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Outline

More on Search Strategies in Unstructured p2p

Replication

general

review of structured

techniques for unstructured
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Notes

No class on April 5

Next assignment (tomorrow in the web page)

Present one paper (3 papers, 1 per group)

MAX 35’ each 
Topology

Join/Search

Evaluation

Other Issues

the presentation should also include

a short discussion (3-5 slides) of what replication 
strategies you think could be applied in the system 
you will be presenting
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Topics in Database Systems: Data Management in 
Peer-to-Peer Systems

D. Tsoumakos and N. Roussopoulos,  “A Comparison of Peer-to-
Peer Search Methods”, WebDB03
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Overview

Centralized

Constantly-updated directory hosted at central locations (do 
not scale well, updates, single points of failure)

Decentralized but structured

The overlay topology is highly controlled and files (or 
metadata/index) are not placed at random nodes but at 
specified locations

“loosely” vs “highly-structured” DHT 

Decentralized and Unstructured

peers connect in an ad-hoc fashion

the location of document/metadata is not controlled by the system

No guaranteed for the success of a search

No bounds on search time
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Flooding on Overlays

xyz.mp3 ?

xyz.mp3
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Flooding on Overlays

xyz.mp3 ?
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Flooding
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Flooding on Overlays

xyz.mp3 ?

xyz.mp3

Flooding
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Flooding on Overlays

xyz.mp3
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Search in Unstructured P2P

BFS vs DFS

BFS better response time, larger number of nodes 
(message overhead per node and overall)

Note: search in BFS continues (if TTL is not reached), even 
if the object has been located on a different path 

Recursive vs Iterative

During search, whether the node issuing the query direct 
contacts others, or recursively.

Does the result follows the same path?
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Search in Unstructured P2P

Two general types of search in unstructured p2p:

Blind: try to propagate the query to a sufficient number 
of nodes (example Gnutella)

Informed: utilize information about document locations 
(example Routing Indexes)

Informed search increases the cost of join for 
an improved search cost
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Blind Search Methods

Gnutella:

Use flooding (BFS) to contact all accessible nodes within the 
TTL value

Huge overhead to a large number of peers +

Overall network traffic

Hard to find unpopular items

Up to 60% bandwidth consumption of the total Internet 
traffic

Modified-BFS:

Choose only a ratio of the neighbors (some random subset)
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Blind Search Methods

Iterative Deepening:

Start BFS with a small TTL and repeat the BFS at 
increasing depths if the first BFS fails

Works well when there is some stop condition and a 
“small” flood will satisfy the query

Else even bigger loads than standard flooding

(more later …)
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Blind Search Methods
Random Walks:

The node that poses the query sends out k query messages to an 
equal number of randomly chosen neighbors

Each step follows each own path at each step randomly choosing 
one neighbor to forward it

Each path – a walker

Two methods to terminate each walker: 
TTL-based or 

checking method (the walkers periodically check with the query source if the 
stop condition has been met)

It reduces the number of messages to k x TTL in the worst case

Some kind of local load-balancing
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Blind Search Methods

Random Walks:

In addition, the protocol bias its walks towards high-degree 
nodes
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Blind Search Methods

Using Super-nodes:

Super (or ultra) peers are connected to each other

Each super-peer is also connected with a number of lead nodes

Routing among the super-peers

The super-peers then contact their leaf nodes
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Blind Search Methods

Using Super-nodes:

Gnutella2

When a super-peer (or hub) receives a query from a leaf, it 
forwards it to its relevant leaves and to neighboring super-peers

The hubs process the query locally and forward it to their 
relevant leaves

Neighboring super-peers regularly exchange local repository 
tables to filter out traffic between them
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Blind Search Methods

Ultrapeers can be installed (KaZaA) or self-promoted (Gnutella)

Interconnection between 
the superpeers
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?query ...

Informed Search Methods

Intelligent BFS

Nodes store simple statistics on its neighbors:

(query, NeigborID) tuples for recently answered requests from or 
through their neighbors 

so they can rank them

For each query, a node finds similar ones and selects a direction

How?
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• Heuristics for Selecting Direction
>RES: Returned most results for previous queries
<TIME: Shortest satisfaction time
<HOPS: Min hops for results
>MSG: Forwarded the largest number of messages (all types), 

suggests that the neighbor is stable
<QLEN: Shortest queue
<LAT: Shortest latency
>DEG: Highest degree

?query ...

Informed Search Methods

Intelligent or Directed BFS
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Informed Search Methods

Intelligent or Directed BFS

• No negative feedback
• Depends on the assumption that nodes specialize in certain 
documents
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Informed Search Methods

APS

Again, each node keeps a local index with on entry for each object it has 
requested per neighbor – this reflects the relative probability of the 
node to be chosen to forward the query

k independent walkers and probabilistic forwarding
Each node forwards the query to one of its neighbor based on the local 
index

If a walker, succeeds the probability is increased, else is decreased –

How?

After a walker miss (optimistic update) or after a hit (pessimistic 
update)
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Informed Search Methods

Local Index

Each node indexes all files stored at all nodes within a certain
radius r and can answer queries on behalf of them

Search process at steps of r  

Flood inside each r with TTL = r

Increased cost for join/leave


