
BATON: A Balanced Tree Structure for Peer-to-Peer
Networks

H.V. Jagadish 1,2, Beng Chin Ooi 2,3, Quang Hieu Vu 3

1 Department of Electrical Engineering and Computer Science,
University of Michigan, MI USA

2 Department of Computer Science,
National University of Singapore, Singapore

3 Singapore-MIT Alliance, 4 Engineering Drive 3,
National University of Singapore, Singapore

jag@eecs.umich.edu, ooibc@comp.nus.edu.sg, hieuvq@nus.edu.sg

Abstract

We propose a balanced tree structure overlay
on a peer-to-peer network capable of support-
ing both exact queries and range queries ef-
ficiently. In spite of the tree structure caus-
ing distinctions to be made between nodes at
different levels in the tree, we show that the
load at each node is approximately equal. In
spite of the tree structure providing precisely
one path between any pair of nodes, we show
that sideways routing tables maintained at
each node provide sufficient fault tolerance to
permit efficient repair. Specifically, in a net-
work with N nodes, we guarantee that both
exact queries and range queries can be an-
swered in O(logN) steps and also that update
operations (to both data and network) have
an amortized cost of O(logN). An experimen-
tal assessment validates the practicality of our
proposal.

1 Introduction

Peer-to-Peer (P2P) systems have become popular re-
cently. The central strength of P2P systems is the
capability of sharing resources so that larger costly

Work supported in part by the US National Science Foundation
under grant number EIA-033587

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

servers can be replaced by systems of smaller comput-
ers. The biggest challenge in building an effective P2P
system is in tying together these multiple autonomous
computers into a cohesive system. This is usually done
by means of a logical “overlay network” used to orga-
nize the data managed by these computers, which rep-
resent nodes in this overlay network. Various topolo-
gies have been suggested for this network, including a
ring [7], and a multi-dimensional grid [13]. With sev-
eral of these overlays, it is well-known how to build
“distributed hash tables” across nodes in a P2P sys-
tem.

In the database world, B-trees occupy a central
place, and the value of tree structures in general is very
well appreciated. Yet, no overlay network proposed so
far has a tree topology – and with good reason: in
a typical (centralized) tree, nodes near the root are
much more frequently accessed than nodes near the
leave: this sort of skew in access load is typically not
acceptable in a peer-to-peer system. In this paper, we
propose a tree-structured overlay network for a peer-
to-peer system that does not have a substantial skew
in access load.

The overlay network we propose is based on a bi-
nary balanced tree structure in which each node of
the tree is maintained by a peer. Each peer in the
network stores a link to its parent, a link to its left
child, a link to its right child, a link to its left adjacent
node, a link to its right adjacent node, a left rout-
ing table to selected nodes on its left hand side at the
same level, and a right routing table to selected nodes
on its right hand side at the same level. We call our
proposed structure BATON, for BAlanced Tree Over-
lay Network. While the tree structure is binary, it has
scalability and robustness similar to that of the B-tree.
An immediate benefit of a tree structured overlay net-
work is convenient support for range queries, which
cannot be supported by conventional distributed hash

661



tables.
There have been notable recent works to address

range maintenance and querying [3, 4, 5, 15], but these
schemes are based on standard overlay networks, and
hence are quite complex. In the P-tree [3], each P2P
node represents a leaf node in the B+-tree, and each
node maintains the path from the index root to the leaf
node. These P2P nodes are distributed on the Chord
overlay network. Explicit maintenance of the paths
is expensive and is prone to inaccuracy introduced by
changes on the B+-tree structure. In [4], single di-
mensional range partitioning is examined independent
of an underlying P2P network. However, most net-
works, such as CAN[13] and Chord[7], are based on
uniform hashing upon which their good performance
is achieved. Consequently, they are not effective for
supporting data partitioning and retrieval based on
ranges.

Our paper makes following contributions.

• To our knowledge, we are the first to build a P2P
overlay network based on a balanced tree struc-
ture. In consequence, both exact match and range
queries are efficiently supported.

• When a node joins or leaves the system, like other
P2P systems, our system takes log N steps for
finding a place for the joining node or for finding
a node to replace the leaving node. However, it
takes only O(logN) cost for updating the routing
table, which is more efficient than other P2P sys-
tems, which usually require O(log2N) for updat-
ing routing tables. This difference in asymptotic
cost can become significant for networks with a
large number of nodes, N .

• Load balancing and Range Partitioning: Our sys-
tem does not require knowledge of stored data
range in advance: it can adjust this range dynami-
cally at each node. The same mechanism also per-
mits load balancing, with overloaded nodes trans-
ferring part of their contents to other nodes. We
show that the asymptotic cost of such load bal-
ancing is low.

• Fault Tolerance: A tree, by definition, has exactly
one path between any pair of nodes. The small
number of additional links stored in our network
suffice to provide efficient recovery in the event
of a node or a link malfunctioning. Specifically,
we show that the network remains connected even
with a large number of failures.

The rest of the paper is organized as follows: In Sec-
tion 2 we present related work. In Section 3 and 4, we
introduce our system architecture and system opera-
tors in detail. In Section 5 we present the performance
study. Finally, we conclude in Section 6.

2 Related Work

Data partitioning and searching over multiple sites are
well researched in the context of distributed databases
[12, 9]. However, partitioning and searching strategies
cannot be applied to fully distributed P2P networks
where there is no global index and no guarantee on
the uptime of individual system. In what follows, we
will review recent related work in P2P systems.

CHORD [7], CAN [13], Pastry [14], and Tapestry
[16] are four of the best-known P2P systems. Each
of these implements a distributed hash table, which
is efficient for exact queries but is not well suited for
range queries since hashing destroys the ordering of
data. To rectify this, Gupta et al [5] proposes a P2P
system based on Locality Sensitive Hashing in which
similar ranges are hashed to the same peer with high
probability. However, these methods can only help to
get approximate answers. Another way is including
the ranges into hash functions proposed by Sahin et
al [15] so that the system can return a superset of
the range query. Nevertheless, exact search is highly
inefficient. SkipList based systems such as SkipNet [6]
and SkipGraph [2] can support range queries but they
do not guarantee data locality and load balancing in
the whole system.

The closest works to ours are P-Tree [3], P-Grid
[1], and [11]. The P-Tree structure is based on B+-
tree structure and uses CHORD as its overlay rout-
ing architecture. Each node in the system stores the
left-most root-to-leaf path of its corresponding B+-
tree. Data is only stored in leaf nodes, and these leaf
nodes form a CHORD ring. P-tree guarantees logN
search for both exact query and range query. When a
node joins the network, in addition to the logN cost
of searching its predecessors in CHORD ring and the
log2N cost of updating the routing tables, there is a
large cost of getting tree structures from its prede-
cessors to build the tree branch for it. Moreover, to
check data consistency of new join nodes, it requires a
special process run periodically in other nodes in the
system. Like other systems based on CHORD, its per-
formance degrades when the data is skewed. P-Grid
[1] is a binary prefix tree structure in which each node
in the tree maintains references to other nodes, that
have the same prefix of length l, but a different value
at position l+1, for the key they are responsible for.
The multiway tree [11] is also a tree structured over-
lay in which each node in the tree is maintained by a
peer and has a link to its parent, its children, its sib-
lings, and its neighbors. [11]’s tree structure is neither
B+-tree nor binary tree; it is a multiway tree struc-
ture with no constraints on the fan-out and hence a
node can have as many children as possible. Searching
entails hopping from the query node to the node con-
taining the answer by following the links, one by one.
As each node in the multiway tree is connected only to
the parent, and left and right sibling or neighbor sub-

662



Figure 1: Binary balanced tree index architecture

trees, it is prone to network failure. In both P-Grid [1]
and [11], the tree is not balanced if the data is skewed
and in the worst case, the tree structure can become a
linear linked list in which there is only one node at each
level. Hence, the search process cannot be guaranteed
within logN steps. Compared to existing tree-based
network structures, our proposed structure, BATON,
is self adjusting to data skew and is ‘height-balanced’,
and maintains vertical and horizontal routing informa-
tion for efficient search and fault tolerance.

3 BATON Structure

The overlay network in BATON is a binary balanced
tree structure as shown in Figure 1.

Definition 1: A tree is balanced if and only if
at any node in the tree, the height of its two subtrees
differ by at most one.
It has been shown that a binary balanced tree with N
nodes has height no greater than 1.44logN [8].

We associate with each node in the tree a level and
a number. The level of the root is 0, its immediate
children are at level 1, and so on. The level of any
node is one greater than the level of its parent. Hence,
the maximum level number in the tree is one less than
height of the tree. At level L there are at most 2L

nodes in a binary tree. We number these 2L positions
from left to right, from 1 until 2L, within each level,
whether or not there is a node currently instantiated
at that position. Thus, the level and number together
precisely determine the location of a node in the binary
tree. It is straightforward to use these to determine
structural relationships, if any, between a given pair of
nodes – not just parent-child and ancestor-descendant
relationships, but also siblings, neighbors, and so forth.

We will find it useful to have a linear ordering of
the nodes in the tree, and for this purpose we use an
in-order traversal. Given a node x, we say that the
node immediately prior to it in the traversal is left
adjacent to it, and the node immediately after x is
right adjacent to it. Note that adjacent nodes may
be at very different levels. In fact, in a complete tree,
every alternate node in the traversal is a leaf node, and
every other alternate node is an interior node. Even

when the tree is not complete, it is easy to show that
each interior node must have at least one adjacent node
that is either a leaf node or an interior node with less
than two children.

Each node in the tree typically maps to exactly one
peer compute node in the peer-to-peer system. (There
will be times when this mapping may not be one to
one, at least temporarily; but, for the present, in terms
of developing an intuition for the network, it is reason-
able to state that each node in the conceptual binary
tree corresponds to exactly one unique node in the
peer-to-peer system). Each physical compute node has
an IP address or other network ID associated, which
can be used to locate the node and communicate with
it. Thus we will think of each node having a logical id
in terms of its level and number, and a physical id in
terms of its IP address.

Each node in the tree maintains “links” to its par-
ent, children, adjacent nodes, and selected neighbor
nodes which are nodes at the same level. Maintain-
ing links to parent, children and adjacent nodes sim-
ply means maintaining the physical id of the parent,
of the left child, of the right child, of the left adja-
cent node, of the right adjacent node, if any. Links
to selected neighbors are maintained by means of two
special sideways routing tables: a left routing table and
a right routing table. Each of these routing tables con-
tains links to nodes at the same level with numbers
that are less (respectively greater) than the number
of the source node by a power of 2. The jth element
in the left (right) routing table at node numbered N
contains a link to the node at number N − 2j−1 (re-
spectively N + 2j−1) at the same level in the tree. If
there is no such node, an entry is still made in the
routing table, but marked as null. A routing table is
considered full if all valid links are not null. For exam-
ple, consider node h in Figure 1. Its left routing table
has no valid links, and its right routing table contains
neighbor links to node i, j, and l which are 2i nodes
away from h (i = 0, 1, 2). This structure has some
similarity with Chord, except that it is on a straight
line rather than on a circle, and routing table entry
carries additional information beyond just the target

663



IP address, and some links could be null.
Theorem 1: The tree is a balanced tree if every

node in the tree that has a child also has both its left
and right routing tables full.

Proof: Consider the addition of a node to a tree
that is balanced. Let this new node be added as a
child of node x. Let node x be at level L, and the new
node at level L + 1. The resulting tree could become
imbalanced if at any ancestor of node x, the depth of
the left and right subtrees differs by more than 1 as a
result of this new node addition. Consider the ancestor
y of x at level i. Without loss of generality suppose
that x is in the left subtree of y. The depth of this left
subtree may have changed from L to L + 1 as a result
of the node addition. (If the depth of the left subtree
was already L + 1 or greater, then it does not change
as a result of the node addition, and no imbalance can
result). But since the right routing table of x is full,
there must be an ith entry in this table to a node in
the right subtree of y, and furthermore this node is
at level L. Therefore the right subtree of y has depth
at least L, and a change of depth of the left subtree
to L + 1 does not violate balance. Applying the same
argument to every ancestor of X in the tree, we can
establish that the tree remains balanced after any node
addition.

Now consider deletion from the tree of a node u that
is a child of node x at level L. This deletion may cause
an imbalance in the tree rooted at any ancestor y of x
if the depth of the x subtree changes from L + 1 to L
while the other subtree has depth L + 2. Without loss
of generality, suppose that x is in the left subtree of y.
There must exist a node z in the right routing table
of x that is in the right subtree of y. Node z is also at
level L. Suppose the depth of the right subtree of y is
L + 1 or less, we are done – no imbalance is created.
Suppose the depth is L + 2 or greater. Consider two
cases.

Case 1: There is a node v, child of z, that is in
the right routing table of u and has a child. By the
requirement of the theorem, the deletion of u is not
permitted if z has any children. So no imbalance can
be caused.

Case 2: There is no such node v. This means that
the any node at level L+2 in the right subtree of y has
a parent at level L + 1 which has an entry in its left
neighbor routing table of a node w in the left subtree
of y that is different from u. Node w is at level L + 1,
so the departure of node u does not change the depth
of the left subtree of y. Hence again, no imbalance is
caused.

Making the above argument for each ancestor y of x,
we show that tree balance cannot be destroyed by node
deletion that is subject to the theorem condition. 2

Theorem 2: If a node, say x, contains a link to
another node, say y, in its left or right routing tables,
the parent node of x must also contain a link to the

parent node of y unless the same node is parent of both
x and y.

Proof: Let Nx be the number of node x and let the
parent of x be w. Without loss of generality, let x be
the right child of its parent w. Then Nx is even. We
must have Nw = Nx/2. Similarly, let the parent of
y be z. We must have Nz = Ny/2 if Ny is even, and
Nz = (Ny + 1)/2 if Ny is odd.

Case 1: Suppose y is at least distance 2 from x.
Then Ny = Nx ± 2k for some integer k > 1. Ny is
thus guaranteed to be even, if Nx is even. It follows
that Nz = Nw±2k−1, meaning that z has a link from
w.

Case 2: Suppose y is at distance 1 from x, and is
its sibling. Then x and y have the same parent, and
we are done.

Case 3: Suppose y is at distance 1 from x, but is not
a sibling. Since x is the right child of its parent, y must
be the right neighbor of x. That is Ny = Nx +1, and
is odd. We then compute Nz = (Ny +1)/2 = (Nx +
2)/2 = Nw + 1. Since z has a number one greater
than w, the latter must link to it.

It is easy to see that there are at most L entries in a
left (right) routing table at level L. Therefore the total
number of entries is O(logN) - the same asymptotic
bound as for Chord, though in the worst case number
of entries could be twice as many as in BATON, and
each entry also is larger. 2

3.1 Node Join

A node wanting to join the network must know at least
one node inside the network and sends a JOIN request
to that node. There are two phases in a new node join-
ing the network. The first is to determine where the
new node should join. The second is actually includ-
ing it in the network at a specified place. We consider
each in turn.

When a node receives a JOIN request, if it has both
its left routing table and its right routing table full
while it has less than two children, it can accept the
new node as its child. Otherwise, it needs to forward
the JOIN request to other nodes as in the join algo-
rithm described below.

For example, assume that node u wants to join the
network and it sends a JOIN request to node b as in
Figure 2. b then forwards the request to p, which is its
adjacent node. As p’s routing tables are not full, it for-
wards the request to its parent j. In turn, j checks its
routing tables and forwards the request to the neighbor
node n, which doesn’t have enough children. Finally,
n accepts u as its child.

Analyzing the algorithm, suppose that an adjacent
link is traversed to a leaf node w. Either w is able to
accept the new node as a child, or has an incomplete
neighbor table. In the latter case w forwards the re-
quest to its parent, which can locate in its neighbor
table a node v that is the parent of a missing neigh-

664



Algorithm: join(node n)
If (Full(LeftRoutingTable(n)) and

Full(RightRoutingTable(n)) and
((LeftChild(n)==null) or (RightChild(n)==null))

Accept new node as child of n
Else

If ((Not Full(LeftRoutingTable(n))) or
(Not Full(RightRoutingTable(n))))

Forward the JOIN request to parent(n)
Else

m=SomeNodesNotHavingEnoughChildrenIn
(LeftRoutingTable(n), RightRoutingTable(n))

If (there exists such an m)
Forward the JOIN request to m

Else
Forward the JOIN request to one of its
adjacent nodes

End If
End If

End If

Figure 2: A new node joins the network

bor of w. Node v can now accept the new node as
a child, unless its own neighbor table is not full, in
which case it forwards the request to its parent. Since
the height of the tree is O(logN), the request cannot
be forwarded up in this manner more than O(logN)
times. All other directions of forwarding only add con-
stant terms. Thus we have a bound of O(logN) mes-
sages to locate a spot for a new node to join. Further-
more, the algorithm specifically seeks out leaf nodes,
and parents of nodes with incomplete neighbor tables,
which must all be leaf nodes due to Theorem 1. Specif-
ically, ancestor nodes are never required, and there is
no involvement of the root other than just as an or-
dinary node. As such, we expect that the load is not
disproportionately applied to the root.

When a node x accepts the new node y as its child,
it splits half of its content to its child. In other words,
the range associated with x is partitioned between it-
self and its new child. In addition, if y is accepted
as x’s left child, x also sends its left adjacent link,
which points to z, to y, and updates its left adjacent
link with y. y then creates its left adjacent link point-
ing to z and its right adjacent link pointing to x, and

also notifies z that z should update its right adjacent
node with y instead of x as before. Similarly, if y is
accepted as x’s right child, x’s right adjacent link is
transferred to y. Finally, node x contacts all neighbor
nodes in its left and right (sideways) routing tables,
asking them to inform their relevant children about
y, and in turn responding with information regarding
their relevant children that y will require. This whole
process requires O(logN) messages and O(logN) re-
sponses. Specifically, x needs to send maximum 2L1

messages to its neighbor nodes, where L1 is level of x.
These neighbors nodes need to send maximum of 2L2

messages to their children which in turn need to send
2L2 messages to respond to the new node, where L2 is
level of the new node. The new node y needs to send
only one message to one of its adjacent nodes. There-
fore, the maximum number of messages required for
updating routing tables is 2L1+2L2+2L2+1 < 6logN .

3.2 Node Departure

Only leaf nodes may voluntarily leave the network, and
only if their departure will not upset the tree balance.
In other cases, a node that wishes to leave the network
must find a replacement for itself, which will be a leaf
node whose absence does not affect the tree balance.
We consider these cases in turn.

If a leaf node x wishes to leave the network, and
there is no neighbor node in its routing tables with
children, it can leave the network without affecting
the tree balance because the requirement in Theorem
1 is still satisfied at its neighbor nodes. In this case, x
has to transfer all its content, and its range of index
values it is in charge of to its parent, its left adjacent
link if it is a left child or its right adjacent link if it is a
right child, and send LEAVE messages to its neighbor
nodes to update their routing tables. The parent node
of x after receiving the content from x also needs to
send messages to neighbor nodes to notify them of its
new content and children. It also notifies affected ad-
jacent link node to update the corresponding adjacent
link with itself. Thus, the total number of messages
required in this case is 2L1 + 2L2 + 2 < 4logN , where
L1 and L2 are levels of x’s parent node and x node. If
a leaf node wishes to leave the network, and there are
neighbor nodes in its routing tables with children, it
needs to find a node to replace it by sending a FIND-
REPLACEMENT request to a child node of one of
its neighbor nodes. If a non-leaf node wishes to leave
the network, it finds a node to replace it by sending a
FINDREPLACEMENT request to one of its adjacent
nodes, which is a leaf node, or as deep as possible. The
find replacement algorithm is described as below

As the process of finding a replacement node always
goes down, it takes at most as many steps as the height
of the tree which is O(logN). For example, consider
node b in Figure 3. If it wants to leave the network,
it has to find a leaf node as replacement. b creates a

665



Algorithm: find replacement node (node n)
If (LeftChild(n)!=null)

Forward the request to LeftChild(n)
Else If (RightChild(n)!=null)

Forward the request to RightChild(n)
Else

m=SomeNodesHavingChildrenIn
(LeftRoutingTable(n), RightRoutingTable(n))

If (there exists such an m)
Forward the request to a child of m

Else
Come to replace the leave node

End If
End If

FINDREPLACEMENT request and sends to its adja-
cent node j. j checks its routing tables and realizes
that there are some neighbor nodes with children, j
therefore forwards the request to r, which is a child of
a neighbor node of j. At r, as it does not have any
child, and there is no neighbor node with children, r
can replace b safely. As illustrated, BATON adapts
itself to node departure and continues to maintain its
height-balanced property.

Figure 3: An existing node leaving the network

Before a node y replaces node x which is leaving
the network, it needs to notify its neighbor nodes and
its parent of its leaving as in the previous case, which
takes 4logN steps. In addition, all nodes with links
to x must be informed to change the physical (IP)
address of the link to point to y instead of x. This
can easily be done by using information received from
x. Specifically, the original parent of node x (now y)
needs to send 2L1 messages to its neighbor nodes to
notify its new replacement child at level L1. y needs to
send 2L2 messages to its new neighbor nodes, where
L2 is its new level, and 2 messages to its children and
2 messages to its adjacent nodes. Thus, the maximum
number of messages required to update routing tables
to reflect changes is 8logN .

3.3 Node Failure

Sometimes, a node may fail, or depart suddenly. In
such a case, some nodes wishing to access the departed

node x, will discover the address unreachable. These
nodes must report this failure to node y, the parent of
x, which now has the responsibility of managing the
departure of x. Node y makes use of links maintained
in its own routing tables and quickly regenerate the left
and right routing tables of x by contacting children of
nodes in its own routing tables. These children can
also help to locate the children of x if any. Node y,
the parent of node x can now initiate a “graceful de-
parture” for its child node y that has left abruptly,
following the protocol described in the preceding sec-
tion. Since all of x’s routing information has been
regenerated at y, the algorithm described above works
with minor modification.

3.4 Fault Tolerance

We have described above how the failure or abrupt
departure of a node can be handled gracefully. The
repair operation is the same as in node departure, re-
quiring only O(logN) messages, but it takes non-zero
time. In this section we show how the network can
continue to operate, routing around the missing node,
in the mean time.

There are two axes along which messages are routed
in BATON: the sideways axis, through the left and
right routing tables, and the up-down axis, through
parent, child and adjacent links. The former is natu-
rally fault tolerant, since there is a Chord-like logarith-
mic expansion of links, and therefore a large number
of alternative paths between any pair of nodes. The
latter is rendered fault tolerant because a node can go
to a neighbor of the parent, find a child of that node,
and then connect back to the child node, thereby re-
constituting a missing parent child link. Thus far we
have considered failure of only a single node. If two (or
more) nodes fail, we have two possibilities to consider.
If the failed nodes have a parent-child relationship, we
can still apply the same technique as described above –
traveling via neighbor nodes. If the failed nodes do not
have a parent-child relationship, then their failures can
be corrected independently, and there is no additional
complication because of the temporal simultaneity of
their failure. In a special case, even if all nodes at
the same level fail, the tree is not partitioned since
adjacency links can be used to route across the gap.
Contrast this with the brittleness of multiway tree[11].

3.5 Network Restructuring

In the description above, joining nodes are forced away
to other parts of the tree while leaving nodes have to
find replacement nodes if they cause the tree to become
imbalanced. Sometimes, when the node joins(leaves) is
part of a load balancing effort (see 4.5), this redirection
may not be permitted. An alternative is to restructure
the system to achieve balance. The restructuring is
akin to a rotation in an AVL tree and is described
here.

666



Figure 4: Network restructuring after a node joining

When a node x accepts a joining node y as its child
and detects that Theorem 1 is violated, it initiates
the restructuring process. Without loss of generality,
suppose that this restructuring is towards the right.
Assume that y joins as x’s left child. To rebalance the
system, x notifies y to replace its position, and notifies
its right adjacent node z that x will replace z’s posi-
tion. (If y joins as x’s right child, then x itself remains
untouched, y directly replaces z). z then checks its
right adjacent node t to see if its left child is empty. If
it is, and adding a child to t does not affect the tree
balance, z takes the position of t’s left child as its new
position and the restructuring process stops. If t’s left
child is full or t cannot accept x as its left child without
violating the balance property, z occupies t’s position
while t needs to find a new position for itself by contin-
uing to its right adjacent node. Consider the example
in Figure 4. Suppose l joins the network as left child
of h and the joining violates the tree balance property
(as shown in Figure 4a). The restructuring process is
initiated at h in which l replaces h; h replaces d; d
replaces i; i replaces b; b replaces j; j replaces e; e
replaces k; k replaces a, and finally a becomes f ’s left
child because f can accept a child without causing the
tree to become imbalanced. The tree now is balanced
again, as illustrated in Figure 4b.

When a leaf node x leaves the network and causes
the tree to be imbalanced, its parent y starts the re-
structuring process (non-leaf node still needs to find
a replacement node). Without loss of generality, con-
sider a left restructuring. Assume that x is y’s right
child. To rebalance the tree, y has to replace x, and its
left adjacent node z has to replace y. (If x is the left
child of y, then z can directly replace x, and y remain
untouched.) If z’s move does not upset the tree bal-
ance, the restructuring process stops. If z’s move does
violate the balance property, we use its left adjacent
node t to replace its position, and recursively find the
replacement node for t. For example, assume that g
leaves and makes the system imbalanced as shown in
Figure 5a. The restructuring process is started at c
in which c replaces g, f replaces c, a replaces f , and
finally k replaces a. The process stops at a because
a’s move does not cause any loss of balance. Figure 5b
shows the balanced structure after restructuring.

Figure 5: Network restructuring after a node depar-
ture

No data movement is required due to network re-
structuring. However, several nodes change their po-
sition in the tree, affecting their level and number,
and affecting their routing tables. For each such node,
adjusting the routing table requires O(logN) effort.
Thus, the more nodes that participate in the restruc-
turing process, the more effort is required for updating
routing tables.

4 Index Construction

In the previous section, we have described an overlay
network structured as a binary balanced tree. In this
section, we show how to use such an overlay network
to build an effective distributed index structure, very
similar in spirit to an AVL tree.

We assign to each node, both leaf and internal, a
range of values. We record for each link the range
of values managed by the node at the target of the
link. Whenever this range changes, the link has to be
modified to record the change.

The range of values directly managed by a node is
required to be to the right of the range managed by
its left subtree and less than the range managed by its
right subtree. In other words, unlike B+-trees, internal
nodes in the tree themselves also manage a range of
data values directly.

With this, it is easy to see how the BATON over-
lay structure immediately behaves like an index tree.
Indeed, the index is structurally similar to the main-
memory index called T-Tree[10], which was designed
to reduce number of pointers and in-memory pointer
chasing.

4.1 Exact Match Query

For an exact match query issued or received at node x,
the node will first check its own range. If it is within
the current range, the local index is searched for the
value, and the search stops. Otherwise, x routes the
query to the destination node as described below in
the search exact algorithm.

667



Algorithm: search exact(node n, query q, value v)
If ((LowerBound(n)<=v) and (v<=UpperBound(n)))

q is executed at x 1

Else
If (UpperBound(n)<v)

m=TheFarthestNodeSatisfyingCondition
(LowerBound(m)<=v)

If (there exists such an m)
Forward q to m

Else
If (RightChild(n)!=null)

Forward q to RightChild(n)
Else

Forward q to RightAdjacentNode(n)
End If

End If
Else

//A similar process is followed towards the left
End If

End If

We now illustrate the search using Figure 6. Sup-
pose node h wants to search for data that is stored in
node c. Since the searched for value is greater than
h’s upper bound, it checks its right routing table and
forwards the search request to node l, which is the
rightmost node having the lower bound less than the
searched value. l then checks its right routing table
and forwards the request to m. At node m, as it can-
not find any neighbor node to forward the request, it
forwards the request to its right child r. Finally, r for-
wards the request to c, which is the destination node.

Figure 6: Exact match query search

When a node x wants to search for an exact value,
if x is the root, the search request is always forwarded
downward to the destination node whose range of in-
dex values contains the searched value. Thus, the max-
imum number of steps of processing is the height of the
tree – logN . If x is not the root, without loss of gener-

1If there is a large number of duplicates in a partition search
key value, the corresponding index entries may be distributed
across multiple tree nodes. In such a case, x is one of these
nodes found by the exact search algorithm. Adjacent node links
must be used to navigate to the other index nodes.

ality, assume that the request node is on the left side
of the tree. We consider two cases of the destination
node. In the first case, if the destination node is the
root, following the algorithm, the search request is al-
ways forwarded to the right most node r of the left
subtree, and from there it is forwarded to the root,
which is the right adjacent node of r. The cost of
forwarding the request to r is logN − 1, which is the
height of the left subtree, because for each forwarding,
be it to the neighbor node, right child, or right adja-
cent node, the search space is always reduced by half.
Thus, the maximum number of steps is also logN . In
the second case, if the destination node is on the right
side of the tree, during the search process, it takes one
step to forward the search request from a node in the
left subtree to a node in the right subtree via its rout-
ing table. Depending on the searched value, this step
can happen early or later in the search process. How-
ever, if it happens later, previous search steps still help
to reduce the search space of the right subtree by half.
Thus, the total steps is also 1 + (logN − 1) = logN ,
where logN − 1 is the cost of searching in the right
subtree. Our algorithm shows that the search request
is always forwarded via neighbor nodes or child nodes.
The request is only needed to forward to higher level
nodes in two cases: the higher level node contains the
searched value, or the processing node does not have
two children (a leaf node or a node near the leave).
This property clearly helps the root to avoid receiving
more requests than other nodes.

4.2 Range Query

A range query proceeds exactly in the same manner
as a point query, with only one difference: instead
of looking for the data range at a node including the
searched value, we now look for an intersection with
the searched range. Once an intersection is found, we
have at least partial answers for the range query. We
then proceed left and/or right to cover the remainder
of the searched range.

As in the case of a point query, it takes O(logN)
steps to find the first intersection. Thereafter it is a
cost of O(1) for each additional node to be visited.
Therefore, to answer a range query, with the range
covering X nodes, we require O(logN + X) steps.

4.3 Data Insertion

When data is to be inserted, we first follow the search
process for exact match query to find the node where
this data should be inserted, and then perform the
insertion. However, for the left most and right most
nodes, their range may need to be adjusted if the in-
serted data value is outside the current range. If the
left most node receives an INSERT request and the
inserted value is still less than its range of values, it
expands its range of values to the left so that it can
cover the newly inserted value (a node knows that it’s

668



the left most node if its number is one and it does
not have left child). Similarly, if the right most node
receives an INSERT request and the inserted value is
greater than its range of values, it expands its range of
values to the right, and accept the new inserted value.
In these special cases, it takes additional logN step for
updating its routing tables. The cost of locating node
to insert new data is O(logN) as in the exact match
query search process.

4.4 Data Deletion

To delete existing data, we locate the node that man-
ages this data value, and delete the data. The cost is
exactly that of the search, namely O(logN).

4.5 Load balancing

We would like to distribute the computational load
evenly across all nodes in the peer system. This load
can be estimated in terms of number of queries or num-
ber of messages. Typically, the larger the range cov-
ered by a node, the more the number of data items
managed by a node, and hence the more its load. The
load balancing process allows the node to split part of
its range to other nodes or acquire additional range
from other nodes. The goal is to adjust the data range
to (roughly) equalize the workload. Note that this
doesn’t mean data ranges are all equal.

Load balancing based on simple data migration be-
tween two adjacent nodes may not be sufficient to deal
effectively with a very skewed dataset. Further, data
migration may ripple through the network [9], and in-
cur high total overhead. Thus, instead of doing load
balancing with just adjacent nodes, we propose that a
node only does load balancing with its adjacent nodes
if it is a non-leaf node. If it is a leaf node, it can
either load balance with its adjacent nodes or find an-
other leaf node, which is lightly loaded node, to share
its load. Specifically, when a leaf node becomes over-
loaded, it first tries to do load balancing with its ad-
jacent nodes. If its adjacent nodes are also heavily
loaded, then it finds2 a lightly loaded node to do load
balancing. Without loss of generality, let this lightly
loaded node be to the right of the overloaded node.
The lightly loaded node can pass its load to its right
adjacent node. It then leaves the current position in
the network and and re-joins as a child of the over-
loaded node, with forced restructuring of the network
(to the left for the node leaving and to the right for
the node joining) if necessary.

For example, assume that node g in Figure 7a. is
overloaded and it identifies node f being a lightly
loaded node. Node f passes the range to node c, and
rejoins as a child of node g. The movement of node

2We could use a skip list structure for this as suggested in
[4]. Our practical experience suggests that the neighbor tables
suffice to locate a lighter loaded ode, even if not the lightest
loaded node.

Figure 7: Load balancing with major restructuring

causes the overlay structure to become imbalanced and
hence restructuring is invoked. In the load balancing
process, nodes f replaces g, g in turn replaces d, d re-
places b, b replaces e, e replaces a, and a takes over
the original f position. The movement of nodes is il-
lustrated with dashed line in Figure 7b.

Observe that the forced restructuring, in the worst
case, involves a complete shift from the overloaded
node position to the lightly loaded node position.
More commonly, much smaller shifts are required, af-
fecting only a few nodes at each end until suitable
spots are found to accommodate the node departure
and arrival respectively. In fact, the probability of
the shift involving k nodes is exponentially decreasing
with the value of k. With a little bit of analysis one
can show that the amortized cost of load balancing per
insertion or deletion is just O(logN).

5 Experimental Study

We built a peer-to-peer simulator to evaluate the per-
formance of our proposed system over large-scale net-
works. The simulator simulates P2P network by read-
ing a schedule, which specifies actions inside the net-
work. This schedule is generated randomly by a sched-
uler, which requires input parameters including num-
ber of nodes, number of data, and number of search
queries. We use number of passing messages to mea-
sure the performance of the system.

To evaluate the cost of operations, we test the net-
work with different number of nodes N from 1000 to
10000. For a network of size N, 1000 x N data val-
ues in the domain of [1, 1000000000) are inserted in
batches. For each test, 1000 exact queries, and 1000
range queries are executed, and the average cost is
taken. To simulate different sequences of events (or-
der in which nodes join and leave), the experiments
are executed 10 times using 10 different sequences and
the average is taken. For comparison purposes, we ob-
tained CHORD [7] from its web site and implemented
the multiway tree structure proposed in [11].

5.1 Cost of Join and Leave Operations

Figure 8(a) shows average messages to find a destina-
tion node of the join operation and average messages to

669



(a) Finding join node and replacement node

(b) Updating routing table

Figure 8: Average messages of node joining and leav-
ing operations

find a replacement node of the leave operation. The re-
sult is interesting. Even though the number of nodes in
the network increases, the average number of messages
of join and leave operations do not increase much. This
is because no matter at what level the node is located,
it takes only one step to forward the JOIN or LEAVE
request to a leaf node. After that, the request is either
forwarded upward to lower leaf nodes in case of the join
operation or forwarded downward to higher leaf nodes
in case of the leave operation. This is an important
feature of BATON as the cost of these operations usu-
ally is equal to the distance from a lower node to higher
node, which does not change much when the system
grows. Moreover, as this distance is much lower than
height of the tree, the cost of join and leave operations
much lower than O(logN). The figure also shows that
the average number of messages of the leave operation
is lower than those of the join operation because while
the process of finding nodes to replace only needs to
go down, the process of finding nodes to join some-
times needs to go horizontally in addition to going up.
CHORD requires more messages, in comparison, and
the number of messages increases linearly with net-
work size. In the multiway tree system, if a node can
have many children, the cost of join operation is low
but the cost of leave operation is high because a de-
parting node needs to get information from all of its
children to select a replacement node; if a node has
only a few children, the cost of join operation is in-

(a) Insert and Delete operation

(b) Exact match query

(c) Range query

Figure 9: Average messages of insert, delete, and
search operations

creased as there are higher chances for a join request
to be forwarded to descendant nodes. In either case,
the total number of messages required is large.

Figure 8(b) shows average number of messages re-
quired to update routing tables of join and leave op-
erations. The experiment confirms our claim that
our system significantly reduces the cost of updating
routing tables compared with other systems such as
CHORD, which require log2N for updating routing
tables. Compared with multiway tree system, our sys-
tem takes higher cost because in the multiway tree
system, a node only has links to its parent, its sib-
lings, its neighbors and its children. Thus, the cost
of updating routing tables depends on the number of
children a node has. However, without sufficient rout-
ing tables, the multiway tree system must pay a high

670



price in search operations. Moreover, the system be-
comes vulnerable to link failure. In our case, in order
to reduce cost of updating routing tables without in-
creasing cost of other operations, we must keep more
information in routing tables than other systems.

5.2 Cost of Insert, Delete, and Search Opera-
tions

Figure 9(a) shows the average number of messages
needed for insert and delete operations while Figure
9(b) and Figure 9(c) respectively show the average
number of messages required for exact match queries
and range queries. The result shows that our system
can support both insert and delete operations as well
as exact match queries and range queries efficiently.
The cost of insert, delete and exact match query oper-
ations in our system as a balanced tree is much lower
than those of [11] as a multiway tree. Compared with
CHORD, cost of our system is only slightly higher.
This is because the height of our tree could be as much
as 1.44logN , whereas for CHORD there is no such 1.44
factor. However, our system can support range queries
efficiently while CHORD cannot.

5.3 Access Load

Figure 10: Access load for nodes at different levels

Figure 10 shows access load of the nodes at different
levels, measured in terms of the number of messages.
For insertions, we find the load to be almost a constant
across levels. For search, the load is slightly higher at
the leaves than at the root, amply establishing that
BATON does not overload nodes near the root of the
network.

5.4 Effect of Load Balancing

To evaluate the capability of system in case of skewed
data distribution, we test the network with a skewed
data set, generated by Zipfian method with parameter
1.0. The result shows that there is no significant differ-
ence between costs of operations except that the load
balancing process is triggered more frequently than
that of uniform distributed data. Figure 11(a) shows

(a) Average messages of load balancing operation

(b) Size of load balancing process

Figure 11: Load balancing operation

average number of messages required to balance the
system in respective case of uniformly distributed data
and skewed data. For skewed data, we find the cost
of load balancing to grow linearly with the number of
insert/delete’s, with the expected number of load bal-
ancing messages per insertion/deletion to be about 1
message for every 1500 insertion/deletions; a very low
overhead indeed.

To further understand this low cost, we plot in Fig-
ure 11(b) a distribution of the number of nodes in-
volved in the load balancing operation. That is, how
far did one have to shift to perform the forced in-
sertion/deletion. The result is strongly exponential,
showing that very little shifting is required most of the
time, though long shifts may be required occasionally.

5.5 Effect of Network Dynamics

In P2P systems, nodes may join and leave at the same
time. The intensity of nodes joining and leaving will
have an effect on the robustness of the network. This
experiment shows average extra messages taken due
to concurrent joining or leaving operations. This is
because it takes some times for the network to update
knowledge of joining or leaving nodes, and during that
time messages may be forwarded to wrong destination.
The result in Figure 12 shows that the more nodes join
or leave at the same time, more additional messages
are taken.

671



Figure 12: Network Dynamics

6 Conclusion

There is a plethora of overlay networks proposed for
P2P systems. None of these are tree-structures in spite
of tree structures being ubiquitous in data manage-
ment. In this paper, we introduced BATON, a bal-
anced binary tree overlay network for P2P systems.

By adding a small number of links in addition to
the tree edges, we are able to obtain excellent fault
tolerance, and also to get good load distribution with-
out having to overload nodes near the root of the
tree. We have shown how this tree structure can nat-
urally be used to support an index structure for range
queries. We have experimentally verified our complex-
ity claims.

References

[1] K. Aberer. P-Grid: A self-organizing access struc-
ture for p2p information systems. In Proceedings
of the 6th International Conference on Coopera-
tive Information Systems, 2001.

[2] J. Aspnes and G. Shah. Skip graphs. In Proceed-
ing of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 384–393, 2003.

[3] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shan-
mugasundaram. Querying peer-to-peer networks
using P-Trees. In WebDB ’04: Proceedings of
the 7th International Workshop on the Web and
Databases, pages 25–30, 2004.

[4] P. Ganesan, M. Bawa, and H. Garcia-Molina. On-
line balancing of range-partitioned data with ap-
plications to peer-to-peer systems. In Proceedings
of the 30th VLDB Conference, 2004.

[5] A. Gupta, D. Agrawal, and A. El Abbadi. Ap-
proximate range selection queries in peer-to-peer
systems. In Proceedings of the First Biennial
Conference on Innovative Data Systems Research,
2003.

[6] N. J. A. Harvey, M. B. Jones, S. Saroiu,
M. Theimer, and A. Wolman. Skipnet: A scalable

overlay network with practical locality properties.
In USENIX Symposium on Internet Technologies
and Systems, 2003.

[7] D. Karger, F. Kaashoek, I. Stoica, R. Morris, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Pro-
ceedings of the 2001 ACM SIGCOMM Confer-
ence, pages 149–160, 2001.

[8] D. E. Knuth. The Art of Computer Programming,
volume 3. Addison-Wesley Professional, 1998.

[9] M. L. Lee, M. Kitsuregawa, B. C. Ooi, K.-L. Tan,
and A. Mondal. Towards self-tuning data place-
ment in parallel database systems. In Proceedings
of the 2000 ACM SIGMOD International Confer-
ence on the Management of Data, pages 225–236,
2000.

[10] T. J. Lehman and M. J. Carey. A study of index
structures for main memory database manage-
ment systems. In Proceedings of the 12th VLDB
Conference, pages 294–303, 1986.

[11] C. Y. Liau, W. S. Ng, Y. Shu, K.-L. Tan, and
S. Bressan. Efficient range queries and fast lookup
services for scalable p2p networks. In Proceedings
of 2nd International Workshop On Databases, In-
formation Systems and Peer-to-Peer Computing,
pages 78–92, 2004.

[12] W. Litwin, M.-A. Neimat, and D. A. Schneider.
Rp*: A family of order preserving scalable dis-
tributed data structures. In Proceedings of the
20th VLDB Conference, 1994.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable contentaddressable
network. In Proceedings of the 2001 ACM Annual
Conference of the Special Interest Group on Data
Communication, pages 161–172, 2001.

[14] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems. In Proceedings of the
18th IFIP/ACM International Conference of Dis-
tributed Systems Platforms, pages 329–350, 2001.

[15] O. D. Sahin, A. Gupta, D. Agrawal, and A. El Ab-
badi. A peer-to-peer framework for caching range
queries. In Proceedings of the 20th International
Conference on Data Engineering, 2004.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Re-
port CSD-01-1141, Univ. California, Berkeley,
CA, Apr. 2001.

672


