
Γιατί θα μιλήσουμε σήμερα .. 1. ΜΕΡΟΣ 1: Γενική Εισαγωγή σε Αδόμητα (Unstructured) Συστήματα Ομότιμων Κόμβων (ΣΟΚ) και κάποια γενικά να ΣΟΚ 2. ΜΕΡΟΣ 2: Ένα Παράδειγμα Χρήσης Ευρετηρίων σε Αδόμητα ΣΟΚ - Routing Indexes

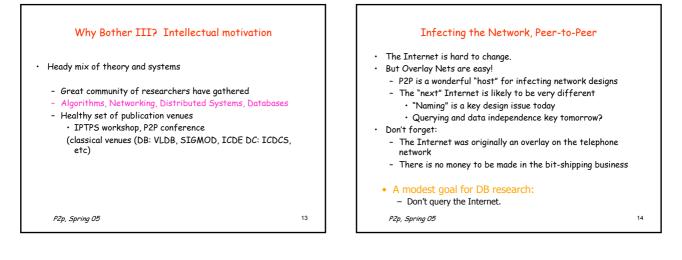
		_		
Unstructured Peer-to-Peer Systems Based on "Peer-to-peer information systems: concepts and models, state-of-the- art, and future systems" Karl Aberer & Manfred Hauswirth ICDEO2 Tutorial "Architectures and Algorithms for Internet-Scale (P2P) Data Management" Joe Hellerstein VLDB 2004 Tutorial			What is a P2P System? Multiple sites (at edge) Distributed resources Sites are autonomous (different owners) Sites are both clients and servers Sites have equal functionality 	
"Open Problems in Data-Sharing Peer-to-Peer Systems", Neil Daswani, Hector Garcia-Molina and Beverly Yang. In ICDT, 2003.				
Θα βάλω αντίγραφα στη σελίδα			P2P Purity	
P2p, Spring 05	5		P2p, Spring 05	6

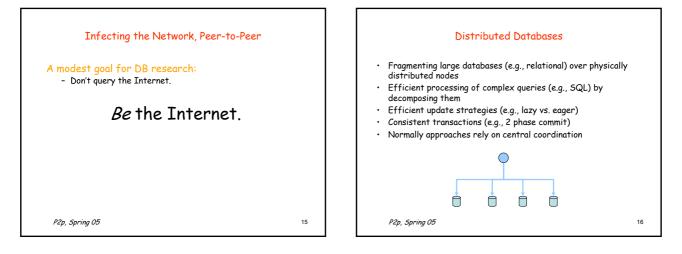
P2P Cooperation Models

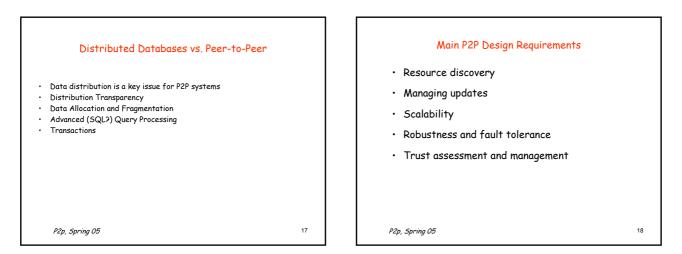
- Centralized model
- global index held by a central authority (single point of failure)
- direct contact between requestors and providers
- Example: Napster
- Decentralized model
 - Examples: Freenet, Gnutella
 - no global index, no central coordination, global behavior emerges from local interactions, etc.
 - direct contact between requestors and providers (Gnutella) or mediated by a chain of intermediaries (Freenet)
- Hierarchical model
 - introduction of "super-peers"
 - mix of centralized and decentralized model
 - Example: DNS

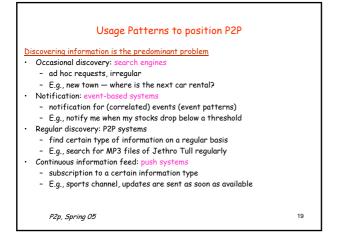
P2p, Spring 05

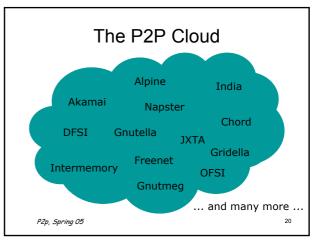
Why Bother? Not the Gold Standard

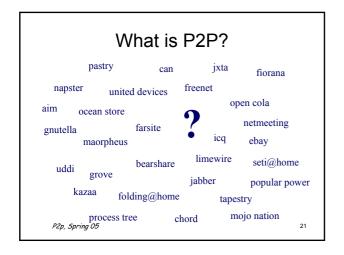

- Given an infinite budget, would you go p2p?
- Highest performance? No.
 - Hard to beat hosted/managed services
 - p2p Google appears to be infeasible [Li, et al. IPTPS 03]
- Most Resilient? Hmmmm.
 - In principle more resistant to DoS attacks, etc.
 - Take, Chord: A node entering multiple times in the ring with different identities, control much f the traffic
 - Today, still hard to beat hosted/managed services
 Geographically replicated, hugely provisioned
 - People who "do it for dollars" today don't do it p2p

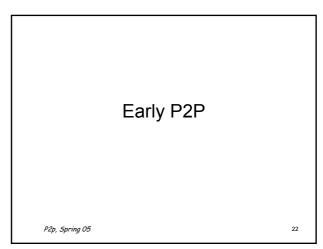

Why Bother II: Positive Lessons from Filestealing

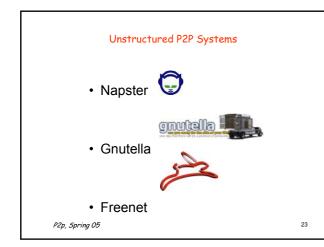

- P2P enables organic scaling
 - Vs. the top few killer services -- no VCs required!
 - Can afford to "place more bets", try wacky ideas
- Centralized services engender scrutiny
 - Tracking users is trivial
 Provider is liable (for misuse, for downtime, for local laws, etc.)
 - Provider is hable (for misuse, for downtime, for local laws
- Centralized means business
 - Need to pay off startup & maintenance expenses
 - Need to protect against liability
 - Business requirements drive to particular short-term goals
 Tragedy of the commons

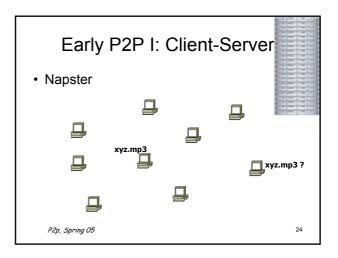

11

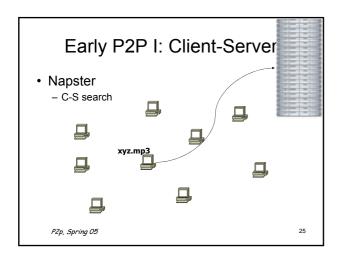

8

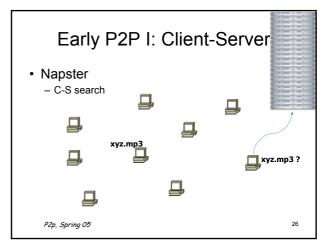


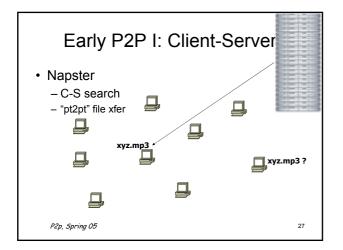


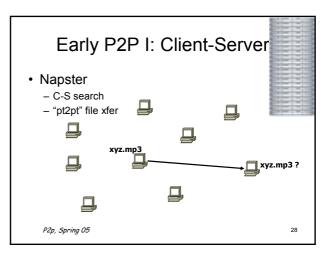


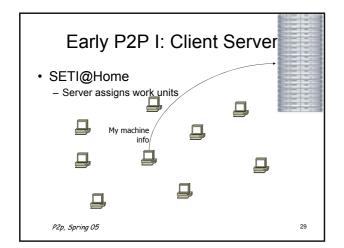


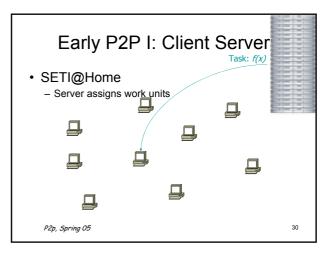


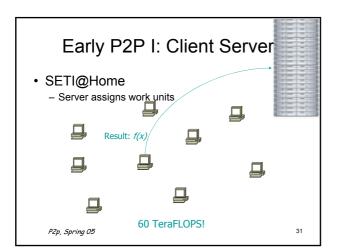


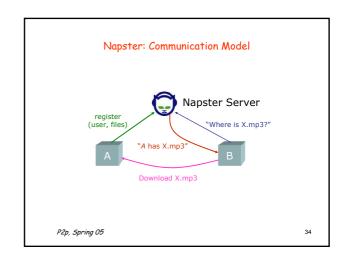


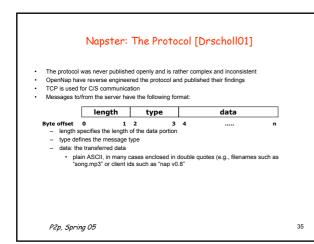









99: Recording Industry Association of America (RIAA) sues Napster for copyright ent 2000: Heavy metal rock group Metallica sues Napster for copyright infringement 2000: Rapper Dr. Dre sues Napster 900: Metallica's attorney claims 335,000 Internet users illegally share Metallica's songs er
2000: Rapper Dr. Dre sues Napster 000: Metallica's attorney claims 335,000 Internet users illegally share Metallica's songs
000: Metallica's attorney claims 335,000 Internet users illegally share Metallica's songs
2000: Court orders Napster to shut down
000: Bertelsmann becomes a partner and drops lawsuit
001: Court orders Napster to cease trading copyrighted songs and to prevent rs to gain access to content on its search index that could potentially infringe copyright
001: Napster offers \$1 billion to record companies (rejected)
2001: Napster installs software to satisfy the order
0


Napster: System Architecture

- Central (virtual) database which holds an index of offered MP3/WMA files
- Clients(!) connect to this server, identify themselves (account) and send a list of MP3/WMA files they are sharing (C/S)
- Other clients can search the index and learn from which clients they can retrieve the file (P2P)
- · Combination of client/server and P2P approaches
- · First time users must register an account

P2p, Spring 05

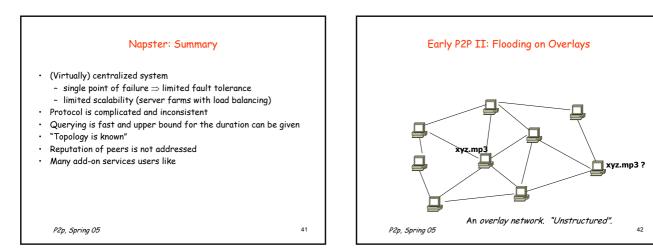
33

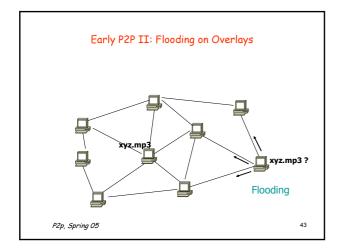
Гуре	C/S	Description	Format
0	S	Error message	<message></message>
2	С	Login	<nick><pwd><port><client info=""><link type=""/></client></port></pwd></nick>
3	S	Login ack	<user's email=""></user's>
5	S	Auto-upgrade	<new version=""><http-hostname:filename></http-hostname:filename></new>
6	С	New user login	<nick><pwd><port><client info=""><speed> <email address=""></email></speed></client></port></pwd></nick>
100	С	Client notification of shared file	<pre>``<filename>"<md5><size><bitrate> <frequency><time></time></frequency></bitrate></size></md5></filename></pre>
200	С	Search request	[FILENAME CONTAINS "artist name"] MAX_RESULTS <max> [FILENAME CONTAINS <song] <comp="" [linespeed=""> <link type=""/>] [BITRATE <comp> "bit rate"] [FREQ <comp> "freq"] (WMA-FILE] [LOCAL_ONLY]</comp></comp></song]></max>
201	S	Search response	<pre>``<filename>"<md5><size><bit rate=""> <frequency><length><nick><ip address=""></ip></nick></length></frequency></bit></size></md5></filename></pre>
202	S	End of search response	(empty)

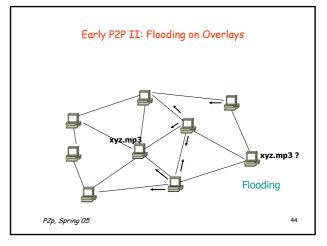
Sample Messages - 2

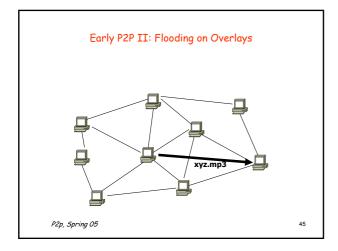
>" `` <filename>" <md5> >"</md5></filename>
>″
>″ <md5><size> cy><time></time></size></md5>
[>]
>"
> <port> ``<filename>'</filename></port>

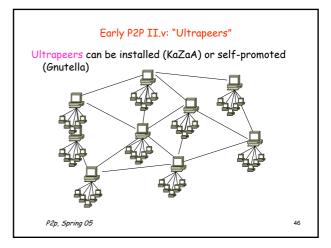
Client-Client Communication - 1
 Normal download (A downloads from B): A connects to B's IP address/port as specified in the 204 message returned by the server (response to 203) B sends the ASCII character "1" A sends the string "CET" A sends the string "CET" A sends set set (not terminated by any special character!) or an error message such as "FILE NOT SHARED" A notifies the server that the download is ongoing via a 218 message; likewise B informs the server with a 220 message Upon successful completion A notifies the server with a 219 message; likewise B informs the server with a 221 message
<i>P2p, Spring 05</i> 38

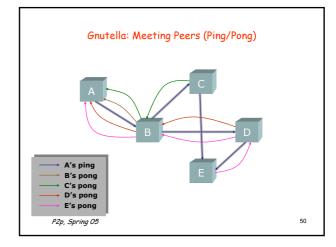

Client-Client Communication - 2

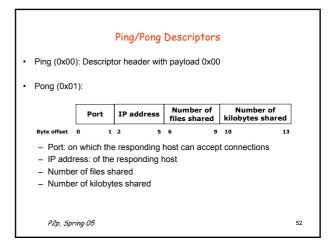

- Firewalled download (A wants to download from B who is behind a firewall):
 A sends a 500 message to the server which in turn sends a 501 message (holding A's IP address and data port) to B
 - B connects A according to the 501 message
 - A sends the ASCII character "1"
 - B sends the string "SEND"
 - B sends <mynick> "<filename>" <size>
 - A returns the byte offset at which the transfer should start (plain ASCII characters) or an error message such as "INVALID REQUEST"
 - A notifies the server that the download is ongoing via a 218 message; likewise B informs the server with a 220 message
 - Upon successful completion A notifies the server with a 219 message; likewise B informs the server with a 221 message

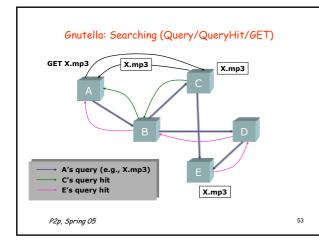

P2p, Spring 05

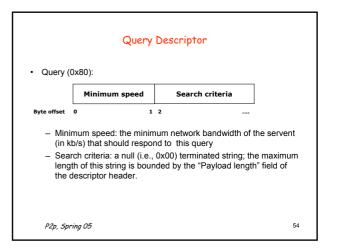

39

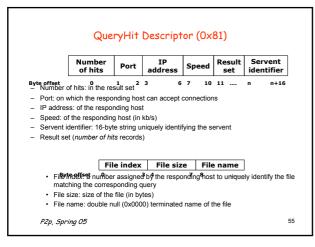

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

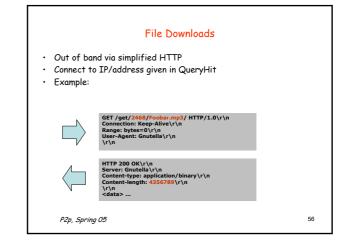


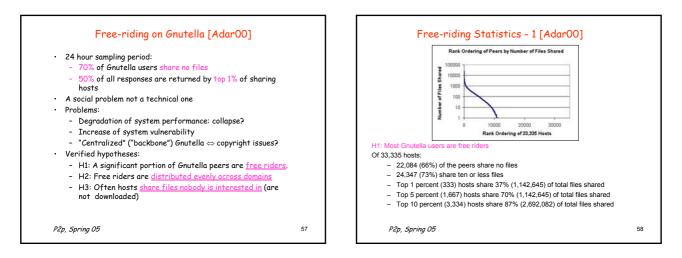

Gnutella: A brief History Gnutella: System Architecture No central server • Developed in a 14 days "quick hack" by Nullsoft (winamp) - cannot be sued (Napster) • Originally intended for exchange of recipes Constrained broadcast Timeline: Every peer sends packets it receives to all of its peers - Published under GNU General Public License on the Nullsoft (typically 4) Life-time of packets limited by time-to-live (TTL) (typically set to 7) web server - Taken off after a couple of hours by AOL (owner of Nullsoft) - Packets have unique ids to detect loops - This was enough to "infect" the Internet - Gnutella protocol was reverse engineered from downloaded Hooking up to the Gnutella systems requires that a new peer knows at least one Gnutella host versions of the original Gnutella software - Third-party clients were published and Gnutella started to spread - gnutellahosts.com:6346 - Outside the Gnutella protocol specification P2p, Spring 05 47 P2p, Spring 05 48

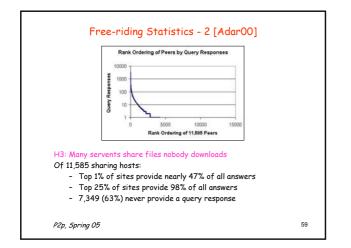

Gnutella: Protocol Message Types

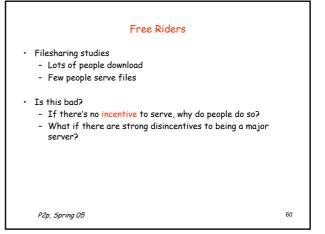

Туре	Description	Contained Information
Ping	Announce availability and probe for other servents	None
Pong	Response to a ping	IP address and port# of responding servent; number and total kb of files shared
Query	Search request	Minimum network bandwidth of responding servent; search criteria
QueryHit	Returned by servents that have the requested file	IP address, port# and network bandwidth of responding servent; number of results and result set
Push	File download requests for servents behind a firewall	Servent identifier; index of requested file; IP address and port to send file to
P2p, Spi	ring 05	49

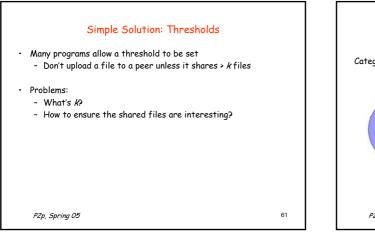


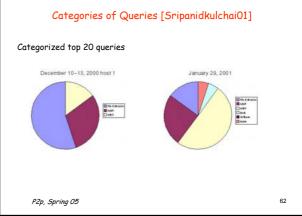

– GNUT	The Prot ELLA CONNECT/0.4 ELLA OK\n\n r header" (general pa		nd: Descr	iptors		
	Descriptor ID	Payload Descriptor	TTL	Hops	Payload Length	
Byte offset	0 15	16	17	18	19 2	2
 Payloa TTL: ti Hops: 	iptor ID: 16 byte uniq ad descriptor: packet he number of times th TTL(0) = TTL(i) + Ho ad length: the length	type (e.g., 0x00 ne descriptor wil ops(i)	ll be forwarded		header	
P2p, 5	Spring 05					51

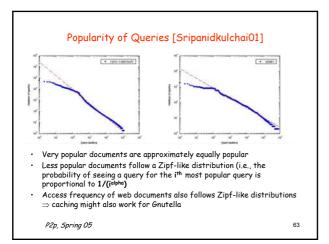


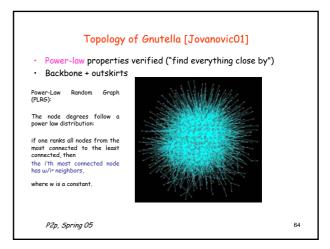


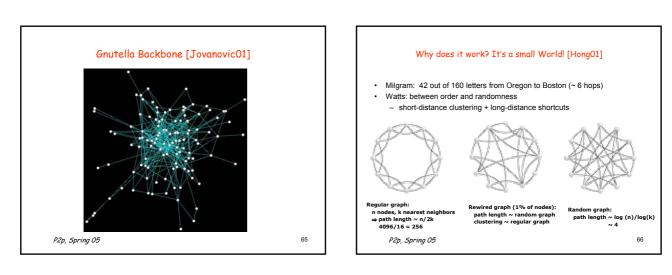


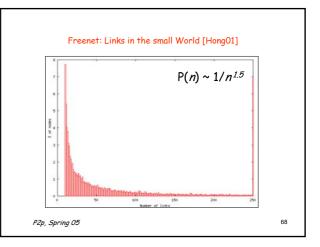


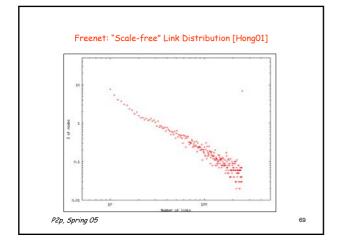








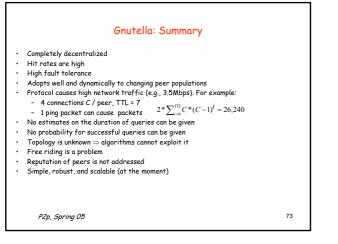


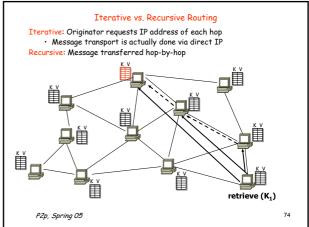

Links in the small World [Hong01]

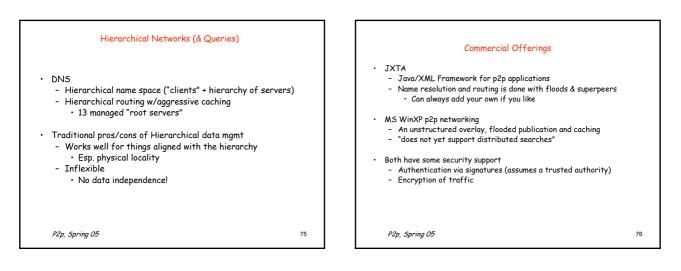
- "Scale-free" link distribution
 - Scale-free: independent of the total number of nodes
 - Characteristic for small-world networks
 - The proportion of nodes having a given number of links *n* is: $P(n) = 1 / n^k$
 - Most nodes have only a few connections
 - Some have a lot of links: important for binding disparate regions together

P2p, Spring 05

67

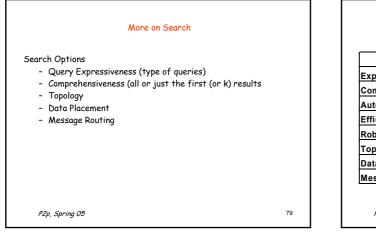





<section-header><section-header><text><text><figure><figure><figure>

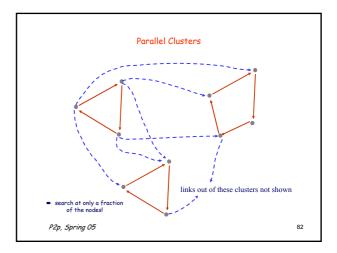
72

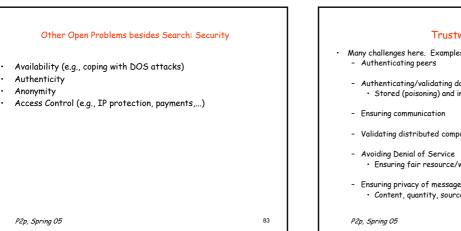
Gnutella: New Measurements		Gnutella: Bandwidth Barriers
 Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble: <u>A Measurement Study of Peer-to-Peer File Sharing Systems</u>, Proceedings of Multimedia Computing and Networking (MMCN) 2002, San Jose, CA, USA, January 2002. M. Ripeanu, I. Foster, and A. Iamnitchi. <u>Mapping the gnutelia network: Properties of large-scale peer-to-peer systems and implike</u> <u>system design</u>. IEEE Internet Computing Journal, 6(1), 2002 Evangelos P. Markatos, <u>Tracing a large-scale Peer to Peer System: an hour in the life of Gnutella</u>, 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2002. Y. HawatheAWATHE, S. Ratnasamy, L. Breslau, and S. Shenker. <u>Making Gnutella-like P2P Systems Scalable</u>. In Proc. ACM SIGCOMM (Aug. 2003). 	cations for	 Clip2 measured Gnutella over 1 month: typical query is 560 bits long (including TCP/IP headers) 25% of the traffic are queries, 50% pings, 25% other on average each peer seems to have 3 other peers actively connected Clip2 found a scalability barrier with substantial performance degradation if queries/sec > 10:
[5] Qin Lv, Pei Cao, Edith Cohen, Kai Li, Scott Shenker: Search and replication in unstructured peer-to-peer networks. <u>ICS 2002</u> : 84-95 P2p, Spring 05	71	P2p, Spring 05
1 Lp, opining 00		1 Lp, opi ing 00

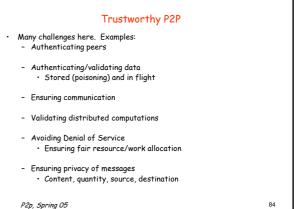


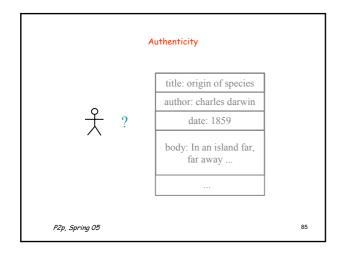
Lessons and Limitations		
it-Server performs well		
But not always feasible		
 Ideal performance is often not the key issue! 		
gs that flood-based systems do well		
Organic scaling		
Decentralization of visibility and liability		
Finding popular stuff (e.g., caching)		
Fancy <i>local</i> queries		
gs that flood-based systems do poorly		
Finding unpopular stuff [Loo, et al VLDB 04]		
Fancy distributed queries		
/ulnerabilities: data poisoning, tracking, etc.		
Guarantees about anything (answer quality, privacy, etc.)		
Guarantees about anything (answer quality, privacy, etc.) Spring 05	77	

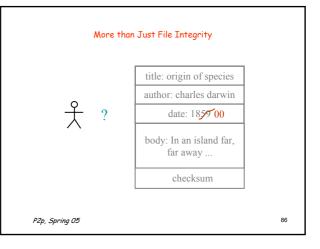
Summary and Comparison of Approaches

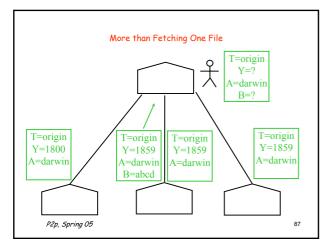

	Paradigm	Search Type	Search Cost (messages)	Autonomy
Gnutella	Breadth-first search on graph	String comparison	$2*\sum_{i=0}^{TTL}C*(C-1)^{i}$	very high
FreeNet	Depth-first search on graph	String comparison	O(Log n) ?	very high
Chord	Implicit binary search trees	Equality	O(Log n)	restricted
CAN	d-dimensional space	Equality	O(d n^(1/d))	high
P-Grid	Binary prefix trees	Prefix	O(Log n)	high

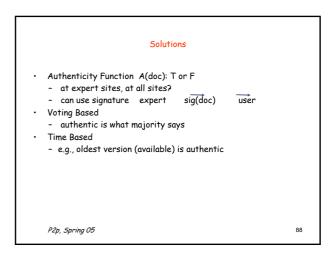

P2p, Spring 05



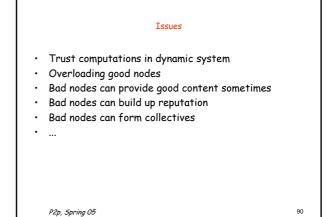

	Gnutella	CAN	Others?
Expressivness	****		
Comprehensivness	**		
Autonomy	****		
Efficiency	*		
Robustness	***		
Гороlоду	pwr law		
Data Placement	arbitrary		
Message Routing	flooding		

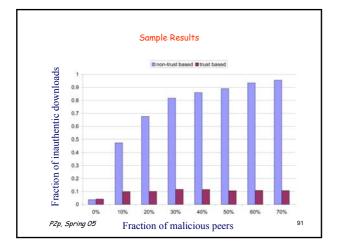

Comparison					
	Gnutella	CAN	Others?		
Expressivness	****	*			
Comprehensivness	**	****			
Autonomy	****	**			
Efficiency	*	***			
Robustness	***	**			
Topology	pwr law	grid			
Data Placement	arbitrary	hashing			
Message Routing	flooding	directed			

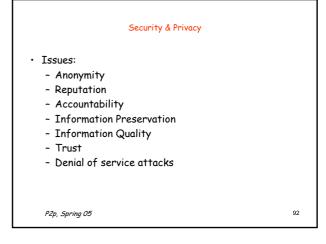


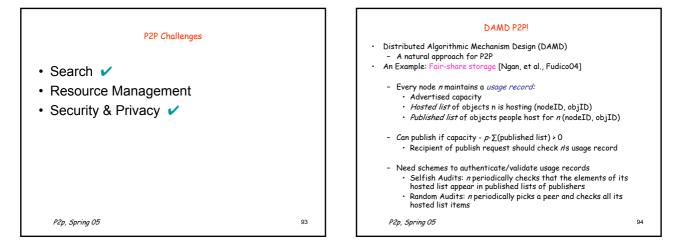












Lessons and Limitations	
 Client-Server performs well But not always feasible Ideal performance is often not the key issue! 	
 Things that flood-based systems do well Organic scaling Decentralization of visibility and liability Finding popular stuff (e.g., caching) Fancy <i>local</i> queries 	
 Things that flood-based systems do poorly Finding unpopular stuff [Loo, et al VLDB 04] Fancy distributed queries Vulnerabilities: data poisoning, tracking, etc. Guarantees about anything (answer quality, privacy, etc.) 	
P2p, Spring 05	95