
Peer-to-Peer Information Retrieval Using
Self-Organizing Semantic Overlay Networks

Chunqiang Tang
∗

Dept. of Computer Science
Univ. of Rochester

Rochester, NY 14627-0226

sarrmor@cs.rochester.edu

Zhichen Xu
HP Laboratories

1501 Page Mill Rd.
Palo Alto, CA 94304-1126

zhichen@hpl.hp.com

Sandhya Dwarkadas
Dept. of Computer Science

Univ. of Rochester
Rochester, NY 14627-0226

sandhya@cs.rochester.edu

ABSTRACT
Content-based full-text search is a challenging problem in Peer-to-
Peer (P2P) systems. Traditional approaches have either been cen-
tralized or use flooding to ensure accuracy of the results returned.
In this paper, we present pSearch, a decentralized non-flooding P2P
information retrieval system. pSearch distributes document indices
through the P2P network based on document semantics generated
by Latent Semantic Indexing (LSI). The search cost (in terms of
different nodes searched and data transmitted) for a given query
is thereby reduced, since the indices of semantically related docu-
ments are likely to be co-located in the network. We also describe
techniques that help distribute the indices more evenly across the
nodes, and further reduce the number of nodes accessed using ap-
propriate index distribution as well as using index samples and re-
cently processed queries to guide the search. Experiments show
that pSearch can achieve performance comparable to centralized
information retrieval systems by searching only a small number of
nodes. For a system with 128,000 nodes and 528,543 documents
(from news, magazines, etc.), pSearch searches only 19 nodes and
transmits only 95.5KB data during the search, whereas the top 15
documents returned by pSearch and LSI have a 91.7% intersection.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms
Algorithms, Management, Performance, Design, Experimentation

Keywords
Peer-to-Peer System, Information Retrieval, Overlay Network

1. INTRODUCTION
According to a recent report [17], 93% of information produced

worldwide is in digital form. The unique data added each year

∗This work was started during Chunqiang’s internship at HP Labs
in 2002 and was completed at University of Rochester in 2003.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’03, August 25–29, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-735-4/03/0008 ...$5.00.

exceeds one exabyte (or 1018 bytes) and is estimated to grow ex-
ponentially. This trend calls for equally scalable infrastructures ca-
pable of indexing and searching rich content such as HTML, plain
text, music, and image files. Peer-to-Peer (P2P) systems, on the
other hand, are gaining popularity quickly due to their scalability,
fault-tolerance, and self-organizing nature, raising hope for build-
ing large-scale information retrieval (IR) systems at low cost [15].

Search engines such as Google appear to be scalable for Web
content, but little is known to the public about how these systems
actually work. In this paper, we describe techniques to build a self-
organizing search engine based on P2P technology, which natu-
rally inherits many of the nice P2P properties—scalability, fault-
tolerance, low maintenance cost, etc. The fundamentals of our
system are applicable to both well-managed stable environments
(e.g., Google-like search engines, data centers, and corporations)
and more dynamic the P2P environment.

Although a number of P2P search techniques [16, 3, 20, 5, 22,
10] have already been proposed in recent years, with very few ex-
ceptions [6], most of them are based on simple keyword match-
ing, ignoring advanced relevance ranking algorithms devised by the
IR community through decades of refinement and evaluation [18].
Without effective ranking, queries consisting of popular words may
return a superfluous number of documents that are beyond the user’s
capability to handle.

We focus in this paper on studying the feasibility of extending
classical IR algorithms to work in the P2P environment. Some IR
techniques (e.g., Google’s PageRank) leverage hyperlinks to iden-
tify important Web pages. This cross-reference information, how-
ever, does not exist in many digital content. Therefore, we will start
with the most popular and well-studied statistical IR algorithms,
vector space model (VSM) and latent semantic indexing (LSI) [1,
7], which do not rely on the cross-reference information. VSM
and LSI represent documents and queries as vectors in a Cartesian
space, and measure the similarity between a query and a document
as the cosine of the angle between their vector representations. Ac-
cording to [28, 18, 13], variants of VSM and LSI have been adopted
by major search engines such as Excite. In practice, various IR
techniques are combined to build pragmatic search engines. The
study of how other techniques (e.g., PageRank) can complement
our approach is a subject of future work.

The fundamental problem that makes search in existing P2P sys-
tems difficult is that, with respect to semantics, documents are ran-
domly distributed. Given a query, the system either has to search
a large number of nodes or the user runs a high risk of missing
relevant documents. To address this problem, we introduce the
notion of semantic overlay, a logical network where contents are
organized around their semantics such that the distance (e.g., rout-

175

A B

document query

search region for the query

semantic space

Figure 1: Search in a semantic space.

ing hops) between two documents in the network is proportional
to their dissimilarity in semantics. The document semantics is pro-
duced using LSI.

Content-addressable networks (CANs) [19] provide a distributed
hash table (DHT) abstraction over a Cartesian space. They allow
efficient storage and retrieval of (key, object) pairs. An ob-
ject key is a point in the Cartesian space. We use a CAN to create a
semantic overlay by using the semantic vector (generated by LSI)
of a document as the key to store the document index in the CAN.

Figure 1 illustrates how a semantic overlay can benefit searches.
When a document’s semantics is generated by LSI, each document
is positioned as a point in the (semantic) Cartesian space. Docu-
ments close in the semantic space have similar contents, e.g., docu-
ments A and B. Each query can also be positioned in this semantic
space. To find documents relevant to a query, we only need to com-
pare the query against documents within a small region centered at
the query, because the relevance of documents outside the region
is relatively low. By doing this, the search space for the query is
effectively limited and the accuracy is retained.

The basic idea of a semantic overlay is straightforward, and in-
volves a mapping of the overlay to physical nodes in a CAN. It
is, however, complicated by a number of factors. (1) We set the
dimensionality of the CAN to be equal to that of LSI’s semantic
space, which typically ranges from 50 to 350. The “actual” dimen-
sionality of the CAN, however, is much lower because there are not
enough nodes to partition all the dimensions of a high-dimensional
CAN. Along those unpartitioned dimensions, the search space is
not reduced. (2) Semantic vectors are not uniformly distributed in
the semantic space. A direct mapping from the semantic space to
a CAN would result in unbalanced distribution of indices across
the nodes. (3) Due to a problem known as the curse of dimen-
sionality, it has been shown that limiting the search region in high-
dimensional spaces is difficult [26].

We address these problems by leveraging the properties of the
semantic space and trading accuracy for efficiency and/or storage
overhead when necessary. Taking advantage of the higher impor-
tance of low-dimensional elements of semantic vectors, our rolling-
index scheme partitions the semantic space along more dimensions
by rotating the semantic vectors. Our content-aware node boot-
strapping helps distribute the indices more evenly across nodes.
Using samples of indices and recently processed queries to guide
the search, our content-directed search algorithm substantially re-
duces the search region in the high-dimensional semantic space.

We have built a prototype P2P IR system called pSearch [24].
pSearch works by representing documents as vectors and organiz-
ing contents in a network around their vector representations. Al-
though our experiments focus on full-text search, this method can
also be applied to searching music and image files [9]. Our eval-
uation shows that pSearch can achieve performance comparable to
centralized IR systems by searching only a small number of nodes.
For a system with 128,000 nodes and 528,543 documents (from

news, magazines, etc.), pSearch searches only 19 nodes and trans-
mits only 95.5KB data during the search, whereas the top 15 doc-
uments returned by pSearch and LSI have a 91.7% intersection.
Although our prototype implementation does not include some IR
techniques proposed in recent years, our evaluation (in Section 7.4)
suggests that pSearch has good potential to improve along with the
future development of advanced IR techniques.

The remainder of the paper is organized as follows. Section 2
provides background information about IR and CAN. Section 3
gives an overview of pSearch and highlights the major challenges.
Sections 4 to 6 describe our solutions to these challenges. Section 7
describes a prototype of pSearch and our experimental results. Re-
lated work is discussed in Section 8. Section 9 concludes the paper.

2. BACKGROUND
In pSearch, we use extensions to VSM and LSI [1, 7] to generate

the semantic space, and use a CAN [19] to organize nodes into an
overlay. In this section, we present an overview of these concepts
in order to set the stage for a description of our algorithms.

2.1 Vector Space Model (VSM)
VSM represents documents and queries as term vectors. Each

element of the vector corresponds to the importance of a term in the
document or query. The weight of an element is often computed
using the statistical term frequency * inverse document frequency
(TF*IDF) scheme [1]. The intuition behind it is that two factors
decide the importance of a term in a document—the frequency of
the term in the document and the frequency of the term in other
documents. If a term appears in a document with a high frequency,
there is a good chance that the term could be used to differentiate
the document from others. However, if the term also appears in
many other documents, its importance should be penalized.

During a retrieval operation, documents are ranked according to
the similarity between the document vector and the query vector,
and those with the highest similarity are returned. A common mea-
sure of similarity is the cosine of the angle between vectors. Some
VSM implementations normalize term vectors X to unit length
(|X| = 1) in order to compensate for the difference in document
length. Formally, given term vector X = (x1, x2, . . . , xl) and
Y = (y1, y2, . . . , yl), the similarity between them is defined in
Equation 1, where cos(X,Y) denotes the cosine of the angle be-
tween vector X and Y . Note that |X| = 1 and |Y | = 1 because
they are already normalized. The similarity is therefore simply the
inner product of the two vectors.

cos(X,Y) =
X � Y

|X| · |Y | =
l∑

i=1

xiyi (1)

2.2 Latent Semantic Indexing (LSI)
Literal matching schemes such as VSM suffer from synonyms

and noise in documents. LSI overcomes these problems by us-
ing statistically derived conceptual indices instead of terms for re-
trieval. It uses singular value decomposition (SVD) [1] to trans-
form a high-dimensional term vector (computed from VSM) into a
lower-dimensional semantic vector, by projecting the former into a
semantic subspace. Each element of a semantic vector corresponds
to the importance of an abstract concept in the document or query.
As in VSM, semantic vectors are normalized and their similarity is
measured using Equation 1.

Let d denote the number of documents in a corpus, and t denote
the number of terms in the vocabulary. VSM represents this corpus
as a t × d matrix A, whose entry aij indicates the importance of

176

0.4

0.1

0.5-1

0-0.5
E

B

0-0.5

0.5-1

A

0-0.5

0-0.5

D

0.75-1

0.5-1

C

0.5-0.75

0.5-1

zone coordinates

object key0

1

1

Figure 2: A 2-dimensional CAN.

term i in document j. Suppose the rank of A is r. SVD decomposes
A into the product of three matrices, A = UΣV T , where U =
(u1, . . . , ur) is a t × r matrix, Σ = diag(σ1, . . . , σr) is an r × r
diagonal matrix, and V = (v1, . . . , vr) is a d × r matrix. σi’s are
A’s singular values, σ1 ≥ σ2 ≥ . . . ≥ σr .

LSI approximates the matrix A of rank r with a matrix Al of
lower rank l by omitting all but the l largest singular values. Let
Ul = (u1, . . . , ul), Σl = diag(σ1, . . . , σl), and Vl = (v1, . . . , vl).

Al = UlΣlV
T

l (2)

The rows of VlΣl are the semantic vectors for documents in the cor-
pus. Given Ul, Vl, and Σl, the semantic vectors of queries, terms,
or documents originally not in A can be generated by folding them
into the semantic subspace [1].

By choosing an appropriate l for Al, the important structure of
the corpus is retained while the noise or variability in word usage
(small σi) is eliminated. Former studies on LSI suggested setting
l to a value between 50 and 350 and reported improvements over
VSM by up to 30% in precision [7]. In addition, LSI is capable of
bringing together documents that are semantically related even if
they do not share terms, by learning from co-occurring word usage.
For instance, a search about car may return relevant documents
that actually use automobile in the text.

Raghavan [18] identified the costly SVD component to be one
major scalability obstacle to LSI. In recent years, many efficient
LSI variants have been proposed, e.g., concept indexing [12]. Par-
allel implementations of SVD also make this problem more
tractable [14]. As an evidence of these advances, Excite has been
reported to use a variant of LSI to index the Web [28].

In summary, LSI represents documents and queries as vectors
(points) in a (semantic) Cartesian space. The similarity between
a query and a document is measured as the cosine of the angle
between their vector representations. Given a query as a point in
the Cartesian space, the problem of finding the most relevant doc-
uments is reduced to locating the document points nearest to the
query point. Therefore, the central issue in pSearch is to map the
semantic space to nodes in a network and conduct efficient nearest-
neighbor search in a decentralized manner.

2.3 Content-Addressable Network (CAN)
Recent overlay networks, such as CAN, Chord and Pastry tapestry

, offer an administration-free and fault-tolerant distributed hash ta-
ble (DHT) that maps “keys” to “values”. CAN partitions a
d-dimensional Cartesian space into zones and assigns each zone
to a node. An object key is a point in the Cartesian space and the
object is stored at the node whose zone contains the point. Locat-
ing an object is reduced to routing to the node that hosts the object.
Routing translates to traversing from one zone to another in the
Cartesian space. A node join corresponds to randomly picking a
point in the Cartesian space, routing to the zone that contains the
point, and splitting the zone with its current owner.

G

A

F

D

B

C
E

pSearch Engine

document index
query

Figure 3: Overview of the pSearch system.

An example CAN is shown in Figure 2. There are five nodes
A-E in the overlay. Each node owns a zone in the Cartesian space.
Initially C owns the entire zone at the upper-right corner. When
D joins, the zone owned by C splits and part of the zone is given
to D. When D wants to retrieve the object with key (0.4, 0.1), it
sends the request to E and E forwards the request to A.

3. OVERVIEW OF THE PSEARCH SYSTEM
In pSearch, a large number of machines are organized into a se-

mantic overlay to offer the information retrieval service. Nodes in
the overlay collectively form a pSearch Engine. Inside the Engine,
nodes have completely homogeneous functions. A client intending
to use pSearch connects to any Engine node to publish document
indices or submit queries.

Figure 3 shows an example of how the system works. Node A
publishes a document to node B inside the Engine. B builds an
index for the document and routes the index in the overlay. The
index is finally stored at node F based on its semantics. When a
query is submitted to node E, the query is routed to node C based
on the semantics of the query. C then takes the responsibility for
finding relevant indices and returning them to E. In this example,
C may return the index published by A and stored at F .

Not every node in a P2P system needs to be included in the
pSearch Engine. We expect to construct the Engine using a sub-
set of nodes that are stable and have good network connectivity.
The boundary of the Engine is adjustable. When the load inside the
Engine is high, more nodes can be recruited. A new Engine node
finds its position in the overlay, takes over some indices stored at its
neighbors, and starts to process queries. The entire process is com-
pletely autonomous. Indices stored on an Engine node are repli-
cated on several of its neighbors. Should a node fail, one of its
neighbors will take over its job seamlessly.

pSearch uses a CAN to organize Engine nodes into an overlay
and uses an extension of LSI to answer queries. We call our al-
gorithm pLSI. In the following, we first present a basic pLSI algo-
rithm to outline our ideas and to highlight the challenges.

3.1 The Basic Algorithm
pLSI sets the dimensionality of the CAN to be equal to that of

LSI’s semantic space. The index for a document is stored in the
CAN using its semantic vector as the key. Among other things, an
index includes the semantic vector of a document and a reference
(URL) to the document. Figure 4(a) illustrates the steps of pLSI.

1. When receiving a new document A, the Engine node gener-
ates its semantic vector Va using LSI and uses Va as the key
to store the index in the CAN.

2. When receiving a query q, the Engine node generates its se-
mantic vector Vq and routes the query in the overlay using
Vq as the key.

3. Upon reaching the destination, the query is flooded to nodes
within a radius r, determined by the similarity threshold or
the number of wanted documents specified by the user.

177

doc

document index

query

12

333

4

search region for the query

4

U V
p

A

B
indices

(a) (b)

Figure 4: (a) pLSI in a 2-dimensional CAN. (b) Uneven distri-
bution of document indices.

4. All nodes that receive the query do a local search using LSI
and reports the reference to the best matching documents
back to the user.

Since indices of documents similar to the query (above a certain
threshold) can be stored only within this radius r and we do an
exhaustive search within this area, in theory, pLSI can achieve the
same precision as LSI. Ideally, this radius r should be small such
that only a small number of nodes are involved in a search.

During a search, the only data transmitted in pLSI are the query
and references to the top documents, both of which are small and
are independent of corpus size. As a comparison, P2P keyword-
matching systems [15] maintain an inverted list for each term [1],
whose contents are the ID of documents containing this term and
the frequency of this term in each document. The inverted lists
for different terms are distributed to different nodes. Answering
queries containing multiple terms requires intersection of the cor-
responding lists, and therefore, communication. The size of the
lists (and correspondingly, the communication) grows proportion-
ally with the corpus size.

pLSI relies on some global statistics to function, including the
inverse document frequency and the basis of the semantic space.
Distributing this information to each Engine node allows the nodes
to compute semantic vectors of new documents and queries inde-
pendently. It has been demonstrated that IR systems do not need
precise statistics to work well, i.e., a good approximation is suf-
ficient [11]. In pSearch, a combining tree is used to sample doc-
uments, merge statistics, and disseminate the combined statistics.
The statistics are versioned. Each node maintains the two most re-
cent versions in order to ensure that a consistent set of indices can
be extracted from a single version during the process of dissemi-
nating new statistics. More details on the generation and evolution
of the statistics are described in an earlier technical report [24].

3.2 Major Challenges
The basic idea of pLSI is straightforward but there are several

challenges to be overcome before it can work effectively.
Dimensionality mismatch between CAN and LSI. pLSI sets

the dimensionality of the CAN to be equal to that of LSI’s semantic
space, which typically ranges from 50 to 350. The “actual” dimen-
sionality of the CAN, however, is much lower because there are not
enough nodes to partition all the dimensions of a high-dimensional
CAN. Along those unpartitioned dimensions, the search space is
not reduced.

Uneven distribution of indices. There are several reasons why
using semantic vectors as keys to store indices in a CAN may lead
to an imbalance in the distribution of these indices across the nodes.
First, semantic vectors are normalized and reside on the surface of
the unit sphere S in the semantic space. Figure 4 (b) shows an
example of a 2-dimensional CAN. pLSI only places indices on the

0
5

10
15
20
25
30

250 500 1k 2k 4k 8k 16k 32k 64k 128k
Number of nodes

A
ve

ra
ge

 n
ei

gh
bo

rs

0
1
2
3
4
5
6
7
8

A
ve

ra
ge

 r
ou

ti
ng

 h
op

s

average neighbors
average routing hops

Figure 5: The average number of neighbors and routing hops
for a 300-dimensional CAN.

unit sphere. The similarity cos θ between documents A and B is
proportional to their distance p on the circle, since cos θ = cos p for
a unit sphere. The gray area is the region for searching documents
close to A in semantics. Nodes U and V own two zones of the
same size, but V does not store any indices. Second, even if the
key space S is uniformly distributed across the nodes, the system
can still suffer from hot spots because the indices are not uniformly
distributed on S.

Large search region. Due to a problem known as the curse of
dimensionality, it has been shown that limiting the search region in
high-dimensional spaces is difficult [26].

We address these three challenges in Sections 4 to 6, respectively.

4. RESOLVING THE DIMENSIONALITY
MISMATCH BETWEEN CAN AND LSI

In our algorithm, the dimensionality of the CAN is set to that
of LSI’s semantic space (l). Ratnasamy et al. suggest that for an
l-dimensional CAN with n nodes, each node on average needs to
maintain 2l neighbors, and the average length of routing paths is
(l/4)(n1/l) [19]. Since l can be as high as 300, this seems to indi-
cate a problem in that each node will have a large number of neigh-
bors. However, their result holds only if l < log2(n). Since at least
2x zones will be produced by partitioning along x dimensions, par-
titioning along more than log2(n) dimensions will result in more
zones than there are nodes available. Therefore, when l ≥ log2(n)
and zones are partitioned “evenly”, only log2(n) dimensions will
be partitioned and each node has only log2(n) neighbors. Figure 5
shows the average number of neighbors and average routing hops
for a 300-dimensional CAN, which can be seen to exhibit the rela-
tionship described above. We refer to the number of actually parti-
tioned dimensions as a CAN’s effective dimensionality.

While the limited number of nodes avoids the problem of an ex-
cessive number of neighbors, the result is that only the low dimen-
sions of the semantic space are partitioned, making searches less
efficient. The search space along the unpartitioned dimensions is
not reduced since documents with similar semantic content along
these dimensions will be spread across all nodes.

This situation is illustrated in Figure 6(a). Suppose the semantic
space is of four dimensions, v0-v3. A query Q and a document A
have semantic vectors Vq = (0.55,−0.1, 0.6,−0.57) and Va =
(−0.1, 0.55, 0.57,−0.6), respectively. The similarity between Va

and Vq is 0.574 (computed from Equation 1). The majority of the
similarity is contributed from v2 and v3 . For real corpora, this
similarity is usually high enough to consider A as relevant to Q.
We store the two vectors in a 4-dimensional CAN. Since there are
only four nodes w-z, the semantic space is partitioned only along
v0 and v1. Because Va and Vq are not similar in v0 and v1, a search
in Figure 6(a) for Q would not find A unless all nodes are probed.

Before presenting a solution to this problem, we first make some
high-level observations.

178

-1 1

1

(a)

w x

y z

-1 1

1 w x

y z

v
1

v
0

v
3

v
2

Va = (-0.1, 0.55, 0.57, -0.6)

Vq = (0.55, -0.1, 0.6, -0.57)

Va = (0.57, -0.6, -0.1, 0.55)
1

Vq = (0.6, -0.57, 0.55, -0.1)
1

(b)

Figure 6: A rolling-index example. The position of a vector
is decided by its first two elements. (a) The CAN partitions
dimensions v0 and v1 in the original semantic space. (b) The
same CAN partitions dimensions v2 and v3 after rotating the
semantic vectors by two dimensions. The relevant document A
for the query Q is found easily in node z on the rotated space.

• Although the dimensionality of the semantic space is high,
in practice, the number of dimensions relevant to a particular
document is much smaller. For example, concepts in chem-
istry are unlikely to appear in a computer science paper.

• Queries submitted to search engines are usually short, and
are likely to be captured by a few concepts. As a result, only
a small number of elements in the semantic vectors will con-
tribute significantly to the similarity.

• SVD sorts elements in semantic vectors by decreasing impor-
tance. Figure 7(a) plots the singular values of the TREC cor-
pus [25] (see Section 7 for more details), which corresponds
to the importance of elements. The singular values largely
follow a Zipf-like distribution, σi = a · ib, with a=190 and
b=-0.3. Because of the importance of the low-dimensional
elements, a significant fraction of the similarity is likely to
be contributed by them.

Taking advantage of these facts, we propose the use of rolling-
index to bridge the dimensionality gap and also to reduce the search
space. The basic idea is to use a single CAN to partition more
dimensions of the semantic space by rotating the semantic vectors.

4.1 Rolling-Index
Given a semantic vector, V = (v0, v1, . . . , vl), we rotate it re-

peatedly by m dimensions each time to generate a series of new
vectors (see Equation 3 and note that V 0 = V). We call these vec-
tors rotated semantic vectors. We set m using Equation 4, where n
is the number of nodes in the system. Equation 4 estimates the ef-
fective dimensionality of the CAN by approximating the “average
neighbors” curve in Figure 5. Rotated vectors of different docu-
ments or queries generated with the same amount of rotation (the
same i) define a rotated space i with (vi·m, . . . , vi·m+m−1) as its
m-dimensional support subvector.

V i = (vi·m, . . . , v0, v1, . . . , vi·m−1), i = 0, . . . , p− 1 (3)

m = 2.3 · ln(n) (4)

Given a document A with semantic vector Va, we store its index
in p places in the CAN using V i

a , i = 0, · · · , p − 1, as the keys.
For a query with semantic vector Vq , we execute the pLSI algo-
rithm in Figure 4(a) p times. Each time it uses a different V i

q to
route the query and guide searches in rotated space i. Each rotated
space independently returns matching documents based on vectors
on that space. Since the similarity between two semantic vectors is
measured as their inner product (see Equation 1), rotation will not
change the similarity measure. In a rotated space, documents close

0
50

100
150
200
250
300
350
400

1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

Dimension

Si
ng

ul
ar

 v
al

ue

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

16 32 64 128 256 512 1024

Multiplication factor k

A
cc

ur
ac

y

m=15
m=25
m=35

(a) (b)

Figure 7: (a) Singular values of the TREC corpus. (b) The ef-
fect of using low-dimensional elements to identify relevant doc-
uments (documents and queries are from TREC).

in the overlay are still close in semantics. Note that we still use full
semantic vectors as the CAN keys. The similarity is also computed
from full semantic vectors rather than support subvectors. An ex-
ample of rolling-index with m=2 is shown in Figure 6(b).

4.2 Discussion
Rolling-index uses the same CAN to partition more dimensions

of the semantic space, but at the increased storage cost (p times the
base storage space). The low dimensions of each of multiple ro-
tated spaces are partitioned onto a single CAN, which correspond
to different dimensions in the original semantic space. Because of
the importance of the low-dimensional elements, a significant frac-
tion of documents are likely to be correctly (though not perfectly)
clustered in the CAN by the first several support subvectors.

In order to demonstrate that the low-dimensional elements are
often sufficient to identify relevant documents, we conducted an
experiment with the TREC corpus. We first retrieved the 15 most
relevant documents for each TREC query based on the similarity
of the 300-dimensional semantic vectors. The results form set A.
In each rotated space, we then retrieved k · 15 documents for each
query solely based on the similarity of the m-dimensional support
subvector of that space (rather than the full semantic vector as in
our rolling-index algorithm). Here, k is a constant multiplication
factor. The results for the first four rotated spaces form set B. Fig-
ure 7(b) reports the average accuracy of set B with respect to set A,
where accuracy = |A∩B|

|A| × 100%. When m = 25 and k = 128,
the size of B is only 1.3% of the corpus size, but it already covers
almost 90% of the relevant documents in set A. In Section 6, we
will introduce an algorithm that selectively searches documents in
a big B to achieve a high accuracy at low cost.

On the other hand, although the low-dimensional elements are
statistically of higher importance for the entire corpus, for an indi-
vidual document discussing unpopular concepts, some high-
dimensional elements may carry heavy weight. For queries about
these concepts, rolling-index will be less effective. A solution to
this problem is selective rotation. Given a document, in addition
to storing its index in the first p rotated spaces, we also store the
index in the rotated spaces whose corresponding support subvec-
tors cover the heavily-weighted elements that are not covered by
the first p spaces. Likewise, given a query, it also searches some
extra rotated spaces whose corresponding support subvectors cover
the heavily-weighted elements of the query.

The dimensionality of the semantic space increases as the size
of the corpus increases, which may also make rolling-index less
effective. We propose using hierarchical document clustering to
partition the document space into clusters and map each cluster on
top of the same CAN [24]. We leave an evaluation of these im-
provements for future work.

179

0%

20%

40%

60%

80%

100%

5% 15
%

25
%

35
%

45
%

55
%

65
%

75
%

85
%

95
%

Percentage of nodes

P
er

ce
nt

ag
e

of
 in

di
ce

s

CAN-SV-key
pSearch-s1
pSearch-s2
pSearch-s4
CAN-rand-key

Figure 8: The effect of content-aware node bootstrapping.

5. BALANCING INDEX DISTRIBUTION
To cope with the uneven distribution of indices, we propose

content-aware node bootstrapping to force the distribution of nodes
in the CAN to follow the distribution of indices.

At node join, the node randomly picks a document that it is going
to publish and computes the semantic vector of the document. This
semantic vector is randomly rotated to a space i (0 ≤ i < p) and
the rotated semantic vector (instead of a random point suggested
by [19]) is used as the point toward which the join request is routed.
The node whose coordinates contains the rotated semantic vector
splits in the middle along the lowest unpartitioned dimension and
hands over half of its zone to the new node.

This bootstrapping process has three effects.

• More balanced index distribution. A larger number of nodes
will be used in areas in the semantic space that have dense
document population.

• Index locality. Assuming the documents published by a node
have similar semantics, on space i, indices of a node’s docu-
ments are likely to be published on itself or its neighbors.

• Query locality. Assuming the documents published by a node
are good indications of the user’s interests. Queries submit-
ted by the user would usually result in neighboring nodes to
where the query is submitted.

Figure 8 evaluates this load-balancing technique by distributing
the TREC corpus to a 10,000-node 300-dimensional CAN. Nodes
are sorted in decreasing order according to the number of indices
they store. We draw the node percentage on the X-axis. The Y -axis
gives the percentage of indices owned by corresponding nodes. The
CAN-rand-key series are the original CAN proposal where nodes
and indices are randomly populated. This serves as the baseline for
comparison. The CAN-SV-key series use random points for node
bootstrapping but indices are stored using semantic vectors as keys.
pSearch-sp uses our content-aware bootstrapping, and indices are
stored under semantic vectors. Here p is the number of rotated
semantic spaces. Note that even the load for CAN-rand-key is not
completely balanced due to the randomness. With a larger corpus,
the load is expected to become more balanced.

As can be seen from this figure, without load balancing, 5% of
the nodes store 72% of the indices (the curve on the top). The load-
balancing technique is effective even if only a single rotated space
is used. Increasing the number of rotated spaces can further balance
the index distribution, because indices on different rotated spaces
compliment each other.

This bootstrapping process with multiple rotated spaces does not
adversely affect the neighbor distribution and routing performance
of the overlay. The CAN evaluated in Figure 5 uses this bootstrap-
ping with four rotated spaces.

1

9

2 3 4 5

6 7 8 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

b

c

a
f d

e

q

Figure 9: An example of content-directed search.

6. REDUCING THE SEARCH SPACE
Rolling-index clusters indices in the overlay based on their se-

mantics, making it possible to find the most relevant documents to a
query by searching a fraction of the nodes in the overlay. However,
existing centralized index structures [26] used to limit search space
for multidimensional data usually work well for low-dimensional
data, but the search space grows quickly as the dimensionality of
the data increases. This is known as the curse of dimensionality.

Weber et al. listed several interesting observations about high-
dimensional spaces [26]. We summarize two relevant observations
here. (1) High-dimensional data spaces are sparsely populated.
(2) The distance between a query and its nearest neighbor grows
steadily with the dimensionality of the space.

6.1 Content-Directed Search
Because of the large nearest-neighbor distance, a naive nearest-

neighbor search will not work well unless a large number of nodes
are searched. To solve this problem, we use the contents (indices)
stored on nodes and the recently processed queries to guide searches
to the “right” nodes. In the sparse high-dimensional semantic space,
documents usually form tight clusters (see the top curve in Fig-
ure 8). If a relevant document is found, this document is likely to
be surrounded by other relevant documents.

We illustrate the basic ideas with an example in Figure 9. 1-25
are IDs of nodes in the two-dimensional CAN. a-f are semantic
vectors of documents and q is the semantic vector of a query. The
user wants to retrieve three documents relevant to q. Based on Eu-
clidean distance, a, b, and c should be the search results.

The search starts at node 13, whose coordinates contains q. No
document is found on node 13. We maintain a queue N that con-
tains the candidate nodes yet to search. After searching node 13, its
routing neighbors are added into this queue, N = {8, 12, 14, 18}.
In the background, each node samples indices stored on its neigh-
bors. These samples are used to decide the search order for nodes
in N . In this example, the samples from node 14 are similar to the
query. We search node 14 next and find document a. Node 14’s
neighbors are added into N , N = {8, 12, 18,9,15,19}. Like-
wise, we choose node 9 to search because its samples are similar to
the query. Document b is found and node 9’s neighbors are added
into N , N = {8, 12, 18, 15, 19,4,10}, which leads us to search
node 4 and find document c. After that, nodes 12, 11, and 17 are
searched in turn but no better matching documents are found. At
this point, the chance of finding documents better than a, b and c is
low. The search is terminated.

Although the example used above assumes that nodes are searched
sequentially, the speed of the search process can be improved by ac-
cessing nodes in parallel. The tradeoff is in terms of the number of
nodes searched unnecessarily.

This search algorithm takes advantage of the processing power
of a large number of nodes to pre-process (sample) the semantic
space in the background to enable efficient search. The use of sam-
pled full semantic vectors to direct searches also removes some in-

180

accuracies due to the limited clustering capability of the support
subvectors used in rolling-index.

6.2 Description of the Search Algorithm
We proceed to give a more formal description of our search al-

gorithm. We use X[Z] (X[Z, Y]) to denote an attribute X of node
Z (with Y as an additional parameter). For instance, D[Z] is the
set of semantic vectors in indices stored on node Z, and Q[Z] is the
set of semantic vectors of queries recently processed by Z. A node
Z stores indices and processes queries for multiple rotated spaces.
Di[Z] and Qi[Z] refer to only those parts relevant to space i.

For a node Z, we use a single vector U i[Z] computed from
Equations 5 and 6 to summarize the indices stored on Z and the
queries recently processed by Z. Equation 6 normalizes H such
that U i[Z] is of unit length. U i[Z] is the centroid (center of mass)
of indices in Di[Z] and queries in Qi[Z].

H =
∑

d∈Di[Z]

d +
∑

c∈Qi[Z]

c (5)

U i[Z] =
H

|H| (6)

In the background, Z requests each of its neighbors P to return
kc samples of semantic vectors that are in indices stored on P and
have the highest similarity to the summary vector U i[Z]. Z also
requests kr random samples from P . In our current implementa-
tion, kc = 0.8s and kr = 0.2s, where s is a constant. These
returned semantic vectors are stored on Z as a sample set Si[Z,P],
which is used as an estimation of indices stored on P . When Z
is under search for a query q (with rotated semantic vectors V i

q),
Z uses Equation 7 to estimate the highest similarity between the
query vector V i

q and semantic vectors in indices stored on P , based
on the sample set Si[Z,P].

ei[P, V i
q] = max

d∈Si[Z,P]
cos(d, V i

q) (7)

The metric in Equation 7 is used to direct the search on each
rotated space. It chooses the nodes whose sampled indices have
high similarity to the query (i.e., high ei[P, V i

q] value) to search
first and stops when no better matching document is found during
the most recent T node visits. Let Zi

q denote the node whose co-
ordinates contains the rotated query vector V i

q . Node Z0
q (on space

0) acts as the coordination center during the search. It maintains a
queue of candidate nodes yet to search (N) and a queue of indices
of identified relevant documents (R). On each rotated space, the
search starts from node Zi

q . A node under search returns the esti-
mated similarity (ei[P, V i

q]) of its neighbors P and the indices of
the best matching documents found locally to node Z0

q . Z0
q adds

the returned indices and the neighbor nodes P into the index queue
R and the node queue N , respectively. Z0

q makes the decision on
which node(s) in N to search next based on the estimated similarity
(ei[P, V i

q]) returned from the searched nodes.
Recall that the search starts from node Zi

q on each rotated space.
For a node Z that is visited during the search, there exists a path
that leads the search to Z from Zi

q and all nodes on the path are
also visited during the search. Let r[Z,Zi

q] denote the hops of the
path (or the number of nodes on the path). The quit threshold T is
dynamically computed from

T = max(5, F − 5 ∗ i) ∗ 0.8w (8)

w = min
Z∈N

r[Z,Zi
q] (9)

where quit bound F is a constant set by the user or a default system
value, i is the ID of the rotated space that is under search, and w

is the smallest hops to reach nodes still in the node queue N from
node Zi

q (note that, once searched, a node is removed from N).
Two components decide the quit threshold T . The first compo-

nent, max(5, F − 5 ∗ i), decreases as the space ID i increases.
The intuition is that on lower spaces we want to search more nodes
because of the importance of the low-dimensional elements. To
guarantee that at least some searches are performed on high spaces,
this component is no less than 5. The second component, 0.8w,
monotonically decreases during the search. The intuition is that the
quit threshold should get tighter after the near neighbors of Zi

q have
already been searched.

Multiple nodes are searched concurrently under three rules.
(1) Nodes Zi

q (i = 0, . . . , p−1) are searched in parallel. (2) The di-
rect routing neighbors of Z0

q are always searched and are searched
in parallel, because of the importance of the low-dimensional el-
ements. (3) In addition to the first two rules, in each round we
select the top b nodes from the node queue N to search in parallel.
b is decided using Equation 10, where T is the quit threshold in
Equation 8, and d is a dynamic “concurrency factor”. Designing an
algorithm to automatically fine tune d is a subject of future work.

b = min(d, T/2) (10)

In addition, at the cost of extra storage space, our current im-
plementation allows a node to replicate its neighbors’ indices and
to process queries on their behalf, in order to reduce the number of
visited nodes and data transmitted during a search. In the future, the
neighboring-content sampling process can be extended to imple-
ment selective index replication. A node can use Equations 5 and 6
to compute a vector to represent itself and only replicate its neigh-
bors’ indices whose similarity to this vector is beyond a thresh-
old. Selective replication has the potential to reduce the amount of
replicated indices while achieving performance similar to simple
replication. We leave an evaluation of this for future work.

7. EXPERIMENTAL RESULTS
We built a pSearch prototype to validate our algorithms. We im-

plemented an overlay simulator based on CAN. 1 Cornell’s SMART
system (v11.0) [2] implements VSM. We extended SMART with
several modules and tools to implement LSI. We used LAS2 in the
SVDPACK [23] package to compute the SVD of large sparse ma-
trices. We then linked SMART with the CAN simulator and imple-
mented the pLSI algorithms to build a pSearch prototype. We val-
idated the correctness of our LSI implementation using the MED,
ADI, and CRAN corpora [2]. The precision is consistent with that
reported in the literature [7].

7.1 Experimental Setup
We experimented with the Text Retrieval Conference (TREC-7

and TREC-8) corpus [25], one of the largest corpora available in
the public domain and widely used in IR researches. It includes
528,543 documents from news, magazines, etc., with a total size of
about 2GB. Topics 351-450 are used as queries.

We used SMART to index the TREC corpus. The entire doc-
ument or query content is indexed with the “atz” term weighting
scheme 2. The SMART stop word list is used as is. The SMART

1In practice, we can employ eCAN [27], a hierarchical version of
CAN, to improve the routing performance, while retaining CAN’s
Cartesian space abstraction.
2“atz” differs from the classical “atc” [2] in the vector normaliza-
tion step. During normalization, “atz” divides each element of the

term vector by
√∑20

i=0

tf2
i

i+1
, where tfi is the i-th heaviest-weight

element in the vector before normalization.

181

description default value
n number of nodes in the system 10,000
l dimensionality of LSI and CAN 300
p number of rotated semantic spaces 4
m rotated dimensions use Equation 4
s size of the sample set Si[Z,P] 50
F quit bound in Equation 8 24
k number of returned documents for a query 15
g number of warm-up queries (size of Qi[Z]) 0
d the concurrent-search factor in Equation 10 1

Table 1: Parameters varied in experiments.

0
25
50
75

100
125
150
175
200

6 8 10 12 14 16 18 20 22 24 26 28 30 32
Quit bound

V
is

it
ed

 n
od

es

40%
50%
60%
70%
80%
90%
100%

A
cc

ur
ac

y

visited (500) visited (2k) visited (8k) visited (32k) visited (128k)
acuracy (500) acuracy (2k) acuracy (8k) acuracy (32k) acuracy (128k)

Figure 10: The effect of varying system size.

stemmer is used without modification to strip word endings. The
indexing process takes about 20 minutes to complete on a 1.7GHz
Pentium IV machine with 1GB of memory. We randomly sampled
15% of the indexed documents to generate a term-by-document
matrix. Terms appearing in only one sampled document are not
included in the matrix. This leaves us with 79,316 sampled doc-
uments and 83,098 indexed terms in the matrix. We applied SVD
to this matrix to compute the basis of the semantic space. The
SVD computation takes about 30 minutes. Using this basis, we
project all 528,543 documents into the semantic space, computing
a semantic vector for each document. This takes about 7 minutes.
Note that most of the above process can be done by pSearch Engine
nodes concurrently. (Our LSI configuration largely follows [8].)

The main metrics we use are the number of visited nodes dur-
ing a search and the accuracy of search results. System resource
consumption, which is proportional to the number of visited nodes,
is analyzed in Section 7.5. For each configuration, we use LSI to
retrieve a fixed number of documents for a query. The returned
documents form set A. We refer to documents in A as relevant doc-
uments. We then use pLSI to retrieve the same number of docu-
ments for the same query. The returned documents form set B. The
accuracy is defined as follows.

Accuracy =
|A ∩B|
|A| × 100% (11)

The accuracy metric compares pLSI against the centralized LSI
baseline. A discussion on pLSI’s absolute performance can be
found in Section 7.4.

7.2 Evaluation of Accuracy vs. Number of
Nodes Visited

Table 1 shows the parameters we vary in our experiments and
their default values. Unless otherwise noted, our experiments use
these default values without index replication. Our default base-
line uses rolling-index with four rotated semantic spaces. While
rolling-index does help reduce the number of visited nodes for a

0
25
50
75

100
125
150

6 10 14 18 22 26 30
Quit Bound

V
is

it
ed

no
de

s

70%
75%
80%
85%
90%
95%
100%

A
cc

ur
ac

y

visited (1250) visited (2500) visited (5k) visited (10k)
accuracy (1250) accuracy (2500) accuracy (5k) accuracy (10k)

Figure 11: The effect of simultaneously varying system and cor-
pus size.

0

100

200

300

400

500

15 30 60 120 240 480 960

Returned documents

V
is

it
ed

 n
od

es

80%

85%

90%

95%

100%

A
cc

ur
ac

y

visited nodes accuracy

0

100

200

300

400

500

15 30 60 120 240 480 960
Returned documents

0
1
2
3
4
5
6
7

total visited nodes visited nodes per ret doc

T
ot

al
 v

is
it

ed
 n

od
es

V
is

it
ed

 n
od

es
 p

er
 r

et
 d

oc

(a) (b)

Figure 12: The effect of varying the number of returned doc-
uments for a 10k-node system. (a) Visited nodes and accuracy.
(b) Visited nodes per returned document.

given accuracy, this number can still be high. Our baseline there-
fore combines rolling-index with content-directed search using a
default of 50 sample indices from neighboring nodes.

7.2.1 Effect of varying system size, corpus size, and number
of returned documents

Figure 10 shows the effect on the number of visited nodes and the
accuracy of the search results when varying the number of nodes.
The results are averaged over 100 queries. The only non-default
parameter is s (the number of samples). With 500 nodes, we set s
to 150. We decrease s by a factor of two each time the number of
nodes quadruples because the total number of documents is fixed
and each node can sample a larger percentage of its neighbors’ con-
tents when the indices are spread over a larger number of nodes.

From the figure, we can observe that as the system size increases
exponentially, the number of visited nodes only increases moder-
ately. This is because the number of neighbors of a node is one
deciding factor for the number of visited nodes, which increases
logarithmically with the system size. Even for the 32k-node sys-
tem, pSearch can achieve an accuracy of 90% by visiting just 139
nodes. For the 128k-node system, the accuracy is about 86%. We
will show how to improve it by varying other parameters. Second,
as we relax the quit bound F that controls the accuracy, the accu-
racy improves only slowly with the increase in the number of vis-
ited nodes, suggesting that search results can be returned to users
incrementally without waiting for it to reach the final quit bound.

Unlike Figure 10 that only varies the number of nodes, Figure 11
varies the number of nodes and the size of the corpus proportion-
ally, i.e., full TREC corpus for 10k nodes, half TREC corpus for 5k
nodes, etc. The search cost in this figure increases moderately as
system size and corpus size scale.

Figure 12(a) shows the effect of varying the number of returned
documents for each query. Although it seems that the number of
visited nodes grows quickly while the accuracy remains the same,

182

0
25
50
75

100
125
150

6 10 14 18 22 26 30
Quit bound

V
is

it
ed

 n
od

es

70%
75%
80%
85%
90%
95%
100%

A
cc

ur
ac

y

visited nodes (content) visited nodes (query)
accuracy (content) accuracy (query)

0
10
20
30
40
50
60
70

50
%

60
%

70
%

80
%

90
%

10
0%

Accuracy

N
um

be
r

of
 q

ue
ri

es content

query

(a) (b)

Figure 13: Comparing content-directed search heuristics for a
10k-node system. (a) Accuracy and visited nodes. (b) Accuracy
histogram.

0
25
50
75

100
125
150

6 8 10 12 14 16 18 20 22 24 26 28 30 32
Quit bound

V
is

it
ed

 n
od

es

70%
75%
80%
85%
90%
95%
100%

A
cc

ur
ac

y

visited (repl-content) visited (repl) visited (no-repl)
accuracy (repl-content) accuracy (repl) accuracy (no-repl)

Figure 14: The effect of replication on a 10k-node system.

the average number of nodes that need to be searched to return one
relevant document decreases drastically as we increase the number
of returned documents. This is illustrated in Figure 12(b). When
the user requests 15 documents, on average 5.9 nodes need to be
searched to find one relevant document. When the number of re-
turned documents increases to 960, on average only 0.47 nodes
need to be searched to find one relevant document. It has been
reported that a significant percentage of users only view the top 10
search results [13]. We believe that using 15 as the default number
of returned documents is appropriate.

7.2.2 Effect of varying content-directed search heuristics

We next evaluate the heuristics in the content-directed search.
The results for a 10k-node system are shown in Figure 13(a). For
the content series, g=0 and p=4; for the query series, g=5000 and
p=2. The content heuristic uses only the node contents to direct
searches. The query heuristic warms up the system by process-
ing 500,000 queries before measuring the performance. It then
uses both node contents and past queries to direct searches. When
queries have locality, learning from past history can increase the ac-
curacy by up to 5.9% while reducing the number of visited nodes,
due to a more selective sampling process for neighboring contents.

Figure 13(b) shows the accuracy histogram of the 100 queries
measured in the experiment. x% on the X axis means the number
of queries whose accuracy is between x% and (x+10)%. Compared
with the content heuristic, the query heuristic improves the accu-
racy of about 15% of the queries from [90% − 100%) to 100%.

7.2.3 Effect of replication

All the above results are achieved without replication. Repli-
cation can improve both the accuracy and the efficiency (see Fig-
ure 14). The no-repl series with no replication serve as the base-
line. In the repl series, each node replicates its direct neighbors’
contents. In the repl-content series, besides replicating neighbor

0

50

100

150

200

250

6 10 14 18 22 26 30 34 38 42 46

Quit bound

V
is

it
ed

no
de

s

40%
50%
60%
70%
80%
90%
100%

A
cc

ur
ac

y

visited (repl-query)
visited (repl-content)
visited (query)
visited (repl)
visited (content)
accuracy (repl-query)
accuracy (repl-content)
accuracy (query)
accuracy (repl)
accuracy (content)

Figure 15: Performance of a 128k-node system.

P ’s contents, a node Z also replicates the samples that P keeps for
P ’s neighbors. Like the content series in Figure 13, we set g=0
when doing the sampling. This figure suggests that when replica-
tion is used, a small number of rotated spaces and a tight quit bound
already achieves a good accuracy. For instance, it visits only 24
nodes in a 10k-node system to achieve an accuracy of 96.8%. This
is because search of the replicated nodes is avoided and searches
are directed to the right places more accurately.

7.2.4 Results on a larger system size

Figure 15 presents the performance of a 128k-node system. The
configurations for the content and query series are the same as those
in Figure 13. The repl and repl-content are the same as those in
Figure 14. repl-query differs from repl-content in that it uses the
query heuristic for sampling, with g=5000 and p=2. As can been
seen in the figure, the accuracy of the content series can approach
close to 90% by relaxing the quit bound while only 0.2% of the
nodes are visited. Combining replication and the query heuristic
can achieve an accuracy of 91.7% by visiting only 19 nodes, or an
accuracy of 98% by visiting 45 nodes.

It must be acknowledged that this example distributes a relatively
small corpus over a large system. However, the results in Figure 11
show that pLSI can retain good performance as the corpus size and
system size scale proportionally. As the number of indices per node
increases, the chance to find more relevant documents on a single
node should also increase, which would actually reduce the number
of visited nodes.

7.3 Analysis of Result Source Distribution
We now try to understand the distribution of retrieved documents

across the nodes in the system. The percentage of relevant docu-
ments retrieved from each rotated space is shown in Figure 16(a).
The left Y -axis is the percentage of relevant documents found on
each rotated space. The right Y -axis is the percentage of nodes
visited in each rotated space out of all visited nodes (rather than
the total number of nodes in the system). For the content heuristic,
about 75.8% of relevant documents are found on the first rotated
space. For the query heuristic, this number goes up to 92.3%.

The important message here is that although the optimal dimen-
sionality of LSI is between 50-350, a large fraction of documents
can be correctly (though not perfectly) clustered in the overlay by
the low-dimensional elements. This property, which is a result of
SVD (see Figure 7), makes search in the semantic space much eas-
ier than that in other high-dimensional spaces. Using the sampled
full semantic vectors to direct searches, the content-directed search
algorithm also helps remove some inaccuracies due to the limited
clustering capability of the low-dimensional elements.

Figure 16(b) shows the percentage of relevant documents found
and nodes visited at different hops away from Zi

q . Here the hop
count corresponds to r[Z,Zi

q]. r[Z,Z
i
q] measures how many steps

it takes to reach Z from Zi
q during the search, which could be big-

183

0%

20%

40%

60%

80%

100%

0 1 2 3
Rotated space

D
oc

s
fo

un
d%

0%

20%

40%

60%

80%

100%

V
is

it
ed

 n
od

es
%

docs (content) docs (query)
visited (content) visited (query)

0%

10%

20%

30%

40%

0 2 4 6 8 10 12 14 16
Hops

D
oc

s
fo

un
d%

0%

10%

20%

30%

40%

V
is

it
ed

 n
od

es
%

docs found (content) docs found (query)
visited nodes (content) visited nodes (query)

(a) (b)

Figure 16: Distribution of documents found for a 10k-node sys-
tem. (a) Rotated spaces. (b) Hop counts.

ger than the shortest route between Z and Zi
q . In this figure, the vis-

ited nodes curve fits well with the docs found curve, meaning that
our content-directed heuristics are effective at directing searches to
the right places even if it is already several hops away from Zi

q . The
query heuristic has a longer tail than the content heuristic, showing
that the query heuristic is more accurate at directing searches.

7.4 Sensitivity to System Parameters
The final set of experiments evaluate the sensitivity of pLSI to

the underlying VSM baseline and system parameters.
Term weighting schemes. LSI is a proposal to improve VSM

and is built on top of VSM. VSM produces the sampled term-
by-document matrix from which the basis of the semantic space
is computed. Therefore, LSI’s precision and recall are tied to the
underlying VSM baseline [8]. Our VSM baseline is SMART 11.0,
which unfortunately does not include some important IR techniques
proposed in recent years, e.g., Okapi term weighting and automatic
relevance feedback (we are in the process of implementing them).
Consequently, our LSI baseline is inferior to the top systems re-
ported in recent TREC’s.

We believe that the on-going efforts in the IR community to im-
prove the performance of the baseline are orthogonal to our efforts
to make the decentralized implementation close to the centralized
baseline. Figure 17(a) supports our claim by showing pLSI’s per-
formance with different underlying VSM baselines (see [2] for the
term weighting schemes in parentheses). Regardless of the abso-
lute performance of the underlying VSM baselines, pLSI consis-
tently achieves high relative accuracies at reasonable cost, showing
great promise that pLSI can improve along with future develop-
ments of advanced VSM baselines.

Query length. The sensitivity to the number of query terms is re-
ported in Figure 17(b). Each TREC query consists of three parts—
title, description, and narrative. The all series use all three parts as
the query, which is our default configuration; the title+desc series
use the title and description; the title series use the title only. On
average, a query in the all, title+desc, and title series contains 21,
7.8, and 2.4 terms, respectively. Overall, pLSI’s relative accuracy
is not very sensitive to the number of query terms.

Parallel search. In Figure 17(c) we vary the concurrent-search
factor d (the numbers in parentheses), which specifies the number
of nodes searched in parallel. The baseline is the content heuristic
(d=1) in Figure 13(a). As can be seen from the figure, increasing
the search concurrency only increases the number of visited nodes
moderately, while speeding up the search process by nearly a factor
of d. With an algorithm to fine-tune d dynamically, we expect to
achieve even better speedup at lower cost.

Rotated dimensions. The sensitivity to the number of dimen-
sions m by which each space is rotated is shown in Figure 17(d).

pLSI is not sensitive to m so long as it is larger than a certain thresh-
old (e.g., 10). This is because the first 40 important dimensions
of the semantic space are already partitioned by the four rotated
spaces in use, and the content-directed search algorithm helps re-
move some inaccuracies due to the use of rolling-index.

Dimensionality of the semantic space. Figure 17(e) shows the
effect of changing the dimensionality of the semantic space l (the
numbers in parentheses). pLSI is not very sensitive to l. The sug-
gested value for l is 50-350, but we expect it to increase as the
corpus grows. This insensitivity to l suggests from another angle
that pLSI has good potential to scale with corpus size.

Sample size. Lastly, we vary s, the size of the sample set that is
used to guide the search (see Figure 17(f)). To leave room for the
accuracy to improve as s varies, we set the quit bound F and the
number of rotated spaces p differently for different configurations:
for content, F = 20 and p = 4; for query, F = 10 and p = 2; for
repl-content and repl-query, F = 6 and p = 2. From the figure,
we can see that the query heuristics are insensitive to the number
of samples due to its more accurate index sampling process. The
content heuristics are more sensitive to s when s is small.

7.5 Analysis of System Resource Usage
In this section, we analyze the storage and network resource con-

sumption based on the experimental results. When publishing the
index of a document, the data transmitted (Bd) and storage cost (S)
are given by

Bd = SI · p · h + SI ·R (12)

S = SI · p ·R (13)

where SI is the size of the index, p is the number of rotated se-
mantic spaces, h is the average routing hops in the CAN, and R is
the number of replicas of the index. The total data transmitted for
processing a query is given by

Bq = SQ · p · h + v · (SQ + SR) (14)

where SQ is the size of the query message, v is the number of
visited nodes, SR is the size of returned data from a visited node.

We set the variables in the above equations based on the most
pessimistic results for the 128k-node system: SI=SQ=1.5KB, p=4,
h=8, R=1 (no replication) or R=25 (with replication), v = 230, and
SR = 1KB. The index and query are 1.5KB because they consist of
a 300-dimensional semantic vector (1200B) and some small meta-
data. The data returned from each visited node contain the similar-
ity and reference to the top documents, and the estimated similarity
(ei[P, V i

q]) of the neighbors, all of which are independent of corpus
size, query length, and document length.

For this pessimistic setting, the data transmitted for processing a
query is 632KB. Without replication, the data transmitted for pub-
lishing one index is 49.5KB and and the storage cost is 6KB; with
replication, these numbers are 85.5KB and 159KB, respectively.

One big advantage of pSearch over P2P keyword-matching sys-
tems [15] and Gnutella-style query-flooding systems is that its band-
width consumption for processing a query is independent of corpus
size, query length, and document length. The factors that decide
the resource usage are either constant or increase slowly as the sys-
tem scales, e.g., the routing hops h and the number of visited nodes
v. On the other hand, it will take Gnutella-style systems to transmit
192MB data to just flood a query to 128k nodes.

On each visited node, computing the relevant documents can be
done efficiently. When indices are in memory, one node in our
pSearch prototype can process a query against 0.9 million indices
per second. When indices are on disk, it can process a query against
0.1 million indices per second.

184

0
20
40
60
80

100
120
140
160
180

6 10 14 18 22 26 30

Quit bound

V
is

it
ed

 n
od

es

65%

70%

75%

80%

85%

90%

95%

100%

A
cc

ur
ac

y

visited (atc)

visited (ltc)

visited (ltn)

visited (lps)

visited (atz)

accuracy (atc)

accuracy (ltc)

accuracy (ltn)

accuracy (lps)

accuracy (atz)
0

25
50
75

100
125
150
175
200

6 10 14 18 22 26 30

Quit bound

V
is

it
ed

 n
od

es

65%
70%
75%
80%
85%
90%
95%
100%

A
cc

ur
ac

y

visited (all) visited (title+desc) visited (title)
accuracy (all) accuracy (title+desc) accuracy (title)

0
25
50
75

100
125
150
175
200

6 10 14 18 22 26 30
Quit bound

V
is

it
ed

 n
od

es

70%

75%

80%

85%

90%

95%

100%

A
cc

ur
ac

y

visited (1) visited (4) visited (8) visited (16)
accuracy (1) accuracy (4) accuracy (8) accuracy (16)

(a) (b) (c)

70

75

80

85

90

95

1 6 11 16 21 26 31 36 41 46
Rotated dimensions

V
is

it
ed

 n
od

es

80%

85%

90%

95%

100%
A

cc
ur

ac
y

visited nodes
accuracy

0
25
50
75

100
125
150
175

6 10 14 18 22 26 30
Quit bound

V
is

it
ed

 n
od

es

70%

75%

80%

85%

90%

95%

100%

A
cc

ur
ac

y

visited nodes (100) visited nodes (200) visited nodes (300)
accuracy (100) accuracy (200) accuracy (300)

0

25

50

75

100

125

10 20 30 40 50 60 70 80
Samples

V
is

it
ed

 n
od

es

60%

70%

80%

90%

100%

A
cc

ur
ac

y

visited (repl-query) visited (query)
visited (repl-content) visited (content)
accuracy (repl-query) accuracy (query)
accuracy (repl-content) accuracy (content)

(d) (e) (f)

Figure 17: Sensitivity to system parameters for a 10k-node system. (a) Term weighting schemes. (b) Query length. (c) Parallel
search. (d) Rotated dimensions. (e) Dimensionality of the semantic space. (f) Sample size.

7.6 Summary of Experimental Results
We have quantified the efficiency and accuracy of pLSI by exper-

imenting with one of the largest corpora available in the public do-
main. The following are our major findings. (1) pLSI can achieve
a good accuracy at reasonable cost with respect to bandwidth and
number of nodes searched, and this performance is scalable with
respect to system size, corpus size, and number of returned doc-
uments. (2) Rolling-index needs only a small number of rotated
spaces to work effectively, limiting the space overhead as well as
the number of visited nodes. (3) The content-directed heuristics
are effective at directing searches, and learning from past history
can be beneficial when the queries have locality. (4) Replication
improves performance, but at the cost of extra storage. (5) pLSI’s
performance is not very sensitive to its major parameters. In par-
ticular, its absolute performance shows good potential to improve
along with future developments of advanced IR techniques.

8. RELATED WORK
Centralized indexing systems such as Napster suffer from single

point of failure and performance bottlenecks at the index server. On
the other hand, flooding-based techniques such as Gnutella send
a query or index to every node in the system, consuming huge
amounts of network bandwidth and CPU cycles.

To minimize the number of nodes a query probes, heuristic-based
approaches direct a search to only a fraction of the node population.
These approaches can be further divided into three categories: ran-
dom walk, employing summarization, and organizing nodes with
similar contents or sharing interests into groups.

Lv et al. [16] study search and replication strategies in unstruc-
tured P2P networks. They find that random walk and expanding-
ring search are more efficient than flooding.

Several projects employ Bloom filters to summarize contents in
the network. Rhea and Kubiatowicz [20] describe a method that

uses Bloom filters to summarize neighbors’ contents. A query is
only forwarded to neighbors that have relevant documents with
high probability. PlanetP [6] uses a Bloom filter to summarize con-
tents on each node and floods the summaries to the entire system.
Instead of using Bloom filters, Crespo and Garcia-Molina [5] intro-
duce the notion of Routing Indices that give a promising “direction”
toward relevant documents.

Schwartz [21] describes a method that organizes nodes with sim-
ilar contents into a group. A search starts with random walk but
proceeds more deterministically once it hits in a group with match-
ing contents. Motivated by research in data mining, Cohen et al. [3]
use guide-rules to organize nodes into an associative network. Sri-
panidkulchai et al. [22] extend an existing P2P network by linking
a node to other nodes that satisfy previous queries.

Replication has also been explored to improve search efficiency.
FastTrack [10] designates high-bandwidth nodes as super-nodes.
Each super-node replicates the indices of several other nodes. Co-
hen et al. [4, 16] find that setting the number of object replicas to
the square root of the searching rate for an object minimizes the
expected search size on successful queries.

Some systems [15] hash each term into an ID and store indices in
a DHT using term ID as the key. These systems need to intersect the
inverted lists [1] of terms to find documents that contain multiple
query terms. This cost grows proportionally with corpus size.

Except for PlanetP, all the above systems use simple keyword
matching, ignoring the advanced relevance ranking algorithms de-
vised by the IR community. We believe that searches are not just to
find documents that contain certain keywords, but to find the most
relevant documents. More importantly, pSearch has the advantage
of being able to use semantics to limit the search space.

Compared with our P2P architecture, distributed IR systems such
as GlOSS [11] usually employ a centralized or hierarchical index
to route queries among a small number of distributed sites.

185

9. CONCLUSION
As one of the first attempts at building self-organizing, large-

scale P2P IR systems, we have described several techniques to ex-
tend the LSI algorithm to work in a decentralized environment. We
have quantified the efficiency of pLSI with respect to bandwidth
and number of nodes searched, and the extent to which pLSI can
retain LSI’s efficacy, by experimenting with one of the largest cor-
pora available in the public domain. We made the following contri-
butions in this paper.

• pSearch is the first system that organizes contents around
their semantics in a P2P network. This makes it possible
to achieve accuracy comparable to centralized IR systems
while visiting a small number of nodes and transmitting a
small amount of data.

• We proposed the use of rolling-index to resolve the dimen-
sionality mismatch between the semantic space and a CAN,
taking advantage of the higher importance of low-dimensional
elements of semantic vectors. This helps reduce the num-
ber of visited nodes by partitioning the semantic space along
more dimensions.

• We employed content-aware node bootstrapping to balance
the load, which also achieves index and query locality. This
helps distribute document indices evenly across nodes.

• We employed content-directed search (using index samples
and recently processed queries) to guide searches to the right
places in the high-dimensional semantic space. This helps
further reduce the number of visited nodes.

Although our experience with the TREC, MED, ADI, and CRAN
corpora shows great promise, more experiments are needed to study
whether pLSI can be applied to a much larger corpus that has hun-
dreds of millions or even billions of documents. Among our en-
hancements to pLSI, content-aware node bootstrapping is expected
to scale well with corpus size. Intuitively, we expect the perfor-
mance of content-directed search to improve as corpus size in-
creases, because relevant documents will be found at closer dis-
tances. The rolling-index may be affected adversely as corpus size
increases due to the enlarged dimensionality gap between LSI and
CAN. Our proposals to improve rolling-index, selective rotating
and hierarchical clustering, are yet to be evaluated.

Our future work includes implementing other IR techniques and
efficient LSI variants (e.g., concept index) in pSearch and compar-
ing another search algorithm pVSM [24] with pLSI. We also plan
to experiment with a large HTML corpus crawled from the Web.

Acknowledgments
We thank Deqing Chen, Wenrui Zhao, Chi Zhang, Boon Ang, Mag-
nus Karlsson, Christos Karamanolis, the anonymous reviewers, and
our shepherd Robert Morris for their valuable feedback. We thank
Mallik Mahalingam for his contribution during the initial stages
of this project, and John Sontag and Dejan Milojicic for their sup-
port. Chunqiang and Sandhya were supported in part by NSF grants
CCR-9988361, CCR-0219848, ECS-0225413, and EIA-0080124;
by DARPA/ITO under AFRL contract F29601-00-K-0182; and by
the U.S. Dept. of Energy Office of Inertial Confinement Fusion
under Cooperative Agreement No. DE-FC03-92SF19460, and by
equipment or financial grants from Compaq, IBM, Intel, and Sun.

10. REFERENCES
[1] M. Berry, Z. Drmac, and E. Jessup. Matrices, Vector Spaces, and

Information Retrieval. SIAM Review, 41(2):335–362, 1999.

[2] C. Buckley. Implementation of the smart information retrieval
system. Technical Report TR85-686, Department of Computer
Science, Cornell University, Ithaca, NY 14853, May 1985.

[3] E. Cohen, A. Fiat, and H. Kaplan. Associative Search in Peer to Peer
Networks: Harnessing Latent Semantics. In IEEE INFOCOM’03,
April 2003.

[4] E. Cohen and S. Shenker. Replication Strategies in Unstructured
Peer-to-Peer Networks. In ACM SIGCOMM’02, 2002.

[5] A. Crespo and H. Garcı́a-Molina. Routing Indices for Peer-to-peer
Systems. In ICDCS’02, July 2002.

[6] F. M. Cuenca-Acuna and T. D. Nguyen. Text-Based Content Search
and Retrieval in ad hoc P2P Communities. In the International
Workshop on Peer-to-Peer Computing, May 2002.

[7] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman. Indexing by Latent Semantic Analysis. Journal of
the American Society of Information Science, 41(6):391–407, 1990.

[8] S. Dumais. Using LSI for information filtering: TREC-3
experiments. In the Third Text REtrieval Conference (TREC3), 1995.

[9] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and Effective Querying by
Image Content. Journal of Intelligent Information Systems,
3(3/4):231–262, 1994.

[10] FastTrack. http://www.fasttrack.nu.
[11] L. Gravano, H. Garcı́a-Molina, and A. Tomasic. GlOSS: text-source

discovery over the Internet. ACM Transactions on Database Systems,
24(2), 1999.

[12] G. Karypis and E.-H. S. Han. Concept indexing: A fast
dimensionality reduction algorithm with applications to document
retrieval and categorization. In CIKM’00, November 2000.

[13] R. Lempel and S. Moran. Optimizing Result Prefetching in Web
Search Engines with Segmented Indices. In VLDB’01, 2001.

[14] T. A. Letsche and M. W. Berry. Large-Scale Information Retrieval
with Latent Semantic Indexing. Information Sciences,
100(1-4):105–137, 1997.

[15] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger, and
R. Morris. On the Feasibility of Peer-to-Peer Web Indexing and
Search. In IPTPS’03, February 2003.

[16] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In ICS’02, June
2002.

[17] C. D. Prete, J. T. McArthur, R. L. Villars, I. L. Nathan Redmond, and
D. Reinsel. Industry developments and models, Disruptive
Innovation in Enterprise Computing: storage. IDC, February 2003.

[18] P. Raghavan. Information Retrieval Algorithms: A survey. In the 8th
SIAM Symposium on Discrete Algorithms (SODA), January 1997.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In ACM SIGCOMM’01,
August 2001.

[20] S. Rhea and J. Kubiatowicz. Probabilistic Location and Routing. In
IEEE INFOCOM’02, June 2002.

[21] M. Schwartz. A Scalable, Non-Hierarchical Resource Discovery
Mechanism Based on Probabilistic Protocols. Technical Report
CU-CS-474-90, University of Colorado, 1990.

[22] K. Sripanidkulchai, B. Maggs, and H. Zhang. Enabling Efficient
Content Location and Retrieval in Peer-to-Peer Systems by
Exploiting Locality in Interests. ACM SIGCOMM Computer
Communication Review, 32(1), January 2002.

[23] SVDPACK. http://www.netlib.org/svdpack.
[24] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information Retrieval

in Structured Overlays. In HotNets-I, October 2002. Expanded
version available as HP technical report HPL-2002-198, “PeerSearch:
Efficient Information Retrieval in Peer- to-Peer Networks”.

[25] Text Retrieval Conference (TREC). http://trec.nist.gov.
[26] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and

performance study for similarity-search methods in high-dimensional
spaces. In VLDB’98, pages 194–205, August 1998.

[27] Z. Xu, C. Tang, and Z. Zhang. Building Topology-Aware Overlays
using Global Soft-State. In ICDCS’03, May 2003.

[28] J. D. Zakis and Z. J. Pudlowski. The World Wide Web as Universal
Medium for Scholarly Publication, Information Retrieval and
Interchange. Global Journal of Engineering Education, 1(3), 1997.

186

