Privacy in Social Networks:
Introduction

Model: Social Graph

Profiles + relationships with other users + exchange of information

Social networks model social relationships by graph structures using vertices and
edges.

Vertices model individual social actors in a network, while edges model relationships
between social actors.

Labels (type of edges, vertices)

Directed/undirected

G=(V,E L L, L) V: set of vertices (nodes), Ec VxV, set of edges, L set of
labels, L:V—>1L, LLE—>L




= Some Statistics:

MySpace -- 206,304,468 user accounts
Windows Live (MSN) Spaces -- 120,000,000 user accounts
Orkut (by Google) -- 67,962,551 user accounts

Hi5 -- 50,000,000 user accounts Y
" J A
Friendster -- 50,000,000 user accounts h ‘
Facebook -- 48,000,000 user accounts ® 5 &
E A

LiveJournal -- 12,900,000 user accounts B

Privacy Preserving Publishing

Digital traces in a wide variety of on-line settings =>

rich sources of data for large-scale studies of social networks

Some made based on publicly crawlable blocking and social networking
sites =>

users have explicitly "chosen" to publish their links to others

Focus first on domains where users have strong expectations of privacy




Privacy Preserving Publishing

Why publishing?

analysis of networks:

study disease transmission, measure the influence of a publication, evaluate
the networks resiliency to faults and attacks

examples of sensitive data:

the sole publicly available of email communications was published because
of goverment litigation (enron dataset)

a social network which shows a set of indivical related to sexual contacts and
shared drug injections, analysis about how HIV spreads

Goal: Permit useful analysis yet avoid disclosing sensistive
information

Privacy Preserving Publishing

Psedo-anonymization or Naive anonymization

replace identifying attributes with synthetic (encrypting) identifiers

~ (alice, bob)

~

:f\'_:':.élice@yahoo.con.f__ ';’\"_'.bob@google.com

4

(R3579X, KO651W) ,;\ KO651W

C RTX

= |s this enough? Can anonymization protect users’ privacy?




Privacy Preservation Issues

= Models of Privacy
® what pieces of information, we want to
protect
* Background Knowledge
* what an adversary may know
= Models of Utility
= Use of the published data

Privacy Models

Relational data: Identify (sensitive attribute of an individual)

Background knowledge and attack model: know the values of quasi identifiers and
attacks come from identifying individuals from quasi identifiers

Social networks: Privacy classified into

1. identity disclosure: the identity of an individual who is associated with a
node is revealed

2. link disclosure: the sensitive relationship between individuals is
disclosed, and

3. content disclosure: the sensitive data associated with each vertex is
compromised, for example, the email message sent and/or received by the
individuals in an email communication network.




Privacy Models (more)

Examples of pieces of information:

= Vertex existence: whether a target individual appears in the network or not.
Examples: a social network of millionaires or a disease infection network

= Vertex properties: such as the degree of the vertex.
Examples: in a financial support network, how many support sources, whether the victim is a
community leader can be derived.

= Sensitive vertex labels: labels can be divided into non-sensitive vertex and sensitive
similar to the case of relational data

For example, in a disease infection network, each individual may be associated with a sensitive
label disease.

Privacy Models (more)

= Link relationship: Whether a link exists between two vertices
For example, in a finance transaction network, there is a financial transaction

= Link weight: The weights of edges can reflect affinity between two vertices or
record the communication cost between two individuals or the communication
frequency between two individuals

= Sensitive edge labels:

= Graph metrics: such as betweenness (that is, the degree an individual lies
between other individuals in the network, in their shortest path), closeness (that is,
the degree an individual is near to all other individuals in the network directly or
indirectly — the shortest distance between the node and all other nodes reachable
from it), centrality (that is, the count of the number of relationships to other
individuals in the network), path length (that is, the distances between pairs of
vertices in the network), reachability (that is, the degree any member of a network

can reach other members of the network)
10




Privacy Models (model)

= Link relationship: Whether a link exists between two vertices
For example, in a finance transaction network, there is a financial transaction

= Link weight: The weights of edges can reflect affinity between two vertices or
record the communication cost between two individuals or the communication
frequency between two individuals

= Sensitive edge labels:

= Graph metrics: such as betweenness (that is, the degree an individual lies
between other individuals in the network, in their shortest path), c/loseness (that is,
the degree an individual is near to all other individuals in the network directly or
indirectly — the shortest distance between the node and all other nodes reachable
from it), centrality (that is, the count of the number of relationships to other
individuals in the network), path length (that is, the distances between pairs of
vertices in the network), reachability (that is, the degree any member of a network

can reach other members of the network)
11

Models of Background Knowledge

Relational data: the values of the quasi identifiers

In general: the network structure around it

= Attributes of vertices
= Vertex degree

= Link relationship

= Neighborhood

= Graph metrics

12




Models of Background Knowledge

Type of attacks:

active: an adversary tries to compromise privacy by strategically
creating new user accounts and links before the anonymized network
is released, so that these new nodes and edges will then be present
in the anonymized network.

passive: try to learn the identities of nodes only after the anonymized
network has been released

13

Utility Models

Or information loss, Or anonymization quality

What type of analysis — how the anonymized network will be used

Relational: measured using the sum of information loss in individual tuples
(distance of tuple in the original table from the anonymized tuple in the
released table)

= General graph properties (diameter, distribution of vertex degrees, etc)
= Aggregate network queries: compute the aggregate on some path or
subgraph that satisfies some given condition

Example: the average distance from a medical doctor vertex to a teacher vertex

Useful in many applications, such as customer relationship management

14




Anonymization Methods

Relational data: generalization, noise (e.g., perturbations etc), anatomy

Initial Graph G -> Anonymized Graph G*

Pseudo-anonymization

15

Anonymization Methods

= Clustering-based approaches: clusters vertices and edges
into groups and replaces a subgraph with a super-vertex
(Generalization)

= Graph Modification approaches: modifies (inserts or
deletes) edges and vertices in the graph (Perturbations)

16




Some Graph-Related Definitions

= A subgraph H of a graph G is said to be induced if,
for any pair of vertices x and y of H, (x, y) is an edge of H if and only if (x, y)
is an edge of G.

In other words, H is an induced subgraph of G if it has exactly the edges
that appear in G over the same vertex set.

= [f the vertex set of H is the subset S of V(G), then H can be written as G[S]
and is said to be induced by S.

= Neighborhood

17

Mappings that preserve the graph structure

A graph homomorphism f from a graph G = (V, E) to a graph G' = (V/, E'), is a
mapping f: G > G’, from the vertex set of G to the vertex set of G’ such that
(u,u’) € G= (f(u), f(u')) e G

If the homomorphism is a bijection whose inverse function is also a graph
homomorphism, then fis a graph isomorphism [(u, u’) € G < (f(u), f(u’)) € G']

A graph automorphism is a graph isomorphism with itself, i.e, a mapping from
the vertices of the given graph G back to vertices of G such that the resulting
graph is isomorphic with G. An automorphism f is non-trivial if it is not identity
function.

A bijection, or a bijective function, is a function f from a set X to a set Y with the property that, for
every yinY, there is exactly one x in X such that f(x) = y.

Alternatively, f is bijective if it is a one-to-one correspondence between those sets; i.e., both one-
to-one (injective) and onto (surjective)).
18




P and Q are
isomorphic

19
the naive anonymization is an isomorphic graph
Alice  Bol Ca
- g . 5 8 5 iica [}
B a
Card ]
o L ]
Dave Ed 7 2 S
Frad a
Grag 2
Hamy 1
Fred @reg  Hamy E 4 1
the anonymization mapping f is a random secret mapping
20
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The general graph isomorphic problem which determines whether two
graphs are isomorphic is NP-hard

21
Other Issues on Privacy
Beside privacy-aware publishing (non-interactive) mechanisms
Interactive mechanism
a question is posed, the exact answer is computed by the curator,
and then a noisy (anomymized) version of the true answer is
returned to the user
Beside publishing:
= privacy degree
= acess control
22
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Type of Attacks

23

Active and Passive Attacks

Lars Backstrom, Cynthia Dwork and Jon Kleinberg, Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography
Proceedings of the 16th international conference on World Wide Web, 2007 (WWWQ7)

24
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Model
Purest form of social network:
Nodes corresponding to individuals
Edges indicating social interactions

(no labels, no directions, no annotations)

Simple Anonymization: Actual names are removed

Utility preserved: properties of the graph (such as connectivity, node-to-node
distnaces, frequencies of small subgraphs, or the extend to which it can be
clustered)

Can this work?

25
Privacy threat: De-anonymize 2 nodes and learn if
connected
Focus of the paper:
Identify type of attacks that even from a single
anonymized copy of a social network, it is possible for an
adversary to learn whether edges exist or not between
specific targeted pair of nodes
Note that the adversary may be a user of the system being
anomymized
26
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Passive Attacks

An adversary tries to learn the identities of the nodes only after the anonymized
network has been released

Simply try to find themselves in the released network and from this to discover the existence of
edges among users to whom they are linked

Based on the observation that most nodes in real social networks already belong to a small
subgraph, thus if a user can collude with a coalition of k-1 friends after the release, he/she is able to
identify additional nodes that are connected to this coalition

Active Attacks

An adversary tries to compromise privacy by strategically creating new user accounts
and links before the anonymized network is released

Chooses an arbitrary set of users whose privacy it wishes to violate, creates a small number of new
user accounts with edges to those targeted users and creates patterns of links amongst the new
accounts to make it identifiable in the anomymized graph structure

= Active work in with high probability in any network — passive rely on the chance that a use can
uniquely find themselves after the network is released

= Passive attacks can compromise the privacy of users liked to the attacker

27
H
100M = n-k nodes
b targeted". ) k new nodes
G nodes :
Before releasing the anonymized network G of n-k nodes, attacker:
= Choose a set of b targeted users.
= Create a subgraph H containing k nodes.
= Attach H to the targeted nodes.
Creating the subgraph H --> structural steganography
28
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After the anonymized network is release:
= Find the subgraph H in the graph G
* Follow edges from H to locate b target nodes and their true location in G

* Determine all edges among these b nodes --> breach privacy

29

Active Attacks - Challenges

Let G be the network, H the subgraph @2@
With high probability, H must be: 00
» Uniquely identifiable in G

—Forany G
« Efficiently locatable

— Tractable instance of subgraph isomorphism

« But undetectable
— From the point of view of the data curator

30
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Active Attacks - Approaches

0? ©)
« Basicidea: H is randomly generated ) &

— Start with k nodes, add edges independently

at random The “Walk-based” attack
 Two vari : — better in practice
—4~% = O(logn) de-anonymizes ©(log2n) users

k = ©(Nlogn) de-anonymizes O(\ logn) users

The “Cut-based” attack —
matches theoretical bound

31

Outline

 Attacks on anonymized networks —
high level description
« The Walk-Based active attack
— Description
— Analysis
— Experiments
» Passive attack

32
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The Walk-Based Attack —

Simplified Version
» Construction:
— Pick target users W= {w,,...,w;}
— Create new users X = {x,...,X,} and random subgraph
GIX|=H
— Add edges (x;, w))

» Recovery
— Find Hin G < No subgraph of G isomorphic to H
— Label H as xq,...,x, <> No automorphisms

33

The Walk-Based Attack —
Full Version

» Construction:
— Pick target users W = {W1,...,v@
— Create new users X = {x1,...,>® and H
— Connect w; to a unique subset N, of X
—Between Hand G- H
* Add A, edges from x;
where d, < A, < d,=0(logn) }-

— Inside H, add edges (x;, X;,,)

‘_g_‘_ )

17



Construction of H

O(log?n)

* Total degree of x;is A’, 3

= H=setof nodes X size k = (2+5) logn (6> 0)
= W = set of targeted users size b = O(log? n)
— e.g.n=1000M, b =900, k = 30
= External degree for node x;: A, € [d, d,] for d;, = d, = O(log n)
= Each w; connects to a set of nodes N; C X. Set

. Ni must be of size at most c=3 and are distinct across all nodes w;.

Target Nodes

36
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= Add arbitrary edges from H to G-H to make it A, for all x;.

= Add internal edges in H: edge (x;, X;,4)

* Add additional internal edges connecting (x;, x;) with probability 0.5

= Therefore, each node x; has total degrees of A’; = A, + (#internal edges)

Target Nodes

37

Recovering H

« Search G based on:
— Degrees A',
— Internal structure of H

roo

a,

(of]
ﬁ 38

Search tree T

19



= Degree Test: Node x; has total degrees of A’ = A, + (#internal edges)

* Internal Structure Test: Node x; links to correct subset of {x,, X,, ..., X4}

= Search tree T: All nodes o, in T has corresponding node (o) in G.

* Every path of nodes o, a,, ..., o, from the root must have corresponding
path in G formed by nodes f(a;), f(ay), ..., f(a;) with the same degree
sequence Xy, Xp ..., X;.

* The probability of a false path surviving to depth | = 272

39

Analysis

« Theorem 1 [Correctness]:
With high probability, H is unique in G. Formally:
— His arandom subgraph
— Gis arbitrary
— Edges between H and G — H are arbitrary
— There are edges (x;, X;,)
» Then WHP no subgraph of G is isomorphic to H.

« Theorem 2 [Efficiency]:

Search tree T does not grow too large. Formally:
— For every ¢, WHP the size of T is O(n'*¢)

40
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Theorem 1 [Correctness]

* His unique in G. Two cases:
— For no disjoint subset S, G[S] isomorphic to H
— For no overlapping S, G[S] isomorphic to H

* Case 1:
- S =<sy,...,5> nodesin G- H
— g5 — the event that s; < x; is an isomorphism
—Prleg |< 2 /2472
— By Union Bound,

Pr[Us gg] < nk. 2K/ kD2

41

Theorem 1 continued

* Case 2: S and X overlap. Observation —
H does no have much internal symmetry

+ Claim (a): WHP, there are no disjoint isomorphic
subgraphs of size c¢4logk in H. Assume this from now on.

+ Claim (b): Most of A goes to B, most of Y is fixed under f

(except c¢,logk nodes) (except c,logk nodes)

I
\ = 1

4

(>
"‘
@
\
\
\
\
\
\
[

21



Theorem 1 - Proof

* What is the probability of an overlapping second copy of

Hin G?

* fagep: AUY - BUY =X

- Letj=|A|=|B|=|C| 5 Y

* €4pcp — the event that fy5-p is °
an isomorphism b

» #random edges inside C 2 j(j-1)/2 — (j- X

» #random edges between C and Y' = (|Y'|)j —

* Probability that the random edges match those of A

Pr[sABCD] < 2fttrandom edges

PI‘ ‘9]< Zpr[gABCD ankzjkmr[gmco]

A,B,.C,D ji>1

Theorem 2 [Efficiency]

* Claim: Size of search tree T is near-linear.

* Proof uses similar methods:

— Define random variables:
* #nodesin T=T
o [ =1"+T"=#paths in G — H + #paths passing in H
— This time we bound E(I"') [and similarly E(I™)]
— Number of paths of length j with max degree d, is
bounded
— Probability of such a path to have correct internal
structure is bounded

> E(I") < (#paths * Pr[correct internal struct])
j

44
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FO: With high probability, there is no subset of nodes SX in G such that
G[S] is isomorphic to G[X] =H

Non-overlapping Case: S disjoint from X
Graph H: k nodes

'k 5 2o
{q}:k'/? Possible edges > 2Y"% Ppossible graphs

Subgraph G-H: select k nodes from n
n K o phlogn .
I3 <n = Possible subgraphs
Probability of isomorphic: P = 2¥'°¢" /2%*/2 3 Drop quickly when k > 2log(n)

Example: n=12M
Choose k=2log(12M) =14 > P =2%/2% =1
Choose k =(2+8) logn=15 > P =2""/2"" =0.011

45
Overlapping Case -- G[S] and G[X] is isomorphic with S overlaps X
9352 i
P= /\'[ s logk
S5
Drop quickly as n increases and k > 2log(n)
46
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F1: For ¢,>4, there is no disjoint sets of nodes Y and Z in H, each of size
cllog(k), such that H[Y] and H[Z] are isomorphic
*  Scope down what we had from FO:
— Graph G size n = Subgraph H size k
— Sets of nodes size (2+8) log n = Sets of nodes size (c;>4)log(k)

Fixed Point of a Isomorphism
For Isomorphism mapping Sto 8’ (f: S > 8')
* A fixed point is in both S and &’

* A fixed point mape to itself

47

Claim3.1: Let A, B and Y are disjoint sets of nodes in G with B,Y C X. With
isomorphism f: AUY = BUY, |{ f(A) not in B }| = ¢,log(k) nodes.

AL Nodes in A: out-deg =1 (to B or Y)
f(A)in B f(.), ' Nodes in Y: in-deg=1 (from Y or itself)
Y P out-deg=1 (to B or itself)
- Nodes in B: in-deg=1 (from A or Y)
P = .
,""-‘ f \ / o \
" V) (@) Y
Bs,.';':..-:'_,_ N e Y= F(A) not in B
X =nodes in H

Consider path from A->Y->B: IY’l and IB’l are disjoint and H[B’] and H[Y’]
are isomorphic. 2 1Y’l < cllog(k) 2 # paths A>Y—=>B <cllog(k)

Y’ = f(A) not in B = If(A) not in Bl < c1log(k)

48
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Claim3.2: Let A, B and Y are disjoint sets of nodes in G with B,Y C X. With
isomorphism f: AUY = BUY, set Y has at most c2log(k) nodes that are
nhot fixed point of f, where ¢2 = 3¢1

Choose every other edge in the path or
cycle. In cycle, choose 1 edges from 3
z-nodes. 2> Worst case |Z|/3 edges

Z1 = Nodes on tail of selected edges
Z2 = Nodes on head of selected edges

» Z1 and Z2 are disjoint subset of X; and G[Z1] and G[Z2] are isomorphic
» = From F1, IZ1] = I22] < ¢1log(k)

1211 = IZ2] = #selected edges = IZI/3 D 12I/3 < c1log(k)

|12l < 3ellog(k) < c2log(k)

49

Experiments

» Data: Network of friends on LiveJournal
— 4.4-108 nodes, 77-106 edges

Welcome to LiveJournal

Live Journal lets you express yoursell, share

your life, and connect with friends online. Creats a Journal

‘fou can use Livelounal in many different ways: as a private Yo
journal, a blog, a dscussion forum, & social netwerk, and

@ = l-@ Ao

True Community Content You Care About Staying in Touch Your Personal Journal

* Uniqueness: With 7 nodes, an average of 70 nodes can
be de-anonymized
— Although log(4.4-10%) = 15
« Efficiency: |T| is typically ~9-104
* Detectability:
— Only 7 nodes
— Many subgraphs of 7 nodes in G are dense and well-connected®

ng Livelournal is completely free.

25



prabability

Probability that H is Unique

Probability of successful attack

1
d,=20,d,=60 ——
dg=10, dy=20 ---3¢---
08 .
0.6 .
0.4 .
0.2 .
0 H—h A ' :
0 2 4 8 10 12

51

= Theoretical asymptotic lower bound for #new nodes: @(V log n)
= Randomly generate subgraph H = (X,, X,, ..., X,) with k = O(V log n)
= Number of compromised nodes b = &(V log n)

Construction of H

= For W=(w;,, w,..., w,) b targeted users, create X= (X, Xy,..., Xi)
where K = 3b+3 nodes

= Create links between each pair (x;, X;) with probability = 0.5

» Choose arbitrary b nodes (x;, X,,..., X,); connect x; to w;

52
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o= T = d(H) =min degree in H

n-k nodes = ¢(H) = min internal cutin H
Properties:
With high probability
* b =size of cut between H and G-H
» ¢H)=d(H)zk/3>b
* H has non-trivial automorphism

Cut b=3 edges

Observe
* All internal cuts in H >b

»  Cuts of size = b are external cuts
between H and G-H. They will never
break H.

Cut =4 edges

20

53

Recall: Cuts of size = b are external cuts between H and G-H. They
will never break H.
Step1:
— Use Gomory-Hu tree to break the graph along the cuts of size<b
— Finally, one of these chunks is H
Step2:
— Find which one is H

— H needs to be unique

54
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Graph H: K nodes
‘L 2 22
(7] =k~ /2 Possible edges > 22 possible graphs

Subgraph G-H:
+ There are n/K sets.
+ Each set has K! possible graphs

(n/k)k!  Possible subgraphs

(n/kk!

k212
2

Probability of isomorphic: P = - Drop quickly when k >V log(n)

Example: n=1000M
Log(n) =9
Choose k=12 > P =8.45271119 x10°®

55

Tree with the same set of nodes in G. Edge are labeled with weight.
The value of min-cut for (u,v)
= #edges on the smallest cut that will disconnect u and v
= min-weight on the path betweenuandvinT
Breaking graph G along the cuts of size<b
= delete all edges of size=b from T
Repeat until all forests have size k

Brute force to check whether each forest is isomorphic to H

56
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Outline

 Attacks on anonymized networks —
high level description

 The Walk-Based active attack

— Description
— Analysis
— Experiments
* Passive attack

57
= Community of Interest: most nodes in social network usually belong to a
small uniquely identifiable subgraph.
= An attacker can collude with other k-1 friends to identify additional nodes
connected to the distinct subset of the coalition.
Assumptions
= All colluders know edges among themselves, i.e. internal structure of H.
= All colluders know the name of their neighbors outside the coalition.
= There may be no Hamiltonian Path linking x;-- X,-- ... - X,
n nodes
o
— 25
58
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Search

Tree T

* Degree Test
* For ALL subset S C {1,....k, hode o matching H must have g_(S) = g(S)
— If we consider S = {1,3,5}

- g(8)=q: Thereis q users that connects to x;, Xg,and Xs.

59
Passive Attack - Results
Average number of users compromised

>0 Plass'rve —II— I >I< I

45 - Semi-Passive ---3¢--- ]

40 | i
3 st _
E ;
S 30 / |
(=1
E =} ) i
(8] ’
5 20 5 -
g 15 |- ’ .
= P -+

10 |- - ]

p e
5F '>< _____+___——-1'"_ - -
] — —a.g-_______lf__ L I !
2 3 4 5 6 7 8
Coalition Size
60
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Passive Attack

* H s a coalition, recovered by same search algorithm
* Nothing guaranteed, but works in practice
Probability of successful attack

1 T T T T T
0o | P A .
0.8 |- - I I .
07 B
Z 06 -
g 05 .
£ oal / _
0.3 | .
02/ Simple Algorithm, High-Degree Friends —— |
0.1 Refined Algorithm, High-Deg Friends --->¢--- |
0 Reflined AIgori?hm, Rand(l)m FriendsI [EEE- SR
2 3 4 5 6 7 8 61
Coalition Size
Active Attack Passive Attack
= More effective. Work with high = Attackers may not be able to
probability in any netwoerk. identify themselves after seeing the
» Can choose the victims released anonymized network.
* Riek of being detected * The victims are only those linked
to the attackers.
* Harder to detect
Semi-Passive Attack:
= Create only additional links to the targeted nodes. No additional node.
= Can breach privacy on the scale approaching that of the active attack.
62
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Potential Solutions

= Random Perturbation
— m-perturbation
— Randomly delete m ecdges and insert m edges
» Model-based Perturbation
— Derive statistical model from original data
— Develop model to bias the perturbation to give desire properties of
the graph
— Give better utility

63

64
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Privacy in Social Networks:
k-anonymity

65

Methods based on k-anonymity
= k-candidate
= k-degree
= k-neighborhood

66
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k-candidate Anonymity

M Hay et al, Resisting Structural Re-identification in Anonymized Social
Networks VLDB 2008

67

G, the naive anonymization of G through an anonymization mapping f

(=]
i
<
B
m
-
=]
[T M
e S R

Jai”

An individual x € V called the target has a candidate set, denoted cand(x) which
consists of the nodes of G, that could possibly correspond to x

Given an uninformed adversary, each individual has the same risk of re-identification,
cand(x) =V,

In practice, some knowledge, examples:

Bob has three or more neigbhbors, cand(Bob) =?

Greg is connected to at least two nodes, each with degree 2, cand(Greg) =? 68

34



Focus on

structural re-identification where the information of the adversary is about graph
structure

analysis about structural properties: finding communities, fitting power-law graph
models, enumerating motifs, measuring diffusion, accessing resiliency

Two factors
= descriptive power of the external information

= structural similarity of nodes

69

Knowledge Acquisition in Practice

External information may be acquired through
= malicious actions by the adversary or

= through public infomation sources

An adversary may be a participant in the network with some innate
knowledge of entities and their relationships

Radius - neighborhood

Adversary knowledge about a targeted individual tends to be local to
the targeted node

For the participant adversary there is a horizon of awareness of about
distance two around most individuals

70
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Knowledge Acquisition in Practice

The impact of hubs
in many network datasets: hubs = highly connected nodes

hubs are often outliers in the degee distribution of a graph, their true identity is
often apparent in a naively-anonymized graph

in addition, the connections of an individual to hubs may be publicly known or
easily deduced

attackers who use hub connections as a structural fingerprint to re-identify
nodes

71
Knowledge Acquisition in Practice
Closed-World vs Open-World Adversary
External information sources are accurate, but not necessarily complete
Closed-world: absent facts are false
Open-world: absent facts are simply unknown
72
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Anonymity through Structural Similarity
A strong form of structural similarity between nodes is automorphic equivalence.

[automorphic equivalence]. Two nodes x, y € V are

(denoted x = y) if there exists an isomorphism from the graph onto
itself that maps x to y.

Example: Fred and Harry, but not Bob and Ed

Automorphic equivalence induces a partitioning on V into sets whose members
have identical structural properties.

An adversary —even with exhaustive knowledge of the structural position of a
target node — cannot identify an individual beyond the set of entities to which it is
automorphically equivalent.

We say that these nodes are structurally indistinguishable [nodes in the graph
achieve anonymity by being “hidden in the crowd” of its automorphic class
members.]

73
Anonymity through Structural Similarity

Some special graphs have large automorphic equivalence classes.
For example, in a complete graph, or in a graph which forms a ring, all nodes are
automorphically equivalent.
In most graphs we expect to find small automorphism classes, likely to be
insufficient for protection against re-identification.
Automorphic equivalence is an extremely strong notion of structural
similarity.
In order to distinguish two nodes in different automorphic equivalence
classes, it may be necessary to use complete information about their positions
in the graph.
We must consider the distinguishability of nodes to realistic adversaries with
limited external information
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Adversary Knowledge

Model the external information of an adversary as access to a source that provides
answers to a restricted knowledge query Q evaluated for a single target node of the
original graph G.

We always assume knowledge gathered by the adversary is accurate.

For a target node x, the adversary uses Q(x) to refine the feasible candidate set.

Since G, is published, the adversary can easily evaluate any structural query directly on
G,

Thus the adversary will compute the refined candidate set that contains all nodes in the
published graph G, that are consistent with answers to the knowledge query on the
target node.

[CANDIDATE SET UNDER Q]. For a query Q over a graph, the candidate set of x

w.r.t Q is candQ(x) = {y €V, | Q(x) = Q(y)}.
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Adversary Knowledge
1. Vertex Refinement Queries
2. Subgraph Queries
3. Hub Fingerprint Queries
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Vertex Refinement Queries |

A class of queries, of increasing power, which report on the local structure of the
graph around a node.

= The weakest knowledge query, H,, simply returns the label of the node. (We
consider unlabeled graphs, so HO returns € on all input nodes; else the node label - to
include attributes)

= H,(x) returns the degree of x,
= H,(x) returns the multiset of each neighbors’ degree,

= H,(x) returns the multiset of values which are the result of evaluating H, , on the
nodes adjacent to x

Ha'::':::' = {Ha—l'::l:'-H'.—l'::.E:' . -Ha—l'::m:']

where 21 .. . #m are the nodes adjacent to 2.
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Vertex Refinement Queries Il
MNode ID | Ha Hi Ha
Alic Babk Caral
'°# ' Alice e |1 |13
Bob e |4 |{11.4,4
Carol e 1 {4}
Dave Ed Dave |e |4 | {24.4,.4)
Ed |e |4 |{24.4.4)
Frad 14 2 {4, 4}
Fred Greg Harry Greg |« 4 {2,2,4,4}
Harry e 2 {4, 4}
(a) graph It} vertex refinements
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Vertex Refinement Queries Il

DEFINITION 2 (RELATIVE EQUIVALENCE). Two nodes X, y in a graph are equivalent

relative to H, denoted x = ;; y, if and only if H;(x) = H,(y).

Alce  Bob  Caral Sl [ 0 T
Alice [3 1 4
Boh £ 4 1,1,4,4}
Caral £ 1 4
Dave Ed Dawve |e |4 2,4,4,4} | [ Equivalence Relation Equivalence Classes
Ed |e |4 [{244.4) = [A.B.C.D.E.F.G, H]
Fred |e |2 |{d.4} = {AC} [B.D.E.G} {F,H}
Fred Greg Harry Greg 3 4 2,2,4,4} = {A.CHBHD.EHGHF H}
Hary |e |2 | {44} = {A.CH{EBND.ENGHE Y
(a) graph ) verlex refinements (¢) equivalence classes
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Vertex Refinement Queries IV

To an adversary limited to knowledge query H,, nodes equivalent with respect to H,
are indistinguishable.

Proposition: Let x, x' € V, if x=, X', then cand,;(x) = cand,;(x')
Iterative computation of H continues until no new vertices are
distinguished.

We call this query H*.
In the example of Figure 2, H* = H,.

Equivalence under H* is very likely to coincide with automorphic
equivalence.
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Subgraph Queries |

Vertex refinement queries are a concise way to describe locally expanding structural
queries.
Two limitations.
= always provide complete information about the nodes adjacent to the target (i.e.,
an instance of closed-world knowledge).
= H queries can describe arbitrarily large subgraphs around a node if that node is
highly connected, thus the index of H query may be a coarse measure of the
information learned
For example, if H;(x) = 100, the adversary learns about a large subgraph in G,
whereas H,(y) = 2 provides much less information.

As an alternative, we consider a very general class of queries which assert the
existence of a subgraph around the target node.

We measure the descriptive power of a query by counting the number of edges in the
described subgraph; we refer to these as edge facts.
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Subgraph Queries Il
Example: Three subgraph queries centered around Bob.
Alice Bob  Carol
Bob Bob Boo
Fred Greg Harry
The first simply asserts that Bob has (at least) three distinct neighbors, the second
describes a tree of nodes near Bob, and the third relates nearby nodes in a subgraph.
These informal query patterns use 3, 4, and 5 edge facts, respectively.
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Subgraph Queries llI

Note that we do not model an adversary capable of constructing and evaluating
arbitrary subgraph queries. Instead, we assume the adversary is capable of
gathering some fixed number of edge facts around the target x.

This may correspond to different strategies of knowledge acquisition that could be
employed by the adversary.

A range of strategies including breadth-first exploration, induced subgraphs of radius 1 and 2,
and strategies that emphasize small distinctive structures. For a given number of edge facts,
some queries are more effective at distinguishing individuals.

The adversary learns the existence of a subgraph around x which may be incomplete
(open-world).

The existence of this subgraph can be expressed as a query, and we model the
adversary’s knowledge by granting the answer to such a query.

Naturally, for a fixed number of edge facts there are many subgraph queries that are
true around a node x.
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Hub Fingeprint Queries |
A hub is a node in a network with high degree and high betweenness centrality (the

proportion of shortest paths in the network that include the node).

Hubs are often outliers in a network, making it difficult to protect their iden-
tity through anonymization.

For example, in a naively-anonymized network trace, the hubs correspond to the most
frequently visited websites, which are typically known by an adversary.

A hub fingerprint for a target node x is a description of the connections of x to a set
of designated hubs in the network.

We denote the hub fingerprint of x by F,(x) where the subscript i places a
limit on the maximum distance of observable hub connections.
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Hub Fingeprint Queries I

Alice Bob  Carol

Davea Ed

Fred Greg Harry

Forexample, if we consider Dave and Ed hubs,
The hub fingerprint of Fred is a vector of his shortest path lengths (bounded by i) to

each hub.
F1(Fred) = (1; 0) because Fred is distance 1 from Dave but not connected to Ed in

one hop or less;
F2(Fred) = (1; 2) because Fred is distance 1 from Dave and distance 2 from Ed.
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Hub Fingeprint Queries llI

We consider an adversary capable of gathering hub fingerprints in both an open and a

closed world.
= In the closed world, the lack of a connection to a hub implies with certainty that no connection

exists.
* In the open world, the absence of a connection in a hub fingerprint may simply represent

incompleteness in the adversary’s knowledge.

Alice Baob Caral
Example:
In the open world, if the adversary
knows F,(Fred) = (1; 0) then nodes in
the anonymized graph with F, Davea
fingerprints of (1; 0) or (1; 1) are both
candidates for Fred.

Fred Greg Harry

86

43



Comparison of the Knowledge Models |
Vertex refinement queries and subgraph queries are related, but differ

Expressiveness: Vertex refinement queries provide complete information about node
degree. A subgraph query can never express H, knowledge because subgraph queries are
existential and cannot assert exact degree constraints or the absence of edges in a graph.

Complexity of computing H* is linear in the number of edges in the graph, and is
therefore efficient even for large datasets. Evaluating subgraph queries, on the other
hand, can be NP-hard in the number of edge facts, as computing candidate sets for
subgraph queries requires finding all isomorphic subgraphs in the input graph.

Disclosure risk: Although we do not place computational restrictions on the adversary,
the vertex refinement queries allow a data owner to efficiently assess disclosure risk.
Yet, the semantics of subgraph queries seem to model realistic adversary capabilities
more accurately. It may be difficult for an adversary to acquire the detailed structural
description of higher- order vertex refinement queries.

Vertex refinement queries offer an efficient and conservative measure of structural
diversity in a graph. In addition, Hi queries are conceptually appealing as they represent
a natural spectrum of structural knowledge, beginning with H, which reports n08d7e
degree, and converging, as i increases, on automorphic equivalence.

Comparison of the Knowledge Models I

We note that both have well-studied logical foundations. H, knowledge corresponds
to first order logic with counting quantifiers, restricted to i variables.

Subgraph queries can be expressed as conjunctive queries with disequalities. The
number of edge facts corresponds to the number of subgoals in the query
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Disclosure in Real Networks

= Study three networked data sets, drawn from diverse domains.
= For each data set, consider each node in turn as a target.

= Assume the adversary computes a vertex refinement query, a subgraph
query, or a hub fingerprint query on that node, and then compute the
corresponding candidate set for that node.

= Report the distribution of candidate set sizes across the population of
nodes to characterize how many nodes are protected and how many are
identifiable.

89

Disclosure in Real Networks

Hep-Th database: papers and authors in theoretical high-energy physics, taken
from the arXiv archive, linked if they wrote at least two papers together.

Enron dataset: derived from a corpus of email sent to and from managers at
Enron Corporation, made public by the Federal Energy Regulatory Commission
during its investigation of the company. Two individuals are connected if they
corresponded at least 5 times.

Net-trace dataset: from an IP-level network trace collected at a major university.
The trace monitors traffic at the gateway; it produces a bipartite graph between
IP addresses internal to the institution, and external IP addresses. Restricted to
187 internal addresses from a single campus department and the 4026 external
addresses to which at least 20 packets

were sent on port 80 (http traffic).

All datasets have undirected edges, with self-loops removed. Eliminated a small
percentage of disconnected nodes in each dataset, focusing on the largest
connected component in the graph.
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Disclosure in Real Networks

Table 1: Summary of networks studied.

Statistic Data =at

Heg-Th | Enron | Net-trace
Modas 2510 111 4213
Edgas 4737 287 5RO7
Minimum dagree 1 1 1
Maximum degree 36 20 1656
Meadian degree 2 5 1
Average degres 3.77 517 2.61
Avg. cand. sefsize (M) nha 45 [ 12051 2r9208
fug. cand. set siza (Ha) 25.38 1.49 608.58
Fraction re-identified () | 0.002 0.027 | 0.006
Fraction re-identfied (M) | 0.404 0.739 | 0111
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Reidentification: Vertex Refinement |

For the Hep-Th data, H1 leaves
nearly all nodes at low risk for re-
identification, and it requires H3
knowledge to uniquely re-identify a
majority of nodes.

For Enron, under H1 about 15% of
the nodes have candidate sets smaller
than 5, while only 19% are protected
in candidate sets greater than 20.
Under H2, re-identification jumps
dramatically so that virtually all nodes
have candidate sets less than 5.
Net-trace has substantially lower
disclosure overall, with very

few identified nodes under H1, and
even H4 knowledge does not uniquely
Figure 4: Relationship b didate size and vertex re-  identify more than 10% of the nodes.

HunTh

ledge ‘}'-E for i = 1..4 for three network datasets. i i i i
The trend lines show the percentage of nodes whose candidate This results from the unique blpamte
sets have sizes in the following buckets: [1] (black), [2,4], [5,10],  Structure of the network trace dataset:

11, 20}, [21, eo] (white). many nodes in the trace have low
degree, as they are unique or rare
web destinations contacted by only

one internal host. 92




Reidentification: Vertex Refinement Il

HunTh

Figure 4: Relati size and vertex re-
finement knowledge H; for i = 1..4 for three network datasets,
The trend lines show the percentage of nodes whose candidate
sets have s 1e following buckets: [1] (black), [2.4], 3, 10],
[11, 20], [21, s¢] (white).

A natural precondition for publication is a very low
percentage of high-risk nodes under a reasonable
assumption about adversary knowledge.

Two datasets meet that requirement for H1 (Hep-
Th and Net-trace), but no datasets meet that
requirement for H2.

Overall, there can be significant variance across
different datasets in their vulnerability to different
adversary knowledge.

However, across all datasets, the most significant
change in re-identification is from H1 to H2,
illustrating the increased power of adversaries
that can explore beyond the target's immediate
neighborhood. Re-identification tends to stabilize
after H3 — more information in the form of H4
does not lead to an observable increase in re-
identification in any dataset.

Finally, even though there are many re-identified

nodes, a substantial number of nodes are not
uniquely identified even with H4 knowledge.
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Reidentification: Subgraph Queries |

Hep-Th

a bk N {OSampled subgrah

Enron

= -;k -M“‘h\ e o Bt
~— R

= ] [] W uwm me

& e as e
Number of Edge Facts

Figure 5: Candidate set sizes (on a log scale) for sampled
aihgraph queries consisting of specified number of edge facts.
(Please note differences in scale.)

Figure 5 shows the relationship between the
number of edge facts and re-identification
success.

Each point represents a subgraph query of a
specified size; the re-identification success is
measured by the size of the candidate set
(vertical axis).

For a fixed number of edge facts, there are
many possible subgraph queries.

We simulated adversaries who gather facts
around the target according to a variety of
strategies: breadth-first exploration (labelled
“Degree subgraphs”), random subgraphs,
induced subgraphs of radius 1 and 2, and
small dense structures (collectively referred to
as “Sampled subgraphs”)
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Reidentification: Subgraph Queries Il

Hep-Th

{Dfampied subgrach

B Dogres subgrach

Net-trace

r'ﬁ"‘-\*\\ vada

25

-
== R

Fgure 5:

[ [Ny
Mumber of Edge Facts

Candidate set sizes (on a log scale) for sampled

athgraph queries consisting of specified number of edge facts,
(Please note differences in scale.)

Overall, disclosure is substantially lower than for
vertex refinement queries.

To select candidate sets of size less than 10
requires a subgraph query of size 24 for Hep-Th,
size 12 for Enron, and size 32 for Net-trace.

The smallest subgraph query resulting in a
unique disclosure was size 36 for Hep-Th and 20
for Enron. The smallest candidate set witnessed
for Net-trace was size 2, which resulted from a
query consisting of 88 edge facts.

Breadth-first exploration led to selective queries
across all three datasets. Such a query explores
all neighbors of a node and then starts to
explore all neighbors of a randomly chosen
neighbor, etc.

This asserts lower bounds on the degree of
nodes. In Enron, these were the most selective
subgraph queries witnessed; for Hep-Th and Net-
trace, the more selective subgraph queries
asserted the existence of two nodes with a large
set of common neighbors. 95
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Reidentification: Subgraph Queries Il

Hep-Th

{Dfampied subgrach

B Dogres subgrach

Net-trace

r'ﬁ"‘-\*\\ vada

25

-
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Fgure 5:
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Mumber of Edge Facts

Candidate set sizes (on a log scale) for sampled

athgraph queries consisting of specified number of edge facts,
(Please note differences in scale.)

The results presented above illustrate
the diverse subset of subgraph queries
sampled.

While it is clearly intractable to perform
an exhaustive search over all possible
subgraphs and matching them to each
node in the graph, it is an interesting
open question to determine, given a
graph, and a fixed number of edge facts,
the subgraph query that will result in the
smallest candidate set.

This  would refect the worst-case
disclosure possible from an adversary
restricted to a specified number of edge
facts.
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Reidentification: Hub Fingerprints |

- rmzts fore Eon . t
Sommee QRO DmeemE  @mewsE  (Gomdwed (@ weE

20

Figure shows the candidate set sizes for
hub fingerprints F1 and F2, choosing the 5
highest degree nodes as hubs for Enron,
and the 10 highest degree nodes for both

a0

» Hepth and Net-trace. The choice of the
number of hubs was made by considering
o whether the degree of the node was
‘ distinguishable in the degree distribution
o . . . .
momn o momomR o oRm o omoaon and therefore likely to be an outlier in the
original graph.

Figure 6: Candidate set sizes for hub fingerprint queries: 7,
and F; are shown for each dataset under a closed-world and
open-world assumption.

Under both the closed-world
interpretation and the open-world

interpretation.
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Reidentification: Hub Fingerprints I

Generally, disclosure is low using hub
= T = . fingerprints. At distance 1, 54% of the
1T :h 1 1 nodes in Enron were not connected to any
hub and therefore hub fingerprints provide
no information. This statistic was 90% for
- Hepth and 28% for Net-trace.
- In addition, connectivity to hubs was fairly
s uniform across individuals. For example,
the space of possible fingerprints at
‘ - distance 1 for Hepth and Net-trace is 210=
1024. Of these, only 23 distinct fingerprints
Figure 6: Candidate st sizes for hub fingerprint queries: 7, Were observed for Hepth and only 46 for

and F; are shown for each dataset under o closed-world and

open-world assumption. Net-trace.

il i

Fi F2 FL FZ F1 F2 FL P2 P 2R R

While hubs themselves stand out, they
have high-degrees, which means
connections to a hub are shared by many.
While hubs would appear to be a challenge
for anonymization, this finding suggests
that disguising hubs in published data may
not be required to maintain anonymity.
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Anonymization in Random Graphs

Erdos-Renyi (RE) random graphs

n nodes by sampling each edge indpendently with probability p
sparce p = ¢/n, dense = clogn/n, super-dense p = c (c is a constant)
c>1,

include a giant connected component of size ©(n), and a collection of
smaller components (sparse)

completed connected (dense)
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Reindification in Random Graphs

THEOREM 1 [SPARSE ER RANDOM GRAPHS). Ler G ke an
ER random graph containing n nodes with edge probability given
by p=c/n for ¢ > L With probakility going lo one, the expecied
siges of the eguivalence closses induced by Hy i E;{n}. for any
iz0

THEOREM 2 (SUPER-DENSE ER RANDOM GRAPHS). Ler G
be an ER random graph on n onedes with edge probability p =
1 /2. The probability that there exist wo nodes 2,9 € V such thar
T Sy I O less than 275 for constant value ¢ > 1

For dense, nodes cannot be identified for H, for any c>0, but all nodes are re-
identifiable for H, for any c>1
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Reindification in Random Graphs

w(G) the number of nodes in the largest clique

PROPOSITION 2. Ler G he any graph, and QQz) a subgraph

guery arund any node x. If Q1) contains fewer than w((G) nodes,
then |candg(z)| = wiG).

Any subgraph query matching fewer than w(G) nodes, will match any
node in the clique
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Anonymization Algorithms
Partition/Cluster the nodes of Ga into disjoint sets
In the generalized graph,
supernodes: subsets of Va
edges with labels that report the density
Partitions of size at least k
DEFINITION 3 [GENERALIZATION OF GRAPH). Ler V be the
supernodes of Voo G i a generalization of Ga under Vi for all
XYevdX,Vi=|{lzwe E|lzeX,ye¥Y].
Extreme cases: a singe super-node with self-loop, Ga
Again: Privacy vs Utility
102
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Anonymization Algorithms

Find a partiton that best fits the input graph
Estimate fitness via a maximum likelihood approach

Uniform probability distribution over all possible worlds

Searches all possible partitions using simulated anealing

Each valid partitions (minimum partition of at least k nodes) is a valid state
Starting with a single partition with all nodes, propose a change of state:
split a partition

merge two partitions, or

move a node to a different partition

Stop when fewer than 10% of the proposals are accepted
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Anonymization Algorithms
Next, we see 2 concrete examples:
Know the degree, and
Neighborhood
104

52



