
XPath Lookup Queries in P2P Networks ∗

Angela Bonifati
Icar CNR

Via Pietro Bucci, 41C
Rende, Italy

bonifati@icar.cnr.it

Ugo Matrangolo
DEIS, University of Calabria

Via Pietro Bucci, 41C
Rende, Italy

matrangolo@si.deis.unical.it

Alfredo Cuzzocrea
DEIS, University of Calabria

Via Pietro Bucci, 41C
Rende, Italy

cuzzocrea@si.deis.unical.it

Mayank Jain†

Indian Institute of Technology
IIT Delhi

New Delhi, India

mayankjain@cse.iitd.ernet.in

ABSTRACT
We address the problem of querying XML data over a P2P
network. In P2P networks, the allowed kinds of queries are
usually exact-match queries over file names. We discuss
the extensions needed to deal with XML data and XPath
queries. A single peer can hold a whole document or a
partial/complete fragment of the latter. Each XML frag-
ment/document is identified by a distinct path expression,
which is encoded in a distributed hash table. Our framework
differs from content-based routing mechanisms, biased to-
wards finding the most relevant peers holding the data. We
perform fragments placement and enable fragments lookup
by solely exploiting few path expressions stored on each peer.
By taking advantage of quasi-zero replication of global cata-
logs, our system supports fast full and partial XPath query-
ing. To this purpose, we have extended the Chord simulator
and performed an experimental evaluation of our approach.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems-distributed databases, query pro-
cessing
General Terms: Algorithms, Design.
Keywords: XML Querying, XPath, P2P Networks, Dis-
tributed XML Indexes.

1. INTRODUCTION
Filesharing systems, such as Gnutella [11] and Kazaa [16],

are identified as unstructured systems that rely on flooding

†Work done as a summer intern at Icar CNR, Italy.∗This work is supported in part by the italian projects:
MIUR Information Society, “SP1” and FIRB “GRID.IT”
(RBNE01KNFP).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’04, November 12–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-978-0/04/0011 ...$5.00.

to perform keyword-based searches. In these systems, there
is no guarantee on the query answering whatsoever. Other
kinds of systems addressing content-based routing are gain-
ing momentum, namely the so called structured systems,
exploiting indexes for biasing the search towards particular
peers. Among these indexes, undoubtedly DHTs are the
most promising ones due to their reduced search complexity
and consequent high guarantees of query answering [26]. In
light of this, DHTs are starting to be considered as the foun-
dational indexes for data management applications on top
of P2P. Among the existing proposals and research proto-
types, it is worth to mention [21], [14], [8]. [21] presents an
Internet-scale relational engine which builds on an inverted
file for term searches. [14] considers each peer holding par-
titions on relational tables and extends the DHT for ad-
dressing approximate range queries. [8] augments the DHT
with a B+-tree for answering exact range queries on tuples.
In this paper, we focus on the problem of answering XPath
queries in a DHT-based network. Indeed, path queries are
quite different from keyword-based queries and from range
queries. Thus, the extensions presented in [21], [14], [8] are
not applicable to our case.

A key problem in handling XML data on top of P2P sys-
tems is to efficiently locate the data of interest. Recent
works [19, 10] have devised mechanisms to quickly find with
high probability the peers of interest to address a specific
look-up of XML data. They build on the replication on each
peer of more or less sophisticated data summaries/catalog
information (path summary, histograms, bloom-filters [10]
and multi-level bloom-filters [19]) to guide the lookup to-
wards the most relevant peers. However, these solutions may
not be scalable for a large number of peers and for arbitrary
XML documents to be shared. Moreover, since these data
summaries describe the local data as well as the data of the
peer neighbors, it is difficult to maintain them up-to-date
w.r.t. the changes in the network. There may be different
solutions to this problem: (i) drastically limit the depth of
the document to be distributed as done by [19]; (ii) limit the
number of peers in the network, i.e. consider a community
of independent data providers as in [10], who share the data
and tend to remain in the network almost all their life; (iii)
choose a quasi-zero replication approach, i.e. avoid repli-

cating the full catalog information on each peer while still
preserving the query capabilities. In this paper, we are inter-
ested to operate with assumption (iii) in large and dynamic
P2P networks where peers can join and leave the network
arbitrarily (as in [11, 16]). We have devised a system, called
XP2P (XPath for P2P), which employs XPath to handle
XML fragments and to locate them afterwards by solely ex-
ploiting a small set of XPath expressions. We argue that our
approach is more scalable for an arbitrary number of peers
w.r.t. solutions proposed thus far. Indeed, it is worth to
notice that, in order to ensure the maximum scalability, we
do not perform replication of global catalog information, as
opposed to [19, 10]. Indeed, for a peer that stores an XML
fragment(s), it is sufficient to store a small set of related
XPath path expressions, namely the path expression de-
scribing itself, the path expressions of its sub-fragments and
the path expression of its super-fragment. Details on how to
identify these related path expressions are described in Sec-
tion 3. To this purpose, we employ an extremely lightweight
indexing mechanism, which let us store on each peer extra
information for only few bytes. To give an example, we have
measured on a network of 10000 XML fragments (randomly
generated from XMark documents [25]) whose size ranges
the interval 3KB − 20MB, that the related path expres-
sions have a total size ranging the interval 100B − 40KB.

Moreover, XP2P restricts to the cases in which there
are only a few replicas of the XML fragments. The cases
in which there is a large number of replicas can be easily
handled by unstructured networks [11, 16], as they would
lead to crawl all the network. An hybrid solution marrying
Gnutella with PierDB [15] is presented in [21], which focuses
on keyword-based queries. We think an extension of XP2P
in this direction can rely on the results presented in [21] and
is outside the scope of this paper.

Statement of the problem and underlying motiva-
tions. Given an XPath expression px describing an XML
document or a fragment of it and a set of peers N , our goals
are: to uniquely assign px to a peer in N , which holds the
fragment corresponding to px; to also store within the peer
the related path expressions of that fragment, i.e. the path
expressions identifying the external fragments linked to the
original fragment; to guarantee a look-up of a path expres-
sion in the network, by solely using the DHT and the related
path expressions. Our design builds on current P2P tech-
nology. The contributions of the paper are the following:

• A framework for handling XML data content in a
structured P2P network, and efficiently storing and
querying the data by means of few related path ex-
pressions stored on each peer.

• A lightweight DHT for XML fragments that let us lo-
cate the peers of interest and hence evaluate XPath
queries.

• Two algorithms addressing (the first for queries with
child -axis, the second for descendant-axis) the evalua-
tion of XPath lookups. Fragment lookup is thus done
without the need of storing global catalog information.

• An extensive experimental evaluation of XP2P scala-
bility and query routing performances.

There are several motivations behind this work. File-
sharing systems, customarily known as such, are being con-
sidered the new architectures for data integration [17] but

are not limited to play that role [13]. We believe that XP2P
is widely applicable in all those cases when there is no me-
diation between the peer schemas and a common knowledge
of the global schema is unforeseeable. An example would be
that of organizations that, for privacy reasons, tend to keep,
within each peer, only partial information of external peers
XML data and still wants to query that data when a com-
plete schema knowledge is lacking. As highlighted by recent
important research [20], such a complete schema knowledge
may be impossible to achieve even in a centralized scenario,
thus leading to schema-free XML querying.

The rest of the paper is organized as follows: Section 2 dis-
cusses in detail the existing literature on this topic; Section 3
describes how we model XML data in XP2P; Section 4 illus-
trates the principles behind XP2P DHT; Section 5 shows the
algorithms for XPath expression lookups; finally, Section 6
discusses our prototype and the experimental results.

2. RELATED WORK
Enhancing P2P networks with query processors is in-

deed a timely topic, which has received the attention of the
database community these last years [21, 14, 8]. In [14], the
shared data are horizontal partitions of relational tables and
the queries answered are approximate range queries. A lo-
cality preserving hash function is used to map query ranges
on the network: this improves significantly query response
time because similar ranges are very likely hashed to the
same peer. Relational range queries in P2P networks are
also addressed in [8] by Gehrke et al. using a distributed
version of a B+-Tree called P-Tree such that every peer
contains a subset of the tree and some routing information.
However, Ptrees are not highly scalable since every peer can
hold at most one tuple. In XP2P, we focus on the general
case when a peer can hold more than one XML fragment
at a time. Moreover, the replicated index consists of few
path expressions and is often smaller than the entire P-tree.
Distribution of XML has recently attracted the attention of
the community. Distributing XML in a small community
of providers or in a distributed repository is, however, re-
markably different w.r.t. distributing (and replicating) it
in large and dynamic P2P networks. Gertz et al. in [4]
proposed a fragmentation method and an allocation model
for a virtual XML repository. While this approach is well
suited for a static situation where there are a set of peers
that never leave the network, it lacks support for highly dy-
namic contexts such as P2Ps. Distribution and replication
for documents enriched with service calls is addressed in [1],
where the distribution is guided by the services execution
and not applicable here. XML distributed query evaluation
is addressed in [27] but the results are valid for hundreds
of sites, not for thousands of them. Thus, the problem is
still unsolved for large dynamic P2P networks, except for
recent papers [19, 10]. [19] considers hierarchical P2P net-
work topologies where every peer contains the XML content
and statistical information about the neighborhood. [10]
extends Chord for XML data by using tag names as hash
keys. However, this approach introduces overhead when a
large number of sites has the same tag. The authors say that
their framework is extensible for supporting paths instead of
tag names but they do not discuss the extensions to handle
linked XML fragments. Both approaches [19, 10] lack scal-
ability for a large number of peers and in case of frequent
updates of the network. Similarly to [10], XPeer [24] is a

system for sharing XML data, which uses full tree-guides to
perform query evaluation. Differently from [10], however, it
is not DHT-based and assumes the presence of super-peers.

Data integration and exchange for P2P networks is ad-
dressed in [17],[28]. In [17] mapping tables on peers repre-
sent the aliases of the same item in the network. Then, a
lookup search on a peer is conducted by looking at its map-
ping table to find the name aliases on other peers. Halevy et
al. in [28] proposed a framework for data integration based
on a global mediated schema: every query is first translated
w.r.t. this global schema and then forwarded to the peers
whose local schema can be mapped to the global schema. In
XP2P, we do not assume mapping tables or a global schema,
but the extension of P2P for data integration is an interest-
ing future direction.

Exact-match queries are not sufficient for searching a large
set of XML documents shared on a network. The class of
XPath queries proposed here includes partial-match XPath
queries, which is reminiscent of tree pattern relaxations pre-
sented in [3]. However, the latter only focuses on XPath
full-text queries in a centralized scenario.

3. DATA MODEL IN XP2P
We now study how to model XML fragments in XP2P.
An XML document can be seen as an unranked, labelled
tree t having a distinguished root node r. Given an XML
tree t, we first define XP as the set of distinct linear
root-to-node path expressions, each starting at the root
of t, namely r, and leading to some node in t. A lin-
ear path expression /s1[i]/s2[j]/../sn [k] is a path expres-
sion which only uses the child axis and optional positional
filters [i], [j], . . . , [k] on steps s1, s2 . . . sn, respectively 1. Po-
sitional filters [i], [j], . . . , [k] indicate the positions of ele-
ments/attributes in their corresponding document order.

Given an XML tree t and the set XP , an XML fragment
f is a subtree of t rooted in some node of t, nf , and iden-
tified by the distinct linear absolute path expression in XP
starting from r and leading to nf . We call this distinct path
expression, the identifier of the fragment.

More precisely, we model an XML fragment as a labeled
tree, whose nodes may have arbitrary labels and the special
label sub, which is used to include the root-to-node path
expression of a child fragment. Node labeled with sub can
only contain as values path expressions in XP and these
path expressions must have as their prefix the identifier of
that fragment. This is reminiscent of vertical partitioning in
database [22] (vertically partitioned attributes belonging to
the same table), but different though due to the hierarchical
nature of XML data.

Given an XML fragment, we can define the set of related
path expressions of that fragment as follows:

• super fragment path expression ps: it is the path ex-
pression of the fragment which is the ancestor of the
current fragment; an ancestor fragment is not necessar-
ily the parent axis of the path expression of the current
fragment but it can be any of its ancestor-axes;

• child fragment path expressions pc: they are the path
expressions stored as PCDATA within sub tags in the
fragment.

1Observe that, being the root unique, the only positional
filter [i] admitted on the first step s1 is [1].

/dept/professors/professor[1]/personaldata/private

/dept

dept

instructorsprofessors

instructor

#text

professor

(a) (b)

/dept

(c)

private

salary marital status

/dept/professors/professor[1]/personaldata

personal data

firstname lastname

/dept/professors/professor[1]/personaldata
/dept/professors/professor[1]

/dept/professors/professor[1]/personaldata/private
sub

sub

Figure 1: An example of linked fragments with their
related path expressions.

Fragments which refer each other by means of related path
expressions are called linked fragments. Obviously, while a
fragment can have several pc, it can only have one ps. Note
that all the related sub-fragments pc of a given fragment
appear in document order in the latter.

An example of linked XML fragments are illustrated in
Figure 1, where fragment (a) is the root fragment (its identi-
fying path expression, enclosed in the dashed round-corners
box, is exactly the root) and has one pc path expression to
fragment (b), whose ps is the path expression of fragment
(a). Note that ps for fragment (b) is not necessarily its par-
ent step, but an ancestor step (in such a case, the root itself).
Finally, fragment (b) points to fragment (c), which has no
child path expression. Note that fragments (a), (b) and (c)
taken separately (i.e. without looking at the related path
expressions) are found to be affiliated by simply matching
their identifiers prefixes.

In XP2P, any XML fragment comes equipped with its
identifier, plus (possibly) a set of pc path expressions and a
ps path expression. These fragments are stored in the peer
with their actual content and with its related path expres-
sions ps and pc. This is realized in XP2P by extending the
Chord nodes, as explained in next section.
Remark We do not assume that each fragment has to be
mandatorily linked to other fragments for being considered.
Indeed, it may happen that the fragment does not own any
related path expression and/or its identifier does not refer
to a super-fragment identifier. In such a case, the fragment
can still exist in the network and being queried, by means
of its identifier, i.e. simply the path expression leading to
its root. Note that if the same path expression comes from
two distinct documents, it simply suffices to prefix it with
the name of the originating document.

4. PUTTING PATHS IN A DHT
An interesting issue is how to access the fragments once
these have been stored within the peers.

Previous work [4] dealt with the problems of building
XML distributed repositories, where each site holds local
indexes and global information (up to 47% of the original
document overall). This is not feasible in a P2P, because,
being the latter very dynamic, the approach adopted in [4]
would lead to replicate global information on every peer and
to maintain this information up-to-date each time there is a
variation in the network. In an highly dynamic P2P context,
one is mainly interested to lookups, i.e. to know that a peer
holds a fragment, to retrieve it and to possibly cope with
network changes without global disruption. Past works [19,
10] utilized catalogs and data summaries (i.e. multi-level

bloom filters [19], distributed path summaries, B+trees and
histograms [10]) that partially or entirely describe the lo-
cal/global data. These approaches are probabilistic, and
are proved to work in small communities of data providers
better than in large and dynamic P2P.

Our target are conceivably P2P networks with an high
turnover of nodes. Such networks maintain as less as pos-
sible global information at every peer to avoid global re-
freshments of all the network. A graceful solution is that
of using a light distributed index structure that let the peer
know about a few (but sufficient in practice) other peers.
In particular, this structure must be highly adaptive to the
changes of the network, i.e. it must ensure that the entire
network does not disrupt when a peer is unreachable. This
is realized by Chord protocol by means of a distributed hash
table. A Chord node is aware of O(logN) other nodes for
efficient routing, as opposed to other protocols which used
consistent hashed fingers on all the other nodes. Being the
routing table distributed, Chord turns to be highly scalable
to a large number of nodes.

Each node (e.g. N8 in Figure 2) in original Chord stores
both the hashed keys of the successors at logarithmic dis-
tance (the so called finger table) and of the node predecessor.
XP2P keeps these hash keys to ensure logarithmic lookup
and further extends the Chord ring (see Figure 2) by stor-
ing on a node the following information: the local content
of a fragment(s), and its related path expressions, i.e. the
list of their child fragments and their super fragment path
expressions. These are to be hashed directly in the Chord
hash space and may exploit the Chord finger table and the
node predecessor.

Suppose we are looking for the fragment
/dept/professors/professor[1]/personaldata/ in
the Chord ring in Figure 2 (where (.....) stands for
/dept/professors omitted for space reasons), i.e. fragment
(b) of Figure 1. We can hash it directly in the Chord
hash space. The same happens with child fragments
/dept/professors/professor[1]/personaldata/hobbies

and /dept/professors/professor[1]/personaldata/pri-
vate and with the super fragment /dept. They can be
accessed by means of Chord lookup mechanism, which
uses the finger table and the node predecessor. However,
in order to embed path expressions in Chord, we need
to further modify the ring, i.e. to equip each node with
the additional capability of “hashing” path expressions.
Moreover, for better manageability, we have chosen to store
the path expressions in a different format, other than hash
keys. We describe our approach in paragraph 4.1.
Reliable replication of XML fragments According to
the data model presented in Section 3, the fragments may
be linked one to another and their identifiers, i.e. the lin-
ear path expressions identifying them, are distinct one w.r.t.
the other. However, in order to guarantee reliability, XP2P
admits fragments replica in a controlled manner. Each frag-
ment having an identifier path expression is stored on the
peer uniquely accessible through that identifier and may be
replicated on its successor nodes.

Thus, for instance in Figure 2, the fragment identified
by /dept/professors/professor[1]/personaldata belong
to the peer N8 and can be redundantly replicated on each
successor peer in the finger table. This is done in the spirit
of DHASH [7], which first added a storage layer to Chord.
The level of redundancy can be varied and can successfully

Predecessor of N8

N8

N14

N21

N32

N38

N42

N51

N56

N62

N48

Finger Table of N8

XML Fragment of N8

N14
N14

N14N8 + 1

N8 + 2
N8 + 4

N8 + 8

N8 + 16

N21

N32
N8 + 32 N42

/dept/
(.....)/professor[1]/personaldata

(.....)/professor[1]/personaldata

(.....)/professor[1]/personaldata/private

(.....)/professor[1]/personaldata/hobbies

ps
id
pc

pc
(.....)/professor[1]/personaldata/hobbies
(.....)/professor[1]/personaldata/private

Figure 2: XP2P extension of a Chord ring.

cope with the situations in which node failures occur. The
problem of replication to guarantee a reliable query response
is orthogonal to our problem and left as future work. Here,
we simply adopt a well-known solution.

4.1 Fingerprinting path expressions
Path expressions ranging the set XP are distinct path ex-
pressions often sharing a prefix between each others. A
straightforward extension of Chord would lead to directly
hash these path expressions, using SHA-1. However, we
have devised a more suitable solution. Instead of hashing
them, XP2P reduces them to shorter fingerprints [23, 5,
6], i.e. bit tokens exhibiting the same length overall (at
most 8-9 bytes against 20 bytes obtained with SHA-1 used
in Chord). Path fingerprinting in XP2P is done in the spirit
of URL fingerprinting [6], since the space of paths resem-
bles the space of URLs 2. Besides reducing the occupancy
of the original strings for URL caching as done in [6], fin-
gerprinting in our case brings two main advantages. First,
it has a nice concatenation property, which leads to quickly
compute path expressions for fragments lookups. Such a
property, discussed in detail below, only pertains to finger-
prints and not to hash keys, thus motivating the encoding
of path expressions as fingerprints rather than as hash keys.
Secondly, we foresee the use of fingeprints to address au-
thenticity problems in P2P networks, as discussed next.

The fingerprinting function is similar to hash functions
as it can be seamlessly applied when the items to be fin-
gerprinted differ in at least one bit [5, 23], which is true
for distinct path expressions in XP . Thus, even collections
of homogeneous documents can be reduced to distinct fin-
gerprints by differentiating them with namespaces. In the
remainder, for the sake of clarity, we will ignore this techni-
cality.
Overview of the fingerprinting scheme due to
Michael Rabin [23] Let A = (a1, a2, . . . , am) be a binary
string. We assume that a1 = 1, otherwise a prefix bit can
be used. We associate to the string A a polynomial A(t)
of degree m − 1 with coefficients in the algebraic field Z2,
A(t) = a1 ∗ tm−1 + a2 ∗ tm−2 + · · · + am. Let P (t) be an
irreducible polynomial of degree k, over Z2. Given P (t),
the fingerprint of A is the following: f(A) = A(t)modP (t).
The irreducible polynomial can be easily found following the
method in [23] and an interesting example is in [18] (p.542).
The method let pick uniformly at random a polynomial of
degree k and compute the probability that A(t) divides it.
The latter being the probability that two strings have the
same fingerprint, must be kept sufficiently small.

2Linked URLs are reminiscent of path expressions sharing
the same prefix.

Computation of path expressions fingerprints. The
path expressions used to identify fragments are drawn from
the set XP . Indeed, the computation of each short token
associated to each path expression can proceed incremen-
tally, as stated by the following important concatenation
property of the fingerprinting function [23]: the fingerprint-
ing of the concatenation of two strings can be computed
via the equality: f(concat(A, B)) = f(concat(f(A), B)).
Consider for instance the following path expression:
/dept/professors/professor/private, and suppose we
are given the fingerprint of /dept/professors/professor,
i.e. f(/dept/professors/professor , then
f(concat(/dept/professors/professor/private)) =
f(concat(f(/dept/professors/professor), /private)).
The same holds for steps and filters of a path expres-
sion, which are concatenated one after the other (e.g.
/professor[1] as concatenation of /professor and [1]).
The above property is extremely useful when updates are
performed locally on the fragments roots. Indeed, instead of
recomputing the fingerprint of the modified fragment from
scratch, the fingerprint of the parent is concatenated to the
new root tag. In order for a peer to compute the related
path expression fingerprints, it only suffices to store the
irreducible polynomial on that peer. The latter has a fixed
degree equal to Nf +2∗Dmax +Q, where 2Nf is the number
of fragments in the network, 2Dmax being the length of
the longest path expression in the network and 2Q being a
threshold due to the probability of collision between two
arbitrary distinct tokens [5]. In our setting, we use a degree
of 64, which leads to an acceptable probability of 2−10, and
let us exploit a maximum length for path expressions of
50 steps (averaged on a length of 10 characters per step)
and a maximum number of fragments equal to 230, which
is quite huge. Observe that this polynomial is a quite
small structure to be replicated on each participating peer if
compared to replicated structures used in other approaches
(e.g. multi-level Bloom filters, restricted to documents
with 50 distinct elements and 3-steps paths, in [19] and a
combination of P-Indexes, A-Indexes and T-Indexes, mea-
suring from 22% up to 47% of the whole document, in [4]).
Moreover, such a polynomial can accommodate changes of
the network till the maximum number of fragments, 230

and till the maximum depth of a document (i.e. 50). 3

As an extension, we devise the use of fingerprinting to
verify the authenticity of a fragment. Indeed, within the
XML content of a fragment, one can think of storing the
fingerprint of its entire XML content as an additional com-
ponent. Using fingerprints to do this would imply to only
need the stored polynomial to check the authenticity of that
fragment. Conversely, with hash keys one would have to
store the entire set of hash keys (of XML content) present
in the network.
Fragment and path allocation. In summary, within
Chord a node’s identifier is chosen by hashing the IP ad-
dress by means of SHA-1 [9]. We have made an extension
of Chord using fingerprints instead of hash functions. Be-
sides the successor nodes and the predecessor node, which
are natural to the Chord protocol, each peer in XP2P stores
minimal access information, properly fingerprinted : (i) the

3These are quite acceptable bounds since, only if these are
abundantly overcome (of at least one order of magnitude,
e.g. from 230 to 231), the degree of the polynomial needs to
be adjusted.

fingerprint of its own identifier; (ii) the fingerprint of the
super-fragment ps; (iii) a list of fingerprints of path expres-
sions of the external sub-fragments, pc.

5. PARTIAL AND FULL FRAGMENT
LOOKUP IN XP2P

Once the path expressions have been fingerprinted, it is
interesting to understand how to use them for fragments
lookups. We allow two kinds of lookups, namely partial and
full. By partial lookup, we shall mean the lookup of a frag-
ment which only partially matches the original request. For
instance, consider the case in which the fragment of Figure 2
located on peer N8 is looked up. N8 is reached through the
DHT, and its fragment returned. This answer is partial as
the two sub-fragments rooted in sub tags are not retrieved.
Conversely, by full lookup we shall mean the retrieval of the
fragment completed with its sub-fragments, until each sub

element is unfolded.
The rationale behind these two kinds of lookups derives

from many popular P2P networks [11, 16], where usually the
required items are searched until a time-out expires or until
a certain number of findings is reached. Moreover, since a
P2P network is highly dynamic, it is reasonable to have a
partial query answer. Indeed, a node can always leave the
network due to failures. Already in such a case, a complete
query answer which retrieves that node cannot be guaran-
teed. Moreover, the interest for partial query evaluation is
increasing even in the centralized cases, as recent important
work shows [3].

The XPath fragment we consider for full or partial lookups
is {/, //, []}, where filters are restricted to positional filters
as they are used to identify placed fragments. Observe that
we are only able to evaluate unrestricted value predicates
on local fragments, since these are not directly encoded in
the DHT. We distinguish between path queries containing
only the child axis and those containing descendant axis.
We focus here on the first kind and give an algorithm for
their evaluation. The others are deferred to Section 5.1.

To represent the query pattern, we use the formalism in-
troduced in [2]. Answering a tree pattern tp of length n in
{/, []} is done by fingerprinting it directly in the Chord ring.
However, this search will be successful only when there is an
exact-match between the tree pattern and an existing frag-
ment. We call a miss the lack of a fragment on the network,
after an exact-match fails. A miss can be due to the ab-
sence of a fragment on the network for two reasons: (i) the
fragment was never placed on the peers; (ii) the fragment
temporarily left. When a miss happens for a tree pattern,
the search is biased towards finding at least a partial-match.
Thus, the tree pattern is pruned of a step at a time (by step
we mean a compound step, composed of a step name plus a
positional filter) and then possibly resumed afterwards (see
Figure 3). More precisely, we start looking exhaustively at
the n − 1 prefix path expressions corresponding to tp in a
bottom-up order. As soon as one of these prefixes is hashed
on a peer pi, we can stop the bottom-up evaluation at pi.
Henceforth, we start analyzing the local content of pi and its
sub-fragment list in a top-down fashion and further on, until
a result is found or the time-out expires. The evaluation of
a tree pattern varying in {/, []} is thus done in a composite
bottom-up/top-down fashion. This hybrid evaluation allows
to bidirectionally navigate the network since it may happen

p1: /professor

p2:/professor/personaldata[2]

p3 (*):/professor/personaldata[1]professor

pictures

personaldata[1]

 private[2]

(a) Tree pattern

(1)

(2)

(3)

(4)

(5)

(6)

(7)

S

(1) (2)
(3)

(4)

(5)

(6)

(7)

 Tp

(b) Evaluation of Tp in XP2P

Figure 3: An example of lookup for a pe in {/, []}.

that a miss happens while doing bottom-up evaluation (for
example, for a temporary node failure) and that the miss
can be recovered when doing top-down (due to new joins in
the network).

As an example of evaluation on the data of Fig-
ure 1, consider Figure 3, which shows a tree pat-
tern issued on a network constituted of peers p1, p2

and p3. The peer S starts the evaluation at step
(1), when a lookup is performed on path expression
/professor/personaldata[1]/private[2]/pictures. The
fragment does not belong to the network, thus its prefix
/professor/personaldata[1]/private[2] is looked up (2)
but not found, and so on, /professor/personaldata[1] (3)
is searched, but not found since the peer p3 is temporarily
down, till /professor (4), which is instead correctly found
on peer p1. Thus, we can start the top-down evaluation
from /professor (4), look in its sub-fragments and check
again /professor/personaldata[1] (5), which is now up
and can correctly answer our query ((6,7) are evaluated lo-
cally on peer p3). Results are shipped back on peer S and
reconstruction of results is done on peer S, which indeed
originated the query.

As a final remark, note that the complexity of partial-
match child axis queries is O(Ns × log(N)), where Ns is the
number of steps of the path expression and N the number
of peers in the network.

5.1 Towards XPath queries: An algorithm for
the descendant-axis

Evaluation of the descendant-axis is noticeable as it can-
not be done by fingerprinting the tree pattern (or its pre-
fixes) and look for its fingerprint directly. In addition, no
global schema is available in XP2P to guide the evaluation
of the descendant axis towards some particular peers. One
naive solution is an exhaustive search over the entire ring
that starts at an arbitrary peer. However, this solution, al-
though complete, would lead to many unuseful accesses. We
have devised a better solution, which searches the space of
the peers (and thus of the fragments located on those) by
selecting peer by peer the most promising direction. The
algorithm relies on two key observations: (i) the evaluation
of a tree pattern containing a ‘//’ may take place bottom-
up or top-down w.r.t. the parse tree, but top-down is pre-
ferred [12]; (ii) a fragment can always exploit information
about the sub-fragments, since it stores their fingerprints.

We first discuss observation (i). To enable the evalua-
tion of the descendant axis in XP2P, we follow the result
of [12], which proved that top-down and bottom-up have
both polynomial time complexity in a centralized setting,

Algorithm Optimistic step-wise query decomposition
of descendant axis
Input: a tree pattern tp containing ‘//’,

a list of peers LP , each peer pi with a list of paths Lpi

Output: query decomposition over LP

1 start at peer pi containing the root fragment
2 or, alternatively, at a random peer pi

3 while LP is not empty
4 within Lpi , seek “promising” path expressions w.r.t. tp
5 let these “promising” path expressions be LPpi

6 let the remainings be OTpi

7 while LPpi is not empty
8 find the peer owning a path pj in LPpi

9 evaluate the path pj in LPpi , LP = LP + pj

10 while OTpi is not empty
11 find the peer owning a path pk in OTpi

12 evaluate the path pk in OTpi , LP = LP + pk

13 LP = LP − pi

Figure 4: Optimistic Step-Wise Decomposition Al-
gorithm for descendant-axis.

but top-down yields less intermediate results than bottom-
up. In XP2P, evaluation of a step with ‘//’ proceeds as much
as possible top-down. We optimistically start evaluation of
‘//’ from the peer containing the “context” fragment. If the
latter is down, we can always start at any other peer, as
much as possible closer to the context. The context frag-
ment and the fragments closer to the context are known to
any arbitrary peer, since they prefix the related path expres-
sions of that peer.

Observation (ii) leads to devise an evaluation strat-
egy for the descendant-axis. For simplicity, we de-
scribe here the evaluation of a tree pattern of the
kind /s1/..../si//sj/.../j+k , as the extension to multiple
descendant-axis steps is a composition of the former. On
an arbitrary peer, we can explore the local information and
the related path expressions to find the answer to the above
tree pattern. At an arbitrary peer pj , we can have four
cases, i.e. either find (1) local sj elements, i.e. contained in
the fragment; (2) intermediate steps sj of the related path
expressions; (3) last steps sj of the related path expressions
or (4) not find them at all as steps in the related path ex-
pressions. In case (1) the elements are local and can be
retrieved. Case (2) is not meaningful when evaluation is
proceeding top-down, since it means that sj elements which
appear as intermediate steps were encountered in the past
and are already included in the query result. Cases (3) and
(4) are the most significant as they provide new directions to
explore: let us call the first path expressions ((3)) promising
path expressions LPpi , and the remaining ones ((4)) OTpi .

These considerations lead to the optimistic step-wise de-
composition algorithm in Figure 4 for a tree pattern contain-
ing a descendant-axis. In its first step, the algorithm per-
forms a local search on the current peer, and proceeds by fol-
lowing the promising directions indicated by sub-fragments
whose root is the searched element. All the other remaining
sub-fragments are probed afterwards. Observe that the com-
plexity of the descendant axis query evaluation is bounded
by O(Nf × log(N)), being Nf the total number of fragments
and N the number of peers in the network.

An arbitrary path expression in {/, //, []} is then solved
by doing a composition of exact-match and partial-match
lookups for linear path expressions and of the optimistic
step-wise algorithm for the descendant-axis. For the sake of
conciseness, details are omitted.

Finally, observe that once the context node /s1/..../si (i.e.
the node on which evaluation of a path expression starts) has
been found, retrieval of sj can proceed in parallel on all the
paths in LPpi (OTpi , resp.). This leads to a quite flexible
distributed query processing, and has been validated by our
experiments. Observe that, it is also in order to maximally
exploit parallelism that assembling of results is done directly
within the peer which originated the query.

6. EXPERIMENTAL STUDY
The implementation bases on the Chord simulator, whose

find operation has been extended to accept a linear path
expression instead of a document ID. Since the Chord simu-
lator does not come with a storage layer, we built our own,
by using native BerkeleyDB [29]. Indeed, the fragments con-
tent and the related path expressions properly fingerprinted
are physically stored in BDB B+-trees. We have pursued
several experiments on the XP2P prototype. All the exper-
iments have been conducted by using different instances of
the XMark data set [25], more precisely we have considered
three sets of XMark documents fragments, ranging the sizes
shown in the following table:

Name Min Frag. Size Max Frag. Size Avg Frag. Size

Small 1KB 1.3MB 3KB
Medium 3KB 18MB 16KB

Big 8KB 29MB 41KB

Mainly, the experiments were targeted to ascertain the
validity of our approach, in particular to assess the load
distribution achieved by fingerprinting w.r.t. classical hash-
ing used in Chord; to measure the impact of storing the
related path expressions on each peer; to test the query per-
formances of Algorithms of Sect. 5 and the system scalability
while varying the number of peers in the network.
Fingerprinting load distribution. The first set of exper-
iments were aimed at showing that replacing the SHA-1 hash
keys used in Chord with fingerprints, besides obvious advan-
tages in terms of occupancy, computation and authenticity,
is fairly equivalent for load balancing. To this purpose, we
have measured the number of fragments assigned to each
peer (peer# indicates the participating peer), when 10000
fragments are handled by the DHT on 512 nodes.

The results of Figure 5 shows that, even if there are a few
dominant peaks for fingerprinting, each peer is holding a
comparable number of fragments. However, fingerprints are
more attractive than simple hashing for path expressions
for what we discussed in Section 4.1. Other experiments
(not shown for space reasons) executed on larger numbers
of nodes gave a similar load distribution.
Occupancy of related path expressions. In order to
show the occupancy of the related path expressions, we have
performed an experiment to measure the average/maximum
size of those for each participating peer, while varying the
number of fragments. The experiment has been executed
on the Big set of XMark fragments. As it can be noted in
Figure 5 (bottom), in a network of 1000 peers, the maximum
size is nearly 14KB when 20000 fragments are handled in
the network.
Lookups performances Moreover, we have explored the
performance of two kinds of path queries: (1) path queries
containing only / when used to do full or partial searches

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600

o
f fr

ag
me

nts
 / p

ee
r

peer#

fingerprint (K=64)

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

o
f fr

ag
me

nts
 / p

ee
r

peer#

SHA-1

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0 5000 10000 15000 20000

m
a

x
/m

e
a

n
 r

e
la

te
d

p

a
th

s
 s

iz
e

 (
b

y
te

s
)

no. of fragments stored

max
mean

Figure 5: Load distribution with a 512-nodes system
and 10000 fragments with Fingerprinting (top) and
SHA-1 (medium). Occupancy of the related path
expressions (max, mean) for a 1000 nodes network
(bottom).

(using the Algorithms of Section 5); (2) queries of the kinds
/s1/..../si//sj/.../sj+k , employing the Algorithm 4.

We have conducted experiment (1), first by considering
only exact-match XPath queries and secondly by consider-
ing partial-match XPath queries (under the meaning defined
in Section 5). In both experiments, we have considered a
network with approximately 10000 fragments. The query
set for the experiment on exact-match XPath queries has
been chosen by randomly picking path expressions of frag-
ments present in the DHT. Conversely, the query set for the
experiment on partial-match XPath queries has been cho-
sen by constructing synthetic path expressions that (i) do
not belong to the DHT; (ii) may have in common a prefix
with a path expression present in the DHT. For example, in
Figure 1, a synthetic path expression is /dept/instructors.

Figure 6 (top, medium, resp.) plots the number of hops
that have been made to complete the query under different
configurations of the network (ranging 500−5000 peers). In
these experiments, we have considered a time-out of 1000
ms and counted the nr. of hops in all cases, included those
in which there are misses. It is worth to observe that in
both cases of exact-match queries and partial-match queries,
the trends are pretty much linear for the three data sets.
This let us conclude that the behavior is independent of the
fragment sizes present in the network, but mainly depends
on the way these fragments are balanced in the DHT. In
other words, this is a confirmation that XML fragments (of
any size) can be handled in a P2P network by means of a
DHT without causing bottlenecks on the peers holding the
largest fragments.

 2

 3

 4

 5

 6

 7

 8

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
e
a
n
 h

o
p
s

no. of peers

Small
Medium

Big

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
e
a
n
 h

o
p
s

no. of peers

Small
Medium

Big

 20
 30
 40
 50
 60
 70
 80
 90

 100

 500 1000 1500 2000 2500 3000 3500m
e

a
n

 %
 o

f
q

u
e

ry
 c

o
m

p
le

te
d

time (ms.)

Figure 6: Nr. of hops measured for the exact-match
queries (top) and partial-match queries (medium).
Query results w.r.t. time for the step-wise Algo-
rithm 4 (bottom).

Finally, we have conducted experiment (2) for ‘//’ by con-
sidering a 1000 peers network with 10000 fragments ranging
the Medium dataset sizes. Figure 6 (bottom) depicts the
average percentage of the query completed w.r.t. time. We
conclude that the implicit parallelization of the query eval-
uation process is fully exploited and allows to complete the
query answering in a relatively small amount of time.

7. CONCLUSIONS AND FUTURE WORK
We have presented XP2P, a P2P framework for answering
XPath queries. XP2P uses XPath to identify XML frag-
ments in a P2P network and only needs to store few related
path expression and a polynomial on each participating peer.
Our system has been implemented on top of Chord [26]. The
results gathered from the experimental study are very en-
couraging in that the lightweight indexing mechanism let us
answering queries in still reasonable times and offers scal-
ability w.r.t. the number of peers and fragments in the
network. Our prototype is thus far enabled for lookups of
simple path expressions. Future work will be devoted to in-
vestigate ad-hoc evaluation mechanisms of more expressive
XPath queries and further optimizations of XPath queries
containing the descendant axis.

Acknowledgments
The authors would like to express their gratitude to Prof.
Ion Stoica and the Chord team for making the software
publicly available.

8. REFERENCES
[1] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and

T. Milo. Dynamic XML Documents with Distribution and
Replication. In Proc. of SIGMOD, 2003.

[2] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava.
Minimization of Tree Pattern Queries. In Proc. of SIGMOD,
2001.

[3] S. Amer-Yahia, L. V. Laksmanan, and S. Pandit. FleXPath:
Flexible Structure and Full-Text Querying for XML. In Proc.
of SIGMOD, 2004.

[4] J.-M. Bremer and M. Gertz. On Distributing XML
Repositories. In Proc. of WebDB, 2003.

[5] A. Broder. Some Applications of Rabin’s Fingerprinting
Method. Springer-Verlag, 1993.

[6] A. Broder, M. Najork, and J. Wiener. Efficient URL Caching
for World Wide Web Crawling. In Proc. of WWW, 2003.

[7] E. Brunskill. Building peer-to-peer systems with chord, a
distributed lookup service. In Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems, page 81.
IEEE Computer Society, 2001.

[8] A. Crainiceanu, P. Linga, J. Gehrke, and
J. Shanmugasundaram. Querying Peer-to-Peer Networks Using
P-Trees. In Proc. of WebDB, 2004.

[9] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proc. of SOSP,
2001.

[10] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating Data
Sources in Large Distributed Systems. In Proc. of VLDB,
2003.

[11] Gnutella homepage. http://www.gnutella.com/.

[12] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for
Processing XPath Queries. In Proc. of VLDB, pages 95–106,
2002.

[13] S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and
D. Suciu. What Can Database Do for Peer-to-Peer? In Proc.
of WebDB, 2001.

[14] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate Range
Selection Queries in Peer-to-Peer Systems. In Proc. of CIDR,
2003.

[15] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER. In
Proc. of VLDB, 2003.

[16] The Kazaa Homepage. http://www.kazaa.com.

[17] A. Kementsietsidis, M. Arenas, and R. Miller. Mapping Data
in Peer-to-Peer Systems: Semantics and Algorithmic Issues. In
Proc. of SIGMOD, 2003.

[18] D. Knuth. The Art of Computer Programming III: Sorting and
Searching, 2nd Edition. In Addison-Wesley, 1973.

[19] G. Koloniari and E. Pitoura. Content-Based Routing of Path
Queries in Peer-to-Peer Systems. In Proc. of EDBT, 2004.

[20] Y. Li and C. Y. andH. V. Jagadish. Schema-Free XQuery. In
Proc. of VLDB, 2004.

[21] B. T. Loo, R. Huebsch, J. M. Hellerstein, I. Stoica, and
S. Shenker. Enhancing P2P File-Sharing with an Internet-Scale
Query Processor. In Proc. of VLDB (To appear), 2004.

[22] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice-Hall, 1999.

[23] M. Rabin. Fingerprinting by Random Polynomials. In CRCT
TR-15-81, Harvard University, 1981.

[24] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A
self-organizing XML P2P database system. In Proc. of P2PDB
Workshop, co-held with EDBT, 2004.

[25] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and
R. Busse. XMark: A benchmark for XML data management.
In Proc. of VLDB, 2002.

[26] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proc. of ACM
SIGCOMM, 2001.

[27] D. Suciu. Distributed Query Evaluation on Semistructured
Data. In TODS, 2004.

[28] I. Tatarinov and A. Halevy. Efficient Query Reformulation in
Peer-Data Management Systems. In Proc. of SIGMOD, 2004.

[29] Website. Berkeley DB Data Store, 2003.
http://www.sleepycat.com/pro-ducts/data.shtml.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

