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Abstract— Locating content in decentralized peer-to-peer sys-
tems is a challenging problem. Gnutella, a popular file-sharing
application, relies on flooding queries to all peers. Although
flooding is simple and robust, it is not scalable. In this paper, we
explore how to retain the simplicity of Gnutella, while addressing
its inherent weakness: scalability. We propose a content location
solution in which peers loosely organize themselves into an
interest-based structure on top of the existing Gnutella network.
Our approach exploits a simple, yet powerful principle called
interest-based locality, which posits that if a peer has a particular
piece of content that one is interested in, it is very likely that
it will have other items that one is interested in as well. When
using our algorithm, called interest-based shortcuts, a significant
amount of flooding can be avoided, making Gnutella a more
competitive solution. In addition, shortcuts are modular and can
be used to improve the performance of other content location
mechanisms including distributed hash table schemes.

We demonstrate the existence of interest-based locality in five
diverse traces of content distribution applications, two of which
are traces of popular peer-to-peer file-sharing applications. Sim-
ulation results show that interest-based shortcuts often resolve
queries quickly in one peer-to-peer hop, while reducing the total
load in the system by a factor of 3 to 7.

I. INTRODUCTION

Ensuring the availability of content on the Internet is
expensive. Publishers who want high availability have few
options. They can use premium content hosting services, build
and manage their own content distribution infrastructures, or
contract with Content Delivery Networks [1]. All of these
options are prohibitively expensive for an average Internet
user who wants to share a hundred megabytes of digital
photographs with his friends. A low cost solution is to pub-
lish the content from one’s own desktop into a peer-to-peer
content distribution system like Gnutella [2]. While peers are
downloading content, they can also create and make available
replicas to increase content availability. As the system grows,
the supply of resources scales with demand. There are enough
resources, even during flash crowds when many people access
the same content simultaneously.

There are many challenges in providing peer-to-peer content
distribution systems. In this paper, we address one fundamental
challenge: what is the appropriate strategy for locating content
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given that content may be continuously replicated at many
locations in the peer-to-peer system? If content cannot be
located efficiently, there is little hope for using peer-to-peer
technology for content distribution.

There are two classes of solutions currently proposed for
decentralized peer-to-peer content location. Unstructured con-
tent location, used by Gnutella, relies on flooding queries to
all peers. Peers organize into an overlay. To find content, a
peer sends a query to its neighbors on the overlay. In turn, the
neighbors forward the query on to all of their neighbors until
the query has traveled a certain radius. While this solution is
simple and robust even when peers join and leave the system,
it does not scale. Another class of protocols based on the
Distributed Hash Table (DHT) abstraction [3] [4] [5] [6] and
motivated by Plaxton et al. [7] have been proposed to address
scalability. In these protocols, peers organize into a well-
defined structure that is used for routing queries. Although
DHTs are elegant and scalable, their performance under the
dynamic conditions common for peer-to-peer systems is un-
known [8].

Our design philosophy departs from existing work in that we
seek to retain the simple, robust, and fully decentralized nature
of Gnutella, while improving scalability, its major weakness.
We identify a powerful principle: if a peer has a particular
piece of content that one is interested in, then it is likely that
it will have other pieces of content that one is also interested in.
These peers exhibit interest-based locality. We propose a self-
organizing protocol, interest-based shortcuts, that efficiently
exploits interest-based locality for content location. Peers that
share similar interests create shortcuts to one another. Peers
then use these shortcuts to locate content. When shortcuts
fail, peers resort to using the underlying Gnutella overlay.
Shortcuts provide a loose structure on top of Gnutella’s
unstructured overlay. Although we use Gnutella as the primary
example in this paper, shortcuts are also compatible with many
other content location mechanisms, such as DHTs and hybrid
centralized-decentralized architectures such as Kazaa [9].

We compare the performance of Gnutella with and without
shortcuts using five traces collected at different locations and
different times. We show that shortcuts significantly improve
the performance of content location for Gnutella by providing
large decreases in the amount of load in the system and the
time to locate content. We find that simple algorithms are
sufficient to capture interest-based relationships. Moreover, we
provide some intuition on the factors that contribute to the
degree of locality observed in our traces.
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Fig. 1. Peers that share interests.

In Section II, we describe the design of interest-based
shortcuts. In Section III, we present our evaluation metrics and
simulation methodology. We present our results in Section IV
and explore the potential and limitations of shortcuts in
Section V. Section VI takes an in-depth look at factors that
contribute to interest-based locality. In Section VII, we look
at the effectiveness of shortcuts for a DHT-based protocol,
Chord [5]. We discuss the implications of our results in
Section VIII, and related work in Section IX.

II. INTEREST-BASED LOCALITY

In this section, we present a technique called interest-based
shortcuts. We will show in Section IV that this technique,
while based on simple principles, can significantly improve
the performance of Gnutella.

Figure 1 gives an example to illustrate interest-based local-
ity. The peer in the middle is looking for files A, B, and C. The
two peers in the right who have file A also each have at least
one more matching file B or C. The peer on the upper right-
hand corner has all three files. Therefore, it and the peer in
the middle share the most interests, where interests represent
a group of files, namely �������	��
� . Our goal is to identify
such peers, and use them for downloading files directly.

A. Shortcuts Architecture and Design Goals

We propose a technique called shortcuts to create addi-
tional links on top of a peer-to-peer system’s overlay, taking
advantage of locality to improve performance. Shortcuts are
implemented as a separate performance enhancement layer on
top of existing content location mechanisms, such as flooding
in Gnutella. The benefits of such an implementation are two-
fold. First, shortcuts are modular in that they can work with
any underlying content location scheme. Second, shortcuts
only serve as performance-enhancement hints. If a document
cannot be located via shortcuts, it can always be located via the
underlying overlay. Therefore, having a shortcut layer does not
affect the correctness and scalability of the underlying overlay.
In general, shortcuts are a powerful primitive that can be used
to improve overlay performance. For example, shortcuts based
on network latency can reduce hop-by-hop delays in overlay
networks. In this paper, we explore the use of a specific kind
of shortcut based on interests, for content location.

Figure 2(a) illustrates how content is located in Gnutella. A
query initiated by the peer at the bottom is flooded to all peers
in the system. Figure 2(b) depicts a Gnutella overlay with 3
shortcut links for the bottom-most peer. To avoid flooding,
content is located first through shortcuts. A query is flooded
to the entire system only when none of the shortcuts have the
content.

(a) Gnutella. (b) Shortcuts.

Fig. 2. Content location paths.

Our design goals for interest-based shortcuts are simplicity
and scalability. Peers should be able to detect locality in
a fully-distributed manner, relying only on locally learned
information. Algorithms should be lightweight. In addition,
the dynamic nature of peer-to-peer environments requires that
the algorithm be adaptive and self-improving. We incorporate
the above considerations into our design, which has two
components: shortcut discovery and shortcut selection.

B. Shortcut Discovery

We use the following heuristic to detect shared interests:
peers that have content that we are looking for share similar
interests. Shortcut discovery is piggy-backed on Gnutella.
When a peer joins the system, it may not have any information
about other peers’ interests. Its first attempt to locate content is
executed through flooding. The lookup returns a set of peers
that store the content. These peers are potential candidates
to be added to a “shortcut list.” In our implementation, one
peer is selected at random from the set and added. Subsequent
queries for content go through the shortcut list. If a peer
cannot find content through the list, it issues a lookup through
Gnutella, and repeats the process for adding new shortcuts.
Peers passively observe their own traffic to discover their
own shortcuts. For scalability, each peer allocates a fixed-size
amount of storage to implement shortcuts. Shortcuts are added
and removed from the list based on their perceived utility,
which is computed using the ranking algorithm described in
Section II-C. Shortcuts that have low utility are removed from
the list when the list is full.

There are several design alternatives for shortcut discovery.
New shortcuts may be discovered through exchanging shortcut
lists between peers, or through establishing more sophisticated
link structures for each content category similar to structures
used by search engines. In addition, multiple shortcuts, as
opposed to just one, may be added to the list at the same
time. In Section IV, we study a basic approach in which one
shortcut is added at a time, based on results returned from
Gnutella’s flooding. In Section V, we explore the potential of
two optimizations: adding � shortcuts at a time and learning
about new shortcuts through one’s current shortcuts.

C. Shortcut Selection

Given that there may be many shortcuts on the list, which
one should be used? In our design, we rank shortcuts based on
their perceived utility. If shortcuts are useful, they are ranked
at the top of the list. A peer locates content by sequentially



asking all of the shortcuts on its list, starting from the top, until
content is found. Rankings can be based on many metrics, such
as probability of providing content, latency of the path to the
shortcut, available bandwidth of the path, amount of content
at the shortcut, and load at the shortcut. A combination of
metrics can be used based on each peer’s preference.

Each peer continuously keeps track of each shortcut’s
performance and updates its ranking when new information
is learned. This allows for peers to adapt to dynamic changes
and incrementally refine shortcut selection. In Section IV, we
explore the use of probability of providing content (success
rate) as a ranking metric. In this context, success rate is defined
as the ratio between the number of times a shortcut was used
to successfully locate content to the total number of times it
was tried. The higher the ratio, the better the rank on the list.

III. PERFORMANCE EVALUATION

In this section, we discuss the design of experiments to
expose interest-based locality and evaluate the effectiveness
of our proposed shortcuts scheme. We start by giving a brief
overview of Gnutella. We then discuss the performance indices
we use for our evaluation, and describe our methodology and
experimental setup.

A. Gnutella Content Location

Gnutella uses flooding to locate content. Each query is
tagged with a maximum Time-To-Live (TTL) to bound the
number of hops it can travel. In addition, Gnutella employs
a duplicate query detection mechanism so that peers do not
forward queries that they have already previously forwarded.
Despite such mechanisms, some amount of duplication is
inherent to flooding algorithms and cannot be avoided. Peers
reply to a query when the query string matches partially, or
exactly, to files stored on their disk drives.

B. Performance Indices

The metrics we use to express the benefits and overhead of
interest-based shortcuts are:

1) Success rate: How often are queries resolved through
shortcuts? If success rates are high, then interest-based locality
techniques have the potential to improve performance.

2) Load characteristics: How many query packets do peers
process while participating in the system? Reducing the load
at individual peers is desirable for scalability.

3) Query scope: For each query, what fraction of peers in
the system are involved in query processing? A smaller query
scope increases system scalability.

4) Minimum reply path lengths: How long does it take for
the first reply to come back?

5) Additional state: How much additional state do peers
need to maintain in order to implement shortcuts? The amount
of state measures the cost of shortcuts and should be kept to
a minimum.

C. Methodology

We use trace-based simulations for our performance evalua-
tion. First, we discuss our query workloads. Next, we describe
how we construct the underlying Gnutella overlay that is used
for flooding queries, and map peers from the query workload
onto nodes in the Gnutella overlay. We then discuss our storage
and replication models, and our simulation experiments.

1) Query workloads: We use five diverse traces of down-
load requests from real content distribution applications to
generate query workloads. Our first three traces (labeled
Boeing, Microsoft and CMU-Web in Table I) capture Web
request workloads, which we envision to be similar to requests
in Web content file-sharing applications [10] [11] [12] [13].
Our last two traces (labeled CMU-Kazaa and CMU-Gnutella
in Table I) capture requests from two popular file-sharing
applications, Kazaa and Gnutella.

The Boeing trace [14] is composed of one-day traces from
five of Boeing’s firewall proxies from March 1, 1999. The Mi-
crosoft trace is composed of one-day traces from Microsoft’s
corporate firewall proxies from October 22, 2001. The CMU-
Web, CMU-Kazaa and CMU-Gnutella traces are collected
by passively monitoring the traffic between Carnegie Mellon
University and the Internet over a 24-hour period on October
22, 2002. Our monitoring host is connected to monitoring ports
of the two campus border routers. Our monitoring software,
based on tcpdump [15], installs a kernel filter to match packets
containing an HTTP request or response header, regardless of
port numbers. Although an HTTP header may be split across
multiple packets, we find that it happens rarely ( ��� ����� of
packets). The packet filter was able to keep up with the traffic,
dropping less than ��� ������� of packets. We extend tcpdump to
parse the packets online to extract source and destination IP
addresses and ports, request URL, response code, content type,
and cachability tags. We anonymize IP addresses and URLs,
and log all extracted information to a log file on disk. Our trace
consists of all Web transactions (primarily port 80), Kazaa
downloads (port 1214), and Gnutella downloads (primarily
port 6346) between CMU and the rest of the Internet.

Given the download requests in our traces, we generate
query workloads in the following way: if peer ��� downloads
file A (or URL A) at time ��� , peer � � issues a query for file A
at time � � . We model the query string as the full URL, A, and
perform exact matching of the query string to filenames. We
assume that � � ’s intention is to search for file A, and all hosts
with file A will respond to the query. Not modeling partial
matches does not affect our results for the Web or CMU-
Kazaa query workloads as a URL typically corresponds to a
distinct piece of content. However, URLs in the CMU-Gnutella
workload are based on filenames, which may not correspond
to distinct pieces of content. For example, a file for my favorite
song by my favorite artist could be named “my favorite song”
or “my favorite song, my favorite artist.” In our simulations,
these two files would be considered different, although they
are semantically the same. We use exact matches because it
is difficult to partially match over anonymized names. As a



TABLE I
TRACE CHARACTERISTICS.

Trace Characteristics 1 2 3 4 5 6 7 8
Boeing Requests 95,504 95,429 166,741 201,862 1,176,153 1,541,062 1,617,608 2,039,347

Documents 42,800 44,153 75,833 79,306 305,092 391,229 434,766 513,264
Clients 868 1,052 1,443 2,278 18,059 21,690 22,344 25,293

Microsoft Requests 764,177 917,325 960,119 1,588,045 2,083,911 3,818,368 4,515,815 6,671,774
Documents 102,548 164,505 198,559 285,711 416,784 662,986 718,444 956,617
Clients 11,636 11,929 13,013 15,387 19,419 23,492 28,741 32,361

CMU-Web Requests 125,138 104,781 132,405 155,847 338,656 358,778 432,843 495,119
Documents 61,569 43,616 61,981 72,513 162,951 153,405 190,372 211,570
Clients 6,322 6,426 7,054 7,602 11,176 12,274 13,892 15,408

CMU-Kazaa Distinct Requests 7,757 7,779 8,086 9,075 9,243 13,307 13,760 15,188
Documents 3,720 3,625 3,806 4,338 4,771 6,619 7,172 6,312
Clients/Peers 6,482/6,985 6,514/6,968 6,732/7,217 7,468/8,064 7,601/8,542 10,977/11,983 11,362/12,660 12,558/13,590

CMU-Gnutella Distinct Requests 392 389 395 415 480 502 581 884
Documents 260 247 239 254 318 339 393 609
Clients/Peers 256/464 270/383 271/373 296/405 320/543 341/477 383/590 542/735

result, it is likely that we underreport the number of peers
who have a particular file, and overestimate the number of
distinct files in the system.

We randomly selected eight one-hour segments from each
query workload to use for our simulations. We limit our
experiments to one hour, the median session duration reported
for peer-to-peer systems [16]. The characteristics of all trace
segments are listed in Table I, sorted by number of clients.

2) Gnutella connectivity graphs: Next, we discuss how we
construct the underlying Gnutella overlay used for flooding
queries, and how we map peers in the query workload de-
scribed in the previous section to nodes in the Gnutella overlay.

To simulate the performance of Gnutella flooding, we use
Gnutella connectivity graphs collected in early 2001. All
graphs have a bimodal power-law degree distribution with an
average degree of 3.4. The characteristic diameter is small at
12 hops. In addition, over 95% of the nodes are at most 7
hops away from one another. The number of nodes in each
graph vary from 8,000 to 40,000 [17]. For simulations, we
selected Gnutella graphs that had the closest number of peers
to the ones in each one-hour trace segment. Then, nodes were
randomly removed from the graph until the number of nodes
matched. The resulting graphs and the original graphs had
similar degree distribution and pair-wise path length charac-
teristics. Peers from each one-hour segment were randomly
mapped to nodes in the Gnutella graphs. We used a maximum
query TTL of 7, which is the application default for many
Gnutella clients. Although it is possible that some content
cannot be found because of the TTL limit, this was a problem
for less than 1% of the queries.

3) Storage and replication model for Web query workloads:
Next, we describe how content is placed and stored in the
system. For each trace segment, we assume that all Web clients
participate in a Web content file-sharing system. To preserve
locality, we place the first copy of content at the peer who
makes the first request for it (i.e., this is a publish to the
system, and a query lookup is not performed). Subsequent
copies of content are placed based on accesses. That is, if peer
�!� downloaded file A at time � � , �!� creates a replica of file
A and make it available for others to download after time � � .
Peers store all the content that they retrieve during that trace
segment, and make that content available for other peers to

download. Any request for content that a peer has previously
downloaded (i.e., a repeated request) is satisfied locally from
the peer’s cache.

Only requests for static content in the Microsoft trace and
the CMU-Web trace are used in our evaluation. Specifically,
we removed requests for content that contained “cgi,” “.asp,”
“.pl,” “?,” and query strings in the URL. In addition, for
the CMU-Web trace we removed all requests for uncachable
content as specified by the HTTP response headers, following
the HTTP 1.1 protocol. The Microsoft trace did not have
HTTP response header information. The Boeing trace did not
contain sufficient information to distinguish between static and
dynamic content. Therefore, all Boeing requests were used in
our analysis.

4) Storage and replication model for CMU-Kazaa and
CMU-Gnutella query workloads: We draw a distinction be-
tween two types of peers in the traces: peers that only serve
files, and peers that download files. Peers that only serve files
do not issue requests for content in the trace, but provide a set
of files for which other peers may download. It is likely that
these are hosts outside of CMU who are providing files to hosts
at CMU, or hosts at CMU that are not actively downloading
any files. We assume that any peer that downloads files must
make those files available for other peers. Table I lists the
number of clients (peers that download files) and the total
number of peers (both types) in each trace segment. Both types
of peers are participants in the peer-to-peer system, but only
peers who download content issue queries in the simulation.

Before running the simulation, we make one pass through
each trace segment and build up a list of content available at
each peer. Specifically, if a peer � � served a file A at some
time ��� in the trace segment, we assume that � � makes that
file available for any other peer to download any time during
that trace segment, even before �"� . This simulates a peer that
has the file on disk before the beginning of the trace segment.
However, if �#� originally obtained file A by a download earlier
in the trace, we make sure that A is available for other peers
to download only after ��� has downloaded it. We have only
partial knowledge about content available at each peer because
we are limited by the information present in the trace. For
example, let’s assume that peer � � has a copy of file B on
disk. However, � � did not download the file during the trace



segment. In addition, no other peer downloaded the file from
him, either. Therefore, we have no information in the trace that
� � has file B. When �!$ sends a query looking for file B in our
simulations, � � would not reply although in reality � � has the
file. As a result, we underestimate the number of peers who
could potentially supply a file, and report pessimistic results
for the CMU-Kazaa and CMU-Gnutella workloads.

Queries are performed only for distinct requests. For ex-
ample, a Kazaa peer usually downloads multiple fragments of
a file from multiple peers in parallel and may issue multiple
HTTP requests for that one file. In our simulations, that peer
issues only one query to find that file.

We assume that all peers in the trace segment participate
in the file-sharing session, including peers outside of CMU
downloading files from peers at CMU. We also ran a set
of experiments where we looked only at peers at CMU
downloading content and found that the results were similar
to using all peers in the trace. We present results when using
all peers in the trace in the following sections.

5) Simulation experiments: We compare the performance
of Gnutella, and Gnutella with shortcuts for each query
workload. For each portion of the trace, we assume that peers
that send any queries join the system at the beginning of
the segment and stay until the end. Although participation
is static in our simulations, we discuss the effects of more
dynamic conditions in Section IV-B. Unless otherwise stated,
peers maintain a fixed-size list of 10 shortcuts. Shortcuts are
ranked based on success rates.

IV. EXPERIMENTAL RESULTS

A. Comparison with Gnutella

In this section, we present evaluation results comparing the
performance of Gnutella against Gnutella with shortcuts.

1) Success Rate: Success rate is defined as the number of
lookups that were successfully resolved through interest-based
shortcuts over the total number of lookups. If the success rate
is high, then shortcuts are useful for locating content. Note
that peers who have just joined the system do not have any
shortcuts on their lists, and have no choice but to flood to
locate the first piece of content. We start counting the success
rate after the first flood (i.e., when peers have one shortcut on
their list).

Figure 3(a) depicts the average success rate for shortcuts
for each query workload. The vertical axis is the success
rate, and the horizontal axis is the time after the start of
the simulation when the observation was made. The average
success rate at the end of 1 hour is as high as 82%-90%
for the Web workloads, and 53%-58% for the CMU-Gnutella
and CMU-Kazaa workloads.1 The individual success rate
(not depicted) observed at each peer increases with longer
simulation times as peers learn more about other peers and

1For comparison, we also conducted experiments to select random peers
from all participating peers to add as shortcuts. Note that this is different
from interest-based shortcuts where shortcuts are added based on replies from
flooding through Gnutella. We find that the success rate for random shortcuts
varied from 2-9% across all trace segments.

have more time to refine their shortcut list. Although success
rates for all workloads are reasonably high, success rates for
Web workloads are distinctly higher than those for the CMU-
Kazaa or CMU-Gnutella workloads. We believe that this is
because we only have a partial view of the content available
at each peer for the CMU-Kazaa/Gnutella workloads and are
likely to see conservative results, as discussed in the previous
section.

Next, we ask what kind of content is located through short-
cuts? Are shortcuts useful for finding only popular content?
Figure 3(b) depicts the cumulative probability of finding con-
tent with the specified popularity ranking through shortcuts.
We present results from one representative trace segment from
each query workload. The x-axis is content rank normalized
by the total number of documents in the trace segment. The
normalized rank values range from 0 (most popular) to 1 (least
popular). Each document is classified as found or not found.
That is, if content with rank 0 was found at least once through
shortcuts, it is labeled as found. Only content that is found
is depicted in the figure. A reference line for the uniform
distribution, when all documents have equal probability of
being found, is also given. We find that the distributions for
the Microsoft and CMU-Web traces closely match the uniform
distribution, indicating that shortcuts are uniformly effective at
finding popular and unpopular content. The distribution for the
Boeing trace is also close to a uniform distribution, but has
a slight tendency towards finding more popular content. On
the other hand, shortcuts tend to find more unpopular content
in the CMU-Kazaa trace. The distribution on the right of the
sharp inflection point represents finding extremely unpopular
content that is shared by only two people. We do not present
the results for CMU-Gnutella because there were not enough
file accesses to determine document popularity. The most
popular file was accessed by a handful of people.

2) Load and Scope: We achieve load reduction by using
shortcuts before flooding so that only a small number of peers
are exposed to any one query. We look at two metrics that
capture load reduction: load at each peer and query scope.
Less load and smaller scope can help improve the scalability
of Gnutella.

Load is measured as the number of query packets seen at
each peer. Table II lists the average load for Gnutella and
Gnutella with shortcuts. Due to space limitations, we present
results for the last 4 segments of the Boeing and Microsoft
traces. For example, peers in Segment 5 of the Microsoft trace
saw 479 query packets/second when using Gnutella. However,
with the help of shortcuts, the average load is much less at 71
packets/second. Shortcuts consistently reduce the load across
all trace segments. The reduction is about a factor of 7 for the
Microsoft and CMU-Web trace, a factor of 5 for the Boeing
trace, and a factor of 3 for the CMU-Kazaa and CMU-Gnutella
traces.

We also look at the peak-to-mean load ratio in order identify
hot spots in the system. The peak-to-mean ratio for flooding
through Gnutella ranges from 5 to 12 across all traces, mean-
ing that at some time during the experiment, the most loaded
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Fig. 3. The performance of interest-based shortcuts.

TABLE II
LOAD AT EACH PEER IN QUERY PACKETS/SECOND.

Trace Protocol 5 6 7 8
Boeing Gnutella Flooding 355.4 462.6 493.5 670.9

Gnutella w/ Shortcuts 66.0 86.5 98.7 132.0
Microsoft Gnutella Flooding 478.7 832.1 1,163.8 1,650.1

Gnutella w/ Shortcuts 70.5 115.5 162.1 230.4

peer in the system saw 5 to 12 times more query packets
than the average peer. For most trace segments, the peak-to-
mean ratio for shortcuts is similar to Gnutella’s, indicating that
shortcuts do not drastically change the distribution of load in
the system. However, for 3 segments in the Microsoft trace,
the peak-to-mean ratio for shortcuts almost doubled compared
to Gnutella. This is because shortcuts bias more load towards
peers that have made a large number of requests. These peers
have more content and are more likely to be selected as
shortcuts compared to average peers. As a result, they tend
to see more queries. We found that there were a number
of peers that had significantly larger volumes of content in
these 3 trace segments. Shortcuts have an interesting property
that redistributes more load to peers that use the system more
frequently. This seems to be fair as one would expect peers that
make heavy use of the system to contribute more resources.

Scope for a query is defined as the fraction of peers in the
system that see that particular query. For example, flooding
has a scope of approximately 100% because all peers (except
those beyond the TTL limit) see the query. Shortcuts, when
successful, have a much smaller scope. Usually, only one
shortcut will see a query, resulting in a query scope of less
than 0.3%. When shortcuts are unsuccessful, then the scope is
100%, the same as flooding. Our results show that shortcuts are
often successful at locating content and only a small number
of peers are bothered for most queries.

3) Path Length: Path length is the number of overlay hops
a request traverses until the first copy of content is found.
For example, if a peer finds content after asking 2 shortcuts,
(i.e., the first shortcut was unsuccessful), the path length for
the lookup is 2 hops. Note that a peer locates content by
sequentially asking shortcuts on its list. For Gnutella, path
length is the minimum number of hops a query travels before it
reaches a peer that has the content. Peers can directly observe
an improvement in performance if content can be found in
fewer hops. Figure 3(c) depicts the average path length in

number of overlay hops for all workloads. On average, content
is 4 hops away on Gnutella. Shortcuts, when successful, reduce
the path length by more than half to only 1.5 hops. To further
reduce the path length, all the shortcuts on the list could be
asked in parallel as opposed to sequentially.

Next, we look at the amount of additional state required to
implement shortcuts. On average, peers maintain 1-5 shortcuts.
Shortcut lists tend to grow larger in traces that have higher
volumes of requests. We placed an arbitrary limit on the
shortcut list size to at most ten entries. Although we could
have allowed the list to grow larger, it does not appear to be
a limiting factor on performance.

We also look at opportunities for downloading content in
parallel through multiple shortcuts and find that for all trace
segments, 25%-50% of requests could have been downloaded
in parallel through at least 2 shortcuts.

We summarize the results from our evaluation below:
% Shortcuts are effective at finding both popular and unpop-

ular content. When using shortcuts, 45%-90% of content
can be found quickly and efficiently.% Shortcuts have good load distribution properties. The
overall load is reduced, and more load is redistributed
towards peers that make heavy use of the system. In
addition, shortcuts help to limit the scope of queries.% Shortcuts are scalable, and incur very little overhead.

Although all five workloads have diverse request volumes
and were collected three years apart, they exhibit similar trends
in interest-based locality.

B. Sensitivity to Participation Dynamics

In this section, we discuss the effects of participation
dynamics on shortcuts. Dynamics can affect both the shortcut
structure and the underlying Gnutella connectivity. We expect
a peer’s performance to be poorer if its shortcuts leave the sys-
tem (or equivalently, die). However, interest-based structures
are designed to be adaptive and the effect of a shortcut leaving
the system is seen only for the lookup immediately following
the leave. For example, peer ��� uses peer � $ as a shortcut, and
� $ just left the system. The next time ��� sends a query to � $ ,
he will discover that � $ has left, remove � $ from his shortcut
list, and ask his other shortcuts for content. In the worst case,
� � may unfortunately and unknowing keep choosing shortcuts
that leave the system, and will have to fall back to flooding



for all queries. In this case, shortcuts are useless, but do not
hurt Gnutella’s flooding performance. Participation dynamics
can also disrupt the performance of Gnutella by reducing the
effectiveness of flooding. Even when the Gnutella network is
partitioned, however, peers may still locate content through
shortcuts.

V. POTENTIAL AND LIMITATIONS OF SHORTCUTS

In the previous section, we showed that simple algorithms
for identifying and using interest-based shortcuts can provide
significant performance gains over Gnutella’s flooding mech-
anism. In this section, we explore the limits of interest-based
locality by conducting experiments to provide insight on the
following questions:

% What is the best possible performance when peers learn
about shortcuts through past queries?% Are there practical changes to the basic algorithm pre-
sented in the previous section that would improve shortcut
performance to bring it closer to the best possible?% Can we improve shortcut performance if we discover
shortcuts through our existing shortcuts, in addition to
learning from past queries?

In order to explore the best possible performance, we
remove the practical limits imposed on the shortcuts algorithm
evaluated in the previous section. First, peers add all peers
returned from Gnutella’s flooding as shortcuts. To contrast
with the basic algorithm in the previous section, only one
randomly selected peer was added at a time. Second, we
removed the 10-entry limit on the shortcut list size and allowed
the list to grow without bound.

Figure 4(a) depicts the best possible success rate averaged
across all trace segments for all workloads. Also, note that
the success rate is pessimistic for the CMU-Kazaa and CMU-
Gnutella workloads as discussed previously. The average suc-
cess rate at the end of 1 hour is as high as 97% and 65% for the
Microsoft and CMU-Kazaa workloads. Although the upper-
bound is promising, it is impractical for peers in the Boeing
and Microsoft workloads because they need to maintain on
average 300 shortcuts. Furthermore, the path length to the first
copy of content is as long as tens of hops.

Rather than removing all practical constraints, we look at
the performance when we relax some constraints to answer the
second question posed at the beginning of this section. First,
we observe that success rates for the basic shortcuts algorithm
depicted in Figure 3(a) is only 7-12% less than the best
possible. The basic algorithm, which is simple and practical,
is already performing reasonably well. Now, we relax the
constraints for adding shortcuts by adding � random shortcuts
from the list of peers returned by Gnutella. Specifically, we
looked at adding 2, 3, 4, 5, 10, 15, and 20 shortcuts at a time.
We also changed the limit on the number of shortcuts each
peer can maintain to at most 100.

Figure 4(b) depicts the success rates observed using this
extended shortcuts algorithm. We report results for the segment
with the lowest success rate when using the basic algorithm
from each workload. The horizontal axis is � , the number

of shortcuts added at a time, varying from 1 for the ba-
sic algorithm to “unbounded”, where “unbounded” refers to
adding as many shortcuts as possible for the best possible
performance. The vertical axis is the success rate at the end
of the 1-hour period. We find that the success rate increases
when more shortcuts are added at a time. For instance, for
segment 2 of the Boeing trace, when we add 5 shortcuts
at a time, the success rate increases to 87% compared to
81% when adding 1 shortcut. Adding 5 shortcuts at a time
produces success rates that are close to the best possible.
Furthermore, we see diminishing returns when adding more
than 5 shortcuts at a time. We find that the load, scope, and
path length characteristics when adding 5 shortcuts at a time is
comparable to adding 1 shortcut at a time. The key difference
is the shortcut list size, which expands to about 15 entries.
This is a reasonable trade-off for improving performance.

Next, we answer the third question. An additional improve-
ment to the shortcut algorithm is to locate content through
the shortcut structure in the following way: peers first ask
their shortcuts for content. If none of their shortcuts have
the content, they ask their shortcuts’ shortcuts. This can be
viewed as sending queries with a TTL of 2 hops along the
shortcut structure. In our implementation, peers send queries
to each peer in the shortcut structure sequentially until content
is found. If content is found at a peer who is not currently a
shortcut, it gets added to the list as a new shortcut. Peers resort
to Gnutella only when content cannot be found through the
shortcut structure. We believe this could be an efficient way
to learn about new shortcuts without needing to excessively
flood through Gnutella. In addition, we hope to capitalize on
the situation depicted in Figure 5. The peer on the left has
previously downloaded file A, and has added the peer in the
middle as a shortcut. It now wants to find file C. Its immediate
shortcut does not have file C, but its shortcut’s shortcut which
is the peer on the right, has file C. In this case, the peer on
the left can successfully locate content through its shortcut’s
shortcut.

Figure 4(c) depicts the success rates when using this algo-
rithm for locating content. The vertical axis is success rate and
the horizontal axis is the time the observation was made during
the simulation. The gray lines, given as reference points,
represent the success rates when using the basic algorithm.
Again, we limit the shortcut list size to 10 entries. The success
rates for discovering new shortcuts through existing shortcuts
is higher than the basic algorithm. For segment 2 of the Boeing
trace, the success rate increased from 81% to 90% at the end
of the hour. And similarly, the success rate increased from
89% to 95%, and 81% to 89% for segment 3 of the Microsoft
trace and segment 5 of the CMU-Web trace, respectively. In
addition, the load is reduced by half. However, the shortest
path length to content increases slightly to 2 hops. The results
for the CMU-Kazaa and CMU-Gnutella traces have similar
trends.

Our results show that the basic algorithm evaluated in the
previous section performs reasonably well. In addition, a few
practical refinements to the basic algorithm can yield further
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Fig. 4. The potential of interest-based shortcuts.
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Fig. 5. Discovering new shortcuts through existing shortcuts.

performance gains.

VI. UNDERSTANDING INTEREST-BASED LOCALITY

In this section, we seek to get a better understanding of the
factors that contribute to the degree of interest-based locality
observed in our workloads. We target our search to answer
three questions in the context of the Web workloads:

% What do interest-based structures look like?% Is interest-based locality capturing relationships between
embedded objects that belong on the same Web page, or
relationships across Web pages?% Is interest-based locality capturing locality in accesses to
the same publisher (Web server), or across publishers?

We would like to perform similar analyses on the CMU-
Kazaa and CMU-Gnutella workloads to answer questions such
as whether interests capture relationships between songs from
the same artist, or songs from the same genre. However,
it is nearly impossible to extract such information out of
anonymized URLs and file names. Therefore, we focus our
analysis on the Web workloads.

A. Properties of Interest-Based Structures

In this section, we treat the shortcut structure as a directed
graph, and analyze its properties. Vertices in the graph are
peers, and edges represent shortcut relationships. For example,
if peer � � uses peer �&$ as a shortcut, a directed edge from � �
to � $ is created in the graph.

We look at two snapshots of the graph taken at 10 minutes
and 1 hour into the simulation for segment 2 of the Boeing
trace. Due to space limitations, we summarize our key findings
below. First, when viewed as an undirected graph, we find that
there are a large number of connected components after the
first 10 minutes. Each connected component has only a few
peers. At an hour into the trace, there are a few connected
components, each composed of several hundred peers. In
addition, each connected component is very well connected.
Specifically, the graph has the highly-clustered characteristics
of “small world” networks [18] with a small minimum distance

between any two nodes. These characteristics are different
than random graphs which are not clustered. The clustering
coefficient of a vertex ' is defined to be the fraction of edges
that exist between its ��( neighbors over the possible total
number of edges, ��(*),+-��(/.10�2 . The clustering coefficient is 0.6
and 0.7 at 10 minutes and an hour into the trace. Clusters in
the shortcut graph correspond to clusters of interests. Clusters
have several implications for content location. First, if peers
are looking for content within their usual areas of interest, it
is likely that they will find it through the shortcut structure.
However, if a peer wants to find content that does not lie
within its usual areas of interest, then shortcuts are not useful
and peers need to be able to escape from their current interest
clusters. Retaining Gnutella, which has random connectivity,
as an escape route is useful for such purposes.

Another interesting observation is that the clustering coeffi-
cient for the Web graph [19] which represents the HTML link
structure in Web documents is much lower than those observed
for the shortcut graph which represents Web accesses. We
believe that interest-based locality is capturing relationships
that are different from following links through Web pages. The
Web access graph has interesting properties that are different
from previously studied Web graphs. We also looked at
clustering the document graph, where vertices in the graph are
documents, and edges represent documents that are accessed
by the same peer. For example, if a peer downloads files A and
B, an edge is created between the two files. Edges are weighted
by the number of distinct peers who also download those files.
Running off-the-shelf graph partitioning algorithms [20] on
the graph produces partitions of files. Future work includes
comparing these partitions to the clusters created by shortcuts,
and studying properties of the Web access graph.

B. Web Pages or Web Objects?

In this section, we explore the effect of the structure of
Web pages on interest-based locality. Each Web page consists
of multiple embedded objects. When a client requests a Web
page, it usually gets several objects back from the server in
parallel. In our evaluation in the previous sections, we assumed
that Web content sharing systems share this same fundamental
characteristic. That is, each object is a component of a larger
entity (Web page). However, if objects in peer-to-peer systems
have the same granularity as Web pages, would interest-based
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Fig. 6. Success rates for Web page workload.

locality still be useful?
In order to answer this question, we adapt the traces to

approximate requests at the granularity of Web pages. We
filter out all dynamic content using the methodology described
in Section III-C. We then use requests for documents that
have the text/html MIME type from the Microsoft and CMU-
Web traces for the simulations. The Boeing trace did not
contain content type information and were not used in these
experiments. Due to incomplete information, our methodology
has several limitations. For example, we do not explore the
effect of multiple frames on one Web page. We count each
frame as one distinct Web page. In addition, when examining
only text/html requests, the number of participating peers
drops by 30% because not all peers requested text/html (static)
content.

We run the same set of simulations on the Web page
workload as those discussed in Sections IV. We present results
for one metric: success rates. Results for other metrics have
the same trend as the results reported earlier. The black lines
in Figure 6 depict the average success rate for the Web page
workloads when using the basic algorithm of adding one
shortcut at a time. The success rates are 85% and 63% at
the end of the one-hour period for the Microsoft and the
CMU-Web workloads. This is a performance drop of 5% and
15% compared to the success rates of locating Web objects
in Section IV. We suspect that the performance difference is
caused by locality between Web objects on the same page. We
verify our hypothesis by looking at the best possible success
rate when peers are allowed to add all possible peers returned
from Gnutella’s flooding as shortcuts, depicted as the gray
lines in Figure 6. The performance drop of 5% to 15% is
consistent with the basic algorithm. Improving the shortcut
discovery algorithm as explored in Section V should also
improve the success rate performance for Web pages as well.

In summary, the performance gains observed in Section IV
are contributed to by the structure of Web pages (multiple
objects per Web page) and the interest-based relationship
between Web pages. Interest-based shortcuts are capable of
exploiting both properties to further improve performance.

C. Objects From Different Publishers?

Another factor that may contribute to interest-based locality
is the locality in accesses to content from the same Web site
(or publisher). In this section, we ask does content from the
same publisher necessarily belong to the same interest group?

TABLE III
THE EFFECT OF SAME-PUBLISHER SHORTCUTS.

Trace Successful Unsuccessful
Same Diff Same Diff

Boeing 49% 31% 7% 13%
Microsoft 32% 54% 2% 12%
Microsoft-HTML 10% 73% 2% 15%

In addition, does interest-based locality capture relationships
across publishers?

Intuitively, content from the same publisher should belong
to the same interest group. However, it is not clear whether
this granularity of interests is powerful enough to help with
content location. Specifically, content popularity at a publisher
follows a Zipf-like distribution [21]. A small number of pages
are highly popular, whereas a large number pages are rarely
accessed. Thus, each peer may access very different sets of
pages. To gain a better understanding, we analyze the results
reported in Section IV to answer the following questions:

% When shortcuts succeed, is the content from the same
publisher?% When shortcuts do not succeed, do peers have a shortcut
for that publisher?

We use the hostname part (or IP address) of the URL
as the publisher name. Due to anonymization, we can only
match servers that have the same exact name. For example,
www.cnn.com and www2.cnn.com are treated as two different
publishers although they are semantically the same. As a
result, it is likely that we underreport the count for content
belonging to the same publisher.

Table III lists the frequency at which content is found
successfully through shortcuts, along with whether the shortcut
that was used was for the same publisher. Same-publisher
shortcuts for a request are shortcuts that were originally cre-
ated as a result of accessing content from the same publisher as
the publisher for the current request. For the Boeing trace, we
found that on average, same-publisher shortcuts are successful
at locating content 49% of the time across 8 trace segments.
Different-publisher shortcuts are successful 31% of time. We
find that interest-based locality does capture interests across
multiple publishers. In addition, we find that 7% of the time
same-publisher shortcuts are not sufficient at locating content.
The results for the Microsoft trace are similar, but less content
can be found through same-publisher shortcuts. We believe the
majority of these same-publisher shortcut successes are for
Web objects that belong to the same Web page because same-
publisher shortcuts are much less effective at locating content
for the HTML-only traces. To summarize, interest-based lo-
cality is different than same-publisher locality. Interest-based
shortcuts can exploit relationships that span across multiple
publishers to locate content.

We find that shortcuts are effective at capturing interest-
based locality at many levels of granularity ranging from local-
ity in accessing objects on the same Web page, accessing Web
pages from the same publisher, and accessing Web pages that
span across publishers. In addition, interest-based structures
have different properties than the HTML link structures in



TABLE IV
LOAD AT EACH PEER IN QUERY PACKETS/SECOND.

Trace Protocol 5 6 7 8
Boeing Chord 0.0352 0.0414 0.0473 0.0397

Chord w/ Shortcuts 0.0113 0.0132 0.0165 0.0145
Microsoft Chord 0.0677 0.0985 0.1179 0.1462

Chord w/ Shortcuts 0.0228 0.0334 0.0365 0.0471

Web documents.

VII. SENSITIVITY TO UNDERLYING CONTENT LOCATION
MECHANISM

In Section II, we claimed that shortcuts are modular com-
ponents that can be used with any underlying content location
protocol. In this section, we explore the performance of
shortcuts with Chord [5], a DHT-based protocol.

Chord provides efficient and scalable distributed lookups
that resolves content IDs to locations in 043 �!576�8�9 overlay
hops, where 9 is the number of participating peers. To
facilitate lookups, each node maintains : + 5;6�8<9 2 state about
peers in the system.

For our evaluation, we assume that Chord provides the
following simple interface: when a peer sends a query for
a piece of content, Chord returns a list of IP addresses of all
peers that store a copy of that content. In addition, we assume
that content placement is based on peers’ individual interests.
That is, peers only store content that they have requested
and downloaded. Following the architecture presented in Sec-
tion II, we implement shortcuts as a separate performance-
enhancement layer. Queries are resolved through Chord only
when peers do not have any shortcuts to use, or shortcuts are
unsuccessful at locating content.

The performance metrics are the same as Gnutella’s. Be-
cause we are using the same trace and the same shortcuts al-
gorithm, the results for success rate and state overhead remain
the same as those reported in Section IV. When shortcuts are
successful, the path length for locating content is also the same
at 1.5 hops. By comparison, Chord locates content within 7
hops. The key differences between using Chord and Gnutella
as the underlying content location protocol are load and query
scope. Table IV lists the number of queries observed at each
peer in packet/second for Chord and Chord with shortcuts.
Due to space limitations, we only present results for the last
4 segments of the Boeing and Microsoft workloads. Chord is
already efficient at limiting the load compared to Gnutella (see
Table II). For example, for segment 5 of the Microsoft trace,
Chord limits the number of queries to 0.07 packets/second
compared to Gnutella’s 479 packets/second. Shortcuts, when
used with Chord, reduce the load even more down to 0.02
packets/second. Shortcuts reduce the load by a factor of 2-4
across all traces.

Query scope, which is the fraction of peers in the system
involved in a query, for Chord is analogous to query path
length. The scope is = 3 9 peers for all trace segments. Short-
cuts, when successful, reduce the query scope down to 0 � > 3 9 .
However, when shortcuts are not successful, query scope is the
sum of the number of all shortcuts that were tried (shortcut
list size) and the number of Chord hops over the total number

of peers in the system. The scope for unsuccessful shortcuts
is increased to approximately 0 � 3 9 hops. Fortunately, peers
do not have to pay the penalty for unsuccessful shortcuts very
often. To summarize, interest-based shortcuts can improve the
performance of Chord, a DHT-based protocol.

VIII. CONCLUSION AND DISCUSSION

In this paper, we propose a technique to create shortcuts in
content location overlays. We believe that this is a promis-
ing approach to introducing performance enhancements to
overlay construction algorithms. In our architecture, shortcuts
are modular building blocks that are constructed on top of
generic large-scale overlays. Because shortcuts are designed to
exploit locality, they can significantly improve performance.
Furthermore, layering enables higher performance without
degrading the scalability or the correctness of the underlying
overlay construction algorithm.

Interest-based locality is a powerful principle for content
distribution applications. We show that interest-based locality
is present in Web content sharing and two popular peer-to-peer
file-sharing applications. Applications can construct shortcuts
to exploit their locality characteristics and thereby improve
performance.

In our study, we find that interacting with a small group
of peers, often smaller than ten, is sufficient for achieving
high hit rates. Our results differ from previous Web caching
studies [22] that report that hit rates only start to saturate with
population sizes of over thousands of clients. The difference
is that in our approach, peers are grouped based on interests,
whereas in Web caching, all clients are grouped together.
Cooperation with small groups of peers who share interests
provides the same benefits as cooperation with a large group
of clients with random interests.

In addition to improving content location performance,
interest-based shortcuts can be used as a primitive for a
rich class of higher-level services. For instance, keyword or
string matching searches for content and performance-based
content retrieval are two examples of such services. Distributed
hash tables [3] [4] [5] [6] do not support keyword searches.
Interest-based shortcuts can be used to implement searches
on top of those schemes in the following way. Peers forward
searches along shortcuts. Then, each peer that receives a search
performs a keyword match with the content it stores locally.
There is a likely chance that content will be found through
shortcuts because of interest-based locality.

Performance-based content retrieval can also be imple-
mented using interest-based shortcuts. The advantage of such a
service is that content can be retrieved from the peer with the
best performance. Most peer-to-peer systems assume short-
lived interaction on the order of single requests. However,
shortcuts provide an opportunity for a longer-term relationship
between peers. Given this relationship, peers can afford to
carefully test out shortcuts and select the best ones to use based
on content retrieval performance. In addition, the amount of
state peers need to allocate for interest-based shortcuts is
small and bounded. Therefore, peers can store performance



history for all of their shortcuts. Peers can even actively probe
shortcuts for available bandwidth if needed.

One potential concern about interest-based locality is
whether exploiting such relationships infringes on privacy any
more so than underlying content location mechanisms. We
argue that it does not. First, peers do not gain any more
information than they have already obtained from using the
underlying content location mechanism. Interest-based short-
cuts only allow such information to be used intelligently to
improve performance.

IX. RELATED WORK

Improvements to Gnutella’s flooding mechanism have been
studied along two dimensions. First, query caching [23] ex-
ploits the Zipf-like distribution of popularity of content to
reduce flooding. Second, approaches based on expanding ring
searches, which are designed to limit the scope of queries,
and random walks [24], where each peer forwards a query
message to a randomly chosen neighbor, in place of flooding
are also promising at improving Gnutella’s scalability. Such
approaches are effective at finding popular content, whereas
interest-based shortcuts can find both popular and unpopular
content. These proposed improvements to Gnutella can be used
along with interest-based shortcuts to further improve the per-
formance of Gnutella. More recently, associative overlays [25],
also proposed to improve Gnutella’s performance, are based
on the same principles as interest-based locality.

Other peer-to-peer applications, such as Kazaa, can also
use interest-based locality to improve performance. Although
the specifics of Kazaa’s protocol is not publicly known, well-
connected peers are selected as “supernodes” which serve to
index content located at other peers. When locating content, a
normal peer contacts its supernode who, in turn, may contact
other supernodes. Shortcuts can be used in such environments
for efficient query routing between supernodes, or to reduce
load at supernodes.

There are several proposals for systems that distribute Web
content using peer-to-peer technology. YouServ [12] is a peer-
to-peer Web hosting service. Their design stresses ease in
publishing. Content location is provided through dynamic
DNS lookups on URLs using a centralized architecture. Coop-
Net [11] proposes to use peer-to-peer content distribution to
complement client-server systems during flash crowds. Clients
that have downloaded content can turn around and serve the
content to other clients. Content location is initiated through
the original Web server. BitTorrent [13] delivers Web content
using peer-to-peer technology and is designed to integrate
seamlessly with existing Web browsers. Content location is
provided by asking a well-known server. In Squirrel [10],
peers in a local area network share content to emulate a
Web proxy. Squirrel uses Pastry [4], a DHT-based algorithm,
for content location. Interest-based shortcuts can also be
employed in these systems to either avoid centralized content
location bottlenecks in YouServ, CoopNet, and BitTorrent, or
to improve the performance of Pastry in Squirrel.

Interest-based locality is related to ideas in collaborative

filtering [26] which suggests that people make choices based
on others’ opinions. We are building a decentralized peer
recommendation system, where we use heuristics to identify
and “recommend” peers who share similar interests.
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