

BFS vs DFS

BFS better response time, larger number of nodes (message overhead per node and overall)

Note: search in BFS continues (if TTL is not reached), even if the object has been located on a different path

Recursive vs Iterative

During search, whether the node issuing the query direct contacts others, or recursively.

Does the result follows the same path?

P2p, Spring 05

Search in Unstructured P2P

Two general types of search in unstructured p2p:

Blind: try to propagate the query to a sufficient number of nodes (example Gnutella)

Informed: utilize information about document locations (example Routing Indexes)

Informed search increases the cost of join for an improved search cost

Blind Search Methods

Gnutella:

Huge overhead to a large number of peers +

Overall network traffic

Hard to find unpopular items

Up to 60% bandwidth consumption of the total Internet traffic

Modified-BFS:

Choose only a *ratio* of the neighbors (some random subset)

11

Blind Search Methods

Iterative Deepening:

Start BFS with a small TTL and repeat the BFS at increasing depths if the first BFS fails

Works well when there is some stop condition and a "small" flood will satisfy the query

Else even bigger loads than standard flooding

(more later ...)

P2p, Spring 05

Blind Search Methods Random Walks: The node that poses the query sends out k query messages to an equal number of randomly chosen neighbors Each step follows each own path at each step randomly choosing one neighbor to forward it Each path - a walker Two methods to terminate each walker: •TTL-based or -checking method (the walkers periodically check with the query source if the stop condition has been met) It reduces the number of messages to $k \times TTL$ in the worst case Some kind of local load-balancing 14 13 P2p, Spring 05

Blind Search Methods	
Random Walks: In addition, the protocol bias its walks towards <i>high-degree</i> <i>nodes</i>	Using Su Super (o Each sup Routing o T
<i>P2p, Spring 05</i> 15	P2p, S

Blind Search Methods

Using Super-nodes:

Gnutella2

When a super-peer (or hub) receives a query from a leaf, it forwards it to its relevant leaves and to neighboring super-peers The hubs process the query locally and forward it to their relevant leaves

Neighboring super-peers regularly exchange local repository tables to filter out traffic between them

Informed Search Methods

Local Index

Each node indexes all files stored at all nodes within a certain radius $r \, {\rm and} \, {\rm can} \, {\rm answer} \, {\rm queries}$ on behalf of them

Search process at steps of r Flood inside each r with TTL = r

Flood inside each r with 11L = r

Increased cost for join/leave