
Chord: A scalable Peer-to-Peer
Lookup Service for Internet
Applications

Παρουσίαση: Καραγιάννης, Πλίτσης, Στεφανίδης,
Τζιοβάρα, Τσώτσος

Authors: Stoica, Morris, Karger, Kaashoek, Balakrishman
SIGCOMM 2001

2

Topic of Presentation

Peer to Peer applications need to locate efficiently
the node that stores a particular data item
Chord, a distributed lookup protocol, addresses this
problem

Given a key, Chord maps the key onto a node

3

Introduction
P2P systems and applications are distributed systems
without any centralized control or hierarchical
organization
The software that runs at each node is equivalent in
functionality
The core operation in most P2P systems is the
efficient location of data items
Chord is a scalable protocol for lookup in a dynamic
P2P systems with frequent node arrivals and
departures

4

Introduction
The Chord protocol supports just one operation:
given a key, it maps the key onto a node
Chord uses a variant of consistent hashing to assign
keys to Chord nodes
Consistent hashing tends to balance load

Each node receives roughly the same number of keys
Involves little movement of keys when nodes join and
leave the system

5

Introduction
Each Chord node needs “routing” information about
only a few other nodes

The routing table is distributed
In an N-node system, each node maintains
information only about O(logN) other nodes, and
resolves all lookups via O(logN) messages to other
nodes
Chord maintains its routing information as nodes
join and leave the system; with high probability each
such event results in no more than O(log2N)
messages

6

Introduction
Features that distinguish Chord from other P2P
lookup protocols are:

Simplicity
Provable correctness
Provable performance

A Chord node requires information about O(logN)
other nodes for efficient routing
Performance degrades gracefully when information
is out of date

Nodes join and leave arbitrarily
Only one piece information per node needs to be
correct (slower lookup)

7

System Model
Load balance: Chord acts as a distributed hash
function, spreading keys evenly over the nodes

This provides a degree of natural load balance

Decentralization: Chord is fully distributed: no node
is more important than any other

This improves robustness

Scalability: The cost of a Chord lookup grows as the
log of the number of nodes

Very large systems are feasible

8

System Model
Availability: Chord automatically adjusts its internal
tables to reflect newly joined nodes as well as node
failures

The node responsible for a key can always be found
This is true even if the system is in a continuous state of
change

Flexible naming: Chord places no constraints on the
structure of the keys it looks up

9

System Model
An application interacts with Chord in two main
ways:

Chord provides a lookup(key) algorithm that yields the IP
address of the node responsible for the key
The Chord software on each node notifies the application
of changes in the set of keys that the node is responsible
for

This allows the application to move corresponding values to their
new homes when a new node joins

10

Examples of Applications
Cooperative Mirroring:

In order to balance the load across all servers, data is replicated and
cached

Time-Shared Storage:
If a person wishes some data to be always available, but their machine
is only occasionally available, they can offer to store others’ data
while they are up, in return for having their data stored elsewhere
when they are down

Distributed Indices:
Each machine maintains lists of machines that offer documents. Each
document is specified by a keyword. The lookup is faster when using
these lists

Large-Scale Combinatorial Search:
In this case, keys are candidate solutions to the problem. Chord maps
these keys to the machines responsible for testing them as solutions

11

The Base Chord Protocol
The Chord protocol specifies:

how to find the locations of keys
how new nodes join the system
how to recover from the failure (or planned departure) of
existing nodes

Here we describe a simplified version of the protocol
that does not handle concurrent joins or failures

12

The Base Chord Protocol
Chord uses consistent hashing in order to map keys
to nodes responsible for them
With high probability the hash function balances
load
With high probability, when an Nth node joins (or
leaves) the network, only an O(1/N) fraction of the
keys are moved to a different location

13

Consistent Hashing
The consistent hash function assigns each node and
key an m-bit identifier using a base hash function
such as SHA-1
A node’s identifier is chosen by hashing the node’s
IP address
A key’s identifier is produced by hashing the key
The identifier length m must be large enough to
make the probability of two nodes or keys hashing to
the same identifier negligible

14

Consistent Hashing
Identifiers are ordered in an
identifier circle modulo 2m

Key k is assigned to the first
node whose identifier is equal to
or follows (the identifier of) in
the identifier space
This node is called the successor
node of key
If identifiers are represented as a
circle of numbers from 0 to 2m -
1, then successor(k) is the first
node clockwise from k

15

Consistent Hashing
Consistent hashing is designed to let nodes enter and
leave the network with minimal disruption
When a node n joins the network, certain keys
previously assigned to n’s successor now become
assigned to n
When node n leaves the network, all of its assigned
keys are reassigned to n’s successor
No other changes in assignment of keys to nodes
need occur

16

Scalable Key Location
Each node need only be aware of its successor node
on the circle
Queries for a given identifier can be passed around
the circle via these successor pointers until they first
encounter a node that succeeds the identifier
Chord protocol maintains these successor pointers
It may require traversing all N nodes to find the
appropriate mapping
Chord maintains additional routing information

17

Scalable Key Location
m: number of bits in the key/node identifiers
finger table: each node n maintains a routing table
with at most m entries
The ith entry in the table at node n contains the
identity of the first node, s, that succeeds n by at
least 2i-1 on the identifier circle, i.e., s=successor(n +
2i-1), where 1≤i≤m and all arithmetic is modulo 2m

A finger table entry includes the Chord identifier and
the IP address of the relevant node

18

Scalable Key Location
Each node stores
information about nodes
closely following it on
the identifier circle
A node’s finger table
generally does not
contain enough
information to determine
the successor of an
arbitrary key

19

Scalable Key Location
When a node n does not know the successor of a key
k, it finds a node whose ID is closer than its own to k
That node will know more about the identifier circle
in the region of k than n does
By repeating this process, n learns about nodes with
IDs closer and closer to k

20

Search Process
Lookup for id’s successor

Find id’s predecessor
Return predecessor’s successor

Find id’s predecessor
If n is the predecessor

Return n
Else, return the closest preceding finger

Find the closest preceding finger
Search finger table from last item to first, in order to find
a node which is closer to id, among the nodes in the finger
table

21

Search Process
n.find_successor(id) //ask node n to find id’s successor

n’ = find_predecessor(id);
return n’.successor;

n.find_predecessor(id) // ask node n to find id’s predecessor
n’ = n;
while(id ∉ (n’, n’.successor])

n’ = n’.closest_preceding_finger(id);
return n’;

n.closest_preceding_finger(id) //return closest finger preceding id
for i=m downto 1

if(finger[i].node ∈(n, id))
return finger[i].node;

return n;

22

Lookup Examples
0

1

3

2

4

5

6

7

nodestart

07
05
04

nodestart

04
32
11

nodestart

05
33
32

2) Node 0 searches for id 5
Firstly, searches for 5’s predecessor
Node 0 is not the 5’s predecessor
Searches for the closest preceding
finger
Scans finger table from the last entry to
the first
The first node that is between 0 and 5 is
returned (node 3)
Node 3 is checked and it is 5’s
predecessor
Node 3’s successor is returned (this is
5’s successor)

1) Node 0 searches for id 2
Node 0 examines its finger table
Id 2 has as a successor node 3

23

Lookup Examples
0

1

3

2

4

5

6

7

nodestart

65
64

nodestart

32
11

nodestart

33
32

nodestart

00
07

3) Node 1 searches for id 7
Search 7’s predecessor
Node 1 is not 7’s predecessor
Search for the closest preceding finger
Scan finger table from last entry to first
The first node that is between 1 and 7 is
returned (node 3)
Node 3 is checked and it is not 7’s
predecessor
Search for the closest preceding finger
from node 3
Scan 3’s finger table from last entry to
first
The first node that is between 3 and 7 is
returned (node 6)
Node 6 is checked and it is 7’s
predecessor
Node 6’s successor is returned (this is 7’s
successor)

24

Node Joins
In a dynamic network, nodes can join and leave at
any time
The main goal is to have the ability to locate every
key in the network at any time
Chord preserves two invariants

Each node’s successor is correctly maintained
For every key k, node successor(k) is responsible for k

In order for lookups to be fast, it is also desirable for
the finger tables to be correct

25

Node Joins
To simplify the join and leave mechanisms, each
node in Chord maintains a predecessor pointer
A node’s predecessor pointer contains the Chord
identifier and IP address of the immediate
predecessor of that node, and can be used to walk
counterclockwise around the identifier circle

26

Node Joins
Chord must perform three tasks when a node
joins the network:

Initialize the predecessor and fingers of node n
Update the fingers and predecessors of existing
nodes to reflect the addition of n
Notify the higher layer software so that it can
transfer state (e.g. values) associated with keys
that node n is now responsible for

27

Initializing Fingers and Predecessor
In order to find the
predecessor of n:

Find the predecessor of
n’s successor

Now, the predecessor of
n’s successor is n and
the old predecessor of
n’s successor is n’s
predecessor

n

n

x

x

y

y

First, y is the successor of x
After n’s insertion, the successor of
x is n and the successor of n is y

28

Initializing Fingers and Predecessor
The naively way to make the finger table is to
find the successor of each entry
Better solution: if two sequential entries have
the same successor there is no need to find the
successor of the second one

This reduces the number of remote calls
Practical optimization: ask an immediate
neighbor for a copy of its complete finger
table and its predecessor

29

Updating Fingers of existing Nodes
Node n will need to be entered into the finger
tables of some existing nodes
Node n will become the ith finger of node p if
and only if

p precedes n by at least 2i-1

The ith finger on node p succeeds n

30

Updating Fingers of Existing Nodes
Find the predecessor p of n
Check if the ith finger of p needs update
The same check occurs to the predecessor of p for ith

finger
Recursively, do the same thing for all others

The above steps are repeated for every i

31

Transferring Keys
When a node n joins the network we have to move
responsibility for all the keys for which node n is
now the successor
Exactly what this entails depends on the higher-layer
software using Chord
This would involve moving the data associated with
each key to the new node

32

Node Join Example
3 is the only node in the network
3’s predecessor is 3
3’s successor is 3
The successor for all the keys in the
finger table is 3

0
1

3

2

4

5

6

7

nodestart

37
35
34

33

Node Join Example
Node 6 joins the network
Node 0 helps 6’s insertion by
providing information
Firstly, node 6 must find its
successor which is 0
6’s predecessor becomes 0’s
predecessor which is 3
0’s predecessor becomes 6
The next step is to initialize 6’s
finger table

0
1

3

2

4

5

6

7

nodestart

04
32
11

nodestart

05
33
32

nodestart

07
05
04

34

Node Join Example
The start column of 6’s table is
calculated using the formula
n+2i-1

We calculate the successor of
each finger
The successor of id 7 and 0 is
node 0
The successor of id 2 is node 3

Note: in case two sequential ids
have the same successor, there is
no need to calculate the second
one

0
1

3

2

4

5

6

7

nodestart

07
05
04

nodestart

04
32
11

nodestart

05
33
32

nodestart

32
00
07

35

Node Join Example
Here, the finger tables of other
nodes are updated
It checks the first finger entry
of node 3. The new value is 6
Then it checks the first entry of
3’s predecessor, i.e., node 1
This entry is not updated
The same process is repeated
for the 2nd and 3rd entry of the
finger table

0
1

3

2

4

5

6

7

nodestart

07
0 65
0 64

nodestart

0 64
32
11

nodestart

0 65
33
32

nodestart

32
00
07

36

Node Leave Example
Node 1 leaves the network
All the keys that node 1 was
responsible for, are now
assigned to 1’s successor,
which is 3
All the entries at the finger
tables of the other nodes that
have node 1 as a successor
must be updated
The new value is node 3
(1’s successor)

0
1

3

2

4

5

6

7

nodestart

07
65
64

nodestart

64
32

1 31

nodestart

65
33
32

nodestart

32
00
07

The End

