Q

⋃
{wi}, wi ∈ WPC

, where C is a relaxed context
for Q. That is, we do not relax the original query Q, but instead,
we just use the choice keywords of a relaxed context for Q.

To depict the subset relation among contexts, a lattice represen-
tation can be used. Any context-free preference is placed on the
top of the lattice. An example is shown in Figure 3. For instance,
given the preferences of Figure 3 and the query Q = {thriller, F.

F. Coppola, R. DeNiro}, since there is no preference with context
equal to Q, the choice keywords of preference cp9, whose context
is a relaxed context for Q, will be used. Note that the context of
cp4 is also more general than Q, but it is not a relaxed context for
Q because the context of cp9 is more specific.

If there is no preference more specific to Q, we finally select
the context-free preferences, if any. Finally, note that there may be
more than one relaxed context for Q. For instance, for the query
Q = {thriller, S. Spielberg, L. Neeson}, both {thriller, S. Spielberg}
and {S. Spielberg, L. Neeson} are relaxed contexts. In this case, we
can use either of them. We could also use more than one relaxed
context but this raises semantic issues with regards to the composi-
tion of the associated orders between their choice keywords, if they
are conflicting, which is an issue beyond the scope of this work.

5.2 Multi-Keyword Choices
Our model of preferences supports choices between two key-

words. One may think of more complex preferences of the form
(C, choice), where C ⊆ W and choice = (wl1 ∧ . . . ∧ wlx ) ≻
(wr1

∧ . . . ∧ wry ), wlj , wrz , 1 ≤ j ≤ x, 1 ≤ z ≤ y, ∈ W .
We shall refer to such preferences as composite contextual keyword

preferences. As an example, consider the preference ccp = ({com-

edy, W. Allen}, (E. Norton ∧ D. Barrymore) ≻ (B. Crystal ∧ D.

Moore)). The meaning of ccp is that in the case of comedy movies
and W. Allen, those movies that are related to both E. Norton and
D. Barrymore are preferred over those that are related to both B.

Crystal and D. Moore. Choices can be constructed arbitrarily, in
the sense that each choice can have any number of keywords and
different number of keywords can be used for the left and the right
part, i.e. it may hold that x 6= y.

Supporting composite preferences of this form is straightforward.
In this case, the preferential result of a query Q is the set of all
JTTs that are both total and minimal for at least one of the queries
Q

⋃
Wi, where Wi is now a set of keywords that appear in one of

the parts of a choice for Q. The algorithms of Sections 4.2, 4.3 can
be applied without any modifications. However, to speed up query
processing when preferences with composite choices are used, we

can further exploit the main idea of the Sharing JTS Algorithm. In
particular, consider a query Q and two sets of keywords W1, W2

that appear in the choices of the relevant to Q preferences. During
construction, the JTSs of Q

⋃
W1 and Q

⋃
W2 will be computed.

Assuming that W1

⋂
W2 6= {}, we could first compute the JTSs

of Q
⋃

(W1

⋂
W2) and then use them to find the JTSs of Q

⋃
W1

and Q
⋃

W2, instead of computing them from scratch.

5.3 Profile Generation
User preferences can either be explicitly provided by the user

or be automatically constructed based on the previous user inter-
actions or other available information. Although the focus of this
paper is on how to exploit already constructed profiles to person-
alize keyword database search, we also discuss here a method for
potentially inferring contextual keyword preferences in the absence
of user input.

Assume that we maintain a log H of the keyword queries sub-
mitted to the database. To allow multiple occurrences of the same
query Q in H , let us assume that each submitted query is preceded
in the log by a unique identifier, that is, H is a set of entries of
the form (id, Q) for each submitted query, where id is a unique
identifier and Q the content of the query, that is, its keywords. For
instance, H ={(id1, {thriller, G. Oldman}), (id2, {drama, S. Spiel-

berg}), (id3, {drama, Q. Tarantino}), (id4, {drama, 1993, S. Spiel-

berg}), (id5, {comedy, W. Allen}), (id6, {drama, S. Spielberg})}
is a log of six queries, where, for example, the query {drama, S.

Spielberg} was submitted twice.
Let W ′ be a set of keywords, W ′ ⊆W . We use freq(W ′) to de-

note the number of queries in H in which W ′ appears: freq(W ′) =
|{(id, Q) ∈ H , such that, W ′ ⊆ Q}|. For instance, in the exam-
ple H , freq({drama}) = 4. Our underlying assumption is that
high popularity of a set W ′ of keywords, i.e. a large freq(W ′)
value, implies a preference on W ′, which is an assumption com-
monly made by many preference learning algorithms [17, 4]. More
precisely, when a keyword wi appears together with a set of other
keywords W ′, i.e. in the same query with them, more frequently
than a keyword wj does, this is considered as an indication that wi

is preferred over wj in the context of W ′. Thus, we create a con-
textual preference (W ′, wi ≻wj), for wi, wj /∈W ′, if freq(W ′

⋃
{wi}) − freq(W ′

⋃
{wj}) ≥ minf × |H|, where minf < 1 is

a positive constant that tunes the strength of the preferences. For
instance, for the example H and minf = 0.30, we infer the contex-
tual keyword preference ({drama}, S. Spielberg ≻ Q. Tarantino).

Note that the above rule, for context-free preferences, i.e. for
W ′ = {}, gives us wi ≻ wj if freq({wi}) − freq({wj}) ≥
minf × |H|, which simply gives priority to popular keywords over
less popular ones. Recall that through context relaxation, context-
free preferences will be applied when nothing more specific exists.
This means that, for instance, for a query whose keywords have not
appear in any of the queries in H , we can use such context-free
preferences to personalize it.

6. EVALUATION
To evaluate the efficiency and effectiveness of our approach, we

conducted a number of experiments, using both real and synthetic
datasets: (i) the MOVIES database [2] (Figure 4) and (ii) the TPC-
H database [3]. The MOVIES dataset consists of nearly 11500
movies, 6800 actors, 3300 directors, 175 studios and more than
45000 play tuples. For the TPC-H database, to experiment with the
distribution of each keyword’s appearance, we do not use its ac-
tual dataset but rather only its schema and generate data using the
following procedure (that was also used in [19]). Each keyword
appears in a relation Ri of the database with a probability equal to
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Movies

Actor   Gender   Type   Origin   Dob

Actors

IDM   Title   Year   Director   Producer   Studio   Genre   Notes

IDM   Actor   Title   Genre   Role   Notes

Play

Director   Dob   Origin   Notes Name   Company   Country   Founder   Notes

Directors Studios

Figure 4: MOVIES schema.

log(size(Ri))
x·log(y)

, where size(Ri) is the cardinality of Ri and y is the
cardinality of the largest relation in the database. The lower the
value of x, the higher the probability for a keyword to appear in a
relationship.

We run our performance experiments for (i) queries of a differ-
ent size |q|, (ii) profiles with a different number of preferences and
thus, a different number |w| of relevant choice keywords, (iii) vari-
ous maximum sizes s for the computed JTTs and (iv) different key-
word selectivities. We use MySQL 5.0 to store our data. Our sys-
tem is implemented in JDK 1.5 and connects to the DBMS through
JDBC. We use an Intel Pentium D 3.0GHz PC with 1GB of RAM.
The profiles and queries used in our experiments along with the
source code and datasets are available for download [1].

6.1 Performance Evaluation
In our performance evaluation study, we focus on (i) highlighting

the efficiency of the Sharing JTS Algorithm, (ii) demonstrating the
effectiveness of the Top-k JTTs Algorithm and (iii) assessing the
overhead of query personalization as well as the reduction in the
result size achieved.

6.1.1 Sharing vs. Baseline JTS Algorithm

To illustrate the efficiency of the Sharing JTS Algorithm versus
the Baseline alternative, we measure the execution time and the
total number of join operations performed during the phase of JTSs
expansion.

Figures 6a, 6b report the execution time and total number of join
operations, for the TPC-H database, for |w| = 10 when |q| and
s vary, while Figures 6c, 6d show the values of the corresponding
measures for |q| = 3 and varying |w|, s. In all cases, we con-
sider that x = 10, which means that the probability of a keyword
appearing in the largest relation (LINEITEM ) is 10%, while
for the smallest relation (REGION ), this probability is around
1%. The Sharing JTS algorithm is more efficient, performing only
a small fraction of the join operations performed by the Baseline

one, thus, also requiring much less time. As s increases, the reduc-
tion becomes more evident, since the larger this size is, the more
the computational steps that are shared. For example, in Figure 6a,
when s = 5, the Sharing JTS Algorithm requires only 2.5%-10.5%
of the time required by the Baseline JTS Algorithm. Observe that,
while the number of joins for the Baseline JTS Algorithm increases
along with |q|, it decreases for the Sharing JTS Algorithm (Fig-
ure 6b). This happens because for a larger value of |q|, the trees of
the preferential result share larger common sub-trees, therefore the
Sharing JTS Algorithm performs fewer expansions.

To study the impact of keyword selectivity, we also run a set of
experiments for x = 10, 8, 6 and s = 3, 4, 5 for constant values
of |q| and |w| (|q| = 3 and |w| = 10). The results are shown in
Table 1. For lower values of x, i.e. higher keyword selectivity, both
the execution time and join operations increase for both algorithms,
since more results exist. In all cases though, the Sharing JTS Algo-

rithm outperforms the Baseline one. For example, for x = 8, the
reduction in execution time is around 90%, while the join opera-
tions are reduced by 80%.

Similar observations can be made for the MOVIES database. In
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Table 1: TPC-H dataset: Varying keyword selectivity.

x s
Time (msec) Number of joins

Baseline Sharing Baseline Sharing

10
3 10.8 2.38 73.7 14.59
4 68.8 5.31 451.45 87.65
5 618.99 32.5 3402.5 666.12

8
3 12.19 2.5 87.44 17.29
4 84.28 5.8 524.1 108.7
5 701.20 38.19 3877.93 752.75

6
3 14.81 2.74 107.68 22.08
4 91.64 6.67 605.91 126.22
5 805.91 50.34 4277.75 950.37

this case, we manually picked keywords with various selectivities,
trying to construct queries and profiles that lead to results of dif-
ferent sizes and relevance. The Sharing JTS Algorithm requires
around 10% of the time required by the Baseline JTS Algorithm,
while the reduction of join operations during the expansion phase
depends on |q| and varies from 90% to 50%. The corresponding
results are shown in Figure 7.

6.1.2 Top-k JTTs Algorithm

Our Top-k JTTs Algorithm combines four metrics in determin-
ing the top-k results for a query q, namely, preferential dominance,
degree of relevance, coverage and diversity. To compute the overall
result, we use a number of heuristics that guide the order of gener-
ation of the JTTs. We first evaluate the performance of our basic
heuristics and then show their effectiveness.

First, we evaluate the performance of our underlying diversifi-
cation heuristic by comparing it against the brute-force algorithm
both in terms of the quality of produced results as well as the time.
The complexity of all methods depends on the number m of can-
didate trees to choose from and on the required number k of trees
to select. We experiment with a number of different values for
m and k. However, the exponential complexity of the brute-force
algorithm prevents us from using large values for these two pa-
rameters. Therefore, we limit our study to m = 10, 20, 30 and
k = 4, 8, 12, 16, 20. In Table 2, we show the results for the brute-

Table 2: Brute-force vs. Heuristic diversification.

m k
Brute-force Heuristic

Set diversity Time (msec) Set diversity Time (msec)

10
4 0.98 33 0.97 7
8 0.92 38 0.92 11

20

4 0.99 623 0.97 16
8 0.94 71194 0.93 21

12 0.86 171315 0.86 30
16 0.81 11730 0.80 43

30

4 1.00 3190 0.99 21
8 0.98 3041457 0.98 30

12 0.96 105035021 0.95 43
16 0.94 300561487 0.93 61
20 0.91 104214544 0.90 79
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Figure 6: TPC-H dataset: Total time for (a) a fixed profile and (c) a fixed query and total number of join operations for (b) a fixed

profile and (d) a fixed query.
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Figure 7: MOVIES dataset: Total time for (a) a fixed profile and (c) a fixed query and total number of join operations for (b) a fixed

profile and (d) a fixed query.

force method and our heuristic. We observe that the brute-force
method consumes much more time than the heuristic, while the set
diversity of the produced results is similar (the difference is less
than 1%). Applying our diversity heuristic improves the set di-
versity of results, even when choosing trees of tuples only among
those computed for the choice keywords of the same winnow level
(Figure 5).

As discussed, we can tune the trade-off between dominance and
relevance through the function F . To demonstrate this, we use the
function F(i) = k · L−(i−1)∑

i(L−(i−1))
for various values of L, where

L is the lowest winnow level from which results are retrieved. For
example, when L = 1, only results corresponding to the choice
keywords of the first winnow level are returned. We run the follow-
ing experiments for |q| = 1, |w| = 10 and s = 4. In Figures 8a,
8b, we use a profile leading to five winnow levels. We also con-
sider a sixth level containing the query results when no preferences
are used. We show the average normalized dominance and rele-
vance respectively, for L = 1, 2, . . . , 6. Given a set S of JTTs,
the average dominance is the mean dorder and iorder of the trees
in PRes(Q, P ) and Res(Q) respectively, where for those JTTs
in Res(Q) that are not the projection of any JTT in PRes(Q, P ),
we use iorder = 6 (that is, the maximum winnow level plus 1) as
opposed to ∞. As L increases, the average dominance decreases
because less preferable choice keywords are also employed, while
the average relevance increases, since highly relevant JTTs from
the lower levels enter the top-k results.

Coverage is also very important, especially in the case of skewed
selectivity among the choice keywords. For example, if the combi-
nation of the query keywords and some top-level choice keyword
is very popular, then, without coverage, the JTTs computed for that
choice keyword would dominate the result. Figure 8c shows the
average coverage for two profiles, when our coverage heuristic is
employed or not, for L = 5. The first profile (Pr. A) contains
keywords with similar selectivities, while the second one (Pr. B)
contains keywords of different popularity, i.e. some keywords pro-
duce more results than others. Coverage is greatly improved in both

cases when the heuristic is applied, since more keywords from all
winnow levels contribute to the result. The improvement is more
evident for Pr. B, as expected.

In general, high coverage ensures that results reaching the users
represent most of their interests. However, this does not necessar-
ily mean that those results are not similar with each other. Next, to
demonstrate how selecting results based on our diversity heuristic
can produce even more satisfying results, we execute a number of
queries and present here a characteristic example. For the query
{drama} and a winnow level containing the keywords Greek and
Italian, four results should be selected according to F . For simplic-
ity, we use only the JTTs computed for the joining trees of tuple sets
Movies{Drama} − Directors{Greek} and Movies{Drama} −
Directors{Italian}. When only coverage is applied, the results
are:

(i) (Tan21, Eternity and a Day, 1998, Th. Angelopoulos, Drama) − (Th. An-
gelopoulos, 1935, Greek)

(ii) (FF50, Intervista, 1992, F. Fellini, Drama) − (F. Fellini, 1920, Italian)

(iii) (Tan12, Landscape in Fog, 1988, Th. Angelopoulos, Drama) − (Th. An-
gelopoulos, 1935, Greek)

(iv) (GT01, Cinema Paradiso, 1989, G. Tornatore, Drama) − (G. Tornatore, 1955,
Italian)

When diversity is also considered, the third of these results is re-
placed by (PvG02, Brides, 2004, P. Voulgaris, Drama) − (P. Voul-
garis, 1940, Greek). Coverage remains the same, however, with
diversity, one more director can be found in the results.

6.1.3 Result Pruning and Time Overhead

Finally, we study the overall impact of query personalization in
keyword search in terms of the number of returned results and the
corresponding time overhead. Both of these measures depend on
how frequently the relative to the query choice keywords appear in
the database. Therefore, we experiment with profiles with different
selectivities. As profile selectivity we define the normalized sum of
the number of appearances of each choice keyword in the database.
We use profiles with |w| = 6, 8, 10, 12 and study a query with
|q| = 2: (i) when no preferences are applied or a profile with (ii)
small and (iii) large selectivity is used.
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In Figures 9a and 9b, we measure the total number of the con-
structed JTTs, i.e. not just the top-k ones, for s = 3, 4 respec-
tively. In general, query personalization results in high pruning.
For s = 3, the use of the profile with large selectivity prunes more
than 85% of the initial results, while for the profile with small se-
lectivity the pruning is more than 95%. The respective percentages
for s = 4 are 33% and 74%. In Figures 9c and 9d, we measure the
time to generate the joining trees of tuple sets required to retrieve
the final results. When the profile with large selectivity is applied,
the time overhead is 24% for s = 3 and 35% for s = 4 on average.
For the profile with small selectivity, the corresponding percentages
are 22% and 32% on average.

6.2 Usability Evaluation
The goal of our usability study is to demonstrate the effectiveness

of using preferences. In particular, the objective is to show that
for a reasonable effort of specifying preferences, users get more
satisfying results. To this end, we conducted an empirical evalu-
ation of our approach using the MOVIES dataset, with 10 com-
puter science students with a moderate interest in movies. Each of
them provided a set of contextual keyword preferences including
context-free ones. On average, there were five preferences related
to each of the queries that were later submitted by each user. Users
were asked to evaluate the quality of the top-10 JTTs retrieved. For
characterizing the quality, we use two measures: (i) precision and
(ii) degree of satisfaction. The first one captures the judgment of
the users for each individual result. In particular, users marked each
result with 1 or 0, indicating whether they considered that it should
belong to the top-10 ones or not. The ratio of 1s corresponds to
the precision of the top-10 results, namely precision(10). The sec-
ond measure evaluates the perceived user satisfaction by the set of
results as a whole. To assess this, users were asked to provide an
overall degree of satisfaction (dos) in the range [1, 10] to indicate
how interesting the overall result set seemed to them.

We compare the results of keyword queries when executing them:
without using any of the preferences and with using the related con-
textual keyword preferences, first based only on dominance and
relevance and then based on all four properties. Also, we consider
using only context-free preferences as well as a case in which there
is no preference with context equal to the query and so, relaxation
is employed. We use F as in our performance experiments with L
equal to the maximum winnow level for each user. Table 3 reports
the average values of the quality measures (we omit the detailed
per user scores due to space limitations). Our results indicate that,
when no preferences are employed, both precision and dos are low.
The use of context-free preferences improves both measures mod-
erately, since such preferences capture only the generic interests
of each user. Applying contextual keyword preferences improves
quality considerably, even when preferences with relaxed context
are employed. The most satisfying results are produced when all
properties are taken into account. This demonstrates how impor-
tant set-centric properties are when combined with dominance and
relevance. Although our evaluation is preliminary, we believe that
the results attained so far are promising.

Concerning user behavior, in general, most of our users defined
preferences that resulted in short graphs of choices. Short graphs
produce few winnow levels and consequently, many ties among the
results with respect to preferential dominance. Using relevance,
coverage and diversity led to resolving such ties. We also noticed
that our users were often positively biased for movies they have
heard about. This can be seen as an indication that exploiting previ-
ous queries to generate additional preferences based on popularity
(as explained in Section 5.3) can prove very useful.

Table 3: Usability Evaluation.

precision(10) dos

No Preferences 0.09 1.9

Context-Free Keyword Preferences 0.21 2.7

Relaxed Context 0.87 7.4

Contextual Keyword Preferences

Dominance-Relevance 0.89 7.9

Dominance-Relevance-Coverage-Diversity 0.94 8.7

7. RELATED WORK
Keyword search in relational databases has been the focus of

much current research. Schema-based approaches (e.g. [19, 6]) use
the schema graph to generate join expressions and evaluate them
to produce tuple trees. This is the approach we followed in this
paper. Instance-based approaches (e.g. [9]) represent the database
as a graph in which there is a node for each tuple. Results are
provided directly by using a Steiner tree algorithm. Based on [9],
several more complex approaches have been proposed (e.g. [16,
21]). There have also been proposals for providing ranked keyword
retrieval, which include incorporating IR-style relevance ranking
([18, 26, 28]), authority-based ranking ([8]) and automated rank-
ing based on workload and data statistics of query answers ([10]).
Our approach is different, in that, we propose using preferences to
personalize the results of keyword search. In this respect, précis
queries ([29]) are the most relevant. Précis are keyword queries
whose answer is a synthesis of results, containing tuples directly
related to the given keywords and tuples implicitly related to them.
While précis provides additional meaning to the results by adding
structure, our goal is to use preferences for ranking results. Prefer-
ences are considered in [24] in the context of IR for document re-
trieval. The main difference is that, only the keywords that appear
in the query are considered, whereas in our approach we expand
the original query with choice keywords.

With regards to preferences, the research literature is extensive.
There are two fundamental approaches for expressing preferences:
a qualitative and a quantitative one. In the qualitative approach

(e.g. [11, 22, 15]), preferences between items are specified directly,
typically using binary preference relations. In the quantitative ap-

proach (e.g. [5, 23, 25, 7]), preferences are expressed indirectly by
using scoring functions that assign numeric scores to items. We
have followed a qualitative approach, since we think it is more nat-
ural for the user to express preferences among keywords directly.
Using a quantitative approach is also feasible. Intuitively, the score
of each keyword would correspond to its winnow level.

Previous contextual preference models, such as [31, 30], use the
term context to refer to situational context, such as time and lo-
cation. The most similar contextual model to ours is that in [4].
However, the work in [4] assumes knowledge of the schema and
addresses a different problem: pre-computation of database rank-
ings for representative contexts.

Recently, diversity has attracted considerable attention as a means
for enhancing user satisfaction in recommender systems and web
search (e.g. [36]). In terms of database queries, [33] considers di-
versifying the results over queries on a single database relation.
The main idea is to build an appropriate B+-tree on the relation and
explore a bounded number of tuples by using the tree to skip over
similar tuples. A central difference with our approach is that our
algorithms are built on top of the database engine. This may intro-
duce some overheads, but it does not require any modifications of
the database system. Besides algorithms for increasing diversity, a
central issue is deriving an appropriate definition of diversity. In
this paper, we used a Jaccard-based distance measure on the con-
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Figure 8: (a) Average dominance, (b) average relevance and (c) coverage.
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Figure 9: Number of joining trees of tuples for (a) s = 3 and (b) s = 4 and time overhead for (c) s = 3 and (d) s = 4.

tent of the JTTs. Recently, [34] proposed a different view of di-
versity based on explanations which are based on past user ratings
and proposed efficient algorithms to increase it. [27] considered
the problem of selecting an appropriate set of features, so that, the
differences among the results of structured queries are efficiently
highlighted.

8. SUMMARY
The simplicity of keyword-based queries makes them a very pop-

ular method for searching. However, keyword-based search may
return a large amount of matching data, often loosely related to the
actual user intent. In this paper, we have proposed personalizing
keyword database search by employing preferences. By extend-
ing query-relevance ranking with preferential ranking, users are
expected to receive results that are more interesting to them. To
further increase the quality of results, we have also suggested se-
lecting k representative results that cover many user interests and
exhibit small overlap. We have presented algorithms that extend
current schema-based approaches for keyword search in relational
databases to incorporate preference-based ranking and top-k repre-
sentative selection.
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