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Heralded by many as a 

promising solution to 

software complexity, object 

technology is coming into its 

own. This roundtable 

explores some recent trends, 

including distributed 

S oftware development is an intrinsically difficult and time-con- 
suming process. As software systems become larger and ever more 
complex, developers have been searching for mechanisms to con- 

trol that complexity. The main goals have always been to lower the cost 
and improve productivity, reuse, and maintainability. A number of pro- 
gramming paradigms have in turn been heralded as the solution to the 
complexity problem. The procedure-oriented paradigm and structured 
programming were both popular for a while, and their fundamentals may 
still be valid. But today, all indicators point to object orientation as a more 
promising solution. 

Although object orientation goes back to the 1960s when Simula was 
introduced, the object-oriented paradigm only started to gain momen- 
tum and popularity during the past few years. Many see it as an opportu- 
nity to rethink programming from an entirely fresh perspective. Unlike 
the procedural-oriented paradigm, where procedures are the fundamen- 
tal software building blocks, 00 software consists of interacting objects. 
Using objects for decomposition is thought to be more natural than using 
data or functions. 

The term object oriented has been used to define a wide range of sys- 
tems. Experts still disagree on which concepts and principles a system 
must embody to be considered object oriented. This introduction will not 
discuss the details of the different object-oriented concepts and classih- 
cations. Instead, some of the basics in object orientation are reviewed for 
those who may not be familiar with this paradigm. 

We can perhaps distinguish three levels at which object-oriented con- 
cepts are applied. Encapsulation is the heart of the object-oriented para- 
digm. The idea is to hide the details of an object’s internal data and 
operations. Objects communicate with one another through a well-defined 
interface. Thus, objects can be modified without affecting the rest of the 
system. At the first level, systems do not provide means to group objects 
with the same structure and behavior. One-level systems, wherein objects 
are derived from other objects, are called clasdess orprototypical systems. 
Code reuse is achieved through delegation, which means that objects del- 

objects, DDDBs, parallel To learn more 

computing, testing, and 

theoretical foundations. 

To help readers learn more about object technology, we have put 
together a list of pointers to various Web sites that focus on object 
orientation: http://cs.unomaha.edu/object-orientation. 

Computer 0018.9162/95154 000 1995 IEEE 



egate the responsibility for executing operations to other 
objects. Microsoft’s OLE/COM exemplifies this type of 
object technology. 

At the second level, the mechanisms of inheritance and 
polymorphism are added. Abstraction can be specified via 
classes, where a class is a template for defining the behav- 
ior of a particular type of object. Classes can be organized 
in a hierarchical inheritance structure. A subclass inher- 
its the operations and attributes of the parent class. 
Inherited operations can be altered by overriding, where 
the code is completely replaced, or by extension, when 
more functionality is added to the code. Objects are cre- 
ated by class instantiation, which lets programmers sim- 
ply reuse an existing class having behavior similar to that 
required for a particular function. This is the idea behind 
class libraries. A class library is a collection of classes that 
programmers use to implement desired functionality. 
Class libraries provide some flexibility, but of course the 
programmer has to learn hundreds of classes and their 
relationships. Microsoft’s MFC (Microsoft Foundation 
Classes) and Rogue Wave’s Tools.h+ + are examples of 
class libraries. 

At the third level, frameworks represent a level of 
abstraction beyond that of class libraries. An 00 frame- 
work is a reusable design that programmers can use, 
extend, or customize for specific computing solutions. A 
framework is not a class library; it is expressed as a class 
hierarchy plus a specification of the way its objects can 
interact. A framework can be thought of as a generic appli- 
cation that embodies a structure that is reusable in many 
specific applications. For example, MacApp is a framework 
for writing Macintosh applications. Since all Macintosh 
applications share the same structure (a main event loop 
that processes events), MacApp implements this common 
structure and lets software developers write the domain- 
specific routines used by the framework. Thus, frame- 
works allow the reuse of both design and code, but the 
developers must first identify the appropriate framework 
for a given application and write the domain-specific code. 
Taligent’s CommonPoint, IBM’s VisualAge, and ParcPlace- 
Digitalk’s VisualWorks are other examples of frameworks. 

As object-oriented technology is gaining more and more 
acceptance, groups such as OMG (Object Management 
Group) and ODMG-93 (Object Data Management Group) 
have made progress toward the standardization of object 
orientation. The goal is to provide a common architectural 
setting for object-oriented applications based on widely 
available interface specifications. Effective adoption of 
these standards enables portability of customer software 
across different products, ensures interoperability among 
systems, and encourages the creation of interchangeable, 
reusable software components. This in turn will reduce 
the complexity and lower the costs of software and 
improve productivity. For example, the Common Object 
Request Broker Architecture (CORBA) is a standard by 
OMG for distributed object-oriented client-server com- 
puting. CORBA provides the mechanisms by which objects 
transparently make requests and receive responses, as 
defined by OMG’s ORB. The ORB provides interoperabil- 
ity between applications on different machines in hetero- 
geneous distributed environments. Several commercial 
products that adhere to these standards are available, such 

as Hewlett-Packard’s Distributed Smalltalk, Digital’s 
ObjectBroker, IONA’s Orbix, and IBM’s SOMobjects. 

In this roundtable. We present an assortment of 
short articles from both industry and academia on a num- 
ber of interesting topics in object orientation. Yen-Ping 
Shan, Ralph Earle, and Skip McGaughey review several 
approaches for exploiting object technology in client- 
server environments using distributed objects on the 
server. A second article, by Sumi Helal and Ravi 
Badrachalam, examines Microsoft’s COM standard and 
compares COM with CORBA. 

Andrew Chien and Andrew Grimshaw each contribute 
a short article on the growing need for object orientation 
in the world of parallel computing. Chien speculates that 
large parallel software communicating via ORBS will be 
developed for servers and low-end APIs on symmetric mul- 
tiprocessors. Grimshaw discusses the increasing use of 
C+ + in the high-performance community, outlines the 
debate over how best to encapsulate parallelism in objects, 
and expounds on the need in the high-performance com- 
puting community to adapt and conform to existing stan- 
dards in order to leverage commercial software. 

Object-oriented databases are a growing field, as sug- 
gested by the four short articles presented here. Byung Lee 
outlines the current state of object-oriented systems and 
standards. Andrew Wade looks at the future of OODBs and 
identifies some short- and long-term directions. Dave 
Morse draws a parallel between the network database 
model and present-day OODBs and discusses his com- 
pany’s attempt to blend the relational and network mod- 
els while realizing the benefits of object-oriented 
databases. Finally, Ahmed Elmagarmid and Evaggelia 
Pitoura discuss database system integration and the effect 
of applying object technology to the design and imple- 
mentation of multidatabase systems. 

Robert Binder contributes an article about the changes 
in 00 testing and how its practice has improved during 
the last three years. He also reviews some of the unique 
problems and challenges facing testing in the object-ori- 
ented arena. 

Finally, Peter Wegner addresses the confusion that exists 
in the theoretical foundation of object-based program- 
ming. He introduces the interactive paradigm for model- 
ing objects and extends Turing machines by having them 
support external inputs during computation. This is a very 
interesting article that we would expect to generate much 
discussion. I 
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ROUNDING OUT lHE PIcrzIRE: ORJECT’S 
AQlOSS THE CLIENT-SERVER SPECIWJM 

Yen-Ping Shan, Ralph Earle, and Skip McGaughey 
IBM Software Solutions 

U ntil now, object technology has proven beneficial only 
to the client side of the client-server picture. We believe 

there is no intrinsic or conceptual reason for this and in the 
near future, object technology will extend to cover the entire 
client-server configuration. The benefits of objects that apply 
to client implementations will apply equally well to the 
server and to distributed computing. 

This has two implications. First, objects on the server side 
will become as common and useful as objects already are 
on the client side. Second, as server objects become a real- 
ity, a server must have a mechanism for interacting with 
clients. Distributed object technology becomes the natural 
choice to “glue” the client and server together. 

Object-oriented technology first became popular on the 
client side because it does such a good job of addressing the 
complexity of GUI programming. The benefits of object tech- 
nology that make this possible include encapsulation, 
reusability, and a close mapping between the problem and 
solution domains. (In this case, the real-world elements of 
the user interface map to self-contained software objects.) 

On the server side, multiuser requirements and the 
greatly magnified scale of servers naturally lend themselves 
to complexity, which creates a need for object technology’s 
benefits. The same reasoning applies to communication 
between client and server: With objects proliferating across 
the network, managing complexity and change becomes 
even more critical. Again, encapsulation, reusability, and 
problem/solution mapping come to the rescue. 

In addition, when object behavior is available on both the 
client and the server side, it makes sense to use distributed 
objects as a communications mechanism that takes full 
advantage of the available behavior. This yields high pro- 
ductivity and broad tool support. 

Establishing objects. In establishing objects on the 
server, three major approaches are currently being followed. 

Objecti$ying the transactionprocessing monitors. When 00 
programming languages are introduced into the TP moni- 
tors, transaction programs that used to be written in 3GLs 
such as Cobol can be written in 00 languages. Each invo- 
cation of a transaction still maintains the atomicity, consis- 
tency, isolation, and durability (ACID) properties essential 
to the integrity of business computing. 

AS OBJECTTECHNOLOGYINCWSINGLY becomesafactoron 
servers and networks, we can expect to see a variety of 
approaches, with different benefits and restrictions. It’s not 
likely, or even desirable, that any of the approaches men- 
tioned above could so dominate that others become unnec- 
essary. Besides pushing the boundaries of each individual 
approach, technology providers will have to ensure that the 
approaches coexist and are complementary. Only then can 
application developers enjoy the full benefits of an object- 
oriented client-server environment. 1 

Objectifying the data servers. Data servers execute logic 
within the comext of a database. This logic generally takes 
the form of the stored procedures and triggers supported by 
many relational databases. Developers can objectify their 
data servers if t hey can program their stored procedures as 
objects. 

Objectifying I:he application servers. An application server 
is a nontransactional server similar to a database server, but 
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with the logic in front of the database rather than in stored 
procedures. Unlike the two servers described earlier, which 
usually run for a short duration, an application server can 
stay running for a long time. Programmers can use an 00 
language to implement their application servers. 

Glue. Creating and propagating server objects is the first 
step, but server objects must be connected to the client 
objects, and the glue is the distributed object technology. 
Depending on the nature of the objects on each side, there 
are three major ways to glue the clients to the servers. 

Common buffer. The client and server agree privately on a 
buffer format, and the communication middleware ships the 
buffers back and forth between them. Although the abstrac- 
tion level is low, this is the most heterogeneous approach. For 
instance, by using common buffers, a Visual C + + client can 
interact with a mainframe Cobol server program. The lan- 
guages or vendor products used to implement the client and 
the server are not restricted. (In fact, with common buffers, 
neither client nor server even needs to include objects.) 

Common middleware. The client and server are connected 
by a common middleware service such as an ORB (for exam- 
ple, SOMobjects or HP Distributed Smalltalk). Here the 
abstraction level is higher, which enables more tool support 
and higher productivity. Data conversion and marshaling are 
done by the middleware, and interaction across languages is 
possible. However, there is less heterogeneity than with the 
common buffer approach. For example, to interact with a 
legacy server program when source code is not available, it’s 
more appropriate to use the common buffer approach than to 
wrapper the legacy code with the required object constructs. 

Common language. This approach takes advantage of both 
sides being implemented in the same language. Example sys- 
tems are IBM Distributed Smalltalk and Forte. The goal is to 
provide high local/remote transparency that masks the exis- 
tence of underlying middleware. Programs can be created in 
a single address space and then partitioned into pieces to run 
on different machines. Because the client and server follow 
the same protocols, additional services are available (for 
example, distributed garbage collection) that are infeasible 
with common buffers or common middleware. The common 
language approach achieves the highest levels of abstraction 
and productivity, at the expense of some heterogeneity. 
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COM VERSUS CORBA: WILL 
MICROSOFT COME OUT ON TOP? 

Abdelsalam Helal, Purdue University 
Ravi Badrachalam, University of Texas at 
Arlington 

M icrosoft defines the Component Object Model 
(COM) as an object-based programming model 

designed to promote software interoperability. The objec- 
tive is to let two or more applications or software compo- 
nents easily cooperate with one another even if they were 
written by different vendors at different times, in differ- 
ent programming languages, or if they run on different 
platforms with different operating systems. In this brief 
article, we discuss Microsoft’s COM and show how it 
addresses the issues of distributed object computing. 

What is component software? A component is a 
reusable piece of software in binary form that can be 
plugged into other components from any other source. For 
example, a component might be a thesaurus tool sold by 
one vendor that can be plugged into different vendors’ 
word processing packages. Software components must 
adhere to a binary external interface standard, but their 
implementation is completely unconstrained. 

COM interfaces. COM applications interact with 
each other and with the system through collections of 
functions called “interfaces.” A COM interface is a contract 
between components to provide a certain level of service 
or functionality. COM interfaces provide the following 
benefits: 

l Adding new functionality to an object will not require 
recompilation for existing clients. 

l The binary standard allows COM to transparently 
make an RPC call to an object in another process or on 
another machine. 

l Any programming language that can create struc- 
tures of pointers and explicitly or implicitly call func- 
tions through pointers can create and use COM 
objects. Such languages include C, C+ +, Pascal, Ada, 
and Smalltalk. 

COM defines one special interface, IUnknown, to imple- 
ment some essential functionality. This is the base inter- 
face that all objects must support. QueryInterface is a 
method on this interface that allows clients to dynamically 
find out at runtime whether an interface is supported by 
a COM object. The developer can create a description of 
the COM object’s interface methods using COM’s Interface 
Definition Language (IDL). (The COM IDL is based on sim- 
ple extensions to the IDL used in OSF DCE.) 

Identifying objects and interfaces with GUIDs. 
Future distributed-object systems might have millions of 
interfaces and software components that need to be 
uniquely identified. The probability of collision between 
human-readable names is nearly 100 percent in a complex 
system. To avoid this problem, COM uses globally unique 
identifiers (GUIDS) that are 128-bit integers and are vir- 

tually guaranteed to be unique in the world across space 
and time. GUIDs are the same as UUIDs (universally 
unique identifiers) as defined by OSF DCE. 

Aggregation in place of inheritance. Microsoft 
believes that implementation inheritance creates serious 
problems in a loosely coupled, decentralized, evolving 
object system. While agreeing that implementation inher- 
itance is a very useful technology and tight coupling is not 
a problem when the implementation hierarchy is under 
the control of a group of programmers, Microsoft argues 
that the contract between objects in an implementation 
hierarchy is implicit and ambiguous. When the parent or 
child component changes its implementation, the behav- 
ior of related components may become undefined. 

In place of implementation inheritance, COM provides 
two mechanisms for code reuse called containment/del- 
egation and aggregation. In the first mechanism, one 
object (the outer object) simply becomes the client of 
another object by internally using the second object (inner 
object) as a provider of services. Clients of the outer object 
never see the inner object, which is completely hidden 
(encapsulated). 

The second mechanism, aggregation, is a special case 
of containment/delegation. An aggregated object is essen- 
tiallya composite object in which the outer object exposes 
the inner object’s interface directly to clients as if it were 
part of the outer object. 

Local/remote transparency. COM lets clients 
transparently communicate with objects regardless of 
where they are located. A client accesses all objects 
through interface pointers. A pointer must be in-process, 
and any call to an interface always reaches some piece of 
in-process code first. If the object is in-process, the call 
reaches it directly. If the object is out-of-process, the call 
first reaches a proxy object provided by COM that gener- 
ates the remote procedure call to the other process or 
machine. 

COM library. While the core of the Component Object 
Model is the specification for how objects and their clients 
interact through the binary standard of interfaces, COM 
itself involves some system-level code and hence some 
implementation of its own. The COM library is a system 
component that provides the mechanisms of COM. 
(Microsoft has implemented the COM library in COMP- 
OBJ.DLL on Windows and OLE32.DLL on Windows NT 
and Windows 95.) 

How does COM differ from OMG’s CORBA? A 
major difference between CORBA and COM is the way 
they implement their interfaces. COM specifies a series of 
interfaces that components must implement to interact 
with other component objects. All these interfaces must 
derive from the base interface IUnknown. CORBA does 
not specify a single base class, and vendors get to imple- 
ment their own. 

CORBA is a specification without a reference imple- 
mentation. This is due largely to the conflicting interests 
of vendors, and OMG was forced to make CORBA delib- 
erately vague, omitting certain details. Its lack of imple- 
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mentation detail is both its greatest strength and limita- 
tion. While providing the flexibility for more creative ven- 
dor implementations, it also opens up issues such as 
inconsistent administration, incompatible ORBS, and non- 
portable servers. Microsoft’s COM, on the other hand, is 
very specific in its implementation details, but this tight 
control can lead to nonoptimal solutions. 

Another subject of major controversy between COM and 
CORBA is implementation inheritance. Implementation 
inheritance is the classic inheritance in the object-oriented 
sense, utilizing class hierarchies. Interface inheritance 
refers to the ability to reuse interfaces between objects 
without imposing class hierarchies. It follows the object- 
oriented concept of encapsulation. Microsoft believes that 
implementation inheritance is improper when applied to 
interprocess object models, so COM supports interface 
inheritance but not implementation inheritance. 

IBM, on the other hand, claims that a truly object- 
oriented system should support this feature and has imple- 
mented it in SOM, one of the first successful implementa- 
tions of CORBA (commercially available since 1991). IBM 
says that SOM is object-oriented, while COM is object- 
based. This debate has merits on either side, and whether 
object-oriented programming can be done effectivelywith- 
out implementation inheritance is something that indi- 
vidual developers should decide. 

Another point of comparison is the level and variety of 
implementations based on these two standards. While 
CORBA has many implementations that 
support object interactions across net- 
works, Microsoft’s OLE (an implementa- 

SCALABLE PARALLEL SYSTEMS ?=? 
SCALABLE OBJECe REQUEST BROKERS 

Andrew A. Chien, University of Illinois 

0 bject-based computing provides numerous advan- 
tages for parallel and distributed computing. 

Notably, objects offer the benefits of object-oriented pro- 
gramming: modularity, encapsulation, and reuse, which 
have been widely demonstrated for uniprocessor systems. 
In parallel and distributed systems, these features can be 
used to cleanly manage separate address spaces, locality 
and distribution, concurrency, and resources. However, 
scalable parallel systems have not yet been widely used 
for parallel object applications. Below, I briefly discuss 
some of the opportunities for parallel objects and scalable 
parallel systems. 

What do scalable parallel systems offer scal- 
able ORBS? The increasing acceptance of a distributed 
object model based on emerging standards such as the 
Common Object Request Broker Architecture (CORBA), 
IBM’s Distributed System Object Model (DSOM), and a 

variety of others presents an unprece- 
dented opportunity for parallel system 
vendors. If enterprise computing follows 

tion of COM) does not yet support cross- T he increasing the evolution of the desktop platform, dis- 
platform object interaction. acceptance of a tributed information management and 

distributed object distributed desktop applications are likely 
Forecast. Microsoft is a member of model presents an to become the dominant applications for 

OMG but has chosen not to support CORBA unprecedented parallel computers. Such applications will 
and has instead defined its own standard. opportunity for be based on encapsulated objects devel- 
None of the other members of OMG are as parallel system oped for a model such as Microsoft’s OLE, 
focused on desktop software as Microsoft vendors. 
is, and with Microsoft’s predominance, 
COM is expected to become an industry 
standard in the desktop market. Further, Digital has 
decided to port COM to its OpenVMS and OSF/l platforms 
and is working on a bridge that will make COM and CORBA 
interoperable. Finally, Microsoft is pushing its Windows 
NT operating system as a replacement for Unix on the 
server side. Given Microsoft’s strength and popularity, this 
may very well happen within the next few years. If this 
becomes a reality, with major hardware vendors porting 
and supporting Windows NT as a server-quality operating 
system, distributed COM is bound to play a prominent role 
in the distributed interoperable objects arena. I 
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Novell’s AppWare, or the standards men- 
tioned above. For vendors of scalable par- 
allel hardware, such developments are an 

exciting opportunity; ORBS represent an open API for dis- 
tributed and parallel applications and have the potential 
to provide the wealth of application software needed to 
sustain the market for high-end scalable systems. 

The synergy is critical. The wealth of electronic infor- 
mation becoming available as businesses automate both 
the collection and acquisition of information as well as 
integrate their disparate information resources can easily 
swamp the computing resources available in small-scale 
server systems. Possible alternatives include clustering 
workstations or going with scalable parallel systems 
(MPPs). And in fact, scalable hardware systems on the 
market today offer several key advantages: highly tuned 
communication software, single system image, and hard- 
ware design for reliability and maintainability. These 
advantages support the building of high-performance 
ORBS that will provide performance scale-up with greater 
convenience than is possible with a distributed cluster. 

What do scalable parallel object systems need 
to support scalable ORBS? The federal government’s 
High Performance Computing and Communications 
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(HPCC) initiative clearly provides the critical hardware 
and software basis for scalable ORBS. However, because 
the HPCC efforts have focused on scientific grand chal- 
lenges (only recently on national challenges), the soft- 
ware developed for parallel systems has generally 
supported single jobs, scientific applications, and APIs 
well-suited to those applications. Scalable ORBS can lever- 
age scalable hardware and high-bandwidth communi- 
cation software, but they have several additional 
requirements: high-performance multithreading, high- 
performance distributed resource management, and com- 
patibility with desktop application software. 

To date, scalable parallel systems have provided only 
modest support for multithreading, as the absolute high- 
est performance with scientific applications can often be 
attained with a single thread. In server type applications, 
efficient multithreading is an essential tool for program 
decomposition, performance, and software complexity 
management. In addition, most scalable parallel systems 
provide little or no assistance for distributed resource 
management; this again is largely a consequence of the 
focus on scientific applications with predictable resource 
requirements. Fortunately, the increasing use of irregu- 
lar, adaptive algorithms for parallel scientific computing 
is broadening these requirements. Distributed object 
applications typically have rapidly varying dynamic 
resource requirements that must be managed efficiently 
to achieve scalable performance. Finally, compatibility 
with desktop software is a critical issue if 
third-party vendors are to be persuaded to 
port and run their distributed objects on a 

PARALLEL PROCESSING AND OT 

Andrew Grimshaw, University of Virginia 

P arallel programming has experienced a long and dif- 
ficult maturation process. The reasons are many, but 

one critical problem is the difficulty in programming the 
newly developed architectures. Porting and tuning an appli- 
cation to a new architecture can take as long as the inter- 
val between new architectures. In this environment, 
applications developers face a daunting challenge, espe- 
cially with increasingly large and complex applications. 
Developers must identify parallelism in an application, 
translate that parallelism into code, manage communica- 
tion and synchronization manually, and, at the same time, 
keep abreast of architectural change. 

To address these problems, many researchers have 
turned to object-oriented programming, considered a 
powerful software engineering tool for sequential soft- 
ware. Attributes such as encapsulation, polymorphism, 
fault-containment, and software reuse have made com- 
plex sequential software more tractable, and researchers 
want to capture those benefits for the parallel computing 
community. 

The majority of object-oriented parallel computing pro- 
jects focus on C + + because of its widespread use and the 
availability of C+ + compilers on most parallel platforms. 
Unlike the Fortran community, the parallel C+ + commu- 

nity has not reached a consensus on how to 
best introduce parallelism into the lan- 
guage. One reason is that the base language 

scalable server. For scientific applications, U nlike the Fortran is so flexible that constraining parallelism 
the focus has been on source compatibil- community, the to arrays, as in high-performance Fortran, 
ity, but for commercial application soft- parallel C++ commu- makes no sense when so many different 
ware, where the source may not be nity has not reached data structures and types are possible. 
available, binary and operating system a consensus on how Hence, there are task (control), data, and 
environment compatibility are critical to best introduce combined task and data parallel projects. 
issues. If scalable parallel systems are to parallelism into the A deeper split within the community 
serve this market, they must address these language. 
concerns. 

. - 
exists as to how to provide parallelism. 
There are two primary schools of thought. 
The first, the libraries group, argues for 

A closing perspective. Parallel system use is explod- 
ing in the commercial world, and we will soon have a much 
larger parallel software base. However, the bulk of the par- 
allel systems being installed are low-end symmetric mul- 
tiprocessors, not multimillion-dollar scalable parallel 
computers. So one might reasonably expect that much of 
the parallel software will be developed for server and low- 
end APIs. To provide true scalability for commercial appli- 
cations, it must be possible to scale applications built to a 
single API over a wide range of performance. How then 
will scalable systems provide scalability in both the soft- 
ware and the hardware? One possible path is through dis- 
tributed object request brokers. I 
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building highly optimized, extensible class libraries that 
encapsulate parallelism. Users could use these class libraries 
without knowing anything about parallelism or about what 
goes on inside the class library. The heart of the library 
group’s argument is that C+ + already provides a powerful 
mechanism for language extension via classes, inheritance, 
and templates. Additional extensions would only clutter the 
language. Furthermore, with no consensus on language 
features, compilervendors are unlikely to support anylan- 
guage extensions, and users will not want to risk embracing 
the “wrong” feature. 

The second school of thought, the extensions group, 
argues that the best way to achieve parallelism is via lan- 
guage extensions. The heart of the argument is that paral- 
lel composition is as important a concept as sequential 
composition. With concurrency a part of the language, com- 
piler technology can more readily be brought to bear on 
optimization. 

The future: Object orientation and HPC. Inde- 
pendent of the libraries and language extensions debate, 
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object-oriented computing has a future in high-perfor- 
mance computing. The HPC community is at a crossroad. In 
the past, the communitymainlyemployed expensive super- 
computers and often developed its software in-house 
because the commercial marketplace would not. Today, 
however, cost-effective PCs and workstations have closed 
the performance gap, and a booming commercial software 
business targets these desktop machines. At the same time, 
many traditional HPC users are downsizing and no longer 
have the resources to develop everything in-house. 
Therefore, the HPC community has tremendous incentive 
to leverage the existing commercial software base. 

OBJECT-ORIENTED DATABASES: 
SYSTEMS AND STANDARDS 

Byung S. Lee, University of St. Thomas 

The 00 paradigm can impact the new environment in 
three ways: leveraging the huge investment in commercial 
software, integrating parallel components, and making par- 
allel computing relevant to the computing community at 
large. Leveraging commercial software is crucial. The sci- 
entific/parallel software market is minuscule compared to 
the desktop market, where billions of dollars are being 
spent.The scientific computing community does not have 
the resources to duplicate that effort. It must adapt, con- 
form to existing standards, and exploit the desktop market, 
a market that is moving increasingly toward object-based 
and object-oriented interoperability standards. 

S ince the mid-eighties when Gemstone was introduced 
as the first object-oriented database management sys- 

tem (ODBMS), a dozen other commercial ODBMSs have 
joined the fierce competition in the market. Although we 
call them all ODBMSs, they differ in their system concepts 
and data management standards. Below, I discuss the past 
evolution and future prospects of those ODBMSs. 

Object-based techniques also relate to interoperability. 
The HPC community has no interoperability standards. 
Thus, it is difficult to use parallel components developed by 
different research groups in a single application. There is 
also desire to construct multidisciplinary simulations-for 
example, coupling ocean and atmosphere models in a 
global climate model. The individual components of these 
simulations are often stand-alone parallel codes. While the 
file system can be used as an interface and data transport 
mechanism, more effective techniques are needed. Object 
technology can be used as an interface description mecha- 
nism, a data transport and coercion mechanism, and, using 
wrappers, as a mechanism to extend the life of legacycom- 
ponents. Unfortunately, existing IDLs do not address many 
of the special interface issues relevant to a parallel program. 

Evolution of systems. There have been three ap- 
proaches to building an ODBMS: extending an object- 
oriented programming language (OOPL), extending a rela- 
tional DBMS, and starting from the ground up. The first 
approach realizes an ODBMS by adding to an OOPL persis- 
tent storage for multiple concurrent accesses with transac- 
tion support. This extension has the advantage of reusing 
the type system of a programming language as a data model 
and thus achieves a seamless integration between pro- 
gramming language and database manipulation language. 
This approach has become the most popular in the com- 
mercial world so far and is represented by commercial 
ODBMSs such as ObjectStore, Versant, Objectivity, and 02. 

In the second, extended relational approach, an ODBMS 
is built by enhancing an existing relational DBMS with 
object-oriented features such as classes and inheritances, 
methods and encapsulations, and complex objects. 
Exemplary systems are the research prototypes Postgres95 
and Starburst, which were incorporated into the commer- 
cial products Illustra and DB2/6000 V2, respectively. 

Finally, if the HPC community is to impact the desktop 
market, it must conform to existing and evolving standards. 
If HPC components conformed to standard interface 
descriptions, parallel components could be used transpar- 
ently by commercial applications developers. That would 
make parallel computing relevant to a broader user base 
and encourage vendors to develop parallel hardware for 
the commercial market. The easiest way to do this near- 
term is to encapsulate parallelism within objects, making 
the parallel component a particularly fast version of an 
existing sequential code. 

The third approach is revolutionary in the sense that an 
ODBMS is built from the ground up, as represented by 
UniSQL and OpenODB. Research prototypes like Orion and 
Zeitgeist belong to this category as well. These systems pro- 
vide their own proprietary data models and data manipu- 
lation languages. 

Fortunately, within the distributed systems community 
there are standardization efforts to define object architec- 
tures and IDLs. The HPC community should embrace these 
efforts, lobbying for changes needed to best support its pur- 
poses. Only then can high-performance parallel computing 
begin to make the transition into the mainstream. I 

Lately, a new paradigm of ODBMS, called object-relational 
DBMS (ORDBMS), has begun to draw increasing attention. 
The objective of an ORDBMS is to support both relational 
and object-oriented database applications. Systems in the 
category of ORDBMSs at the time of this writing are 
extended relational DBMSs such as Illustra and DB2/6000 
and ground-up ODBMSs such as OpenODB and UniSQL. 

Andrew Grimshaw is an associate professor of com- 
puter science at the University of Virginia; e-mail 
grimshaw@virginia.edu. 

Evolution of standards. In September 1991, the 
Object-Oriented Database Task Group of the ANSI Database 
Systems Study Group published its final report for estab- 
lishing “a framework for future standards activities in the 
object information management area.” Subsequently, two 
ongoing efforts have begun-one by the Object Data 
Management Group (ODMG) and the other by the American 
National Standards Institute (ANSI) SQL3 (also called Object 
SQL) committee. In October 1993, ODMG published its first 
version of standard ODMG-93, which defines the data 
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model, query language, and language bindings with which 
all commercial ODBMS systems are advised to comply. The 
ANSI SQL3 committee has not yet finished developing a full- 
fledged standard of SQL3. Their target publication years are 
1997 for some major components and 1998 for the other 
components. Both standards are still evolving and in some 
sense competing with each other. This lack of a solid, unified 
standard is a barrier to be overcome as soon as possible. 

Future of systems. There is no doubt that ODBMSs 
will gain increasing market share. In particular, ORDBMSs 
*will gain more popularity because of their dual support for 
relational and object-oriented data management capabili- 
ties. Virtually all commercial ODBMSs will move in that 
direction. One interesting question in this regard is who will 
arrive there first. Right now, Illustra, UniSQL, OpenODB, 
and DB2/6000 V2 are considered the first ORDBMSs. Other 
ODBMSs will follow the same track. On the other hand, con- 
ventional relational DBMSs, including Informix, Ingres, 
Oracle, and Sybase, may gradually be turning into 
ORDBMSs. However, their current object-oriented exten- 
sion is limited to providing SQL3 wrappers and storing com- 
plex data as binary large objects (BLOBS) and thus entails 
poor query processing and optimization. Nonetheless, some 
users may be willing to wait for relational DBMS vendors to 
release full-fledged 00 extensions. 

ODBMSs will n’ot replace relational DBMSs in conven- 
tional database markets such as inventory management, air- 
line reservations, finance, and investment management. 
Rather, the use of ODBMSs will be restricted to complex 
applications such as design engineering and network man- 
agement. Geographic information systems and electronic 
book technology are emerging as new areas of complex 
applications. Ironically, hierarchical DBMSs, such as IMS, 
will still dominate in terms of deployed data volume for at 
least another decade. 

Future of standards. The ODMG standard will soon 
emerge as the strongest standard in the commercial 
ODBMS community and will influence current commercial 
ODBMSs. A few commercial products in compliance with 
ODMG-93 are soon to be released, and a revised version of 
the ODMG standard, ODMG-95, is on its way. ANSI SQL3 
covers more comprehensive features such as rules and trig- 
gers in addition to object-oriented features, but its current 
progress is slow. SQL3 will be the primary target standard 
for extending conventional relational DBMSs such as 
Informix, Oracle, and Sybase with 00 features. Both 
ODMG-95 and ANSI SQL3 will add impetus to the 
ORDBMS trend. 

We may see the recurrent phenomenon of vendors run- 
ning ahead of ANSI committees, which was evident with 
the Internet protocol-for example, TCP/IP against ANSI 
X.25. Eventually, however, it is likely (and desirable) that 
the two streams of standards, ODMG and SQL3, will influ- 
ence each other or even merge. I 
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MERE ARE OBJECe DATABASES 
HEADED? 

Andrew E. Wade, Objectivity Inc. 

B ydefinition, all ODBMSs support storing and sharing of 
objects, with an interface to the object that allows com- 

bining and invoking operations, thus raising four important 
issues for deploying mission-critical applications: integrity, 
scalability, reliability, and flexibility. 

To illustrate the first, consider ODBMS support for 
caching. Unlike server-centered DBMSs, most ODBMSs actu- 
ally move referenced objects into the application’s address 
space, with both an up- and a downside. The upside is per- 
formance. Operations across address spaces take millisec- 
onds, while operations within an address space take tenths 
of microseconds on the same machine, so access is 10,000 
times faster. Complex applications often achieve lo-100 
times better performance from such caching and relation- 
ship management. On the downside, however, an applica- 
tion with a bug can damage a cached object and corrupt the 
database. Thus, a key issue for the ODBMS is what it must 
do to prevent such corruption. Most systems today (either 
all or some of the time) give the application a direct pointer 
to the objects. Eventually, such pointers become invalid; they 
are always invalid after a commit, because commit means 
semantically that the object can move to other users. If the 
programmer uses the pointer at the wrong time, it will crash 
or, worse, dereference into the middle of some other object 
and corrupt the database. 

A better approach uses one level of indirection to insulate 
the user and guarantee integrity. To the user, this looks 
exactly the same, but underneath the ODBMS transparently 
adds one extra pointer dereference. Then, wherever the 
object moves, the ODBMS can automatically fix the pointer 
(recache the object if necessary), so that execution contin- 
ues normally. With this approach, there is no corruption 
from bad references, and the cost of an extra pointer deref- 
erence is unnoticeable in most applications. 

An indirect approach can also enable the ODBMS to swap 
objects, which is a key for scalability. A prototype that works 
well with 10 objects should not collapse when put into pro- 
duction with 10 million objects. Indirection allows an intel- 
ligent cache management strategy that swaps out old, 
unused objects, making room for new objects, so perfor- 
mance can scale linearly with the number of objects 
processed to unlimited database size. 

Scalability in the number of users is also an increasingly 
important issue. Systems built around client-side-only func- 
tionality tend to bog down quickly with only a handful of 
users. Systems built around server-side-only functionality 
can do very well for simple, short transactions-for exam- 
ple, those typical of traditional DBMSs and OLTP systems- 
but suffer from a server bottleneck. All requests must pass 
through the same server queue, so the more users you add, 
the longer they wait at that queue. ODBMSs are migrating to 
a distributed client-server architecture, which spreads func- 
tionality across clients and servers to avoid such a bottleneck. 
The server can move clusters of objects simultaneously and 
supports multithreading and simultaneous communication 
links to each client, so there is no waiting unless object con- 
flicts arise, in which case the usual locking keeps everything 
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safe. The client-side object manager supports indirection for 
integrity and intelligent cache management for scalability. 
A single logical view over all the distributed databases allows 
transparent and dynamic server reconfiguration, so even as 
server capacity is reached, administrators can simply add 
new servers and spread objects across them. The result is 
scalability in clients (due to direct communication links) and 
also in servers (due to distributed ability to add servers and 
spread objects across new servers). 

Another emerging mission-critical need is fault tolerance. 
It’s great to be able to access objects transparently in New 
York or Tokyo, but what happens when the satellite link goes 
down? Support for redundant replicates of system struc- 
tures is needed to allow users to continue work, even though 
they can’t access new objects at the other site until the satel- 
lite link is restored. Additionally, using object replicates 
allows continued object access, with update correlation per- 
formed according to user-chosen rules when the link is 
reestablished. 

Longer term directions? Early ODBMS users were 
sophisticated technologists who had no fear of diving into 
the intricacies of C+ + and ODBMSs, but users of the future 
will demand easier interfaces and more productivity tools. 
In line with the move to open systems, they’ll demand that 
tools be open too, rather than tied to single vendors. ODBMSs 
have begun to move in this direction. Some now support 
SQL, leveraging existing programs and user training, as well 
as Microsoft’s Open Database Connectivity (ODBC), which 
allows off-the-shelf plug-and-play with most of the standard 
4GLs, GUI tools, report generators, form generators, and so 
forth. Some third-party object tool vendors have begun to 
integrate their products with the leading ODBMSs, and the 
ODMG standard will accelerate this trend. (ODMG is plan- 
ning future support for dynamic object type access and bet- 
ter tool support.) 

One area in which ODBMSs have been weak is security. 
Broader use will demand more sophisticated securitymod- 
els to support objects, object clusters, and composite objects 
distributed across networks of computers. The trend is 
toward wider integration among computers. Instead of sep- 
arate personnel, finance, manufacturing, and order-entry 
databases, companies today want all these systems interre- 
lated. The incoming order will automatically communicate 
to the manufacturing database to schedule the products, 
the personnel affected, and the finances. The ability to han- 
dle complex cross-database structures such as composite 
objects and to work across multiple servers, multiple data- 
bases, multiple schemas, and multiple interfaces will drive 
development of the ODBMS, which is architecturally the 
ideal basis for such systems. As consumer demands grow 
and technology evolves, applications will support more com- 
plex information, more relationships and dependencies, and 
more complex operations. All this means that as time goes 
on, more applications will move from the domain of tradi- 
tional databases to that of ODBMSs. I 
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OODBSs AND THE MARRIAGE OF 
NETWORK AND RELATIONAL 
DATABASE MODELS 

Dave Morse, Raima Corporation 

enty years ago, the new gospel of databases hailed the 
r superiority of the emerging relational database model 
over the older network (Codasyl) model. Relational database 
management systems (RDBMSs) allowed “database creation 
on the fly,” or nearly instant changes in a database’s schema 
to quickly accommodate changes in a corporation’s environ- 
ment. RDBMSs made it easier to create and modify records by 
storing them on separate tables and linking them through 
indexes. In contrast, records in the network model were 
joined through direct and much less mutable relationships. 

Network model rigidity was identified as a major problem 
that RDBMSs solved. Still, the network database never died. 
While relational databases today garner the most attention 
and have fueled the rise of numerous SiliconValleystart-ups, 
some 90 percent of the worlds data exists in network and hier- 
archical model databases. according to the Gartner Group. 
IMS, IBM’s network model database system, is still the largest 
revenue contributor to IBM’s Software Solutions Division. 

In fact, the network model seems to be experiencing a 
renaissance as a new technology called the object-oriented 
database (OODB) gains attention. Some of the network 
models key distinguishing virtues seem uncannily embod- 
ied in the emerging OODBs. A case in point is the pointer- 
based method for establishing relationships between data in 
both the network and OODB models. First, such direct joins 
result in faster access time and typically better performance. 
Second, pointer-based OODBs support navigational rela- 
tionship mechanisms by creating predefined paths and 
unique IDS for each object. Third, pointer-based systems sup- 
port complex (for example, recursive) and unconventional 
data relationships more easily than relational databases do. 

However, OODBs are more than just a return to the net- 
work model. They provide significant advantages by being 
intuitive to use and by hiding nonessential information from 
the user. The desire to model complex real-world relation- 
ships through complex database designs has brought the rela- 
tional model into question. Object-oriented partisans claim 
relational databases are ill-suited for storing and manipulat- 
ing todays complex data. Such complex structures don’t map 
well onto the tables that form the infrastructure of relational 
databases; neither do the images, and the audio, video, and 
other multimedia data that are expected to become common 
in corporate repositories. Complexity in a relational database 
typically requires creation of more and more indexes, and 
proliferation of indexes can quickly cause a program to slow 
unacceptably. 

In contrast, OODB systems start out with the assumption 
that data structures are to be viewed as objects that encapsu- 
late not only data but also information about the behavior of 
this data. The growth of this new type of database has 
spawned an ever-growing set of classifications for OODBs. 
Some are OODBs with a highly graphical interface and little 
underlying similarity to the common relational database. 
However, a new category has emerged under the rubric 
“object-relational database” and appears to be gaining accep- 
tance among the many database programmers who don’t 
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want to give up all the benefits of RDBMSs or who prefer to 
migrate to OODBs more slowly. Most of the products in this 
new category reflect relational database vendors’ efforts to 
retain some of the structure of relational databases while 
offering OODB functions. These object/relational databases 
range from pure OODB management systems that map 
objects to relational database tables, to relational wrapper 
libraries that make an RDB table appear as an object. 

The course followed by software engineers at Raima illus- 
trates how one vendor has chosen to marry relational and 
network database models to realize the benefits of object-ori- 
ented database development. This blending of models was 
accomplished at the level of the Data Definition Language 
(DDL) through an extension of the ANSI SQL standard, which 
in our Velocis database server includes a CREATE JOIN state- 
ment. This creates a predefinedjoin between multiple tables. 
Application developers can then follow this pointer-based 
relationship in accessing persistent objects (stored data). 
Thus, a variety of objects can be stored in a network model 
database structure and be accessed without indexes. Yet 
indexes can also be programmed into the same databases in 
the instances when the relational model is more appropriate. 
These indexes are highly useful for random lookups from 
tables that have many records. 

It is possible to create an object-oriented wrapper or set of 
class libraries that encapsulate storage and database naviga- 
tion into C + + class definitions and to place it on top of a rela- 
tional database structure. Yet because they sit on top of 
relational database structures, they can fall down when it 
comes to delivering speed and low consumption of comput- 
ing resources, because queries still must navigate through 
multiple indexes that place their own demands on memory 
and storage. Ideally, developers could place object-oriented 
wrappers on top of a pointer-based structure, delivering the 
speed and leanness that are often missing when manipulat- 
ing complex data under the relational model. 

As a result of the growing complexity and sheer volume of 
corporate data, the demand for object-oriented databases 
with incorporated networkmodel features is certain to grow. 
Yet it is clear that the corporate mainstream still views OODB 
warily. Proponents of relational and network model data- 
bases, after all, can point to two decades of refining and build- 
ing safeguards into their systems, while OODB products are 
quite new. Moving object-oriented systems into the corpo- 
rate database mainstream will take a concerted educational 
effort, which will include identifying the network model pre- 
cepts underlying many OODBs. 

It will also require adoption by OODB vendors of those 
standards that built managers’ trust in relational databases. 
Among the most important are Jim Gray’s ACID principles, 
stating that a database transaction must be atomic, consis- 
tent, isolated, and durable. Some object-oriented databases 
don’t yet support them and hence appear more likely to lose 
or corrupt data. This attribute is critical in gaining support 
for OODB technology in applications involving on-line trans- 
action processing, in which the nature of the transactions 
leaves no room for error. I 
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USING OBJECT TECHNOLOGY FOR 
DATABASE SYSTEM INTEGRATION 

Muned Elmagarmid and Evaggelia Pitoura 
Purdue University 

T oday, worldwide high-speed networks connect numer- 
ous information systems and provide access to a wide 

variety of data resources. Since these systems were not devel- 
oped with future integration in mind, there is an increasing 
need for technology to support seamless access and inte- 
gration of the provided services and resources. Integrated 
systems that include database systems-that is, multidata- 
base systems-pose special requirements, and many 
researchers have suggested using object-oriented techniques 
to facilitate building multidatabase systems. (See Table 1 for 
a list of research projects on object-oriented multidatabases.) 

The object-oriented paradigm has influenced multidata- 
base system design and implementation in three dimensions: 
system architecture, schema architecture, and transaction 
management. 

System architecture. Applying object-technology to 
system architectures has resulted in distributed object-based 
architectures. In this scenario, component system resources 
are modeled as objects and their services as methods, which 
constitute the object interfaces. To interact with the hetero- 
geneous system, a client issues requests in a common object- 
oriented language. Distributed object managers (DOMs) 
translate these requests in terms of the available services, 
direct them to the appropriate systems, and respond in the 
common language. Modeling distributed resources as objects 
supports heterogeneity because the messages sent to a com- 
ponent depend onlyon its interface, not on its internal imple- 
mentation. This approach also respects system autonomy; 
component systems can operate independently and trans- 
parently, provided their interfaces remain unchanged. 

Schema architecture. Objects have also influenced 
schema architecture. In a multidatabase, each component sys- 
tem’s data model is translated into a common or canonical 
data model (CDM) for all participating systems. Then, infor- 
mation in each component database is integrated into a global, 
unified schema. Different types of multidatabase systems are 
created by different levels of integration. CDM objects can be 
of a different granularity than the distributed objects. At one 
extreme, the whole database may be modeled as a single, dis- 
tributed complex object. 

Object models are semantically rich. They provide a vari- 
ety of type and abstraction mechanisms and relations for 
expressing the complex interschema relationships and poten- 
tial conflicts among data at each component system. 
Methods enable arbitrary combinations of information 
stored in component databases and integration of nontradi- 
tional databases through behavioral mapping. Finally, the 
metaclass mechanism-that is, the mechnism for defining 
classes-adds flexibility by allowing arbitrary refinements 
to the model itself. 

Transaction management. Object technology has 
influenced heterogeneous transaction management in vari- 
ous ways. One application uses object-oriented techniques to 
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Table 1. Multidatabase projects. (Complete systems support network communication and 
operating system facilities in addition to database services.) 

System 

Pegasus 

ViewSystem 

CIS/OIS 

OMS 
DOMS 

UniSQUM 

Carnot 

InterBase 
FIB 

Twe 
Complete data management 

system 
Tool (environment) that 

supports integration 
Integration tool 

Framework 
Complete system 

Multidatabase system 

Complete system 

Complete system 
Multidatabase system 

Integrated systems 

Information systems of 
various data models 

Information bases 

File systems, information 
retrieval systems, databanks 

Engineering information systems 
Database systems, hypermedia 

applications, conventional 
applications, etc. 

SQL-based relational databases 
and the UniSQUX database system 

Database systems, knowledge-base 
systems, and process models 

Database systems and Unix utilities 
Database systems 

- 

- 
implement the extended transaction models and workflow 
systems needed to express the complex structure of multi- 

I 
database tasks. It models transactions as objects and their 
interactions as the methods of these objects. Flat transac- 

1 tions correspond to simple objects and extended transactions 
~ to complex objects. 

Multidatabase systems with an object-oriented common 
data model can use semantic information to produce more 
efficient transaction management. Since each database 
object comes with a specific set of methods, semantic serial- 
izability can be employed as the correctness criterion, type- 
specific operations can be used, and compensating actions 
can be defined per method. 

Finally, there is a conceptual similarity in transaction man- 
agement research in multidatabase and object-oriented 
database systems. Both deal with layered databases, where 
each object (component database) is a single database 
responsible for its own consistency and transactions span 
more than one database. 

THE ABOVE DIMENSIONS ARE ORTHOGONAL in the sense that sys- 
tems may support object-orientation on one dimension but not 
necessarily on others. For example, a database system with a 

relational CDM can partici- 
pate in a distributed object 
architecture by being consid- 
ered a single distributed 
object, and database systems 
with object-oriented CDMs 
can participate in nonobject- 
based system architectures. 
Moreover, sytems that do not 
support objects at the other 
two dimensions can use 
object-oriented techniques in 
implementing their transac- 
tion management schemes. 
However, a fully object-ori- 
ented multidatabase should 
support the same object 
model at all dimensions to 
avoid design and implemen- 
tation problems. Thus, the 
minimum set of features the 
model must support needs to 
be defined. 

Because requirements differ for each dimension, the 
resulting data models emphasize different features. At the 
system architecture level, most proposed models are pro- 
gramming-based and focus on such issues as efficient imple- 
mentation of remote procedure calls and naming schemas. 
At the schema architecture level, most proposed models are 
database-oriented, support persistency and database func- 
tionality, and have extendedview-definition facilities. Issues 
include efficient query processing, classification and sys- 
tematic treatment of conflicts, and interschema relationships 
and automation of integration. Finally, at the transaction 
management level, most proposed models support active 
objects appropriate for modeling transactions and their inter- 
actions. Issues include customized transaction processing, 
efficient implementations, and increased concurrency. I 
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TRENDS IN TESTING OBJECT-ORIENTED and insufficiently practiced. Before 1992, researchers, 
SOITWARE methodologists, and programming gurus had presented or 

published only a few testing strategies. Practitioners tested, 
Robert V. Binder, RBSC Corp. but usually not very much or very well: They muddled 

through with techniques adapted from conventional testing 

T 
he general view of testing in object-oriented develop- or just punted and hoped for the best. A few object-oriented 
ment has undergone a curious and rapid change in the bigots asserted that testing was altogether unnecessary and 

last three years. Testing has risen from obscure curiosity to antithetical to the “paradigm” (“we don’t test, we iterate”). 
pat cliche, but for the most part remains poorly understood Butjust like nature, the universe of software concepts abhors 
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a vacuum. In the past three years, the rate of publication about 
object-oriented testing increased dramatically. The rate has 
dropped this year, possibly because the easy problems have 
been solved and reported. 

This flurry of activity has changed attitudes. Three years 
ago, when testing was discussed, one was often admonished 
to test “thoroughly.” However, there was no operational def- 
inition for this catch phrase and precious little guidance 
offered about how to accomplish thorough testing. Today, 
there are many technical approaches and process strategies, 
and a few useful test tools. Most recent books on object-ori- 
ented development provide at least a cursory discussion of 
testing. Those published a few years ago were either silent 
about it or assured us, in a sentence or two, that the magic of 
objectification would greatly ease and simplify testing, if not 
completely obviate its need. 

This change is encouraging, since “thorough” testing of 
object-oriented systems presents nontrivial challenges. There 
are at least three unique problems. First, objects typically 
exhibit sequentially dependent behavior. An object’s response 
is determined by the sequence of messages it has previously 
accepted. Thus, objects can be specified, implemented, and 
tested as state machines. Testing class methods in isolation 
(as one would do with a conventional routine) is not suffi- 
cient or effective. Most systematic approaches to object-ori- 
ented testing are state-based. There are two main flavors of 
state-based testing. Sequential state-based testing seeks fault- 
revealing message sequences. States define correct and incor- 
rect behavior. This approach is typically specification-based. 
The domain approach to state-based testing posits states from 
values that may be assumed by instance variables of the class 
under test. The interaction of these states and messages is 
used to derive test cases. 

The good news about the sequential flavor of state-based 
testing is that it has been studied and applied for 40 years to 
circuits, hardware components, and telecommunication pro- 
tocols. Much of this knowledge can be transferred to object- 
oriented software testing. The bad news is that state-based 
testing can be difficult. State spaces can be very large, mean- 
ing that automation and state-folding are required. Addition 
of built-in capabilities to set and report state in the imple- 
mentation under test is a practical necessity. 

Second, object-oriented systems are inherently less testable 
than conventional systems. Although object-oriented lan- 
guages remove some chronic fault sources (weak encapsula- 
tion, global data hazards, type mismatches, and so on), they 
present new problems in understandability owing to delo- 
calization and fragmentation of plans. A static set ofvariables 
determines the state space of programs written in conven- 
tional languages. The runtime behavior of conventional code 
is intellectually tractable when it is well structured. In con- 
trast, inheritance and polymorphism in object-oriented lan- 
guages often result in paths and states that are not obvious 
from source code or its specification. The frequently made 
suggestion that encapsulation eases this difficulty is whistling 
past the graveyard. Test case setup can be very difficult. 
Objects are typically composed of other objects, so setting the 
state of an object under test may require setting the state of ah 
the objects nested within. Design for testability and routine 
use of built-in test can mitigate these problems. 

Third, as a practical matter, iterative and incremental devel- 
opment coupled with hurry-up management often results in 

class libraries that lack functional orthogonality and have no 
documentation save for source code. This is not a new prob- 
lem, though it is worsened by features of object-oriented lan- 
guages that tend toward strong coupling among components. 
This leads to increased risk of faults, reduced testability, and 
low reusability. These effects are compounded as libraries get ~ 
larger and older. 

These issues conflict with two fundamental tenets of test- 
ing: There must be (1) a specification to test against, and (2) 
some automatic measure of the extent to which the system 
under test has been exercised (“test coverage”). 

Maintaining currency between a specification and an ~ 
implementation has always been a practical problem for func- 
tional (black-box) testing. With the rapid, iterative develop- 
ment practices often used for object-oriented development, 
this synchronization is more difficult. Thus, the software 
process typically associated with object-oriented develop- 
ment can be a significant obstacle to repeatable, nonsubjec- 
tive testing. 

Although test coverage metrics are imperfect quality indi- 
cators, they provide a rough measure of the extent to which 
a test suite has exercised an implementation. Automatic iden- 
tification and instrumentation of control paths in statically 
composed systems is routinely performed by commercial off- 
the-shelf test tools. However, the number of paths in dynam- 
ically composed object-oriented systems is typically much 
larger, if not practically infinite. It is not yet clear which com- 
putable coverage metrics will provide an unambiguous mea- ~ 
sure of test coverage or a useful indication of field reliability. 1 

Where time-to-market is a dominant business concern, test- ~ 
ing is sometimes perceived as a bottleneck, especially by those ~ 
who see object-oriented technology as a silver bullet. 
However, it is not testing per se, but the ineffective integra- 
tion of testing with the software process that produces a bot- 
tleneck. The need to test will not wither away in object- 
oriented systems. Organizations that must produce highly 
reliable software systems must still test. The present-day tol- 
erance for showstoppers in desktop applications will be short- 
lived in that burgeoning market. In the face of intense 
competitive pressure, a comprehensive and rational strategy 
to achieve high testabilitywill be a strategic advantage-not 
a bottleneck. Since technical factors loom large in testing 
object-oriented systems, an effective strategy must address 
both technical and procedural concerns. 

The state of the art and the practice of testing object-ori- 
ented software have improved significantly in recent years. 
For those of us working on object-oriented testing, it is an 
exciting time. Effective, repeatable, highly automated test- 
ing will increase reusability and help to realize the promise 
of object technology. There are several primary problems to 
be solved: definition of widely accepted patterns for built-in 
test, practical process strategies for high testability, and devel- ~ 
opment of high-leverage test automation. In the near term, ~ 
those working on a test process for object-oriented develop- 
ment can look forward to advances in test automation but 

i 

will need to live with the limitations of an emerging engi- 
neering discipline. I 

Robert V. Binder is president of RBSC Corp.; e-mail 
rbinder@mcs.com 
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INTERACTIVE FOUNDATIONS OF 
OBJECT-BASED PROGRAMMING 

Peter Wegner, Brown University 

T 
hough object-based programming has become a 
dominant practical technology, its conceptual frame- 

work and formal theoretical foundation are as confused 
as ever. This is reflected both in arguments over languages 
for first courses in computing* and in the proliferation of 
nonformal software design and life-cycle methodologies. 
The confusion is due in part to the fact that the observ- 
able behavior of objects cannot be modeled by algorithms, 
Turing machines, or traditional mathematics. The irre- 
ducibility of object behavior to that of algorithms has rad- 
ical consequences for both the theory and practice of 
computing. In particular, Turing machines lose their sta- 
tus as the most powerful computing mechanism, since 
objects and interactive software systems have observably 
richer behavior.2 

Programming paradigms have evolved from machine 
language in the 1950s to the procedure-oriented paradigm 
in the 1960s structured programming in the 197Os, and 
the object-based paradigm in the 1980s. In the 1990s 
methods for structuring collections of objects are being 
developed, including frameworks, design patterns, and 
protocols. 

The transition from machine to procedure-oriented pro- 
gramming involves a quantitative change in the granu- 
larity of actions while retaining an algorithmic (action- 
based) programming model. The transition from proce- 
dure-oriented to object-based programming is a more rad- 
ical qualitative change from programs as algorithms that 
transform data to programs as systems of persistent, inter- 
acting objects. The contract of an algorithm with its clients 
is like a sales contract that guarantees a value for every 
input, while the contract of an object with its clients is like 
a marriage contract that constrains behavior over time for 
all possible contingencies of interaction (“for richer for 
poorer. . till death do us part”).3 

Objects differ fundamentally from procedures in their 
semantics, composition mechanisms, and structuring 
mechanisms. Whereas the composition of two procedures 

II Input tape, finite initial input string II \ 

Closed system 
(no interaction 
during 
computation) 

state-transition 

Figure 1. Turing machine as a noninteractive 
computing mechanism. 

to yield a composite procedure can be simply modeled by 
function composition, the composition of two objects can- 
not be directly modeled as an object because interobject 
structuring by message protocols or broadcasting is 
entirely different from internal object structuring. Object- 
based behavior, composition, and structure are not 
expressible by (reducible to) procedure-oriented model- 
ing primitives.? 

Procedures are mathematically modeled by functions 
that transform inputs to outputs. The computable func- 
tions are a very robust class of transformations that express 
the behavior of Turing machines, the lambda calculus, and 
algorithms of any programming language. Church and 
Turing conjectured in the 1930s that this robust notion of 
computing corresponds to the intuitive notion of what is 
computable. While it is natural for mathematicians like 
Church and Turing to hypothesize that the intuitive notion 
of computing corresponds to the entirely mathematical 
notion of computable functions, this mathematical notion 
of computing fails to express the temporal behavior of 
objects and distributed systems. Since object and distrib- 
uted-system behavior must be modeled by any adequate 
intuitive notion of computing, the Church-Turing model 
is too restrictive to capture the intuitive notion of com- 
puting. 

Functions compute their output from an initially spec- 
ified input without any external interaction, while objects 
permit interaction during computation. Turing machines 
likewise compute output from an initial input tape and 
cannot interact with an external environment during com- 
putation. Object-based systems may be distinguished from 
procedure-oriented systems by their ability to interact 
while they compute. Objects are open interactive systems, 
while functions and Turing machines are closed algorith- 
mic systems (see Figure 1). 

Turing machines can be extended to be interactive by 
adding input actions supporting external inputs during 
computation. This simple extension transforms Turing 
machines from closed to open systems, extending their 
expressive richness to that of objects. We call Turing 
machines with input actions interaction machines. 
Interaction machines better approximate the behavior of 
actual computers than Turing machines: They can model 
the passage of time during the course of a computation, 
while Turing machines cannot. Interaction machines can 
model the behavior of airline reservation and banking sys- 
tems that interact with clients in real time, and of embed- 
ded, reactive, and hard real-time systems. They are a more 
accurate model of actual computers than Turing machines 
because actual computers persist in time and can interact 
with the external environment during the course of a com- 
putation. 

Interaction machines generally have output as well as 
input actions: Input actions are sufficient for behavior 
richer than that ofTuring machines, while output actions 
allow two-way interaction with the environment. Input 
and output actions can be viewed as “logical” sensors and 
effecters that have a logical effect on data in their envi- 
ronment even when they have no physical effect. Inter- 
action machines can directly realize embedded and 
reactive systems of software engineering and embodied 
systems of artificial intelligence. Conversely, embedded, 
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reactive, and embodied systems are interactive and not in 
general expressible by Turing machines. 

Formally, interaction machines are more powerful than 
Turing machines because they capture the behavior of 
Turing machines with oracles, which Turing himself 
showed to be more powerful than Turing machines.4 
Moreover, interaction machines cannot be modeled by any 
sound, complete first-order 1ogic.j Godel’s incompleteness 
result for integers holds also for interaction machines. 
These formal irreducibility results for interaction 
machines complement the informally demonstrable fact 
that interaction machines are richer than Turing machines 
in modeling interaction and the passage of time. 

The incompleteness of interaction machines implies 
that object-oriented, software engineering, and distrib- 
uted systems do not have a “complete” formal specifica- 
tion. Complete specification of system behavior is not 
merely hard but impossible for object-based and distrib- 
uted systems. However, formal specifications can still play 
an important role because interfaces, views, and modes 
of use of interactive systems can be formally specified. 
Though a complete elephant cannot be specified, we can 
completely specify some of its parts and forms of behav- 
ior (its trunk or its mode of eating peanuts). The change 
of emphasis from complete to partial specification is evi- 
dent in software engineering models such as use-case 
analysis.’ 

The use of partial interface descriptions in specifying 
interactive systems is illustrated by airline reservation sys- 
tems, which have multiple distributed interfaces of the fol- 
lowing kinds: 

l Travel agents-making reservations on behalf of 
clients, 

l Passengers-making direct reservations, 
l Airline desk employees-making inquiries on behalf 

of clients, 
l Flight attendants-aiding passengers during the 

flight itself, 
l Accountants-auditing and checking financial trans- 

actions, and 
l Systems builders-developing and modifying the sys- 

tem. 

Each of these modes of use may have multiple instances. 
The system as a whole has many distributed interfaces, 
each with an easily specifiable mode of normal use that 
may break down under abnormal conditions like strikes 
or system failure. Airline reservation system requirements 
may be specified by the set of all interfaces (modes of use) 
it should support. A system satisfies the requirements if it 
supports these modes of use even though the complete 
behavior of the system for all possible modes of use is 
unspecifiable. 

Though object-oriented systems cannot be completely 
formalized, their modes of use, views, and interfaces can 
sometimes, though not always, be formalized. We call 
such partial descriptions harnesses, since they serve both 
to constrain system behavior (like the harness of a horse) 
and to harness system behavior for useful purposes. 
Object-oriented analysis and design must replace the goal 
of complete formalization by the more modest goal of 

Figure 2. Harness constraints for interaction 
machines. 

ensuring that systems have harnesses corresponding to 
desired forms of useful behavior. Requirements of object- 
oriented systems may be given as a collection of harnesses 
that determine tractable constraints on an inherently 
intractable interactive system (see Figure 2). 

Harness constraints are useful in describing theoretical 
models as well as practical software engineering systems. 
Turing machines can be thought of as interaction 
machines whose tape acts as a harness on the interactive 
state-transition mechanism. Finite automata have the 
same state-transition mechanism as Turing machines but 
a more restrictive harness. The Chomsky hierarchy of 
finite, pushdown, linear-bounded, and Turing machines 
all have the same state-transition mechanism but pro- 
gressively more permissive harnesses that allow more 
expressive subsets of the computable functions to be com- 
puted. However, if the tape is viewed as a harness, then 
Turing machine tapes are clearly not the most permissive 
possible harnesses, since they impose the strong restric- 
tion of no external interaction during the computation. 

The idea of allowing harness constraints to be weaker 
than those of Turing machines is quite natural in this con- 
text. Turing machines impose a system-defined harness 
constraint that excludes important forms of legitimate 
computational behavior in the interests of mathematical 
tractability. They are an unnecessarily strong abstraction 
of the behavior of actual computers, while interaction 
machines provide a weaker abstraction that allows a larger 
class of computational phenomena to be modeled (see 
Figure 3). 

Turing machines shut out the external world during 
computation, while interaction machines model processes 

Interaction machine abstraction 

Turing machine abstraction Closed algorithmic systems 
(strong restrictive harness) 

Figure 3. Layers of increasingly restrictive 
abstraction. 

October 1995 



Physical objects 
are incompletely 
observable, just 
as interaction 
machines are 
incompletely 
describable 

Projection on retina 

Partial description: 
interface behaviors of 
inherently undescribable 
objects 

Figure 4. Plato’s Cave as a paradigm for describing 
incomplete behavior. 

of observation and express the intuitive notion of empiri- 
cism. Turing machines are mathematical models, while 
interaction machines are empirical models that can 
express behavior of an empirical world, like models of 
physics and the natural sciences. Interaction machines 
precisely define the term “empirical computer science”: 
The irreducibility of interaction to Turing machines 
reflects the irreducibility of empirical computer science 
(software engineering, distributed systems) to theoreti- 
cal computer science. Turing machines lose their status as 
the most powerful computing mechanism and become 
instead the most powerful model that can be completely 
formalized. 

Modeling by partial description of interface behaviors is 
normal in the physical sciences. The incompleteness of 
physical models is forcefully described by Plato in his para- 
ble of the cave, which indicates that humans are like 
dwellers in a cave who can observe only the shadows of 
reality on the walls of their cave but not the actual objects 
in the outside world (see Figure 4). 

Plato’s pessimistic picture of empirical observation 
caused him to deny the validity of physical models and 
was largely responsible for the eclipse of empiricism for 
2,000 years. Modern empirical science is based on the real- 
ization that partial descriptions (shadows) are sufficient 
for controlling, predicting, and understanding the objects 
that shadows represent. The representation of physical 
phenomena by differential equations allows us to control, 
predict, and even understand the phenomena represented 
without requiring a more complete description of the phe- 
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nomena. Similarly, computing systems can be specified 
and controlled by interfaces that describe their desired 
behavior without completely taking into account all pos- 
sible behavior. 

Turing machine models of computers correspond to 
Platonic ideals in focusing on mathematical tractability at 
the expense of modeling accuracy. To realize logical com- 
pleteness, they sacrifice the ability to model external inter- 
action and real time. The extension from Turing to 
interaction machines, and of procedure-oriented to object- 
based programming, is the computational analog of the 
liberation of the natural sciences from the Platonic world- 
view, which led to the development of empirical science. 

We can distinguish three paradigms of programming: 

l Declarative paradigm-functional and logic pro- 
gramming, 

l Imperativeparadigm-procedure-oriented program- 
ming, and 

l Interactive paradigm-object-based and distributed 
programming. 

Until now the debate has been mainly concerned with 
declarative versus imperative paradigms. However, declar- 
ative and imperative paradigms are similar when com- 
pared with the interactive paradigm. Declarative and 
imperative paradigms have the same expressive power, 
whereas the interactive paradigm has greater expressive 
power. The interactive paradigm can model software engi- 
neering applications, agents in AI, and distributed sys- 
tems, while declarative and imperative paradigms are too 
weak to model such applications. Object-based program- 
ming is not simply an alternative programming style: It is 
a fundamental extension with greater expressive power, 
different conceptual foundations, and new modeling tech- 
niques. The transition from algorithmic to interactive 
models is occurring in subareas of computer science like 
software engineering, computer graphics, artificial intel- 
ligence, and distributed systems. Theoretical as well as 
practical models of computing must adapt to reflect the 
fact that our intuitive notion of computing is becoming 
less algorithmic and increasingly interactive and object- 
based. I 
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