
•Ioannis Fudos

•Image Indexing and Retrieval •1

1P2p, Spring 05

Topics in Database Systems: Data Management in
Peer-to-Peer Systems

Unstructured Peer-to-Peer Systems

2P2p, Spring 05

Γιατί θα µιλήσουµε σήµερα ..

1. ΜΕΡΟΣ 1: Γενική Εισαγωγή σε Αδόµητα (Unstructured)
Συστήµατα Οµότιµων Κόµβων (ΣΟΚ) και κάποια γενικά
για ΣΟΚ

2. ΜΕΡΟΣ 2: Ένα Παράδειγµα Χρήσης Ευρετηρίων σε
Αδόµητα ΣΟΚ – Routing Indexes

3P2p, Spring 05

Ασκήσεις για 29/3

1. Θα διορθώσετε το προηγούµενο σύνολο µέχρι τη
∆ευτέρα (28/3)

2. Θα απαντήσετε σε 2-3 ερωτήσεις πάνω στη σηµερινή ύλη
(στο Μέρος 2) (θα ανακοινωθούν αύριο)

Περιµένω τις διαφάνειες κάποιων από 8/3

4P2p, Spring 05

Topics in Database Systems: Data Management in
Peer-to-Peer Systems

Unstructured Peer-to-Peer Systems

PART I (assorted)

5P2p, Spring 05

Based on

“Peer-to-peer information systems: concepts and models, state-of-the-
art, and future systems”

Karl Aberer & Manfred Hauswirth

ICDE02 Tutorial

“Architectures and Algorithms for Internet-Scale (P2P) Data
Management”

Joe Hellerstein

VLDB 2004 Tutorial

“Open Problems in Data-Sharing Peer-to-Peer Systems”,

Neil Daswani, Hector Garcia-Molina and Beverly Yang. In ICDT, 2003.

Θα βάλω αντίγραφα στη σελίδα

Unstructured Peer-to-Peer Systems

6P2p, Spring 05

What is a P2P System?

• Multiple sites (at edge)
• Distributed resources
• Sites are autonomous (different owners)
• Sites are both clients and servers
• Sites have equal functionality

P2P Purity

•Ioannis Fudos

•Image Indexing and Retrieval •2

7P2p, Spring 05

What is P2P?

• Every participating node acts as both a client
and a server (“servent”)

• Every node “pays” its participation by
providing access to (some of) its resources

• Properties:
– no central coordination
– no central database
– no peer has a global view of the system
– global behavior emerges from local

interactions
– all existing data and services are

accessible from any peer
– peers are autonomous
– peers and connections are unreliable

8P2p, Spring 05

Overlay Networks
• P2P applications need to:

– Track identities & (IP) addresses of peers
• May be many!
• May have significant Churn (update rate)
• Best not to have n2 ID references

– Route messages among peers
• If you don’t keep track of all peers, this is “multi-hop”

• This is an overlay network

– Peers are doing both naming and routing
– IP becomes “just” the low-level transport

• All the IP routing is opaque

9P2p, Spring 05

P2P Cooperation Models
• Centralized model

– global index held by a central authority
(single point of failure)

– direct contact between requestors and providers
– Example: Napster

• Decentralized model
– Examples: Freenet, Gnutella
– no global index, no central coordination, global behavior emerges from

local interactions, etc.
– direct contact between requestors and providers (Gnutella) or

mediated by a chain of intermediaries (Freenet)
• Hierarchical model

– introduction of “super-peers”
– mix of centralized and decentralized model
– Example: DNS

10P2p, Spring 05

Many New Challenges

• Relative to other parallel/distributed systems
– Partial failure
– Churn
– Few guarantees on transport, storage, etc.
– Huge optimization space
– Network bottlenecks & other resource constraints
– No administrative organizations
– Trust issues: security, privacy, incentives

• Relative to IP networking
– Much higher function, more flexible
– Much less controllable/predictable

11P2p, Spring 05

Why Bother? Not the Gold Standard

• Given an infinite budget, would you go p2p?

• Highest performance? No.
– Hard to beat hosted/managed services
– p2p Google appears to be infeasible

[Li, et al. IPTPS 03]

• Most Resilient? Hmmmm.
– In principle more resistant to DoS attacks, etc.
– Take, Chord: A node entering multiple times in the ring with

different identities, control much f the traffic
– Today, still hard to beat hosted/managed services

• Geographically replicated, hugely provisioned
• People who “do it for dollars” today don’t do it p2p

12P2p, Spring 05

Why Bother II: Positive Lessons from Filestealing

• P2P enables organic scaling
– Vs. the top few killer services -- no VCs required!
– Can afford to “place more bets”, try wacky ideas

• Centralized services engender scrutiny
– Tracking users is trivial
– Provider is liable (for misuse, for downtime, for local laws, etc.)

• Centralized means business
– Need to pay off startup & maintenance expenses
– Need to protect against liability
– Business requirements drive to particular short-term goals

• Tragedy of the commons

•Ioannis Fudos

•Image Indexing and Retrieval •3

13P2p, Spring 05

Why Bother III? Intellectual motivation

• Heady mix of theory and systems

– Great community of researchers have gathered
– Algorithms, Networking, Distributed Systems, Databases
– Healthy set of publication venues

• IPTPS workshop, P2P conference
(classical venues (DB: VLDB, SIGMOD, ICDE DC: ICDCS,

etc)

14P2p, Spring 05

Infecting the Network, Peer-to-Peer

• The Internet is hard to change.
• But Overlay Nets are easy!

– P2P is a wonderful “host” for infecting network designs
– The “next” Internet is likely to be very different

• “Naming” is a key design issue today
• Querying and data independence key tomorrow?

• Don’t forget:
– The Internet was originally an overlay on the telephone

network
– There is no money to be made in the bit-shipping business

• A modest goal for DB research:
– Don’t query the Internet.

15P2p, Spring 05

Infecting the Network, Peer-to-Peer

Be the Internet.

A modest goal for DB research:
– Don’t query the Internet.

16P2p, Spring 05

Distributed Databases

• Fragmenting large databases (e.g., relational) over physically
distributed nodes

• Efficient processing of complex queries (e.g., SQL) by
decomposing them

• Efficient update strategies (e.g., lazy vs. eager)
• Consistent transactions (e.g., 2 phase commit)
• Normally approaches rely on central coordination

17P2p, Spring 05

Distributed Databases vs. Peer-to-Peer

• Data distribution is a key issue for P2P systems
• Distribution Transparency
• Data Allocation and Fragmentation
• Advanced (SQL?) Query Processing
• Transactions

18P2p, Spring 05

Main P2P Design Requirements

• Resource discovery

• Managing updates

• Scalability

• Robustness and fault tolerance

• Trust assessment and management

•Ioannis Fudos

•Image Indexing and Retrieval •4

19P2p, Spring 05

Usage Patterns to position P2P

Discovering information is the predominant problem
• Occasional discovery: search engines

– ad hoc requests, irregular
– E.g., new town — where is the next car rental?

• Notification: event-based systems
– notification for (correlated) events (event patterns)
– E.g., notify me when my stocks drop below a threshold

• Regular discovery: P2P systems
– find certain type of information on a regular basis
– E.g., search for MP3 files of Jethro Tull regularly

• Continuous information feed: push systems
– subscription to a certain information type
– E.g., sports channel, updates are sent as soon as available

20P2p, Spring 05

The P2P Cloud

Gnutella

Freenet

Napster

JXTA

Akamai
India

Intermemory

Alpine

Chord
DFSI

OFSI
Gnutmeg

... and many more ...

Gridella

21P2p, Spring 05

What is P2P?

napster

gnutella
maorpheus

kazaa

bearshare seti@home

folding@home

ebay

limewire

icq

fiorana

mojo nation

jxta

united devices
open cola

uddi

process tree

can

chord

ocean store
farsite

pastry

tapestry

?
grove

netmeeting

freenet

popular power

aim

jabber

22P2p, Spring 05

Early P2P

23P2p, Spring 05

Unstructured P2P Systems

• Napster

• Gnutella

• Freenet
24P2p, Spring 05

Early P2P I: Client-Server

• Napster

xyz.mp3 ?

xyz.mp3

•Ioannis Fudos

•Image Indexing and Retrieval •5

25P2p, Spring 05

Early P2P I: Client-Server

• Napster
– C-S search

xyz.mp3

26P2p, Spring 05

Early P2P I: Client-Server

• Napster
– C-S search

xyz.mp3 ?

xyz.mp3

27P2p, Spring 05

Early P2P I: Client-Server

• Napster
– C-S search
– “pt2pt” file xfer

xyz.mp3 ?

xyz.mp3

28P2p, Spring 05

Early P2P I: Client-Server

• Napster
– C-S search
– “pt2pt” file xfer

xyz.mp3 ?

xyz.mp3

29P2p, Spring 05

Early P2P I: Client Server

• SETI@Home
– Server assigns work units

My machine
info

30P2p, Spring 05

Early P2P I: Client Server

• SETI@Home
– Server assigns work units

Task: f(x)

•Ioannis Fudos

•Image Indexing and Retrieval •6

31P2p, Spring 05

Early P2P I: Client Server

• SETI@Home
– Server assigns work units

Result: f(x)

60 TeraFLOPS!
32P2p, Spring 05

More on Napster: A brief History

• May 1999: Napster Inc. file share service founded by Shawn Fanning and Sean Parker
• Dec 7 1999: Recording Industry Association of America (RIAA) sues Napster for copyright

infringement
• April 13, 2000: Heavy metal rock group Metallica sues Napster for copyright infringement
• April 27, 2000: Rapper Dr. Dre sues Napster
• May 3, 2000: Metallica’s attorney claims 335,000 Internet users illegally share Metallica’s songs

via Napster
• July 26, 2000: Court orders Napster to shut down
• Oct 31, 2000: Bertelsmann becomes a partner and drops lawsuit
• Feb 12, 2001: Court orders Napster to cease trading copyrighted songs and to prevent

subscribers to gain access to content on its search index that could potentially infringe copyrights
• Feb 20, 2001: Napster offers $1 billion to record companies (rejected)
• March 2, 2001: Napster installs software to satisfy the order

33P2p, Spring 05

Napster: System Architecture

• Central (virtual) database which holds an index of
offered MP3/WMA files

• Clients(!) connect to this server, identify themselves
(account) and send a list of MP3/WMA files they are
sharing (C/S)

• Other clients can search the index and learn from
which clients they can retrieve the file (P2P)

• Combination of client/server and P2P approaches
• First time users must register an account

34P2p, Spring 05

Napster: Communication Model

A B

Napster Server
register

(user, files) “Where is X.mp3?”

“A has X.mp3”

Download X.mp3

35P2p, Spring 05

Napster: The Protocol [Drscholl01]

• The protocol was never published openly and is rather complex and inconsistent
• OpenNap have reverse engineered the protocol and published their findings
• TCP is used for C/S communication
• Messages to/from the server have the following format:

– length specifies the length of the data portion
– type defines the message type
– data: the transferred data

• plain ASCII, in many cases enclosed in double quotes (e.g., filenames such as
“song.mp3” or client ids such as “nap v0.8”

length type data

Byte offset 0 1 2 3 4 n

36P2p, Spring 05

Sample Messages - 1

Type C/S Description Format
0 S Error message <message>
2 C Login <nick><pwd><port><client info><link type>
3 S Login ack <user’s email>
5 S Auto-upgrade <new version><http-hostname:filename>
6 C New user login <nick><pwd><port><client info><speed>

<email address>
100 C Client notification

of shared file
“<filename>”<md5><size><bitrate>
<frequency><time>

200 C Search request [FILENAME CONTAINS “artist name”]
MAX_RESULTS <max> [FILENAME CONTAINS
<song] [LINESPEED <comp> <link type>]
[BITRATE <comp> “bit rate”] [FREQ <comp>
“freq”] [WMA-FILE] [LOCAL_ONLY]

201 S Search response “<filename>”<md5><size><bit rate>
<frequency><length><nick><ip address>

202 S End of search
response

(empty)

•Ioannis Fudos

•Image Indexing and Retrieval •7

37P2p, Spring 05

Sample Messages - 2

Type C/S Description Format
203 C Download request <nick> “<filename>”
204 S Download ack <nick><ip><port> “<filename>” <md5>

<linespeed>
206 S Peer to download not

available
<nick> “<filename>”

209 S Hotlist user signed on <user><speed>
211 C Browse a user’s files <nick>
212 S Browse response <nick> “<filename>”<md5><size>

<bit rate><frequency><time>
213 S End of browse list <nick>[<ip address>]
500 C Push file to me

(firewall problem)
<nick> “<filename>”

501 S Push ack (to other
client)

<nick><ip address><port> “<filename>”
<md5><speed>

38P2p, Spring 05

Client-Client Communication - 1

• Normal download (A downloads from B):
– A connects to B’s IP address/port as specified in the 204 message returned

by the server (response to 203)
– B sends the ASCII character “1”
– A sends the string “GET”
– A sends <mynick> “<filename>” <offset>
– B returns the file size (not terminated by any special character!) or an error

message such as “FILE NOT SHARED”
– A notifies the server that the download is ongoing via a 218 message;

likewise B informs the server with a 220 message
– Upon successful completion A notifies the server with a 219 message;

likewise B informs the server with a 221 message

39P2p, Spring 05

Client-Client Communication - 2

• Firewalled download (A wants to download from B who is behind a firewall):
– A sends a 500 message to the server which in turn sends a 501 message

(holding A’s IP address and data port) to B
– B connects A according to the 501 message
– A sends the ASCII character “1”
– B sends the string “SEND”
– B sends <mynick> “<filename>” <size>
– A returns the byte offset at which the transfer should start (plain ASCII

characters) or an error message such as “INVALID REQUEST”
– A notifies the server that the download is ongoing via a 218 message;

likewise B informs the server with a 220 message
– Upon successful completion A notifies the server with a 219 message;

likewise B informs the server with a 221 message

40P2p, Spring 05

Napster: Further Services

• Additionally to its search/transfer features the Napster client offers:
– A chat program that allows users to chat with each others in

forums based on music genre, etc.
– A audio player to play MP3 files from inside Napster
– A tracking program to support users in keeping track of their

favorite MP3s for later browsing
– Instant messaging service

• Most of the message types in the protocol deal with hotlist, chat
room, and instant messages

41P2p, Spring 05

Napster: Summary

• (Virtually) centralized system
– single point of failure ⇒ limited fault tolerance
– limited scalability (server farms with load balancing)

• Protocol is complicated and inconsistent
• Querying is fast and upper bound for the duration can be given
• “Topology is known”
• Reputation of peers is not addressed
• Many add-on services users like

42P2p, Spring 05

Early P2P II: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

An overlay network. “Unstructured”.

•Ioannis Fudos

•Image Indexing and Retrieval •8

43P2p, Spring 05

Early P2P II: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

44P2p, Spring 05

Early P2P II: Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding

45P2p, Spring 05

Early P2P II: Flooding on Overlays

xyz.mp3

46P2p, Spring 05

Early P2P II.v: “Ultrapeers”

Ultrapeers can be installed (KaZaA) or self-promoted
(Gnutella)

47P2p, Spring 05

Gnutella: A brief History

• Developed in a 14 days “quick hack” by Nullsoft (winamp)
• Originally intended for exchange of recipes
• Timeline:

– Published under GNU General Public License on the Nullsoft
web server

– Taken off after a couple of hours by AOL (owner of Nullsoft)
– This was enough to “infect” the Internet
– Gnutella protocol was reverse engineered from downloaded

versions of the original Gnutella software
– Third-party clients were published and Gnutella started to spread

48P2p, Spring 05

Gnutella: System Architecture
• No central server

– cannot be sued (Napster)
• Constrained broadcast

– Every peer sends packets it receives to all of its peers
(typically 4)

– Life-time of packets limited by time-to-live (TTL) (typically
set to 7)

– Packets have unique ids to detect loops

• Hooking up to the Gnutella systems requires that a new peer
knows at least one Gnutella host
– gnutellahosts.com:6346
– Outside the Gnutella protocol specification

•Ioannis Fudos

•Image Indexing and Retrieval •9

49P2p, Spring 05

Gnutella: Protocol Message Types

Type Description Contained Information
Ping Announce availability and

probe for other servents
None

Pong Response to a ping IP address and port# of
responding servent; number and
total kb of files shared

Query Search request Minimum network bandwidth of
responding servent; search
criteria

QueryHit Returned by servents
that have the requested
file

IP address, port# and network
bandwidth of responding servent;
number of results and result set

Push File download requests
for servents behind a
firewall

Servent identifier; index of
requested file; IP address and
port to send file to

50P2p, Spring 05

Gnutella: Meeting Peers (Ping/Pong)

C
A

B D

E
A’s ping
B’s pong
C’s pong
D’s pong
E’s pong

51P2p, Spring 05

The Protocol behind: Descriptors

• Meeting
– GNUTELLA CONNECT/0.4\n\n
– GNUTELLA OK\n\n

• “Descriptor header” (general packet header)

– Descriptor ID: 16 byte unique id
– Payload descriptor: packet type (e.g., 0x00 = Ping)
– TTL: the number of times the descriptor will be forwarded
– Hops: TTL(0) = TTL(i) + Hops(i)
– Payload length: the length of the descriptor immediately following this header

Payload
Descriptor TTL Hops

Payload
Length

Byte offset 0 15 16 17 18 19 22

Descriptor ID

52P2p, Spring 05

Ping/Pong Descriptors

• Ping (0x00): Descriptor header with payload 0x00

• Pong (0x01):

– Port: on which the responding host can accept connections
– IP address: of the responding host
– Number of files shared
– Number of kilobytes shared

IP address Number of
files shared

Number of
kilobytes sharedPort

Byte offset 0 1 2 5 6 9 10 13

53P2p, Spring 05

Gnutella: Searching (Query/QueryHit/GET)

C
A

B D

EA’s query (e.g., X.mp3)
C’s query hit
E’s query hit

X.mp3

X.mp3

GET X.mp3 X.mp3

54P2p, Spring 05

Query Descriptor

• Query (0x80):

– Minimum speed: the minimum network bandwidth of the servent
(in kb/s) that should respond to this query

– Search criteria: a null (i.e., 0x00) terminated string; the maximum
length of this string is bounded by the “Payload length” field of
the descriptor header.

Search criteriaMinimum speed

Byte offset 0 1 2

•Ioannis Fudos

•Image Indexing and Retrieval •10

55P2p, Spring 05

PortNumber
of hits

Byte offset 0 1 2 3 6 7 10 11 n n+16

IP
address

Speed Result
set

Servent
identifier

File index File size File name
Byte offset 0 3 4 7 8

QueryHit Descriptor (0x81)

– Number of hits: in the result set
– Port: on which the responding host can accept connections
– IP address: of the responding host
– Speed: of the responding host (in kb/s)
– Servent identifier: 16-byte string uniquely identifying the servent
– Result set (number of hits records)

• File index: a number assigned by the responding host to uniquely identify the file
matching the corresponding query

• File size: size of the file (in bytes)
• File name: double null (0x0000) terminated name of the file

56P2p, Spring 05

File Downloads

• Out of band via simplified HTTP
• Connect to IP/address given in QueryHit
• Example:

GET /get/2468/Foobar.mp3/ HTTP/1.0\r\n
Connection: Keep-Alive\r\n
Range: bytes=0\r\n
User-Agent: Gnutella\r\n
\r\n

HTTP 200 OK\r\n
Server: Gnutella\r\n
Content-type: application/binary\r\n
Content-length: 4356789\r\n
\r\n
<data> ...

57P2p, Spring 05

Free-riding on Gnutella [Adar00]

• 24 hour sampling period:
– 70% of Gnutella users share no files
– 50% of all responses are returned by top 1% of sharing

hosts
• A social problem not a technical one
• Problems:

– Degradation of system performance: collapse?
– Increase of system vulnerability
– “Centralized” (“backbone”) Gnutella ⇔ copyright issues?

• Verified hypotheses:
– H1: A significant portion of Gnutella peers are free riders.
– H2: Free riders are distributed evenly across domains
– H3: Often hosts share files nobody is interested in (are

not downloaded)

58P2p, Spring 05

Free-riding Statistics - 1 [Adar00]

H1: Most Gnutella users are free riders
Of 33,335 hosts:

– 22,084 (66%) of the peers share no files
– 24,347 (73%) share ten or less files
– Top 1 percent (333) hosts share 37% (1,142,645) of total files shared
– Top 5 percent (1,667) hosts share 70% (1,142,645) of total files shared
– Top 10 percent (3,334) hosts share 87% (2,692,082) of total files shared

59P2p, Spring 05

Free-riding Statistics - 2 [Adar00]

H3: Many servents share files nobody downloads
Of 11,585 sharing hosts:

– Top 1% of sites provide nearly 47% of all answers
– Top 25% of sites provide 98% of all answers
– 7,349 (63%) never provide a query response

60P2p, Spring 05

Free Riders

• Filesharing studies
– Lots of people download
– Few people serve files

• Is this bad?
– If there’s no incentive to serve, why do people do so?
– What if there are strong disincentives to being a major

server?

•Ioannis Fudos

•Image Indexing and Retrieval •11

61P2p, Spring 05

Simple Solution: Thresholds

• Many programs allow a threshold to be set
– Don’t upload a file to a peer unless it shares > k files

• Problems:
– What’s k?
– How to ensure the shared files are interesting?

62P2p, Spring 05

Categories of Queries [Sripanidkulchai01]

Categorized top 20 queries

63P2p, Spring 05

Popularity of Queries [Sripanidkulchai01]

• Very popular documents are approximately equally popular
• Less popular documents follow a Zipf-like distribution (i.e., the

probability of seeing a query for the ith most popular query is
proportional to 1/(ialpha)

• Access frequency of web documents also follows Zipf-like distributions
⇒ caching might also work for Gnutella

64P2p, Spring 05

Topology of Gnutella [Jovanovic01]

• Power-law properties verified (“find everything close by”)
• Backbone + outskirts

Power-Law Random Graph
(PLRG):

The node degrees follow a
power law distribution:

if one ranks all nodes from the
most connected to the least
connected, then
the i’th most connected node
has ω/ia neighbors,

where w is a constant.

65P2p, Spring 05

Gnutella Backbone [Jovanovic01]

66P2p, Spring 05

Why does it work? It’s a small World! [Hong01]

• Milgram: 42 out of 160 letters from Oregon to Boston (~ 6 hops)
• Watts: between order and randomness

– short-distance clustering + long-distance shortcuts

Regular graph:
n nodes, k nearest neighbors
⇒ path length ~ n/2k

4096/16 = 256

Random graph:
path length ~ log (n)/log(k)

~ 4

Rewired graph (1% of nodes):
path length ~ random graph
clustering ~ regular graph

•Ioannis Fudos

•Image Indexing and Retrieval •12

67P2p, Spring 05

Links in the small World [Hong01]

• “Scale-free” link distribution
– Scale-free: independent of the total number of nodes
– Characteristic for small-world networks
– The proportion of nodes having a given number of links n is:

P(n) = 1 /n k

– Most nodes have only a few connections
– Some have a lot of links: important for binding disparate regions

together

68P2p, Spring 05

Freenet: Links in the small World [Hong01]

P(n) ~ 1/n 1.5

69P2p, Spring 05

Freenet: “Scale-free” Link Distribution [Hong01]

70P2p, Spring 05

Caching in Gnutella [Sripanidkulchai01]

• Average bandwidth consumption in tests: 3.5Mbps
• Best case: trace 2 (73% hit rate = 3.7 times traffic reduction)

71P2p, Spring 05

Gnutella: New Measurements

[1] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble:
A Measurement Study of Peer-to-Peer File Sharing Systems,
Proceedings of Multimedia Computing and Networking (MMCN)
2002, San Jose, CA, USA, January 2002.

[2] M. Ripeanu, I. Foster, and A. Iamnitchi.
Mapping the gnutella network: Properties of large-scale peer-to-peer systems and implications for
system design.
IEEE Internet Computing Journal, 6(1), 2002

[3] Evangelos P. Markatos,
Tracing a large-scale Peer to Peer System: an hour in the life of Gnutella,
2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2002.

[4] Y. HawatheAWATHE, S. Ratnasamy, L. Breslau, and S. Shenker.
Making Gnutella-like P2P Systems Scalable. In Proc. ACM SIGCOMM (Aug. 2003).

[5] Qin Lv, Pei Cao, Edith Cohen, Kai Li, Scott Shenker:
Search and replication in unstructured peer-to-peer networks. ICS 2002: 84-95

72P2p, Spring 05

Gnutella: Bandwidth Barriers

• Clip2 measured Gnutella over 1 month:
– typical query is 560 bits long (including TCP/IP headers)
– 25% of the traffic are queries, 50% pings, 25% other
– on average each peer seems to have 3 other peers actively connected

• Clip2 found a scalability barrier with substantial performance degradation if
queries/sec > 10:

10 queries/sec
* 560 bits/query
* 4 (to account for the other 3 quarters of message traffic)
* 3 simultaneous connections
67,200 bps
⇒ 10 queries/sec maximum in the presence of many dialup users
⇒ won’t improve (more bandwidth - larger files)

•Ioannis Fudos

•Image Indexing and Retrieval •13

73P2p, Spring 05

Gnutella: Summary

• Completely decentralized
• Hit rates are high
• High fault tolerance
• Adopts well and dynamically to changing peer populations
• Protocol causes high network traffic (e.g., 3.5Mbps). For example:

– 4 connections C / peer, TTL = 7
– 1 ping packet can cause packets

• No estimates on the duration of queries can be given
• No probability for successful queries can be given
• Topology is unknown ⇒ algorithms cannot exploit it
• Free riding is a problem
• Reputation of peers is not addressed
• Simple, robust, and scalable (at the moment)

240,26)1(**2
0

=−∑ =

TTL

i
iCC

74P2p, Spring 05

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

Iterative vs. Recursive Routing
Iterative: Originator requests IP address of each hop

• Message transport is actually done via direct IP
Recursive: Message transferred hop-by-hop

75P2p, Spring 05

Hierarchical Networks (& Queries)

• DNS
– Hierarchical name space (“clients” + hierarchy of servers)
– Hierarchical routing w/aggressive caching

• 13 managed “root servers”

• Traditional pros/cons of Hierarchical data mgmt
– Works well for things aligned with the hierarchy

• Esp. physical locality
– Inflexible

• No data independence!

76P2p, Spring 05

Commercial Offerings

• JXTA
– Java/XML Framework for p2p applications
– Name resolution and routing is done with floods & superpeers

• Can always add your own if you like

• MS WinXP p2p networking
– An unstructured overlay, flooded publication and caching
– “does not yet support distributed searches”

• Both have some security support
– Authentication via signatures (assumes a trusted authority)
– Encryption of traffic

77P2p, Spring 05

Lessons and Limitations

• Client-Server performs well
– But not always feasible

• Ideal performance is often not the key issue!

• Things that flood-based systems do well
– Organic scaling
– Decentralization of visibility and liability
– Finding popular stuff (e.g., caching)
– Fancy local queries

• Things that flood-based systems do poorly
– Finding unpopular stuff [Loo, et al VLDB 04]
– Fancy distributed queries
– Vulnerabilities: data poisoning, tracking, etc.
– Guarantees about anything (answer quality, privacy, etc.)

78P2p, Spring 05

Summary and Comparison of Approaches

Paradigm Search Type Search Cost
(messages) Autonomy

Gnutella Breadth-first
search on graph

String
comparison very high

FreeNet Depth-first
search on graph

String
comparison O(Log n) ? very high

Chord Implicit binary
search trees Equality O(Log n) restricted

CAN d-dimensional
space Equality O(d n (̂1/d)) high

P-Grid Binary prefix
trees Prefix O(Log n) high

∑ =
−

TTL

i
iCC

0
)1(**2

•Ioannis Fudos

•Image Indexing and Retrieval •14

79P2p, Spring 05

More on Search

Search Options
– Query Expressiveness (type of queries)
– Comprehensiveness (all or just the first (or k) results
– Topology
– Data Placement
– Message Routing

80P2p, Spring 05

Comparison

Gnutella CAN Others?
Expressivness
Comprehensivness
Autonomy
Efficiency
Robustness
Topology pwr law
Data Placement arbitrary
Message Routing flooding

81P2p, Spring 05

Comparison

Gnutella CAN Others?
Expressivness
Comprehensivness
Autonomy
Efficiency
Robustness
Topology pwr law grid
Data Placement arbitrary hashing
Message Routing flooding directed

82P2p, Spring 05

Parallel Clusters

links out of these clusters not shown

search at only a fraction
of the nodes!

83P2p, Spring 05

Other Open Problems besides Search: Security

• Availability (e.g., coping with DOS attacks)
• Authenticity
• Anonymity
• Access Control (e.g., IP protection, payments,...)

84P2p, Spring 05

Trustworthy P2P
• Many challenges here. Examples:

– Authenticating peers

– Authenticating/validating data
• Stored (poisoning) and in flight

– Ensuring communication

– Validating distributed computations

– Avoiding Denial of Service
• Ensuring fair resource/work allocation

– Ensuring privacy of messages
• Content, quantity, source, destination

•Ioannis Fudos

•Image Indexing and Retrieval •15

85P2p, Spring 05

Authenticity

title: origin of species

author: charles darwin

date: 1859

body: In an island far,
far away ...

...

?

86P2p, Spring 05

More than Just File Integrity

title: origin of species

author: charles darwin

date: 1859

body: In an island far,
far away ...

checksum

? 00

87P2p, Spring 05

More than Fetching One File

T=origin
Y=1800

A=darwin

T=origin
Y=1859

A=darwin

T=origin
Y=1859

A=darwin

T=origin
Y=?

A=darwin
B=?

T=origin
Y=1859

A=darwin
B=abcd

88P2p, Spring 05

Solutions

• Authenticity Function A(doc): T or F
– at expert sites, at all sites?
– can use signature expert sig(doc) user

• Voting Based
– authentic is what majority says

• Time Based
– e.g., oldest version (available) is authentic

89P2p, Spring 05

Added Challenge: Efficiency

• Example: Current music sharing
– everyone has authenticity function
– but downloading files is expensive

• Solution: Track peer
behavior

bad peer

good peergood peer

90P2p, Spring 05

Issues

• Trust computations in dynamic system
• Overloading good nodes
• Bad nodes can provide good content sometimes
• Bad nodes can build up reputation
• Bad nodes can form collectives
• ...

•Ioannis Fudos

•Image Indexing and Retrieval •16

91P2p, Spring 05

Sample Results

Fraction of malicious peers

Fr
ac

tio
n

of
 in

a u
th

en
tic

 d
o w

nl
o a

ds

92P2p, Spring 05

Security & Privacy

• Issues:
– Anonymity
– Reputation
– Accountability
– Information Preservation
– Information Quality
– Trust
– Denial of service attacks

93P2p, Spring 05

P2P Challenges

• Search
• Resource Management
• Security & Privacy

94P2p, Spring 05

DAMD P2P!

• Distributed Algorithmic Mechanism Design (DAMD)
– A natural approach for P2P

• An Example: Fair-share storage [Ngan, et al., Fudico04]

– Every node n maintains a usage record:
• Advertised capacity
• Hosted list of objects n is hosting (nodeID, objID)
• Published list of objects people host for n (nodeID, objID)

– Can publish if capacity - p·∑(published list) > 0
• Recipient of publish request should check n’s usage record

– Need schemes to authenticate/validate usage records
• Selfish Audits: n periodically checks that the elements of its

hosted list appear in published lists of publishers
• Random Audits: n periodically picks a peer and checks all its

hosted list items

95P2p, Spring 05

Lessons and Limitations

• Client-Server performs well
– But not always feasible

• Ideal performance is often not the key issue!

• Things that flood-based systems do well
– Organic scaling
– Decentralization of visibility and liability
– Finding popular stuff (e.g., caching)
– Fancy local queries

• Things that flood-based systems do poorly
– Finding unpopular stuff [Loo, et al VLDB 04]
– Fancy distributed queries
– Vulnerabilities: data poisoning, tracking, etc.
– Guarantees about anything (answer quality, privacy, etc.)

