Privacy in Social Networks:
Structural identity disclosure

Methods based on k-anonymity
= k-candidate
= k-degree
= k-neighborhood
= k-automorphism

k-candidate Anonymity

M Hay et al, Resisting Structural Re-identification in Anonymized Social
Networks VLDB 2008

G, the naive anonymization of G through an anonymization mapping f

(=]
i
<
B
m
-
=]
[T M
e S R

Jai”

An individual x € V called the target has a candidate set, denoted cand(x) which
consists of the nodes of G, that could possibly correspond to x

= (background knowledge) structural re-identification where the information of the
adversary is about graph structure

= (utility) analysis about structural properties: finding communities, fitting power-law
graph models, enumerating motifs, measuring diffusion, accessing resiliency

Closed-World vs Open-World Adversary

Assumption: External information sources are accurate, but not necessarily
complete

= Closed-world: absent facts are false

= Open-world: absent facts are simply unknown

= Adversary may be part of the network

= (locality) Adversary knowledge about a targeted individual tends to be
local to the targeted nodes

Anonymity through Structural Similarity

[automorphic equivalence]. Two nodes x, y € V are

(denoted x = y) if there exists an isomorphism from the graph onto
itself that maps x to y.

Automorphic equivalence induces a partitioning on V into sets whose members
have identical structural properties.

An adversary —even with exhaustive knowledge of the structural position of a
target node — cannot identify an individual beyond the set of entities to which it is
automorphically equivalent.

Adversary Knowledge (model)

An adversary access a source that provides answers to a
restricted knowledge query Q evaluated for a single target node of the original graph G.

knowledge gathered by the adversary is accurate.

For target x, use Q(x) to refine the candidate set.

[CANDIDATE SET UNDER Q]. For a query Q over a graph, the candidate set of x

w.r.t Q is candQ(x) = {y €V, | Q(x) = Q(y)}.

1. Vertex Refinement Queries
2. Subgraph Queries
3. Hub Fingerprint Queries

k-degree Anonymity

K. Liu and E. Terzi, Towards Identity Anonymization on Graphs, SIGMOD 2008

Privacy model

k-degree anonymity A graph G(V, E) is k-degree anonymous if every
node in V has the same degree as k-1 other nodes in V.

Given a graph G(V, E) and an integer k, modify G via a set of edge addition or
deletion operations to construct a new graph k-degree anonymous graph G’
in which every node u has the same degree with at least k-1 other nodes

A(2) A(2)
B (];)/\E &) anonymization B (Z)A‘E &)
-
*——o > —e
c(1) D (1) c(1) D (1)

[Properties] It prevents the re-identification of individuals by

adversaries with a priori knowledge of the degree of certain nodes.

Degree-sequence anonymization

[k-anonymous sequence] A sequence of integers d is k-anonymous if
every distinct element value in d appears at least k times.

[100,100, 100, 98, 98,15,15,15]

10

Graph Anonymization algorithm

Two steps

Input: Graph G with degree sequence d, integer k
Output: k-degree anonymous graph G’

[STEP 1: Degree Sequence Anonymization]:

Construct an (optimal) k-anonymous degree sequence d’ from
the original degree sequence d

[STEP 2: Graph Construction]:

[Construct]: Given degree sequence d', construct a new graph
GO(V, EY) such that the degree sequence of G is d*

1"

Experiments

* Datasets:
— Co-authors (7995 authors of papers in db and theory conference),
— Enron emails (151 users, edge if at least 5 times),

— powergrid (generators, transformers and substations in a powergrid network,
edges represent high-voltage transmission lines between them),

— Erdos-Renyi (random graphs with nodes randomly connected to each other with
probability p),

— small-world large clustering coefficient (average fraction of pair of neighbors of a
node that are also neighbors) and small average path length (average length of
the shortest path between all pairs of reachable nodes),

— power-law or scale graphs (the probability that a node has degree d is
proportional to d”Y, y = 2, 3)

+ Goal (Utility): degree-anonymization does not destroy the structure of the
graph
— Average path length
— Clustering coefficient
— Exponent of power-law distribution 12

k-neighborhood Anonymity

B. Zhou and J. Pei, Preserving Privacy in Social Networks Against
Neighborhood Attacks, ICDE 2008

13

1-neighborhood attacks

The neighborhood of u € V(G) is the induced subgraph of the neighbors of u,
denoted by Neighbor,(U) = G(N,) where N, = {v | (u,v) € E(G)}.

14

Graph Model

Graph G=(V, E, L, F),
V is a set of vertices,
E < Vx Vis a set of edges,
L is a set of labels, and
F a labeling function F: V —L assigns each vertex a label.

edges do not carry labels
Items in L form a hierarchy.

* € L->most general category generalizing all labels.

Given a graph = (V,, E,,, L, F) and a social network G = (V, E, L, L), an instance of H in
G is a tuple (H', f) where H' = (V,, ,E, ,L, F) is a subgraph in G and f: V, =V,,, is a
bijection function such that

(1) for any u € V,, F(f(u)) < F(u), /* the corresponding labels in H’ are more general */ and

(2) (u, v) € E, if and only if (f (u), f(v)) € E,,. 15

G -> G’ through a bijection (isomorphism) A

[k-neighborhood anonymity] A vertex u € V (G), u is k anonymous in G if
there are at least (k — 1) other vertices u;, . . ., u,_; € V (G) such that
Neighborg(A(u)), Neighborg(A(u,)), . . ., Neighborg(A(u,_,)) are isomorphic.

G'is k-anonymous if every vertex in G'is k-anonymous.

Property 1 (k-anonymity) Let G be a social network and G' an anonymization of G.
If G' is k-anonymous, then with the neighborhood background knowledge, any
vertex in G cannot be re-identified in G’ with confidence larger than 1/k .

16

Given a social network G, the k-anonymity problem is to compute an
anonymization G’ such that

(1) G'is k-anonymous;

(2) each vertex in G is anonymized to a vertex in G’ and G’ does not contain
any fake vertex; (no node addition)

(3) every edge in G is retained in G’; and (no node deletion)

(4) the number of edges to be added is minimized.

Utility
Aggregate queries:
compute the aggregate on some paths or subsgraphs satisfying some given

conditions

Heuristically, when the number of edges added is as small as possible, G' can
be used to answer aggregate network queries accurately

17

Anonymization Method

Two steps:

STEP 1

Extract the neighborhoods of all vertices in the network

Encode the neighborhood of each node (to facilitate the comparison between
neigborhoods)

STEP 2

Greedily, organize vertices into groups and anonymize the neighborhoods of
vertices in the same group

18

k-Automorphism

L. Zhu, L. Chen and M. Tamer Ozsu, k-automorphism: a general framework
for privacy preserving network publication, PVLDB 2009

19
K-Automorphism
Considers any subgraph query - any structural attack
At least k symmetric vertices no structural differences
#_)
Jenny
(&) Original Network () Neive Anonymized () Anather Andnymized
r} Meawark (& Network (G
20

10

K-Automorphism

DeFxITION 2.1, Graph Isomorphism. Given two graphs () =
(Vg Eg) and G = { Vg, Eg), Qisisomorphic o G, i and only
if there exisis ar least one bijective fumction f: Vo — Vig such that
Sfar any edge (w.v) € Eg, there is an edge (flu). flv)) € Ec.

DeFiNiTION 220 Graph Automorphism. An automorphism of
a graph G = (V, £} i an automorphic function | of the vertex set
V such that for any edge e = (w,v), fle) = (flu). f(v)) isalso
an edge in G, Le, itiva graph automorphism from G w itself under
Junction f. If there exist k automorphisms in G, it means that there
exisis k-1 different auromarphic functions.

map each node of graph G to
(another) node of graph G

21
K-Automorphism
DerFINITION 3.1. K-automorphic Network. Given a network
G, (a) if there exist k-1 awomorphic functions Fy (a=1,...,k-1) in
G, and (b) for each vertex v in G, Fy (v) # Fo,(v) (1 € oy #
az < k — 1), then G s called a k-automorphic network.,
any k-1 automorphic functions?
22

11

K-Automorphism

Al Cand g

(o} Ceigimal Marwos B Maive Ancayeizsd
& Merwod 7

There are eight matches of Q3 in the social network G'
(7,6:9,8,1,5), (7,6, 9; 8, 5, 1), (7, 6, 8, 9; 1, 5), (7 6, 8, 9; 5, 1),
(7;6;10; 8, 1:5), (7, 6; 10 ; 8; 5, 1), (7 6; 8, 10; 1; 5) and (7; 6; 8;
10; 5; 1).

23

K-Automorphism

DEFINITION 3.2. Different Matches. Given a sub-graph query
Q) and iwo maiches m1 and ma of Q in a social network G, where
ma and moy are isomorphic 1o Q under functions 1 and fa, respec-
wvely, if there exists no vertex v (in guery Q) whose maich veriices
inmy and me are identical, (le. fiiv) = f2(v)) we say that my
and mz are different matches,

DEFINITION 3.3, k-different match principle. Given a released
network G and any sub-graph guery O, if (a) there exist ar least
k matches of Q in GF, and (b) any two of the & maiches are dif-
ferent maiches according to Definition 3.2, then G7 is said 1o obey
k-different match principle.

24

12

K-Automorphism: Cost

DEFINITION 2.6. Anonyvmization Cost. Given an originagl net-
wark G and its anonymized version G*, the anonymization cost in
O™ is defined as

Cost(G,G*) = (E(G)U E(G*)) — (E{G) N E{G*))
where E((G) is the set of edges in G.

25
K-Automorphism: Algorithm
compare with Hay et al
{a) Maive Anonymization (b} Generalized
Network &7 Network
26

13

K-Match (KM) Algorithm

Block Alignment Edge Copy

R

{a) Naive anonymization {h) Graph Partition and
Network G Alignment G

{c) Edgs Copy (3°

Step 1: Partition the original network into n blocks and cluster these blocks
into m roups of at least k blocks

Step 2: Align the blocks into each group to attain isomorphic blocks (add
edge (2,4))

Step 3: Apply the "edge-copy" technique to handle matches that cross the
two blocks

27
K-Match (KM) Algorithm Step 2: Alignment
DEFINITION 4.1. Alignment Vertex Instance. Given a group
Us with blocks Pij, 7 = 1 ...,k assume that alignment blocks
By = (Vi}, Ei;) are the blacks :Jf;rm'ned uﬁe}r graph alignment,
namely, V3 By is a sub-graph of Py and all Py; ave isomorphic io
each other.
Due to graph isomorphism, given an aligiment block I-J;_,-, Jor
edcl vertex v in P;J-, there must exist k — 1 symmetric vertices in
the other k — 1 blocks respectively. The set containing v and v's
symmetric veriices form alignment vertex instance [where [[| =
k. All aligmment vertex nsiances are collected 1o form alignment
vertex table (AVT)
Allignment Table

T

47

516

2l I

30

A e (i
B . i Ba Alignment Vertex
Table (AVT
(a) (b} L {ft]]
28

14

K-Match (KM) Algorithm: Alignment

Heuristic for finding a good alignment

Algorithm 3 constructAVT(L;) where j = 1,...,k: Built AVT for a
group with k blocks Py, wherej = 1,..., k

I: Set all vertices in each Fyy as “un-visited”, initialize AVT

2: Find v i each block Pjj, where all degree({vi;) = d. If there are
multiple choices for d, choose d with the largest value. If there are
no choices for d, choose vy with the largest degree from block Fyy
respectively

3: The set of all vy; form the initial alignment vertex [instance in AVT.

4: Perform breath-first search (BFS) starting from vy 5 in each Fyy in par-
allel.

5: During BFS, k vertices from k blocks with similar vertex degrees are
collected to form an alignment vertex instance in AVT,

6: Report AVT.

Find k vertices with the same vertex degree

If many, start with those with high degree

If none, choose the one with the largest degree
This set -> initial alignment
BFS in each block in parallel,

pairing nodes with similar degree (if there is no corresponding vertex, introduce

29
dummy with the same label as the corresponding)
K-Match (KM) Algorithm Step 3: Edge Copy
DEFINITION 4.4, Boundary Vertex and Crossing Edge. Given
avertex v in a block P, v is a boundary vertex if and only if v has
art least one neighbor veriex thar is owside of block P, An edge
e = (v.u) is called a crossing edge if and only if v and u are
boundary vertices in two different blocks.
Algorithm 4 Edge Copy Algorithm
Require: Input: The original network: G; The network after graph parti-
tion and block alignment: G*'; Alignment Vertex Table: AVT
Output: The anonymized network G*.
I: Duplicate G" into G* and remove all crossing edges in G*,
2: for each crossing edge (v, w) in the original network G do
3: Addedge (v,u) and (Fa{v), Fa(u)) (a=1,...,k — 1)into G*.
4: Report G* as release network.
11y
417
316
< | B
S 10
i i df £1 Alignment Vertex
Table (AVT
(a) (k) abte {{‘_-])
Duplicate crossing edges using the AVT if needed
For (1, 6), add (F(1), F(6)) 30

15

K-Match (KM) Algorithm Step 1: Graph Partitioning

How many blocks so that a small number of edges is added?

Few -> fewer crossing edges, but larger groups (more edges for aligning)

NP complete -> heuristics

DEFINITION 4.2, Afignment Cost. Given a group U, with blocks
Fy, 7 = 1.k, assume thar Py are the blocks obrained after
block alignmens. The cost of blodk alignment in group U, is defined
as follows:

AlCost{Uy) = Z""_l Min(EditDist{ Py, P
where Edi tD:’st(P,:,-: Py, is defined as the number of graph edir
operations (insert vereex/edpe delete vertex/edpe) required to trans-
form P,; inta Fjj.

DEHNITION 4.5 Givena group Uy withblocks Py, =1, k
anomymization cost of group L, is defined as follows:

Cloatily) = AlCost(U1+0.5% (k—1) *E;-i [Cross Edge(Py |
where AlCost(17)is defined in Definition4. 2 and |Cross Edge (P, |
is the mumber of crossing edges associared with blodk Iy,
31

K-Match (KM) Algorithm Step 1: Graph Partitioning

THEOREM 4.2 Assume thar a nework G is partitioned inta n
blocks thar are clustered inte m groups Uy, where each group Uy
has k blocks. Ler G* be an anonvmized nerwork produced by KM
algarithm. Then

Cost(G,G*) = T, Cost(U,)
where Cost(G, G*) and Cost(Ly) are defined in Definitions 2.6
and 4. 5, respecrively

32

16

K-Match (KM) Algorithm Step 3: Graph Partitioning

Find all frequent subgraphs (first group!)

Try to expand them until the cost becomes worst, in which case start a new
group

Algorithm 5 Graph Partitioning and Block Clustering

Require: Input: The naive anonymized G’ and k.
Output: a set of groups 5 = {L;}. (i = 1,...,m), where each group
Ui has k blocks Py, (7 = 1,..., k).
l: repeat
2t Find frequent sub-graphs {gy} in @' by seting minimal support
min_sup = k. Find the frequent sub-graph g5 with the largest
number of edges. Each match of gf & extracted from &' as one
block Fij.
The set of all blocks Fy; from one group U],
repeat
set Uy = U/,
for each block Fijin U do
Expand block Fiy by one hop.
The set of expanded blocks form group Lf
until Cost{U;) < Cast{L])
&'=G" — U and insert U = { Py} into answer set S.
until E{G) =0
2: Report S = {U; },i=1,...,m.

Lok w

o —

33

Dynamic Releases

Example:

Individually satisfy 2-automorphism

Assume that an adversary knows that sub-graph Q4 exists around target Bob at both
time T1 and T2.

At time T1, an adversary knows that there are two candidates vertices (2, 7)
Similarly, at time T2, there are still two candidates (4, 7)

Since Bob exists at both T1 and T2, vertex 7 corresponds to Bob

Released - .
Metwarks:) =

34

17

Dynamic Releases

Remove all vertex IDs, or permute vertex IDs randomly (so that, a given
vertexID does not correspond to the same entity in different publications).
Impossible to conduct proper data analysis.

Instead, vertex ID generalization

For simplicity, no vertex insertions or deletions in different releases (set
of all vertex IDs remains unchanged)

35
Vertex ID Generalization
Given a series of s publications, vertex v cannot be identified with a
probability higher than 1/k if:
- Res(v, Gi) M Res(v, C;‘é)l’“ . RES[L‘,‘ G:) = Res(v,G7)
where |Res(v. G7)| = k.
T T,
AVT A ar oA L
et
a7 [Z17] J
516 16
310 3110 X 10 SR - o e T
Generalized Yertex Ip G Res(7,G71) = {4, r}uand Res(7,G3) = {2,7}
table GIDT Res(7.G1) N Res(7,G3) = Res(7,G1) = {4.7}
OnlD | Genid | 1 2.GenlD = {2,4}
T 1T ’
2 24
: 31
4 2.4}
{3}
{6}
7 {1.8} —
g | (18} G
(a) Vertex ID (b} Anonymized Network with
Generalization Generalized Vertex IDs
36

18

Vertex ID Generalization: Algorithm

Algorithm 6 Generalize Vertex ID For Released Network G}

Require: Input: AVT A; for the network G[. and AVT A for the net-
work G
OQutput: The anonymized network after vertex 1D generalization: CT‘
¢ Initialize table GIDT.
: Based on Ay, define & — 1 automorphic functions £} in Gl.a =
1., k=1,
3: Based on Aj;, define k — | automorphic functions FY in G5, t =
1., k=1,
: for each vertex v in G} do
fora=1,..k-=1do
if FL(v) # Fi(v) then
Insert 7} (v) into Ft(v).GenID.
: for each vertex v in G} do
Replace v.OriI D by its generalized vertex ID v.GenI D.
10: Report G}

b —

37

Vertex ID Generalization: Cost

DEFINITION 5.2. Given a released nerwork G_, produced by

GenlD algorithm, average generalized vertex 1D size, denoted by

Avgl D Size(G7), is defined as follows:

AvglDSize(Gy) = = T
bl

where V(G7) is the set of vertices in G},

38

19

Vertex Insertion and Deletion

(Deletion) There is a vertex ID v that exists in G'; but not in G',
Find an arbitrary vertex ID u that exists in both
Insert v in the generalized vertex ID of u

(Insertion) There is a vertex ID v that exists in G', but not in G';

Assume that instance | contains v in AVT A,

For each vertex u in |, insert v in the generalized vertex ID of u --> the new
verex exists in at least k vertices in G',

39

Evaluation

Prefuse (129 nodes, 161 edges)
Co-author graph (7995 authors in database and theory, 10055 edges)

Synthetic
Erdos Renyi 1000 nodes

Scale free,2<y <3

All k = 10 degree anonymous, but no sub-graph anonymous

40

20

[T

]]]] T =
Vi ciz —— wwzdie

Fuceda
(2] in Prefusenetwark (B) in o ar W (€) in ER dataser {d) in SF datase

swark
Figure 8: Degree Frequencies in Released Networks

Farstns od M.
[T

o)
[

(a) . 2) 0 ER networ {d) in SF netwark
ack

Against-Degree
Against-1Neigbhorhood

Generalization

41

Utility:
Total degree differences
Average shortest path length

Aveage cluster co-efficient

Dynamic Releases:

10% edges -> 1.93 (prefuse) 8.03 (co-author) average
generalized vertex ID size

42

21

Next: Privacy Attributes

43

22

