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Abstract

Peer-to-peer systems are mainly used for object shar-
ing although they can provide the infrastructure for many
other applications. In this paper, we extend the idea of ob-
ject sharing to data sharing on a peer-to-peer system. We
propose a method, which is based on the multidimensional
CAN system, for efficiently evaluating range queries. The
answers of the range queries are cached at the peers and
are used to answer future range queries. The scalability
and efficiency of our design is shown through simulation.

1. Introduction

Peer-to-peer systems have been increasing in popularity
in recent years as they are used by millions of users to share
massive amounts of data over the Internet. These systems
are generally used for file sharing, such as Napster [15],
Gnutella [4] and KaZaA [10], which allow users to share
their files with other users. There are two challenges to be
resolved for sharing objects on a peer-to-peer system:

• Data Location: Given the name of an object, find the
corresponding object’s location.

• Routing: Once the possible location of the object is
found, how to route the query to that location.

Napster [15] uses a centralized design to resolve these
issues. A central server maintains the index for all objects
in the system. New peers joining the system register them-
selves with the server. Every peer in the system knows the
identity of the central server while the server keeps informa-
tion about all the nodes and objects in the system. When-
ever a peer wants to locate an object, it sends the request
(name of the object) to the central server which returns the
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IP addresses of the peers storing this object. The request-
ing peer then uses IP routing to pass the request to one of
the returned peers and downloads the object directly from
that peer. There are several shortcomings of the centralized
design of Napster. First of all, it is not scalable since the
central server needs to store information about all the peers
and objects in the system. Second, it is not fault tolerant
because the central server is a single point of failure.

A different approach is followed by Gnutella [4] to get
around the problem of centralized design. There is no cen-
tralized server in the system. Each peer in the Gnutella net-
work knows only about its neighbors. A flooding model
is used for both locating an object and routing the request
through the peer network. Peers flood their requests to their
neighbors and these requests are recursively flooded until a
certain threshold is reached. The problems associated with
this design are the high overhead on the network as a re-
sult of flooding and the possibility of missing some requests
even if the requested objects are in the system.

These designs, including Napster, Gnutella, and some
other variants are referred to as unstructured peer-to-peer
systems [9, 14], because the data placement and network
construction are decided arbitrarily in these systems. An-
other group of peer-to-peer designs are referred to as struc-
tured peer-to-peer systems and include systems such as
CAN [16], and Chord [19]. These systems are based on
implementing a distributed data structure called Distributed
Hash Table (DHT) [16, 17, 19, 21] which supports a hash-
table like interface for storing and retrieving objects.

CAN [16] uses a d-dimensional virtual address space for
data location and routing. Each peer in the system owns
a zone of the virtual space and stores the objects that are
mapped into its zone. Each peer stores routing information
about O(d) other peers, which is independent of the number
of peers, N , in the system. Each object is mapped to a point
in the d-dimensional space and then the request is routed
toward the mapped point in the virtual space. Each peer on
the path passes the request to one of its neighbors which is
closer to the destination in the virtual space. The average
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routing path has O(dN1/d) hops which is the lookup time
for exact match queries. Chord [19] assigns unique identi-
fiers to both objects and peers in the system. Given the key
of an object, it uses these identifiers to determine the peer
responsible for storing that object. Each peer keeps rout-
ing information about O(logN) other peers, and resolves
all lookups via O(logN) messages, where N is the number
of peers in the system.

Since peer-to-peer systems have emerged as a power-
ful paradigm for data sharing over the Internet, a natural
question arises if the power of peer-to-peer systems can be
harnessed to support database functionality over peer-to-
peer systems. Indeed, several research initiatives are un-
derway to answer this question. For example, Gribble et
al. [5] in their position paper titled “What can peer-to-peer
do for databases, and vice versa?” outline some of the com-
plexities that need to be addressed before peer-to-peer sys-
tems can be exploited for database query processing. Simi-
larly, in a recent paper Harren et al. [9] explore the issue of
supporting complex queries in DHT-based peer-to-peer sys-
tems. Harren et al. report the implementation of database
operations over CAN by performing a hash join of two re-
lations using DHT. The underlying technique basically ex-
ploits the exact-name lookup functionality of peer-to-peer
systems. [2, 7, 8, 11] discuss the issues of data integration
between heterogeneous data sources in a peer-to-peer data
management system.

There are potential applications that demand more com-
plex query functionality than the basic “lookup by name”
operation that the current P2P systems deliver. For example,
the state governments may maintain demographic informa-
tion for the population of the states. The servers maintain
information like population distribution in the state by age,
education, average family income, and health plan cover-
age. This information can be used by local county govern-
ments in the state for the purpose of planning development,
educational and health projects. The planners at the local
counties can ask queries like what is the percentage of peo-
ple in the county that fall in the annual income range of
$15, 000 − $20, 000. A key point to note is that unlike
queries in traditional DBMS where the exact answers are re-
quired, the exactness of answer is not critical in these appli-
cations. A best-effort, statistically significant approximate
answer will suffice. This example illustrates that a peer-
to-peer data management system does not need to replicate
every functionality of commercial DBMSs. The goal is to
facilitate database-like query functionality over distributed
data instead of just providing the exact-match lookup.

The work reported in this paper has similar goals as that
of Harren et al. [9], in that we are interested in supporting
database query processing over peer-to-peer systems. Most
data-sharing approaches designed for peer-to-peer systems
are concerned with exact lookup of data associated with

a particular keyword. Our contention is that in order to
achieve the larger goal of data-sharing in the context of a
DBMS over peer-to-peer systems, we need to extend the
current peer-to-peer designs that only support exact name
lookups to range searches. Range searches or range selec-
tion is one of the fundamental functionalities needed to sup-
port general purpose database query processing. The main
motivation for this is that the selection operation is typ-
ically involved at the leaves of a database query plan and
hence is a fundamental operation to retrieve data from the
database. Assuming that data partitions of a relation cor-
responding to prior queries are extensively replicated at the
peers, we would like to retrieve the data for new queries
from the peer-to-peer system instead of fetching it from the
base relation at the data source. In [6], we presented a so-
lution for quickly locating approximate answers for range
queries. Our general long term goal is to support the vari-
ous types of complex queries used by DBMSs so that gen-
eral peer-to-peer data support can be a reality.

The rest of the paper is organized as follows: Section 2
presents the formulation of the problem. Section 3 intro-
duces the basic concepts of our design, which is explained
in detail in Section 4. The experimental results are pre-
sented in Section 5. The last section concludes the paper
and discusses future work.

2. Problem Formulation

Current peer-to-peer systems focus on object sharing and
use object names for lookup. Our goal, on the other hand,
is to design a general purpose peer-to-peer data sharing sys-
tem. We consider a database with multiple relations whose
schema is globally known to all peers in the system 1. The
peers cooperate with each other to facilitate the retrieval and
storage of datasets. A straightforward extension and appli-
cation of object naming is to use the relation name to locate
the data in the system. However, such an approach will re-
sult in large amounts of data being stored redundantly and
often unnecessarily throughout the network. A more desir-
able approach is to use peers to store the answers of prior
queries. Whenever a new query is issued, the peers are
searched to determine if the query can be answered from
the prior cached answers. This is similar to the known
database problem often referred to as Answering Queries
using Views [12]. Since the problem of answering queries
using views is computationally hard even in centralized sys-
tems, we will instead focus on a restricted version by ex-
tending the exact lookup functionality of peer-to-peer sys-
tems to the range lookup of a given dataset. Hence, our goal
is to develop techniques that will enable efficient evaluation

1Research efforts such as Piazza [7, 8] and Hyperion [2, 11] are ad-
dressing the orthogonal problem of schema mediation in peer-to-peer data
sharing systems.
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of range queries over range partitions that are distributed
(and perhaps replicated) over the peers in a peer-to-peer sys-
tem.

The problem of performing range queries in a peer-to-
peer system has also been investigated by Andrzejak and
Xu [1]. Their solution uses hilbert curve mapping to parti-
tion data among peers in a way that contiguously distributes
the data at the peers. Due to partitioning there is no repli-
cation of data and hence failure of a peer can cause loss of
data. Also, as the number of peers grows, the ranges stored
at peers become smaller and smaller, and therefore, mutiple
peers need to be contacted to answer a query range.

We assume that initially the database is located at a
known site. All queries can be directed to this database.
However, such a centralized approach is prone to overload-
ing. Furthermore, the location of the data source may be
quite remote in the peer-to-peer network, and hence re-
sponse time may be slow. Our goal is for the peers to co-
operatively store range partitions of the database, which are
later used to respond to user queries. This will help in re-
ducing the load on the data source and hence also improve
the response times to queries. Of course the challenge is
how to track where the various data range partitions are lo-
cated. A straightforward approach would be to maintain a
centralized index structure such as an interval tree that has
the global knowledge about the locations of range partitions
distributed over the network. However, such an approach
would violate the key requirement of peer-to-peer systems,
which is to ensure that the implementation is scalable, de-
centralized, and fault-tolerant.

Typically when an SQL query is formulated, a query plan
is designed in the form of a query tree. A common opti-
mization technique is to push the selection operations
down to the leaves of the tree to minimize the data that has
to be retrieved from the DBMS. A similar approach is used
here to minimize the amount of data retrieved from other
peers for range queries. Rather than retrieving all possible
tuples from the actual database for each range query, the an-
swers stored at the peers are searched to find a smaller set
of tuples that is a superset of the query.

For example, if the answer of a range query 〈20, 35〉 for
a given attribute is stored at a peer, then future queries such
as 〈25, 30〉 can be answered using the result of 〈20, 35〉.
Since the range 〈20, 35〉 subsumes the range 〈25, 30〉, it is
enough to examine the tuples in the result of 〈20, 35〉, with-
out any data retrieval from the database. Thus less tuples
are checked to compute the answer and all the tuples to be
examined are retrieved directly from a single peer. This also
decreases the load on the database since it is not accessed
for every query. The problem can now be stated as follows:

Problem. Given a relation R, and a range attribute A,
we assume that the results of prior range-selection
queries of the form R.A(LOW, HIGH) are stored at

the peers. When a query is issued at a peer which
requires the retrieval of tuples from R in the range
R.A(low, high), we want to locate a peer in the sys-
tem which already stores tuples that can be accessed to
compute the answer.

In order to adhere to the peer-to-peer design methodology,
the proposed solution for range lookup should also be based
on distributed hashing. A nice property of the DHT-based
approach is that the only knowledge that peers need is the
function that is used for hashing. Once this function is
known to a peer, given a lookup request the peer needs to
compute the hash value locally and uses it to route the re-
quest to a peer that is likely to contain the answer. Given this
design goal, a naive approach would be to use a linear hash
function over the range query schema, i.e., a linear hash
function over low, high, or both low and high. A simple
analysis reveals that such a hash function will only enable
exact matches of given range requests. However we are also
interested in the results of the range queries that may con-
tain the given range, i.e., the ranges that are a superset of the
given query range lookup. In the following sections we de-
velop a DHT approach that enables range lookups that are
not exact matches. In [6], we use locality preserving hash
functions for range lookups that are based on similarity and
hence provide approximate answers to range queries. In this
paper, however, our technique ensures that if a range lookup
yields an answer, it is a superset of the query range.

3. System Model

Our system is based on CAN [16], which was designed
to store and retrieve individual data objects and supported
exact match queries. In contrast, we need to support storage
and retrieval of ranges of data objects, and therefore, we use
a hash mapping specific to data ranges. The distribution of
the stored ranges over the peers in the system may not be
uniform, as it is query driven. Therefore, we have used a
modified zone splitting strategy to obtain a better load dis-
tribution. Since we are not just looking for exact-matches
but we may want super-ranges for a given query range, we
have also introduced query forwarding strategies. In the fol-
lowing, we describe our hash mapping and other strategies
in detail.

Our system uses a 2d virtual space in a manner simi-
lar to CAN. Given the domain [a, b] of a one dimensional
attribute, the corresponding virtual hash space is a two di-
mensional square bounded by the coordinates (a, a), (b, a),
(b, b), and (a, b) in the Cartesian coordinate space. Figure 1
shows the corresponding virtual hash space for a range at-
tribute whose domain is [20,80]. The corners of the virtual
space are (20, 20), (80, 20), (80, 80), and (20, 80).

The virtual hash space is further partitioned into rect-
angular areas, each of which is called a zone. The whole
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Figure 1. Virtual Range Lookup Space for a
range attribute with domain [20, 80]

virtual space is entirely covered by these zones and no
two zones overlap. A zone can be identified by a pair
〈(x1, y1), (x2, y2)〉 where (x1, y1) is the bottom left corner
coordinates whereas (x2, y2) is the top right corner coor-
dinates. Figure 2 shows a possible partitioning of the vir-
tual space shown in Figure 1. The virtual space is par-
titioned into 7 zones : zone-1 〈(20, 61), (30, 80)〉, zone-
2 〈(20, 35), (80, 50)〉, zone-3 〈(42, 69), (80, 80)〉, zone-
4 〈(20, 50), (42, 61)〉, zone-5 〈(20, 20), (80, 35)〉, zone-6
〈(42, 50), (80, 69)〉, and zone-7 〈(30, 61), (42, 80)〉.

35

50
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30 42

69

 (20,20)  (80,20)
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Figure 2. Partitioning of the virtual space
shown in Figure 1

Each zone is assigned to a peer in the system. Unlike
the original CAN, not all the peer nodes in the system par-
ticipate in the partitioning. The nodes that participate are
called the active nodes. Each active node owns a zone.The
data source is responsible for the top-left zone, as the top-
left corner corresponds to the complete database. The rest

of the peer nodes, which do not participate in the partition-
ing, are called the passive nodes. Each passive node regis-
ters with one of the active nodes. All active nodes keep a
list of passive nodes registered with them.

For the purpose of routing requests in the system, each
active node keeps a routing table with the IP addresses and
zone coordinates of its neighbors, which are the owners of
adjacent zones in the virtual hash space. For example in
Figure 2, the routing table of the owner of zone-4 contains
information about its four neighbors: zone-1, zone-7, zone-
6 and zone-2.

Given a range query with range 〈qs, qe〉, it is hashed to
point (qs, qe) in the virtual hash space. This point is referred
to as the target point of the query range. The target point is
used to determine where to store the information about the
answer of a range query as well as where to initiate range
lookups when searching for the result of a range query. The
zone in which the target point lies and the node that owns
this zone are called the target zone and the target node, re-
spectively. Therefore, the information about the answer of
each range query is stored at the target node of this range.

Once a peer node gets the answer for its range query,
if the peer is willing to share its computed answer and has
available storage space, it caches the answer and informs the
target node about it. The target node stores a pointer to this
querying node. If the target node has available storage, it
caches the result itself. In either case, we say that the target
node stores the result of this query. For example, according
to Figure 2, the range query 〈50, 60〉 is hashed into zone-6,
so the set of tuples that form the answer to this query may be
stored at the node that owns zone-6 or the node will store a
pointer to the peer that caches the tuples in that range. Peers
can choose one of the several well know caching policies,
for example LRU, to manage their local cache space. The
discussion of caching policies to manage the local storage
at the peers is out of the scope of this paper.

4. Distributed Range Hashing

In this section we describe the basic components that
support the distributed implementation of range hashing.
We assume that there is a set of computing nodes which
participate in the distributed implementation of the range
hash table (RHT). For simplicity, we are assuming that the
range hash table is based on a relation R for a specific range
attribute A. In Section 4.4 we explain how the system can
be generalized to handle multiple attribute range queries.
If queries on various relations need to be supported, we
assume a separate instance of an appropriate RHT will be
maintained for each relation.

The nodes participating in the system are in one of the
two modes: active/passive. Initially, only one active node
(the data source) manages the entire virtual hash space.
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Other nodes become active as the work load on the active
nodes increases. Next, we describe how zones in the virtual
hash space are maintained on peers. Finally, we present the
details of range query lookup processing in the system.

4.1. Zone Maintenance

The partitioning of the virtual hash space into zones is
at the core of both the data location and routing algorithms.
Initially the entire hash space is a single zone and is as-
signed to the data source which is the only active node. The
partitioning of the hash space is dynamic and changes over
time as the existing zones split and new zones are assigned
to passive nodes that become active and take responsibility
for the new zones.

The decision to split is made by the owner of the zone.
Whenever a zone needs to split, the owner node discovers a
passive node either through its own passive node list or by
forwarding the request for a passive node to its neighbors.
The owner node then contacts one of the passive nodes and
assigns it a portion of its zone by transferring the corre-
sponding results and neighbor lists. A zone may split be-
cause of the following two reasons. First, it may have to
answer too many queries. In this case, it splits along a line
which results in an even distribution of stored answers as
well as an even spatial distribution of the zone. Second,
it may be overloaded because of routing queries, as larger
zones are more likely to fall in the path of a query route.
Therefore, the zone splits into equal halves along the longer
side to reduce the routing load. The outline of the split op-
eration is shown in Algorithm 1. The new peer is assigned
the right partition if the zone splits parallel to y-axis, or the
bottom partition if it splits parallel to x-axis. Figure 3 shows
the partitioned zones after zone-4 in Figure 2 splits parallel
to the y-axis and the new peer is assigned zone-8.

 (20,20)  (80,20)

 (80,80) (20,80)

7

8

5

1

2

3

6
4

Figure 3. Partitioning of the virtual hash
space after zone-4 of Figure 2 splits

Algorithm 1 Split a zone
if the zone needs to be divided because of answering load
then

Find x-median and y-median of the stored results.
Determine if a split at x-median (parallel to y-axis) or
a split at y-median (parallel to x-axis) results in even
distribution of stored answers and the space.

else
The split line is the midpoint of the longer side.

end if
Compute new coordinates of this zone and the new zone
according to the split line.
Assign the new zone to a passive node.
for all result points stored at this zone do

if the result point is mapped to the new zone then
Remove from this node and send to the new node.

end if
end for
Transfer data tuples falling into the new zone to the new
node.
for all neighbors of this zone do

if it is a neighbor of the new zone then
Add it to the neighbor list of new node.
Inform the neighbor of new zone.

end if
if it is no longer a neighbor of this node then

Inform the neighbor to update its list.
Remove from the neighbor list of this node.

end if
end for
Add new node to the neighbor list of this node.
Add this node to the neighbor list of new node.

4.2. Query Routing

When searching for the answer of a range query, the
first place to look for cached results is the target zone of
this range. Therefore whenever a range query is issued, it
is routed toward its target zone through the virtual space.
Starting from the requesting zone, each zone passes the
query to an adjacent zone until it reaches its target zone.
Using its neighbor lists and the target point of the query,
each node on the route passes the query to one of its neigh-
bors whose coordinates are the closest to the target point
in the virtual space. Algorithm 2 presents an outline of the
routing procedure.

Figure 4 shows how a query is routed in the system. The
range query is initiated at zone-7 and then routed through
zone-6 to its target zone, zone-10. The range queries in the
system can be initiated from any zone. Since passive nodes
do not participate in the partitioning, they send their queries
to any of the active nodes from where the queries are routed
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Figure 4. Routing and forwarding in virtual
space. The shaded region shows the Accept-
able Region for the query

toward the target zone.
An estimation of the average routing distance for pro-

cessing range queries in the proposed model is presented
in [18]. The analysis shows that the average routing path
length in an equally partitioned hash space is O(

√
n), where

n is the number of zones in the system. A similar result was
reported in [16].

Algorithm 2 Routing
if the query range maps to this zone then

Return this zone.
else

for all neighbors of this zone do
Compute the closest Euclidean distance from the
target point of the query to the zone of this neigh-
bor in the virtual space.
if this is the minimum distance so far then

Keep a reference to this neighbor.
end if

end for
Send the query to the neighbor with minimum distance
from the target point in virtual space.

end if

4.3. Forwarding

Once a query reaches the target zone, the stored results
at this zone are checked to see if there are any results whose
range contains the query range. If such a result is found
locally then it is directly sent to the querying peer. If there
is a pointer to a peer node that stores a superset range then
the address of that peer is forwarded as the answer and the
querying peer can contact this peer to obtain the answer.
Even if there is no such local result, it is still possible that

some other zones in the system do have such a result; so the
search should be forwarded to other zones. Fortunately the
search space can be pruned at this point.

Since the start point and end point of a range is hashed to
x and y coordinates respectively, the y coordinate of the tar-
get point is always greater than or equal to the x coordinate.
Hence , the target point never lies below the y = x line.
Given two ranges r1 : 〈a1, b1〉, and r2 : 〈a2, b2〉 that are
hashed to target points t1 and t2 in the virtual hash space,
the following observations can be made:

1. If a1 < a2, then the x coordinate of t1 is smaller than
the x coordinate of t2 and hence t1 lies to the left of t2
in the virtual space.

2. If b1 < b2, then the y coordinate of t1 is smaller than
the y coordinate of t2 and hence t1 lies below t2 in the
virtual space.

3. t1 lies to the upper-left of t2 if and only if range r1

contains range r2.

The third result can be concluded from the fact that mov-
ing along the negative x direction in the virtual hash space
decreases the start point of the corresponding range while
moving along the positive y direction increases the end
point.

(x,y)

A

B
D

C

Figure 5. Range Hashing

Figure 5 shows a range query 〈x, y〉 that is hashed into
zone A. Using the above observations, we can assert that
if there is any prior range query result that contains 〈x, y〉,
then it must have been hashed to a point in the shaded re-
gion. Any zone that intersects the shaded region is therefore
a candidate for potentially containing a result for this query.
In the figure, the zones A, B, C, and D intersect with the
shaded region and may have a result that contains the given
range 〈x, y〉.

The zone D in Figure 5 lies completely in the upper-left
region of the target point (x, y). We call such zones diago-
nal zones, defined as follows:
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Diagonal Zone. Consider a zone z bounded by coordi-
nates 〈(x1, y1), (x2, y2)〉. We say that another zone z′

bounded by 〈(a1, b1), (a2, b2)〉 is a diagonal zone of z
if a2 ≤ x1 and b1 ≥ y2.

It is obvious that a zone cannot have a diagonal zone if
it lies on the left or top boundary of the virtual space. It is
also possible that a zone may have no diagonal zone even if
there are many zones to its upper left. Figure 6 shows such
a case where the zone-7 at the bottom right corner has no
diagonal zones.

1

6

2

3

4

5 7

Figure 6. No Diagonal Zones

Diagonal zones are of particular interest since any result
stored in a diagonal zone is a superset of the desired answer
set. This is the case because every range that maps to a point
in the diagonal zone contains the query range, and so if the
diagonal zone has a cached result, then it is a superset of
the desired answer. As the number of zones in the system
increases, the possibility of finding a diagonal zone for a
zone also increases.

During the search process, if the result is not found lo-
cally at the target node, the query is forwarded to the left
and top neighbors that may contain a potential result. Those
nodes also check their local results and can forward the
query to some of their top-left neighbors in a recursive man-
ner. Figure 4 shows how a query can be forwarded in the
system. If the range query cannot be answered at its target
zone, zone-10, then it is forwarded to zone-4 and zone-11
which may have a result for the query. Note that forwarding
is only used if the query cannot be answered at the target
zone. We describe two strategies for forwarding queries.

4.3.1. Flood Forwarding. A naive approach to forwarding
queries is flood forwarding. Flood forwarding is similar
to flooding the query to the neighbors that lie in the up-
per and left side of the virtual space. We use a parameter
called acceptable fit to control forwarding, which is a real
value between 0 and 1. It is used to determine how big
an answer range is acceptable for a given query and there-
fore also determines how far the forwarding will continue.
It defines an allowed offset for the query range such that

offset = AcceptableF it × |domain|, where |domain|
is the length of the domain of the range attribute. The ac-
ceptable cached results for the range query 〈low, high〉,
are then those that both contain the query range and are
subsumed by the range 〈low − offset, high + offset〉.
The square defined by these offsets and the target point is
referred to as Acceptable Region as shown by the shaded
area in Figure 4. Each node that receives a forwarded query
checks its local results to find a result whose range is within
the allowed offset of the query range. If it finds such a
result, it notifies the querying peer and stops forwarding.
Otherwise it forwards the query to its neighbors which may
have a result within the given offset of the query range. If
acceptable fit is set to 0, then only the target zone of the
range query is checked and the query is not forwarded to
any neighbor. Note that setting acceptable fit to 0 means
that only exact answers can be matched for a given query.
If, on the other hand, it is set to 1, then the query can be po-
tentially forwarded to all zones that are likely to have a re-
sult for the query; i.e., all the zones which have some point
that lies on the upper left of the target point of the query.

4.3.2. Directed Forwarding. Flood forwarding may re-
sult in too much communication overhead on the network.
Therefore, instead of flooding the query to all the neighbors
in upper and left directions, directed forwarding picks up a
neighbor in the upper left region of the target point in the
following manner. Out of all the neighbors that fall in the
left and upper region for the target point, the neighbor that
has the highest overlap area with the acceptable region is
forwarded the query request. A query can specify a limit d
on the directed forwarding. Whenever a query is forwarded,
the limit d is decremented. When d becomes 0, the querying
peer is notified to directly contact the data source. Directed
forwarding is used in conjunction with the acceptable fit pa-
rameter, as described in Algorithm 3. Directed forwarding
is useful because a querying peer can potentially bound the
response time by specifying a limit on the number of hops
during forwarding. Similar approaches have been explored
by Lv et al. [13] and Yang et al. [20]. Freenet [3] imple-
ments a directed depth first search in an unstructered P2P
system.

4.4. Discussion

An important routing improvement in the system is
Lookup During Routing. Since the requesting zone and the
target zone can be at any position with respect to each other
(they can actually be the same zone), it is possible that a
zone on the path from the requesting zone to the target zone
may already have a result containing the query. The system
can be improved so that every zone on the route checks its
local results if it may have a possible result. If the result is
found, then the query is not routed any further and the result
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Algorithm 3 Directed Forwarding (S, f, d)
acceptableF it ← f
directedLimit ← d
Compute acceptableRegion using acceptableF it.
if there is an answer which is in acceptableRegion then

Return this answer.
end if
if directedLimit > 0 then

Pick a neighbor n that has the highest area overlap with
the acceptableRegion of target point and has not been
visited earlier.
Add neighbor n to the set of visited zones S.
directedLimit ← directedLimit− 1
Forward the query to neighbor n.

else
Return answer not found to query source.

end if

is returned to the requesting node. This way, some routing
and forwarding can be avoided. The routing path decisions
can be changed so that the routed queries follow a path that
may have zones with possible results. The effect of Lookup
During Routing on the system is shown in Section 5.3.

Another possible modification to the system is to allow
the nodes to ask warm up queries when they participate in
the partitioning. When a passive node is assigned a zone, it
may compute and cache the result of the query whose range
is mapped to the upper left corner of its zone in order to
warm up its cache. This way, further queries mapped to this
zone will always be answered without forwarding because
the range of the warm up query contains all ranges mapped
to this zone. Although this improvement is not always pos-
sible, for example when the node is busy or the result of
such a query is very large, it greatly improves the perfor-
mance.

Some of the improvements for CAN[16] are also appli-
cable for our approach. Multiple realities, better routing
metrics, overloaded zone, and topology-sensitive partition-
ing can be incorporated into the system. Node departures
can also be handled in the same way. For soft departure,
the active node hands over its zone and other necessary data
to a passive node. If, however, an active node fails, one of
its neighbors takes over its zone and assigns it to a passive
node. To be able to detect failed nodes, active nodes send
periodic “are you alive” messages to their neighbors.

Although our system is designed for answering range
queries, it can also answer exact queries. Exact match
queries can be answered by setting the start and end points
of the range to the exact value and then querying the sys-
tem with this range. For example, in order to search for the
tuples with range attribute A=20, the system is queried for
the range 〈20, 20〉.

Updates of tuples can be incorporated into the system in
the following manner. When a tuple t with range attribute
A = k is updated, an update message is sent to the target
zone of the range 〈k, k〉. Since tuple t is included in all the
ranges 〈a, b〉 such that a ≤ k and b ≥ k, the update mes-
sage is forwarded to all zones that lie on the upper left of
the target zone. Each zone receiving an update message,
updates the corresponding tuple in the local results accord-
ingly. Note that the receiving zones may be storing pointers
to peer nodes with actual data instead of caching it. In that
case, the zone forwards the update message to the actual
node(s) storing the data tuple. All nodes that cache the tu-
ple t will receive the update message and hence will update
the tuple value in the stored data partition. The problem
with this scheme is that the zones on the upper left part of
the virtual space get more update messages than the others.
We plan to explore methods that will mitigate this problem.
For example, batching of multiple updates is one possible
solution.

Our solution elegantly generalizes to multiple attribute
range selection queries. Consider a relation with n at-
tributes. The range selection queries over this relation are
mapped into a 2n-dimensional virtual space. Let us say
that Li and Hi represent the limits of the domain for at-
tribute i. A range selection query over the n attributes can
be written as 〈l1, h1〉 , 〈l2, h2〉 , . . . , 〈ln, hn〉. If no range
is specified for an attribute ai, then we use the domain
〈Li, Hi〉 as the selection range for that attribute. The query
is mapped to the point (l1, h1, l2, h2, . . . , ln, hn) in the 2n-
dimensional space. The first two dimensions of the virtual
space correspond to the first attribute and are bounded by
(L1, H1). Similarly the third and fourth dimensions of the
virtual space are bounded by (L2, H2) corresponding to the
second attribute, and so on. The routing algorithm for the
2n-dimensional virtual space remains the same. If the result
is not found, the query can be forwarded by moving towards
the upper left of the 2n-dimensional hypercube, which cor-
responds to increasing coordinates for even dimensions and
decreasing coordinates for odd dimensions.

5. Experimental Results

We implemented a simulator in Java and then tested var-
ious aspects of our design. In this section, we present the
test results. All experiments were performed on a machine
with dual Intel Xeon 2GHz processors and 1GB of main
memory, running Linux RedHat 8.0.

We have experimented with range queries over a single
attribute. In the experiments, a zone splits when the number
of stored results exceeds a threshold value, which is called
the split point, or the routing load on a node is higher than a
specific routing threshold. The reported values are averaged
over 5 runs. Unless mentioned otherwise, the following de-
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(a) System performance with flood forwarding
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Figure 7. System Performance

fault values are used in all of the experiments:

• The system is initially empty. (There is only one zone
in the system.)

• The domain of the attribute is 〈0, 500〉.
• Range queries are distributed uniformly at random in

the attribute’s domain and the query origin peer is cho-
sen randomly.

• Split point is 5, i.e., at most 4 query results are main-
tained per peer.

• Routing threshold is 3 queries in a second.

5.1. System Performance

The performance of the system can be determined in
terms of the ratio of the range queries that are answered
using prior answers stored in the system. In these exper-
iments, we have measured the system performance using
query sets of sizes 100, 1000 and 10,000. For each size we
have used 5 different query sets generated randomly. The
final number of active peers in these experiments is limited
to 10% of the total number of queries. Once the maximum
number of active peers is reached in the system, all active
peers stop caching after they cache 4 range queries and the
cached results are not expired.

Figure 7(a) shows the percentage of the answered range
queries as a function of the acceptable fit when flood for-
warding is used in the system. When the acceptable fit is 0,
no forwarding is used and only the target zone is checked
for each query. With 0 acceptable fit, only exact answers
can be matched for a given range query, and therefore, the
success ratio is almost 0. When forwarding is enabled (even

if it is set to a small value such as 0.1), there is a great im-
provement in performance. With 100 queries, changing the
acceptable fit from 0 to 0.1 improves the performance to
35%, whereas the performance goes up to 97.75% under
the same conditions with 10,000 queries. If the acceptable
fit is set to 1, then every zone that may have a possible result
for the query is searched and a stored result that contains the
query range is found if there exists any. When forwarding
limit is set to 1 for 10,000 queries, 99.36% of the queries
are answered using cached results. Note that the success
rate does not improve much after the acceptable fit is 0.5.

In the next experiment, we introduced directed forward-
ing with a directed limit of 2 hops. We measured the suc-
cess rate of the system for various acceptable fit values for
directed forwarding. The results have been summarized in
Figure 7(b). Even with a small limit of 2 for directed for-
warding the success rates are very similar to flood forward-
ing. We can make two important observations from Fig-
ures 7(a) and 7(b):

• The probability of finding answers to range queries im-
proves as the acceptable fit is increased. This is quite
clear since increasing the acceptable fit allows a larger
set of cached ranges to match a given query range.

• The probability of finding answers to range queries
improves as the number of queries increases. As the
number of queries is increased, more results are stored
in the system and the possibility of finding a result for
a query gets higher.

We also measured the effect of changing the directed
limit on performance when the acceptable fit is 0.5. Figure 8
presents the results of the experiment. It can be seen that a
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directed limit of 4 is sufficient for most general purposes.
Directed forwarding finds the answer within few hops of
the target zone, which shows that the directed forwarding
strategy is effective.

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

P
er

ce
nt

ag
e 

of
 th

e 
qu

er
ie

s 
an

sw
er

ed

Directed limit (with Acceptable Fit = 0.5)

100 queries
1000 queries

10000 queries

Figure 8. Effect of directed limit on system
performance

5.2. Routing Performance

The routing performance is measured in terms of the av-
erage number of zones visited for answering a query. We
have measured the effects of flood forwarding and directed
forwarding on the average number of zones visited to an-
swer queries. We simulated the system with the number of
peers in the system set to 100, 500 and 1000. We started
measuring the path lengths after the number of active peers
in the system has reached the desired value. We ran 5 sets
of 10,000 uniformly randomly distributed range queries and
averaged the route lengths over those runs. When the ac-
ceptable fit is 0, the result is the average number of zones
visited during routing. If forwarding is enabled, it also in-
cludes the zones visited during forwarding.

Figures 9(a) and 9(b) show the average number of zones
visited to answer queries when flood forwarding and di-
rected forwarding are used respectively. Directed forward-
ing contacts less number of zones and it also scales well
with increasing number of peers in the system. The aver-
age path length increases about 2.5 folds with an increase
of 10 folds in the number of zones for directed forwarding.
Even with flood forwarding it is less than the square root of
the number of peers in the system, which conforms with the
theoretical bound shown in [18].

From the performance and path length experiments, we
conclude that directed forwarding is a significant improve-
ment over flood forwarding. It provides similar success in
locating answers by contacting less number of zones.
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Figure 9. Routing Performance

5.3. Lookup During Routing

One of the optimizations to the system is to implement
Lookup During Routing so that the results for the queries
may be found while they are being routed to their target
zone. If a result for the query is found on its way to its target
zone, it is immediately returned to the querying peer result-
ing in less number of visited zones. In the experiments, we
have used 5 sets of 10,000 queries and the limit for directed
forwarding is 2 hops. The final number of active peers in
the system is limited to 1000.

Figure 10 shows the number of visited zones per query
when lookup during routing(LDR) is used. Lookup dur-
ing routing substantially reduces the number of zones vis-
ited. In our experiments we observed that around 40% of
the queries are answered during routing when acceptable
fit is non-zero. Notice that the number of zones visited in
the case of flood forwarding with lookup during routing os-
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Figure 10. Effect of Lookup During Routing on
the number of visited zones

cillates with increase in acceptable fit. The reason for this
behavior is that as the acceptable fit is increased, the proba-
bility of finding an answer during routing increases. But if
the answer is not found on the route, then flood forwarding
results in contacting more zones.

5.4. Selectivity

Figure 11 shows the performance of the system when
query ranges are restricted to certain maximum lengths.
The domain of the range attribute is changed to 0-10,000
in order to avoid the repetitions of queries when the se-
lectivity is small. In the figure, Selectivity k% means that
the length of any queried range is less than or equal to
(k ∗ |domain|/100) where |domain| is the length of the
domain and equals 10,000 in this case. For example, with
0.1% selectivity, all query ranges have length less than or
equal to 10 since 0.1 ∗ 10000/100 = 10. 100% selectiv-
ity is the same as no selectivity since the query ranges can
have any possible length. When creating the range queries,
the start points of the ranges are selected uniformly from
the domain of the range attribute and then the length of the
range is determined randomly according to the selectivity.
For each selectivity value, we used 3 sets of 10,000 queries.

In the graphs, AF stands for acceptable fit and DL stands
for directed limit. As seen from Figure 11, the percentage of
queries answered decreases as the selectivity gets smaller.
That is because restricting the query ranges to a smaller
length makes it harder to find prior results that contain a
given range. When the selectivity is small, a query is look-
ing for a very specific range. All the prior queries have also
been quite specific. Hence the probability that the current
query is contained in one of the prior queries is low, which
explains the observed behavior. Low selectivity negatively
impacts the query answering capability of the system.
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5.5. Load Distribution

In the following experiments we measured the load on
the peers in the system. The load on the peers can be clas-
sified in two categories. Answering Load measures the total
number of queries that a peer has to answer. Message Load
measures the total number of messages that a peer needs to
process due to routing or forwarding.

We ran a set of 10,000 queries in a system of 1000 ac-
tive peers. The number of zones remains constant during
the run. Figure 12 shows the total load which is the summa-
tion of answering and message load on each peer. We have
sorted the load values on all the peers after the completion
of the run in increasing order. The marked points on the
curves represent the average total load over all the peers for
the corresponding run. The maximum load for each run is
almost 3.5 times the average load. But the maximum load
on any peer for all the runs is around 0.35% of the total load
on the system. The load curve for the case with acceptable
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fit 0.5 and directed limit 4 is almost the same as the one
with acceptable fit 1 and directed limit 4. Therefore, we
have omitted the curve for 0.5 from the graph.

An initial impression is that the zone on the top-left
would be overloaded because the zones in the upper left
region of the virtual space are responsible for long ranges.
However, our experiments have shown that this is not the
case. We noted during these experiments that the load on
the top-left zone, which is maintained by the data source, is
very close to the average load. We conclude that the system
does not incur much overhead over the source and reduces
its burden in answering queries which is evident from the
performance experiments.

6. Conclusions and Future Work

Peer-to-peer systems are gaining in importance as they
distribute information and connect users that are distributed
across the globe. The true distributed systems of today
need to facilitate this world wide retrieval and distribution
of data. So far most peer-to-peer attempts have been re-
stricted to exact match lookups and therefore are only suit-
able for file-based or object-based applications. This paper
represents a first step toward the support of a more diverse
and richer set of queries. Databases are a natural repository
of data, and our enhanced CAN-based system supports the
basic range (or selection-based) operation. Our approach
is simple and very promising. We have shown how to ex-
ploit the CAN approach to support range queries and have
demonstrated that it successfully scales using a variety of
performance studies. Our system greatly reduces the bur-
den of answering queries from the data source with only a
little overhead.

Our future efforts are directed towards a design of a com-
plete peer-to-peer database system. In the short term, we
plan to explore multi-attribute range queries as well as non-
integer based domains in detail.
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