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Abstract. Non-trivial search predicates beyond mere equality are at
the current focus of P2P research. Structured queries, as an important
type of non-trivial search, have been studied extensively mainly for un-
structured P2P systems so far. As unstructured P2P systems do not use
indexing, structured queries are very easy to implement since they can
be treated equally to any other type of query. However, this comes at the
expense of very high bandwidth consumption and limitations in terms of
guarantees and expressiveness that can be provided. Structured P2P sys-
tems are an efficient alternative as they typically offer logarithmic search
complexity in the number of peers. Though the use of a distributed index
(typically a distributed hash table) makes the implementation of struc-
tured queries more efficient, it also introduces considerable complexity,
and thus only a few approaches exist so far. In this paper we present a
first solution for efficiently supporting structured queries, more specif-
ically, XPath queries, in structured P2P systems. For the moment we
focus on supporting queries with descendant axes (“//”) and wildcards
(“*”) and do not address joins. The results presented in this paper pro-
vide foundational basic functionalities to be used by higher-level query
engines for more efficient, complex query support.

1 Introduction

P2P systems have been very successful as global-scale file-sharing systems. Typ-
ically these systems support simple exact and substring queries which suffice in
this application domain. To make P2P systems a viable architectural alternative
for more technical and database-oriented applications, support for more power-
ful and expressive queries is required, though. A couple of approaches have been
suggested already on top of unstructured P2P systems and are being applied
successfully in practice, for example, Edutella [21]. Unstructured P2P systems
do not use indexing, but typically some form of constrained flooding, and thus
structured queries are very easy to implement, since each peer receiving the
query, which can be arbitrarily complex, can locally evaluate it and return its
contribution to the overall result set. However, this comes at the expense of very
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high bandwidth consumption and some intrinsic limitations. For example, com-
pleteness of results cannot be guaranteed, query planning is not possible, and
joins are nearly impossible to implement efficiently in large-scale settings.
The efficient alternative are structured P2P systems, as they typically offer

logarithmic search complexity in the number of participating nodes. Though the
use of a distributed index (typically a distributed hash table) makes the imple-
mentation of structured queries more efficient, it also introduces considerable
complexity in an environment that is as instable and error-prone as large-scale
P2P systems. Thus, so far only a few approaches exist, for example the PIER
project [14].
In this paper we present a first solution for the efficient support of structured

queries, more specifically, XPath queries, in large-scale structured P2P systems.
We assume such a P2P system processing queries expressed in a complex XML
query language such as XQuery. XQuery uses XPath expressions to locate data
fragments by navigating structure trees of XML documents stored in the net-
work. We refer to this functionality as processing of structured queries. In this
paper we provide an efficient solution for processing XPath queries in struc-
tured P2P networks. We do not address query plans or joins, but focus on a
foundational indexing strategy that facilitates efficient answering of structured
queries, which we refer to as structural indexing in the following. We restrict
the supported queries to a subset of the XPath language including node tests,
the child axes (“/”), the descendant axes (“//”) and wildcards (“*”) which we
will denote as XPath{∗,//} in the following. Thus, in this paper we describe an
indexing strategy for efficient XPath{∗,//} query answering in a structured P2P
network. Our goal was to provide a basic functional building block which can be
exploited by a higher-level query engine to efficiently answer structural parts of
complex queries in large-scale structured P2P systems. However, we think that
the work presented in this paper provides generally applicable concepts which
can be generalized to more complete support of XPath predicates and joins.
The paper is organized as follows: Section 2 gives a brief introduction to

our P-Grid structured overlay network which we use to evaluate our approach.
Our basic indexing strategy is described in Section 3 whose efficiency is then
improved through caching as described in Section 4. The complete approach is
then evaluated in Section 5 through simulations. Following that, we position our
approach in respect to related work in Section 6 and present our conclusions in
Section 7.

2 The P-Grid overlay network

We use the P-Grid overlay network [1, 3] to evaluate the approach presented in
this paper. P-Grid is a structured overlay network based on the so-called dis-
tributed hash table (DHT) approach. In DHTs peer identifications and resource
keys are hashed into one key space. By this mapping responsibilities for parti-
tions of the key space can be assigned to peers, i.e., which peer is responsible
for answering queries for what partition. To ensure that each partition of the



key space is reachable from any peer, each peer maintains a routing table. The
routing table of a peer is constructed such that it holds peers with exponen-
tially increasing distance in the key space from its own position in the key space.
This technique basically builds a small-world graph [16], which enables search in
O(logN) steps. Basically all systems referred to as DHTs are based on variants
of this approach and only differ in respect to fixed (e.g., P-Grid, Pastry [25])
vs. variable key space partitioning (e.g., Chord [27]), the topology of the key
space (ring, interval, torus, etc.), and how routing information is maintained
(redundant entries, dealing with network dynamics and failures, etc.).

Without constraining general applicability we use binary keys in P-Grid. This
is not a fundamental limitation as a generalization of the P-Grid system to k-
ary structures is natural, and exists. P-Grid peers refer to a common underlying
binary trie structure in order to organize their routing tables as opposed to
other topologies, such as rings (Chord), multi-dimensional spaces (CAN [24]), or
hypercubes (HyperCuP). Tries are a generalization of trees. A trie is a tree for
storing strings in which there is one node for every common prefix. The strings
are stored in extra leaf nodes. In the following we will use the terms trie and
tree conterminously.

In P-Grid each peer p ∈ P is associated with a leaf of the binary tree. Each
leaf corresponds to a binary string π ∈ Π, also called the key space partition.
Thus each peer p is associated with a path π(p). For search, the peer stores
for each prefix π(p, l) of π(p) of length l a set of references ρ(p, l) to peers q
with property π(p, l) = π(q, l), where π is the binary string π with the last bit
inverted. This means that at each level of the tree the peer has references to some
other peers that do not pertain to the peer’s subtree at that level which enables
the implementation of prefix routing for efficient search. The cost for storing the
references and the associated maintenance cost scale as they are bounded by the
depth of the underlying binary tree.

Each peer stores a set of data items δ(p). For d ∈ δ(p) the binary key key(d)
is calculated using an order-preserving hash function, i.e., ∀s1, s2 : s1 < s2 ⇒
h(s1) < h(s2), which is pre-requisite for efficient range querying as information is
being clustered. key(d) has π(p) as prefix but it is not excluded that temporarily
also other data items are stored at a peer, that is, the set δ(p, π(p)) of data
items whose key matches π(p) can be a proper subset of δ(p). Moreover, for
fault-tolerance, query load-balancing and hot-spot handling, multiple peers are
associated with the same key-space partition (structural replication), and peers
additionally also maintain references σ(p) to peers with the same path, i.e., their
replicas, and use epidemic algorithms to maintain replica consistency. Figure 1
shows a simple example of a P-Grid tree. Note that, while the network uses a
tree/trie abstraction, the system is in fact hierarchy-less, and all peers reside at
the leaf nodes. This avoids hot-spots and single-points-of-failures.

P-Grid supports a set of basic operations: Retrieve(key) for searching a cer-
tain key and retrieving the associated data item, Insert(key, value) for storing
new data items, Update(key, value) for updating a data item, and Delete(key)
for deleting a data item. Since P-Grid uses a binary tree, Retrieve(key) is of
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Fig. 1. P-Grid overlay network

complexity O(log |Π|), measured in messages required for resolving a search re-
quest, in a balanced tree, i.e., all paths associated with peers are of equal length.
Skewed data distributions may imbalance the tree, so that it may seem that
search cost may become non-logarithmic in the number of messages. However,
in [2] it is shown that due to the randomized choice of routing references from the
complimentary subtree, the expected search cost remains logarithmic (0.5 logN),
independently of how the P-Grid is structured. The intuition why this works is
that in search operations keys are not resolved bit-wise but in larger blocks thus
the search costs remain logarithmic in terms of messages. This is important as
P-Grid’s order-preserving hashing may lead to non-uniform key distributions.
The basic search algorithm is shown in Algorithm 1.

Algorithm 1 Search in P-Grid: Retrieve(key, p)

1: if π(p) ⊆ key or π(p) ⊃ key then

2: return(d ∈ δ(p)|key(d) = key);
3: else

4: determine l such that π(key, l) = π(p, l);
5: r = randomly selected element from ρ(p, l);
6: Retrieve(key, r);
7: end if

p in the algorithm denotes the peer that currently processes the request. The
algorithm always terminates successfully, if the P-Grid is complete (ensured by
the construction algorithm) and at least one peer in each partition is reachable
(ensured through redundant routing table entries and replication). Due to the
definition of ρ and Retrieve(key, p) it will always find the location of a peer at
which the search can continue (use of completeness). With each invocation of
Retrieve(key, p) the length of the common prefix of π(p) and key increases at
least by one and therefore the algorithm always terminates.



Insert(key, value) and Delete(key) are based on P-Grid’s more general update
functionality [10], Update(key, value), which provides probabilistic guarantees for
consistency and is efficient even in highly unreliable, replicated environments,
i.e., O(log |Π|+ replication factor). An insert operation is executed in two log-
ical phases: First an arbitrary peer responsible for the key-space to which the
key belongs is located (Retrieve(key)) and then the found peer notifies its repli-
cas about the inserted key using a light-weight hybrid push-and-pull gossiping
mechanism. Deleting and updating a data item works alike.

3 Basic index

The goal of structural indexing is to provide efficient means to find a peer or a
set of peers, that store pointers to XML documents or fragments containing the
path(s) matching the queried expression. As we target large-scale distributed
XML repositories, we try to minimize the messaging costs, measured in overlay
hops, required to answer the query. The intuition of our approach is to use stan-
dard database techniques for suffix indexing applied to XML path expressions.
Instead of symbols, the set of XML element tags is used as the alphabet.
Given an XML path P consisting ofm element tags, P = l1/l2/l3/ . . . /lm, we

store m data items in the P-Grid network using the following subpaths (suffixes)
as application keys:

– sp1 = l1/l2/ . . . /lm
– sp2 = l2/ . . . /lm

...
– spm = lm

The key of each data item is generated using P-Grid’s prefix-preserving hash
function: keyi = h(spi). The insertion of the m data items requires O(m logN)
overlay hops. Each data item stores the original XML path to enable local pro-
cessing and a URI to the XML source document/fragment. We refer to this index
as basic index in the following.
For example, for the path “store/book/title”, the following data items (we

represent them in a form of {key,data} pairs) will be created:

– {h(“store/book/title”), (“store/book/title/”, URI)}
– {h(“book/title”), (“store/book/title/”, URI)}
– {h(“title”), (“store/book/title/”, URI)}

Any peer in the overlay network can submit an XPath{∗,//} query. To sup-
port wildcards (“*”) we consider them as a particular case of descendant axes
(“//”). They are converted into “//” and are used only at the local lookup stage
as a filtering condition. I.e., our strategy is to preprocess a query replacing all
“*” by “//”, for example, “A/*/B” → “A//B”, answer the transformed query
using our distributed index and filter the result set by applying the original query



to it, thus we obtain the intended semantics of “*”. In this paper we concentrate
on general indexing strategy and do not address possible optimizations on this
issue.
Let qB denote the longest sequence of element tags divided by child axes

(“/”) only, which we will call the longest subpath of a query in the following. For
example, for the query “A//C/D//F”, qB = “C/D”.
When a query is submitted to a peer, the peer generates a query message

that contains the path expression and the address of the originating peer and
starts the basic structural querying algorithm as shown in Algorithm 2.

Algorithm 2 Querying using basic index: AnswerQuery(query, p)

1: compute qB of query;
2: key = h(qB)
3: if π(p) ⊆ key then

4: return(d ∈ δ(p) | isAnswer(d, query) = true);
5: else if π(p) ⊃ key then

6: ShowerBroadcast(query, length(key), p);
7: else

8: determine l such that π(key, l) = π(p, l);
9: r = randomly selected element from ρ(p, l);
10: AnswerQuery(query, r);
11: end if

The function AnswerQuery(query, p) extends Retrieve(key, p) described in
Algorithm 1 for answering the XPath{∗,//} query using the basic index. First
the search key is computed by hashing the query’s longest subpath qB . Then we
check whether the currently processing peer is the only one responsible for key.
If yes, the routing is finished and the result set is returned (line 4). Function
isAnswer(d, query) examines if the data item d is a correct answer for query.
Alternatively, if routing is finished at one of the peers from the sub-trie defined
by key (line 5) 1, all peers from this sub-trie could store relevant data items and
have to be queried. To do this, we use a variant of the broadcasting algorithm
(line 6) for answering range queries described in [11] as shown in Algorithm 3,
where the range is defined by key prefix. I.e., we query all peers for which
key ⊂ π(p).
The algorithm starts at an arbitrary peer from the sub-trie, and the query

is forwarded to the other partitions in the trie using this peer’s routing table.
The process is recursive, and since the query is split in multiple queries which
appear to trickle down to all the key-space partitions in the range, we call it the
shower algorithm.

1 I.e., the key is a proper substring of the peer’s path (π(p) ⊃ key), which means that
all bits of the key have been resolved and the query has reached a sub-trie, in which
several peers may store data belonging to the query’s answer set, and all have to be
checked for possible answers (this is ensured by P-Grid’s clustering property)



Algorithm 3 ShowerBroadcast(query, lcurrent, p)

1: for l = lcurrent to length(π(p)) do

2: r = randomly selected element from ρ(p, l);
3: ShowerBroadcast(query, l + 1, r);
4: end for

5: return(d ∈ δ(p) | isAnswer(d, query) = true);

With basic indexing the expected cost (in terms of messages) of answering
a single query is O(L) + O(S) − 1, where L is the cost of locating any peer
in the sub-trie and S is the shower algorithm’s messaging cost. The expected
value of L is a length of the sub-trie’s prefix. The intuition for this value is that
it is analogous to the search cost in a tree-structured overlay of size 2L. The
expected value of L is N/2L, which refers to the number of peers in the sub-trie.
The latency remains O(logN) because the shower algorithm works in a parallel
fashion.
To illustrate how a query is answered using the basic index, assume the

query = “A//C/D//E” is submitted at some peer p. Following Algorithm 2
the peer responsible for h(“C/D”) is located. Assume there is a sub-trie defined
by the prefix h(“C/D”) as it is depicted in Figure 2. The shower broadcast is
executed and every peer in the sub-trie performs a local lookup for query and
sends the result to the originating peer p.

4 Caching strategy

The basic index is efficient in finding all documents matching an XPath{∗,//}

query expression based on the longest sequence of element tags (qB). It performs
well with queries containing a relatively long h(qB), such that the number and
the size of shower broadcasts is not excessive. However, the search cost might
be substantially higher for queries, which require large broadcasts, i.e., h(qB) is
short. For example, queries like “A//B” are answered by looking up the peer
responsible for h(“A”) and then a relatively expensive broadcast depending on
the data in the overlay may have to follow. The search would be more efficient
if knowledge about the second element tag “B” would be employed as well. In
this section we introduce a caching strategy to address this issue, which allows
us to reduce the number of broadcasts, and thus, decrease the average cost of
answering a query.
Each peer which receives a query determines if it belongs to one of the fol-

lowing types:

1. Queries that can be answered locally, i.e., π(p) ⊆ h(qB). For example the
path “A/B/C//E” at the peer responsible for h(“A/B”).

2. Queries that require additional broadcasts, i.e., π(p) ⊃ h(qB), but contain
only one subpath, query = qB . For example, the path “A” at the peer
responsible for h(“A/B”). In this case matching index items are stored on



all the peers responsible for h(“A”). As queries of this type may be very
expensive, for example “//”, they could be disabled in the configuration or
only return part of the overall answer set to constrain costs.

3. Queries that require an additional broadcast, π(p) ⊃ h(qB), but include at
least one descendant axis (“//”) or wildcard (“*”), i.e. qB 6= q. For example
the query “A//C//E” at the peer responsible for h(“A/C”). The result set
for such queries can be cached locally and accessed later without performing
a shower broadcast.

Type 1 queries are inexpensive and thus work well with basic indexing. Type
2 queries are so general that they return undesirably large result sets and the
system may want to block or constrain them. The most relevant type of queries
whose costs should be minimized are thus type 3 queries which we will address in
the following. For simplifying the presentation we assume that only one peer is
responsible for a given query and have resources to cache results. We can assume
that storage space is relatively cheap as the “expensive” resource in overlay
networks is network bandwidth. However, each peer is entitled to arbitrarily
limit the size of its cache at will.

4.1 Answering a query

As a first step Algorithm 2 is modified by changing the routing and adding cache
handling. If we sort the subpaths of an XPath{∗,//} query by their length in de-
scending order, we can “rewrite” the original query as qC = concat(Pl1 , Pl2 , ..., Plk),
where Pli is the i-st longest subpath. We will use qC for routing purposes instead
of qB , which gives us the benefit that we use the whole query for generating the
routing key. The modified querying algorithm is shown in Algorithm 4.

Algorithm 4 Querying using basic index extended with cache:
AnswerQueryWithCache(query, p)

1: compute qC of the query;
2: keyC = h(qC)
3: compute qB of the query;
4: keyB = h(qB)
5: if π(p) ⊆ keyB then

6: return(d ∈ δ(p) | isAnswer(d, query) = true);
7: else if (π(p) ⊃ keyB) and (ifCached(query) = false) then

8: ShowerBroadcast(query, length(keyB), p);
9: else if π(p) ⊆ keyC then

10: return(d ∈ cache(p) | isAnswer(d, query) = true);
11: else

12: determine l such that π(keyC , l) = π(p, l);
13: r = randomly selected element from ρ(p, l);
14: AnswerQueryWithCache(query, r);
15: end if



In line 1 we compute qC which is used for routing (line 12) to the peer
(probably) storing a cached result set. Since P-Grid uses a prefix-preserving
hash function and qB ⊆ qC (qB is always the first subpath of qC), this peer is
located in the keyB = h(qB) sub-trie.
Similarly to the basic index’s search algorithm we check whether the currently

processing peer is the only one responsible for keyB (line 5). If yes, the result
set is returned (line 6). If the routing reached one of the peers from the sub-trie
defined by keyB , we execute the shower broadcast (line 8) to answer the query
as introduced in the previous section, but only if the query has not already been
cached (line 7). Section 4.2 explains how the function ifCached(query) works.
If the query is cached, the routing proceeds until the peer responsible for keyC

is reached. This peer answers the query by looking up a cached result set (line
10).

4.2 Cache maintenance

Each peer runs a cache manager, which is responsible for cache maintenance.
Two functions createCache(query) and deleteCache(query) are available, where
query is any query the peer is responsible for. In the following we explain how
these functions work. How the cache manager decides if a query is worth caching
or not will be described in 4.3.
To cache a query a peer determines a sub-trie’s prefix by hashing qB and col-

lects a result set for the query by executing a special version of the shower broad-
cast algorithm. The only difference with regard to the ShowerBroadcast listed
in Algorithm 3 is that for cache consistency reasons all the peers in the broadcast
sub-trie add the query expression to their lists of cached queries LCQ. Thus, in
case the P-Grid is updated, i.e. data items are inserted, modified or deleted, any
peer from the sub-trie can contact the peer(s) that cache relevant queries, to in-
form them of the change so they can keep their cache consistent. This operation
needs O(logN) messages per cache entry. The function ifCached(query) (line
7, Algorithm 4) looks up the (locally maintained) LCQ list to determine if the
query is cached. This solution requires additional storage space which can be
significantly decreased by the use of Bloom filters. Similarly, the cache deletion
operation requires updates of all LCQ lists.
When a data item is inserted, updated or deleted, all relevant cache entries

are updated respectively. A peer looks up the cached queries list and sends
update messages to all the peers caching the relevant queries. Each cache update
requires a message to be routed with an expected cost of 0.5 logN . If we denote
as C(path) the number of cached queries that have path as an answer, the update
cost can be estimated as O(logN) +O(C(path) ∗ 0.5 logN).

4.3 What to cache?

The cache manager analyzes the benefits of caching for each candidate query
the peer is responsible for. To do so, it estimates the overall messaging cost for



the query with and without caching. The decision to cache the query result or
to delete the existing cache entries is based on comparing these two values.
If the query is cached, each search operation for that query saves a shower

broadcast (the shower broadcast requires s− 1 messages where s is the number
of peers in the trie). On the other hand each update operation for any data item
related to the query will cost additional O(logN) messages to update the cache.
Knowing the approximate ratio of search/update operations (obtained by local
monitoring) the peer can make an adaptive decision on caching of a particular
query.
The query is considered to be profitable to cache if:

UpdateCost∗UpdateRate(subtrie) < SearchCost(subtrie)∗SearchRate(query)

where

– subtrie is the prefix of the qB sub-trie, i.e., the basic index’s shower broadcast
sub-trie;

– UpdateCost is the cost of one update, which is equal to the routing cost,
i.e., O(logN);

– UpdateRate(subtrie) is the average update rate in the given sub-trie;
– SearchCost(subtrie) is the number of peers in the sub-trie to be contacted
to answer the shower broadcast; and

– SearchRate(query) is the search rate for the given query.

To estimate these values each peer collects statistics. For SearchRate the
peer’s local knowledge is sufficient, whereas UpdateCost and SearchCost values
have to be gathered from the neighbors. To do so, we can periodically flood
the network or better employ the much more efficient algorithm described in
[4]. This algorithm gossips the information about the tree structure among all
the peers in the network. Each peer maintains an approximate number of peers
in each sub-trie it belongs to (as many values as the peer’s prefix length). The
values are exchanged via local interactions between peers and a piggyback mech-
anism avoids sending additional messages. The same idea is used to gossip the
UpdateRate in every sub-trie a peer belongs to.

4.4 Example

An example illustrating the application of caching is shown in Figure 2.
Note, that in Figure 2 each element tag is represented by one capital letter

and we omit child axes (“/”) to simplify the presentation. The numbers 1–4
written in brackets next to the arrows correspond to the following steps:

1. The cache manager at the peer II decides to cache a result set for the query
Q = “A//C/D//E”. The shower broadcast to the peers responsible for
h(“C/D”) is initiated to fill up the cache with all data items matching the
query. It reaches the peers I, III and IV. They add Q to their lists of cached
queries.
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Fig. 2. Caching strategy example

2. Peers III and IV send back the matching items. The shower broadcast reaches
peer V, which also adds Q to its list of cached queries. 4 messages were sent
to execute the shower broadcast in sub-trie h(“C/D”).

3. Assume, the query Q = “A//C/D//E” is submitted at the originating peer.
The search message is routed to the peer II (O(logN)), which can answer
a query locally by looking up its cache. The broadcast has to be executed
every time to answer the query Q if it is not cached.

4. The answer is sent back to the originating peer.

Assume now, a new path “A/C/D/E” is indexed. One of the four (see Section
3) generated data items with the key h(“C/D/E”) is added to the peer V. It
checks the list of cached queries and finds query Q = “A//C/D//E” to be
concerned by this change. Peer V sends a cache update message to the peer
responsible for Q, i.e., to Peer II, which ensures cache consistency.

5 Simulations

To justify our approach and its efficiency, we implemented a simulator of a
distributed XML storage, based on the P-Grid overlay network. The simulator
is written in Java and stores all data locally in a relational database. As the
simulation results in this section meet our theoretical expectations we will in a
next step implement our approach on top of our P-Grid implementation [22] and
test it on PlanetLab.
As input data for our experiments, we use about 50 XML documents (mainly

from [28]) from which we extracted a path collection of more than 1000 unique



paths. Based on each path in the collection we generated four additional paths by
randomly distorting the element tags. Using the resulted path collection (about
5000 paths) we generate a P-Grid network by inserting a corresponding number
of data items per each path (about 20000 data items overall). P-Grid networks
of different sizes can be obtained by limiting the maximum number of data items
a peer can store.
For our experiments we generated different query collections by randomly

removing some element tags from the paths in the path collection. A parameter
t specifies query construction and ensures percentage of type 3 (“cachable”)
queries in the collection.
To emulate the querying process we generated a query load of 10000 queries

by applying different distributions on the query collection. In the following ex-
periments an average search cost value for given parameters is computed by
processing all queries in the query load.
In the first experiment we assume that all possibly “cacheable” queries are

in fact being cached. We vary the network size and measure the average cost
of answering one query. The query load is uniformly distributed and different t
parameters are used. In Figure 3 the first four curves show the average search
cost for t = 0, 0.5, 0.75 and 1 respectively. Obviously, the more queries are being
cached, the lower the search cost becomes. The fifth curve shows the cost of
locating at least one peer responsible for the query, i.e., the search cost without
shower broadcasts. Evidently, the two last curves coincide because if all queries
are cached no shower broadcasts are required.
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Fig. 3. Average number of messages required to answer a query depending on the
network size, t denotes the fraction of “cacheable” queries

However, query load does not necessary follow a uniform distribution. In-
stead, a Zipfian distribution is more realistic as shown in Figure 4. In the exper-
iment we fixed the network size to 1000 peers, t = 0.5 and vary the cache size.
The first curve shows the constant search cost if caching is disabled. The other



three curves correspond to the different parameters of the Zipf distribution of
the query load and show how our approach performs under these conditions.
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Fig. 4. Average number of messages required to answer a query in the network of 1000
peers depending on the fraction of cached queries

However, the benefits we gain from caching for querying, come at the price
of increasing the update costs. To perform one update operation, for example,
to insert a new path containing m element tags, we have to contact all the
peers responsible for all the subpaths (O(m logN)). We also have to update all
relevant cache entries (O(logN) per cache entry). Figure 5 shows the average
update costs depending on size of the network.
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Fig. 5. Average update cost depending on the network size, t denotes the percentage
of “cacheable” queries



In Section 4.3 we described the strategy for minimizing the overall messaging
costs. In the last experiment we show that for a given state of the system this
minimum can be achieved by choosing what queries to cache. In Figure 6 we
show that for the given fixed parameters (1000 peers, t = 0.5, Zipf s = 1.2,
average number of element tags in the path = 2.5) the overall messaging cost
can be minimized. We show two curves for search/update ratios of 1:2 and 2:1.
In these cases the minimal messaging costs are achieved if about 0.5% and 1.0%
of the queries are being cached.
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Fig. 6. Average number of messages (query + update) depending on the fraction of
cached queries

Evidently, if the search/update ratio is high (more searches than updates) the
minimum moves to the right (more queries are to be cached). In contrast, if the
update ratio is relatively high, the minimum moves to the left (up to 0, where
caching is not profitable anymore). Hence, (1) the higher the search/update
ratio is, the more queries should be cached and (2) our solution is adaptive to
the current system state and minimizes the overall messaging costs.
The simulations show that the basic index strategy is sufficient for building a

P2P XML storage with support for answering structured queries. The introduc-
tion of caching decreases the messaging costs. Depending on the characteristics
of the query load the benefits from caching vary.

6 Related Work

Many approaches exist that deal with querying of XML data in a local setting.
Most of them try to improve the query-answering performance by designing
an indexing structure with respect to local data processing. Examples of such
index structures include DataGuides [13], T-indexes [20], the Index Fabric [7],
the Apex approach [6] and others. However, these approaches are not designed
to support a large-scale distributed XML storage.



On the other hand, peer-to-peer networks yield a practical solution for storing
huge amounts of data. Thus, a number of approaches exist that try to leverage a
P2P network for building a large-scale distributed data warehouse. The impor-
tant properties of such systems are:

– The flexibility of the querying mechanism (e.g. query language).
– The messaging and maintenance costs.

The use of routing indices [8] facilitates the construction of a P2P network
based on content. In such content-based overlay networks peers are linked, if
they keep similar data, i.e., each peer maintains summaries of the information
stored at its neighbors. While searching, a peer uses the summaries to determine
whom to forward a query to. The idea of clustering peers with semantically
close content is exploited in [9]. The approach presented in [17] proposes using
multi-level bloom filters to summarize hierarchical data, i.e., similarity of peers’
content is based on the similarity of their filters. In [23] the authors use his-
tograms as routing indexes. A decentralized procedure for clustering of peers
based on their histogram distances is proposed. The content-based approaches
could efficiently solve the problem of answering structured queries, though lack
of structure affects the result set quality and significantly increases the search
cost for large-scale networks.
The Edutella project [21] is a P2P system based on a super-peer architec-

ture, where super-peers are arranged in a hypercube topology. This topology
guarantees that each node is queried exactly once for each query, which pre-
sumes powerful querying facilities including structured queries, but does not
scale well.
Leveraging DHTs to support structured queries decreases the communication

costs and improves scalability, but requires more complicated query mechanisms.
The approach presented in [12] indexes XML paths in a Chord-based DHT by
using tag names as keys. A peer responsible for an XML tag stores and maintains
a data summary with all possible unique paths leading to the tag. Thus, only
one tag of a query is used to locate the responsible peer. Although ensuring high
search speed, the approach introduces considerable overhead for popular tags,
when the data summary is large. Our solution for this case is to distribute the
processing among the peers in a subtrie. The paper also addresses answering
branching XQuery expressions by joining the result sets obtained from different
peers. A similar mechanism can be employed for our approach.
[5] also uses a Chord network, but follows a different technique. Path frag-

ments are stored with the information about the super- and child-fragments.
Having located a peer responsible for a path fragment, it resolves the query
by navigating to the peers responsible for the descendant fragments. Additional
information has to be stored and maintained to enable this navigation, which
causes additional maintenance costs. For some types of queries the search oper-
ation may be rather expensive due to the additional navigation.
Some approaches also employ caching of query results in a P2P network to

improve the search efficiency. For example, [18] proposes a new Range Address-
able Network architecture that facilitates range query lookups by storing the



query results in a cache. In [26] the authors leverage the CAN P2P network to
address a similar problem. In both cases queries are limited to integer intervals.
The ranges themselves are hashed, which makes simple key search operation
highly inefficient.

The PIER project [14, 15] utilizes a DHT to implement a distributed re-
lational query engine bringing database query processing facilities into a P2P
environment. In contrast, our approach solves the particular problem of answer-
ing structured XPath queries, which is not addressed by PIER. However, many
of query processing mechanisms (join, aggregation, etc.) proposed in PIER can
be also employed for building a DHT-based large-scale distributed XML storage
with powerful query capabilities. The paper [19] leverages the PIER for build-
ing a file-sharing P2P system for answering multi-keyword queries. The authors
suggest using flooding mechanisms to answer popular queries, and use DHT’s
indexing techniques for rare queries.

7 Conclusions

In this paper we presented the efficient solution for indexing structural informa-
tion in a structured overlay network used as distributed P2P storage of XML
documents. We based the approach on the P-Grid structured overlay network,
however, the solution can be ported to similar tree-based DHTs. We demon-
strated the efficiency (low search latency and low bandwidth consumption) of
our approach via simulations and also showed that our proposed caching strategy
chooses the optimal strategy for minimizing messaging costs.

We envision that the presented solution can be used in a P2P XML querying
engine for answering structural (sub)queries. Such a system could be an alter-
native to the solutions based on the unstructured P2P networks (e.g., Edutella
[21]), but more scalable due to the considerably reduced messaging costs. As a
next step, we plan to extend the system to support more general XPath queries.

References

1. Karl Aberer. P-grid: A self-organizing access structure for p2p information sys-
tems. In CoopIS’01: Proceedings of the 9th International Conference on Cooperative
Information Systems, pages 179–194, London, UK, 2001. Springer-Verlag.

2. Karl Aberer. Scalable Data Access in P2P Systems Using Unbalanced Search
Trees. In WDAS’02: Proceedings of the 4th Workshop on Distributed Data and
Structures, 2002.
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