
A Peer-to-Peer Approach to Resource Discovery
in Multi-agent Systems

Vassilios V. Dimakopoulos and Evaggelia Pitoura

Department of Computer Science, University of Ioannina
GR 45110 Ioannina, Greece

{dimako,pitoura}@cs.uoi.gr

Abstract. A multi-agent system is a network of software agents that
cooperate to solve problems. In open multi-agent systems, the agents that
need resources provided by other agents are not aware of which agents
provide the particular resources. We propose a fully distributed approach
to this resource discovery problem. Each agent A maintains a limited size
local cache in which it keeps information about k different resources, that
is, for each of the k resources, it stores the contact information of one
agent that provides it. The agents in the cache of agent A are called A’s
neighbors. An agent searching for a resource contacts its local cache and
if there is no information for the resource, it contacts its neighbors, which
in turn contact their neighbors and so on until the resource is found in
some cache. We consider variations of this flooding-based search and
develop and verify by simulation analytical models of their performance
for both uniformly random resource requests and for requests in the case
of hot spots. Finally, we introduce two approaches to the problem of
updating the caches: one that uses flooding to propagate the updates
and one that builds on the notion of an inverted cache.

1 Introduction

In a multi-agent system (MAS), agents cooperate with each other to fulfill a
specified task. As opposed to closed MAS where each agent knows all other
agents it needs to interact with, in open MAS such knowledge is not available.
To locate an agent that provides a particular resource, most open MAS infras-
tructures follow a central directory approach. With this approach, agents register
their resources to a central directory (e.g., a middle agent [14]). An agent that
requests a resource contacts the directory which in turn replies with the contact
information of some agent that provides the particular resource. However, in
such approaches, the central directories are potential bottlenecks of the system
both from a performance and from a reliability perspective.

In this paper, we advocate a new approach to the resource discovery problem
in open MAS inspired by search procedures in peer-to-peer systems. Each agent
maintains a limited size local cache with the contact information for k different
resources (i.e., for each of the k resources, one agent that offers it). This results
in a fully distributed directory scheme, where each agent stores part of the

M. Klusch et al. (Eds.): CIA 2003, LNAI 2782, pp. 62–77, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø©M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 63

directory. The agents in the cache of an agent A are called its neighbors; they
are the agents that A knows about. We model this system as a directed graph.
Each node of the graph corresponds to an agent and there is a directed edge
from a node A to all its neighbors.

We consider flooding-based approaches to searching for a resource. An agent
that searches for a particular resource checks the entries of its local cache. If
there is no information for the resource, the agent contacts its neighbors which
in turn check their own caches and if no information is found, they contact their
neighbors. This search procedure continues until either the resource is located in
some agent’s local cache or a maximum number of steps is reached. If the resource
cannot be found, the agent has to resort to some other (costly) mechanism (e.g.,
to a middle agent) which is guaranteed to reply with the needed information. We
provide a number of variations of the search procedure based on which subset
of an agent’s neighbor is contacted at each step.

Caching can be seen as complementary to directories. Small communities of
agents knowing each other can be formed. Such a fully distributed approach
eliminates the bottleneck of contacting a central directory. It is also more re-
silient to failures since the malfunction of a node does not break down the whole
network. Furthermore, the system is easily scalable with the number of agents
and resources.

We provide analytical estimations of the performance of the proposed search
procedures and validate them by simulation. We study both uniformly random
requests and requests in the case of hot spots. In the former case, we assume
that the entries in the cache are random, that is the entries of each cache is a
uniformly random subset of the available resources. In the latter case, we assume
that some resources (i.e., the hot spots) appear in a large number of caches.

We also consider the problem of cache updates. We outline two approaches.
One approach is based on the notion of an inverted cache: in addition to its local
cache, each agent A maintains a list of the agents that have A as their neighbor
(i.e., the agents that have A’s contact information in their caches) and uses
this cache to propagate the updates. The other approach is symmetric to the
search procedure: when an agent either changes its location or its resources, it
propagates these updates to its neighbors, which in turn contact their neighbors.

The remainder of this paper is structured as follows. In Section 2, we present
local caches, in Section 3, search procedures and their analysis and in Section 4,
cache updates. A summary of related work is given in Section 5, while conclusions
are provided in Section 6.

2 P2P-Based Directories in Multi-agent Systems

2.1 Multi-agent Systems

A multi-agent system (MAS) is a loosely coupled network of software agents
that cooperate to solve problems that may be beyond the individual capacities
or knowledge of each particular agent. In a MAS, computational resources are

64 V.V. Dimakopoulos and E. Pitoura

distributed across a network of interconnected agents. When compared to a cen-
tralized system, a MAS does not suffer from the single point of failure problem.
Furthermore, a MAS has less performance bottlenecks or resource limitations.
Finally, MAS efficiently retrieves, filters, and globally coordinates information
from sources that are spatially distributed.

To fulfill their goals, agents in a MAS need to use resources provided by
other agents. To use a resource, an agent must contact the agent that provides
it. However, in an open MAS, an agent does not know which agents provide
which resources. Furthermore, it does not know which other agents participate
in the system. A common approach to the resource discovery problem is to
introduce middle agents or directories that maintain information about which
agents provide which resources. Thus to find a resource, an agent has first to
contact the middle agent.

However, middle agents can become bottlenecks and contradict the distri-
bution goals set by a MAS along the dimensions of computational efficiency,
reliability, extensibility, robustness, maintainability, responsiveness, and flexibil-
ity.

2.2 Peer-to-Peer Systems

Recently, peer-to-peer (p2p) computing [8] has evolved as a new distributed
computing paradigm of sharing resources available at the edges of the network. A
p2p system is a fully-distributed cooperative network in which nodes collectively
form a system without any supervision. P2p systems offer robustness in failures,
extensive resource sharing, self-organization, load balancing and anonymity.

An issue central to p2p systems is discovering a peer that offers a particular
resource. There are two types of p2p systems depending on the way resources
are located in the network. In structured p2p systems, resources are not placed
at random peers but at peers at specified locations. Most resource discovery
procedures in structured p2p systems (such as CAN [9], Chord [13], Past [10]
and Tapestry [15]) build a distributed hash table. With distributed hashing,
each resource is associated with a key and each node (peer) is assigned a range
of keys. In unstructured p2p, resources are located at random points. In this
context, flooding-based approaches to resource discovery have been proposed, in
which each peer searching for a resource contacts all peers in its neighborhood.
Gnutella [4] is an example of such an approach.

In this paper, we apply fully-decentralized, unstructured p2p search ap-
proaches to the problem of resource discovery in open agent systems. Such ap-
proaches distribute the load, increase tolerance to failures, are extensible and
scalable to the number of agents and resources.

2.3 Distributed Caches

We assume a multi-agent system with N nodes/agents, where each agent pro-
vides a number of resources. We assume that there are R different types of
resources. Each agent can locally store part of what a middle agent knows. In

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 65

Rb A4
Rc A2

local cache

A1

local cache

A5

local cache

A4

Rg A9
Rl A32

Ri A6
Rk A3

local cache

A6

Rf A2
Rg A27

local cache

A2

Rb A3
Re A5

(a) (b)

local cache

A3

Rd A8
Rk A2

A27

A8

A9

A32

A1

A2

A6

A4 A5

A3

Fig. 1. Part of the cache network: (a) agents with their caches, (cache entries are of
the form (Rx, Ai), where Rx is a resource (type) and Ai is the contact information of
an agent that offers the resource Rx), and (b) the corresponding directed graph (the
cache network).

particular, we assume that each agent has a private cache of size k. Each agent
A stores in its cache information about k different resources, that is, for each of
the k resources the contact information of one agent that provides it. The agents
in the cache of agent A are called A’s neighbors.

The system is modeled as a directed graph G(V, E), called the cache network.
Each node corresponds to an agent along with its cache. There is an edge from
node A to each of A’s neighbors. There is no knowledge about the size of V
or E. An example is shown in Figure 1. An agent may provide two or more
resources, thus the same agent may appear more than once in another agent’s
cache. Consequently, there may be less that k outgoing edges from a node, i.e.
a node has at most k neighbors.

We address the following problem: Given this cache network, how can an
agent A that needs a particular type of resource x, find an agent that provides
it? Agent A initially searches its own cache. If it finds the resource there, it
extracts the corresponding contact information and the search ends. If resource
x is not found in the local cache, A sends a message querying a subset of its
neighbors, which in turn propagate the message to a subset of their neighbors
and so on.

Due to the possibility of non-termination, we limit the search to a maximum
number of steps, t (similar to the Time To Live (TTL) parameter in p2p systems).
In particular, the search message contains a counter field initialized to t. Any
intermediate agent that receives the message first decrements the counter by 1.
If the counter value is not 0, the agent proceeds as normal; while if the counter
value is 0 the agent does not contact its neighbors and sends a positive (negative)
response to the inquiring agent if x is found (not found) in its cache.

66 V.V. Dimakopoulos and E. Pitoura

When the search ends, the inquiring agent A will either have the contact
information for resource x or a set of negative responses. In the latter case,
agent A assumes that the cache network is disconnected, i.e., that it cannot
locate x through the cache network. In this case, it will have to resort to other
methods, e.g. use a middle agent. Note that disconnectedness may indeed occur
because the network is dynamic: caches evolve over time and agents enter and
leave the system dynamically.

3 Resource Discovery

We propose three different search strategies based on which subset of its neigh-
bors each agent contacts, namely the flooding, teeming and random paths search
strategies. We introduce first our analytical performance model and then present
the three search strategies along with an evaluation of their performance.

3.1 Our Perfomance Model

We evaluate the performance of each search strategy with respect to the following
three metrics.

– The probability, Qt, that the resource is found within the t steps. This prob-
ability determines the frequency with which an agent avoids using the other
locating mechanisms available.

– The average number of steps, St, needed for locating a resource (given that
the resource is found).

– The average number of message transmissions, Mt, occurring during the
course of the search. Efficient search strategies should require as few messages
as possible in order to not saturate the resources of the underlying network
(which, however, may lead to a higher number of steps).

Table 1 summarizes the notation used.
The network of caches is assumed to be in steady-state, all caches being full,

meaning that each node knows of exactly k resources (along with the agents that
provide them).

If si is the probability of locating a resource x at exactly the ith step of a
search strategy, then the probability of locating x in any step (up to a maximum
of t steps) is given by:

Qt =
t∑

i=0

si. (1)

Given that a resource is located within t steps, the probability that we locate
it at the ith step is given by si/Qt, and the average number of steps is given by:

St =
t∑

i=1

i
si

Qt
=

1
Qt

t∑

i=1

isi. (2)

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 67

Table 1. Notation used.

Input Parameters
R number of resource types
N number of agents (caches)
k cache size per agent/node
t maximum allowable number of steps
h fraction of caches at which a hot spot appears
rh percentage of the resources that are hot spots

Output Parameters
PC(j) probability that a particular resource is in

at least one of j given caches
Qt prob. of locating a resource within t steps
St average # steps needed to locate a resource
Mt average # of message transmissions
a = 1 − k/R (random resource requests)

= 1 − h (search for a hot resource)
= 1 − (k/R)−hrh

1−rh
, (search for a cold resource)

Let PC(1) be the probability of finding x in any given cache. Then, the
probability of finding x is in at least one of j given caches is:

PC(j) = 1 − (1 − PC(1))j (3)

that is, 1 minus the probability of not finding x in any of the j caches.
Next, we compute PC(1) for two types of resource request distributions.

Uniformly Random Requests. The content of each cache is assumed to be
completely random; in other words the cache’s k known resources are a uniformly
random subset of the R available resources.

Given a resource x, the probability that x is present in a particular cache is
equal to:

PC(1) = P [x ∈ cache] = 1 − P [every cache entry �= x].

The number of ways to choose k elements out of a set of R elements so that a
particular element is not chosen is

(
R−1

k

)
. Since the k elements of the cache are

chosen completely randomly, the last probability above is equal to:
(
R−1

k

)
/
(
R
k

)
=

(R − k)/R, which, gives PC(1) = k/R. In what follows, we let a = 1 − k/R, so
that PC(1) = 1 − a.

Requests with Hot Spots. In practice, some resources (hot spots) are needed
more frequently than others (cold spots). In such cases, it is expected that hot
spots will appear in a large number of caches. In particular, we assume that a

68 V.V. Dimakopoulos and E. Pitoura

hot spot will appear in a (high) fraction h of all caches, h ≤ 1. Let a portion rh

of the resources be hot spots, i.e., a total of rhR resources are hot spots (with
the remaining (1 − rh)R being cold spots).

Searching for hot spots: The probability of finding a particular hot spot in a
particular cache is:

PC(1) = h = 1 − a where a in this case is equal to 1 − h.

Searching for cold spots: We now estimate the probability PC(1) of finding a
particular cold spot in a particular cache. Given N agents (caches), each one
holding contact information for k resources, there are in total kN cache entries
in the whole network. Each hot spot appears in hN caches, and thus rhRhN
entries are occupied by hot spots, in total. The rest will be occupied by cold
spots, which means that each of the cold resources appears on the average:

kN − rhRhN

R − rhR
=

N(k − rhRh)
R(1 − rh)

times, or equivalently, in a portion of

N(k − rhRh)
R(1 − rh)

/
N

of the caches. Consequently, we obtain:

PC(1) =
k − hrhR

R(1 − rh)
=

(k/R) − hrh

1 − rh
.

Again, we set a = 1 − (k/R)−hrh

1−rh
, so that PC(1) becomes equal to 1 − a.

3.2 Flooding

In flooding, agent A that searches for a resource x checks its cache, and if the
resource is not found there, A contacts all its neighbors (i.e., all the agents listed
in its cache). In turn, A’s neighbors check their caches and if the resource is
not found locally, they propagate the search message to all their neighbors. The
procedure ends when either the resource is found or a maximum of t steps is
reached. The scheme, in essence, broadcasts the inquiring message.

As the search progresses, a k-ary tree is unfolded rooted at the inquiring
node A. An example is shown in Figure 2(a). The term “tree” is not accurate
in graph-theoretic terms since a node may be contacted by two or more other
nodes but we will use it here as it helps to visualize the situation. This search
tree has (at most) ki different nodes in the ith level, i ≥ 0, which means that at
the ith step of the search algorithm there will be (at most) ki different caches
contacted. Since an agent A may offer more than one resource, it may appear
more than once in another node’s cache. Also, there may exist more than one

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 69

A3

A2

A1

A4

A6 A3

A2

A1

A4

A3A5

A1

A2

A3 A5 A6

A4

A3

(b) (c)(a)

Fig. 2. Searching the cache network of Figure 1: (a) flooding, (b) teeming, (c) random
paths (p = 2)

caches that know of A. Both these facts may limit the number of different nodes
in the ith level of the tree to less than ki.

Suppose that we are searching at the ith level of this tree for a particu-
lar resource x. The probability that we find it there is approximately given by
�i = PC(ki) since in the ith level there are ki caches. The approximation over-
estimates the probability since, as noted above, the number of different caches
may be less than ki. However, it simplifies the analysis and does not introduce
significant error as shown by our simulation results. Table 2 shows the three
performance metrics for flooding. Details for their derivation can be found in
[2]. As anticipated, the flooding algorithm requires an exponential number of
messages with respect to the cache size (k).

Table 2. Performance of flooding (a is given in Table 1).

Qt 1 − a
kt+1−1

k−1

St
1

Qt

(
a − (t + 1)(1 − Qt) +

∑t+1
i=2 a

ki−1
k−1

)

Mt ct + c + c(c + 1 − a) ct−1−1
c−1 , c = ak.

Figure 3 shows the performance of flooding with respect to the maximum
number of steps. The flooding scheme has a number of disadvantages. One is
the excessive number of messages that have to be transmitted, especially if t
is not small. Another drawback is the way disconnectedness is determined. The
inquiring agent has to wait for all possible answers before deciding that it cannot
locate the resource. This introduces a number of problems. There is a large
number of negative replies. Furthermore, since the network is not synchronized,
messages propagate with unspecified delays. This means that the reply of one or
more nodes at the tth level of the tree may take quite a long time. One solution
is the use of timeout functions; at the end of the timeout period the inquiring

70 V.V. Dimakopoulos and E. Pitoura

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

P
ro

ba
bi

lit
y

no
t f

ou
nd

t (max steps)

Flooding (k = 5% of R, h = 60% of N, r_h = 2% of R)

No hot spots
Search for hot spot

Search for cold spot

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6

M
ea

n
pa

th
 le

ng
th

t (max steps)

Flooding (k = 5% of R, h = 60% of N, r_h = 2% of R)

No hot spots
Search for hot spot

Search for cold spot

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5 6

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

t (max steps)

Flooding (k = 5% of R, h = 60% of N, r_h = 2% of R)

No hot spots
Search for hot spot

Search for cold spot

Fig. 3. Performance of flooding (for random distribution (no hot spots), and for hot
and cold spots in the case of skewed distribution: probability of not finding the resource
(= 1 − Qt), mean path length (= St) and average number of message transmissions
(= Mt).

agent A decides that the resource cannot be located, even if it has not received
all answers.

3.3 Teeming

To reduce the number of messages, we propose a variation of flooding that we call
teeming. With teeming, at each step, if the resource is not found in the local cache
of a node, the node propagates the inquiring message only to a random subset
of its neighbors. We denote by φ the fixed probability of selecting a particular
neighbor. In contrast with flooding, the search tree is not a k-ary one any more
(Figure 2(b)). A node in the search tree may have between 0 to k children, kφ
being the average case. Flooding can be seen as a special case of teeming for
which φ = 1.

In teeming, a node propagates the inquiring message to each of its neighbors
with a fixed probability φ. If the requested resource x is not found, it is due to
two facts. First, the inquiring node does not contain it in its cache (occurring
with probability 1 − PC(1)). Second, none of the k “subtrees” unfolding from
the inquiring node’s neighbors replies with a positive answer. Such a subtree has

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 71

t − 1 levels; it sends an affirmative reply only if it asked by the inquiring node
and indeed locates the requested resource.

Based on the above observations, one can derive the three performance met-
rics of teeming shown in Table 3 (their detailed derivation can be found in [2]).
Teeming also requires an exponential number of messages, which however grows
slower than in the case of flooding; its rate is controlled by the probability φ.

Table 3. Performance of teeming (a is given in Table 1).

Qt 1 − a (1 − φQt−1)k

St t − 1
Qt

∑t−1
i=0 Qi

Mt ct + c + c(c + 1 − a) ct−1−1
c−1 , c = akφ

3.4 Random Paths

Although, depending on φ, teeming can reduce the overall number of messages, it
still suffers from the rest of the problems of flooding. One approach to eliminate
these drawbacks is the following: each node contacts only one of its neighbors
(randomly). The search space formed ends up being a single random path in the
network of caches. This scheme propagates one single message along the path
and the inquiring agent will be expecting one single answer.

We generalize this scheme as follows: the root node (i.e., the inquiring agent
A) constructs p ≥ 1 random paths. In particular, if x is not in its cache, A asks p
out of its k neighbors (not just one of them). All the other (intermediate) agents
construct a simple path as above, by asking (randomly) exactly one of their
neighbors. This way, we end up with p different paths unfolding concurrently
(Figure 2(c)). The search algorithm produces less messages than flooding or
teeming but needs more steps to locate a resource.

When using the random paths algorithm, the inquiring node transmits the
message to p ≥ 1 of its neighbors. Each neighbor then becomes the root of a ran-
domly unfolding path. There is a chance that those p paths meet at some node(s),
thus they may not always be disjoint. However, for simplification purposes we as-
sume that they are completely disjoint and thus statistically independent. This
approximation introduces negligible error (especially if p is not large) as our
experiments showed.

At each step i, i > 0, of the algorithm, p different caches are contacted (one
in each of the paths). The probability of finding resource x in those caches is
PC(p) = 1 − ap. One can then derive the three performance metrics for the
random paths search strategy shown in Table 4. Details for their derivation can
be found in [2].

72 V.V. Dimakopoulos and E. Pitoura

Table 4. Performance of random paths (a is given in Table 1).

Qt 1 − apt+1

St
a−(1+t−tap)(1−Qt)

(1−ap)Qt

Mt ap + ap 1−at

1−a

3.5 Performance Comparison

The three performance measures are shown in Figure 4 for all the proposed
strategies. In the plots we have assumed cache sizes equal to 5% of the total
number of resources R, which was taken equal to 200. The graphs show the
random paths strategy for p = 4 paths. For the teeming algorithm, we chose
φ = 1/

√
k, that is, on the average

√
k children receive the message each time.

Larger values of φ will yield less steps but more message transmissions.
Note that the flooding and teeming algorithms depend on k (the cache size)

while the random paths algorithm is only dependent on the ratio k/R (as can
be seen by Table 4 for the values of a given in Table 1). The reported results
are for searching hot spots. They suggest that caching hot spots is very efficient
since for all approaches 2 steps suffice to locate them with very high probability.
Although teeming as compared to random paths, yields higher probabilities of
locating the requested resource and with a smaller number of steps, the number
of message transmissions is excessive. This is because even if the resource is
found, some agents may continue to propagate the request, since they are not
informed about the successful location of the resource by some other agent.

To validate the theoretical analysis, we developed simulators for each of the
proposed strategies. Our simulation results show that our analysis matches the
simulation results closely; the approximations made produce negligible error
which only shows up in cases of small cache sizes. Figure 5 reports both the
analytical estimation and the simulation results for the average number of mes-
sages metric. A more detailed discussion can be found in [2].

4 Updates and Mobility

Open MASs are by nature dynamic systems. Agents may move freely, they may
offer additional resources or may cease offering some resources. In effect, this
gives rise to two types of updates that can make the cache entries obsolete: (i)
updates of the contact details (i.e., location) of an agent (for example, when the
agent is mobile and moves to a new network site), or (ii) updates of the resources
offered by an agent. Note that the second type of updates models also the cases
in which an existing agent leaves the MAS (cease to offer all its resources) or a
new agent joins the MAS (offers additional resources).

An approach to handling updates due to agent mobility is to change the
type of cache entries. In particular, instead of storing in the cache the location

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

no
t f

ou
nd

t (max steps)

Comparison of hot-spot search (k = 5%, h = 60% of N, r_h = 2% of R)

Paths (p = 4)
Teeming
Flooding

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

M
ea

n
pa

th
 le

ng
th

t (max steps)

Comparison of hot-spot search (k = 5%, h = 60% of N, r_h = 2% of R)

Paths (p = 4)
Teeming
Flooding

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

t (max steps)

Comparison of hot-spot search (k = 5%, h = 60% of N, r_h = 2% of R)

Paths (p = 4)
Teeming
Flooding

Fig. 4. Comparison of the proposed algorithms: probability of not finding the resource
(= 1 − Qt), mean path length (= St) and average number of message transmissions
(= Mt). The teeming algorithm uses φ = 1/

√
k. The resource searched for is a hot

spot.

of an agent, we may maintain just its name. An additional location server is then
needed that maintains a mapping between agent names and their locations. In
this case, updates of an agent’s location do not affect any of the caches. However,
this approach adds the additional overhead of contacting the location server,
which can now become a bottleneck. In this paper, we consider only decentralized
approaches. We also focus on location updates; similar considerations hold for
resource updates as well.

Any cache updates are initiated from the agent that moves. The agent may
either send an invalidation update message or a propagation update message. In
the invalidation case, the agent just sends a message indicating the update, so
that the associated entries in the caches are marked invalid. In the propagation
case, the agent also sends its new location. In this case, the associated cache
entries are updated with the new location. Invalidation messages are smaller
than propagation messages and work well with frequent moving agents. A hy-
brid approach is also possible. For instance, a frequent moving agent sends an
invalidation message first, and a propagation message containing its new location
later after settling down at a location.

Next, we consider two approaches to cache invalidation: one based on the
notion of an inverted cache and one based on flooding.

74 V.V. Dimakopoulos and E. Pitoura

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

t (max steps)

Theoretical and simulation results (k = 5%, h = 60% of N, r_h = 2% of R)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

t (max steps)

Theoretical and simulation results (k = 5%, h = 60% of N, r_h = 2% of R)

Flooding, hot search
Flooding, cold search
Teeming, hot search

Teeming, cold search
4 Paths, hot search

4 Paths, cold search

Fig. 5. Validation of our analytical models.

4.1 Inverted Cache

One approach is to maintain an “inverted” cache at each agent. In particular,
each agent A maintains a list of all agents that know about A, that is, all agents
that have A in their cache. Figure 6 shows an example instance of such a cache.

When an agent moves, it uses the inverted cache to find out which agents it
needs to contact. Then, it sends an invalidation (propagation) message to them.
In the example of Figure 6, when A5 moves, it needs to inform agents A2 and A7.
In terms of the corresponding graph, the dissemination of the updates follows
the dotted arrows. Note, that only the agents in the inverted cache need to be
contacted.

For “popular” agents, that is, agents with resources that are hot spots, the
size of the inverted cache may become very large. Also, the maintenance of an
inverted cache makes cache management harder, since each time an entry for a
resource offered by B is cached at an agent A, A needs to inform B so that B
includes A in its inverted cache. Another consideration is whether the inverted
cache should be used in resource discovery: should the agents in an agent’s
inverted cache be contacted during search?

4.2 Flooding-Based Dissemination of Updates

It is possible to disseminate invalidation (or propagation messages) using an
approach similar to the proposed approaches for resource discovery. When an
agent A moves, it informs some of its neighbors (i.e., the k agents that are in
its cache) by sending an invalidation (propagation) message to them. Each one
of them, checks whether agent A is in their cache, and if so it invalidates the
corresponding entry (or updates it with A’s new location). Then, it forwards
the message to some of its neighbors. This process continues until a maximum
number of steps is reached. Based on which subset of its neighbors an agent
selects to inform at each step, we may have flooding, teeming or random path
variations of this procedure.

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 75

local cache

local cache

Rb A4
Rc A2

local cache

A1

local cache

local cache

A2

A6

A3
Rb A3
Re A5

Rf A2
Rg A27

Rg A9
Rl A32

Rd A8

inverted cache

Rk A3

local cache

A4
inverted cache

inverted cache

inverted cache

inverted cache

inverted cache

Ri A6

A2 A89 A9

A2 A7

A1 A21

A4 A16 A33

A1 A6 A3

(a) (b)

A5

Rk A2

A30

A8

A32

A9

A21

A33
A16

A27

A5

A1

A2

A6

A4

A3

A30

A7

A89

A9

Fig. 6. The extended cache: (a) agents, (b) corresponding graph (dotted edges corre-
spond to inverted cache entries)

How many cache entries will be informed depends on the maximum number
of steps. It also depends on the topology of the cache network, since in our model,
the neighbor relationship is not symmetric; that is, B may be a neighbor of A
(i.e., B may be in A’s cache), while A is not a neighbor of B (i.e., A is not in
B’s cache). For example, this is the case when A needs resources offered by B,
while B does not need any of A’s resources. With flooding-based dissemination,
some entries may still be obsolete. In this case, an agent discovers this fact
when attempting to contact an agent using an outdated location. The agent
may invalidate the entry and continue the search.

5 Related Work

The only other studies of the use of local caches for resource location in MAS that
we are aware of are [1] and [12]. In [1], a depth first traversal of what corresponds
to our cache network is proposed. Experimental results are presented that show
that this approach is more efficient in terms of the number of messages than
flooding for particular topologies, in particular, the ring, star, and complete
graph topologies. There are no analytical results. In [12], the complexity of the
very limited case of lattice-like graphs (in which each agent knows exactly four
other agents in such a way that a static grid is formed) is analyzed.

The problem that we study in this paper can be seen as a variation of the
resource discovery problem in distributed networks [6], where nodes learn about
other nodes in the network. However, there are important differences: (i) we are
interested in learning about one specific resource as opposed to learning about

76 V.V. Dimakopoulos and E. Pitoura

all other known nodes, (ii) our network may be disconnected and (iii) in our
case, each node has a limited-size cache, so at each instance, it knows about
at most k other nodes. A similar problem appears also in resource discovery in
peer-to-peer (p2p) systems. While there have been a lot of empirical studies (e.g.
[11]) and some simulation-based analysis (e.g. [7]) of flooding and its variants for
p2p systems, analytical results are lacking. Here, we analytically evaluate various
alternatives of flooding-based approaches. Finally, flooding has also been used in
ad-hoc routing (e.g. [5]). Here, the objective is to ensure that a message starting
from a source node reaches its destination.

The cache network for agents was first introduced in [3]. In this paper, we
extend our analysis for a skewed distribution and obtain performance results for
discovering hot and cold spots. In addition, we consider the problem of cache
updates.

6 Conclusions

In this paper, we focused on resource location in multi-agent systems. We pro-
posed a fully distributed approach, in which each agent maintains in a local
cache information about a number of resources. We introduce and analytically
estimated the performance of a number of variations of flooding-based search
using these caches for both a random and a skewed distribution. A problem that
was not addressed in this paper is how to choose which resources to cache at
each agent. This is an interesting problem that we are currently pursuing. We
are also implementing a prototype of our system in a mobile agent platform.

Acknowledgments. This work was partially funded by the Information Soci-
ety Technologies programme of the European Commission, Future and Emerg-
ing Technologies under the IST-2001-32645 DBGlobe project and by a Greek
Ministry of Education program for Supporting Graduate Studies in Computer
Science (EPEAEK II).

References

1. M. A. Bauer and T. Wang. Strategies for Distributed Search. In CSC ’92, ACM
Conference on Computer Science, 1992.

2. V. V. Dimakopoulos and E. Pitoura. A Peer-to-Peer Approach to Resource Dis-
covery in Multi-Agent Systems (Extended Vesrion). Technical Report TR2003,
Univ. of Ioannina, Dept. of Computer Science, June 2003. Also available at:
http://www.cs.uoi.gr/˜ pitoura/pub.html.

3. V. V. Dimakopoulos and E. Pitoura. Performance Analysis of Distributed Search
in Open Agent System. In IPDPS ’03, International Parallel and Distributed
Processing Symposium, 2003.

4. Gnutella website. http://gnutella.wego.com. Technical report.
5. Z. Haas, J. Y. Halpern, and L. Li. Gossip-Based Ad Hoc Routing. In IEEE Proc.

of INFOCOM 2002, pages 1707–1716, 2002.

A Peer-to-Peer Approach to Resource Discovery in Multi-agent Systems 77

6. M. Harchol-Balter, T. Leighton, and D. Lewin. Resource Discovery in Distributed
Networks. In PODC ’99, Principles of Distributed Computing, pages 229–337,
1999.

7. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Un-
structured Peer-to-Peer Networks. In Proc. ICS2002, 16th ACM Int’l Conf. on
Supercomputing, pages 84–95, 2002.

8. D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-Peer Computing. Technical Report HPL2002-57,
HP Technical Report, 2002.

9. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable
Content-Addressable Network. In Proc. of ACM SIGCOMM, pages 161–172, 2001.

10. A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a
Large-scale, Persistent Peer-to-Peer Storage Utility. In Proc. of SOSP 2001, 18th
ACM Symp. on Operating System Priciples, pages 188–201, 2001.

11. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-
to-Peer File Sharing Systems. In Proc. MMCN ’02, Multimedia Computing and
Networking 2002, 2002.

12. O. Shehory. A scalable agent location mechanism. In Proc. ATAL ’99, 6th Int’l
Workshop on Intelligent Agents, Agent Theories, Architectures, and Languages,
volume 1757 of LNCS, pages 162–172. Springer, 2000.

13. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proc. of ACM
SIGCOMM, pages 149–160, 2001.

14. K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Service Matchmaking Among
Agents in Open Information Environments. SIGMOD Record, 28(1):47–53, March
1999.

15. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing. Technical Report UCB/CSD-01-
1141, U. C. Berkeley, April 2001.

	Introduction
	P2P-Based Directories in Multi-agent Systems
	Multi-agent Systems
	Peer-to-Peer Systems
	Distributed Caches

	Resource Discovery
	Our Perfomance Model
	Flooding
	Teeming
	Random Paths
	Performance Comparison

	Updates and Mobility
	Inverted Cache
	Flooding-Based Dissemination of Updates

	Related Work
	Conclusions

