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1 Introduction

The vision of the Semantic Web is that of a world-wide distributed architecture where data
and services easily interoperate. This vision is not yet a reality in the Web of today, in which
given a particular need, it is difficult to find a resource that is appropriate to it. Also, given a
relevant resource, it is not easy to understand what it provides and how to use it. To solve
such limitations, facilitate interoperability, and thereby enable the Semantic Web vision, the
key idea is to also publish semantics descriptions of Web resources. These descriptions rely
on semantic annotations, typically on logical assertions that relate resources to some terms in
predefined ontologies. This is the topic of the chapter.

An ontology is a formal description providing human users a shared understanding of
a given domain. The ontologies we consider here can also be interpreted and processed by
machines thanks to a logical semantics that enables reasoning. Ontologies provide the basis
for sharing knowledge and as such, they are very useful for a number of reasons:

Organizing data. It is very easy to get lost in large collections of documents. An ontology
is a natural means of “organizing” (structuring) it and thereby facilitates browsing
through it to find interesting information. It provides an organization that is flexible,
and that naturally structures the information in multidimensional ways. For instance,
an ontology may allow browsing through the courses offered by a university by topic
or department, by quarter or time, by level, etc.

Improving search. Ontologies are also useful for improving the accuracy of Web search.
Consider a typical keyword search, say “jaguar USA”. The result is a set of pages in
which these intrinsically ambiguous English terms occur. Suppose instead that we use
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precise concepts in an ontology, say car:jaguar country:USA. First, one doesn’t miss
pages where synonyms are used instead of the query terms, e.g., United States. Also,
one doesn’t recover pages where one of the terms is used with a different meaning, e.g.,
pages that talk about the jaguar animal.

Data integration. Ontologies also serve as semantic glue between heterogeneous information
sources, e.g., sources using different terminologies or languages. Consider for instance
a French-American university program. The American data source will speak of “stu-
dents” and “course”, whereas the French one will use “étudiants” and “cours”. By
aligning their ontologies, one can integrate the two sources and offer a unique bilingual
entry point to the information they provide.

An essential aspect of ontologies is their potential, because of the “logic inside”, to be the
core of inferencing components. What do we mean by inferencing in our setting? Consider for
instance a query that is posed to the system. It may be the case that the query has no answer.
It is then useful to infer why this is the case, to be able, for instance, to propose a more general
query that will have some answers. On the other hand, the query may be too vague and
have too many answers and it may be helpful to propose more specific queries that will help
the user to precise what he really wants. In general, automatic inferences, even very simple
ones, can provide enormous value to support user navigation and search, by guiding in a
possibly overwhelming ocean of information. Inferencing is also an essential ingredient for
automatically integrating different data sources. For instance, it is typically used to detect
inconsistencies between data sources and resolve them, or to analyze redundancies and
optimize query evaluation.

The inferencing potential of ontologies is based on their logical formal semantics. As we
will see, languages for describing ontologies can be seen as fragments of first-order logic
(FOL). Since inference in FOL is in general undecidable, the “game” consists in isolating
fragments of FOL that are large enough to describe the semantics of resources of interest for
a particular application, but limited enough so that inference is decidable, and even more,
feasible in reasonable time.

Not surprisingly, we focus here on Web languages. More precisely, we consider languages
that are already standards of the W3C or on the way to possibly becoming such standards (i.e.,
recommendations of that consortium). Indeed, in the first part of this chapter, we consider
RDF, RDFS and OWL. Statements in these languages can be interpreted with the classical
model-theoretic semantics of first-order logic.

In the second part, we study more formally, the inference problem for these languages.
Checking logical entailment between formulas, possibly given a set of axioms, has been
extensively studied. Since the problem is undecidable for FOL, we focus on decidable
fragments of FOL that are known under the name of description logics. Description logics
provide the formal basis of the OWL language recommended by the W3C for describing
ontologies. They allow expressing and reasoning on complex logical axioms over unary
and binary predicates. Their computational complexity varies depending on the set of
constructors allowed in the language. The study of the impact of the choice of constructors
on the complexity of inference is the main focus of the second part of the chapter.

We start with an example for illustrating what an ontology is, and the kind of reasoning
that can be performed on it (and possibly on data described using it). Then, we survey the
RDF(S) and OWL languages. Finally, we relate those languages to FOL, and in particular to
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description logics, in order to explain how the constructors used to describe an ontology may
impact the decidability and tractability of reasoning on it.

2 Ontologies by example

An ontology is a formal description of a domain of interest based on a set of individuals (also
called entities or objects), classes of individuals, and the relationships existing between these
individuals. The logical statements on memberships of individuals in classes or relationships
between individuals form a base of facts, i.e., a database. Besides, logical statements are used
for specifying knowledge about the classes and relationships. They specify constraints on
the database and form the knowledge base. When we speak of ontology, one sometimes thinks
only of this knowledge that specify the domain of interest. Sometimes, one includes both the
facts and the constraints under the term ontology.

In this chapter, we use as running example, a university ontology. In the example,
the terms of the ontology are prefixed with “:”, e.g., the individual :Dupond or the class
:Students. This notation will be explained when we discuss name spaces.

The university ontology includes classes, e.g., :Staff, :Students, :Department or
:Course. These classes denote natural concepts that are shared or at least understood by users
familiar with universities all over the world. A class has a set of instances (the individuals
in this class). For example, :Dupond is an instance of the class :Professor. The ontology
also includes relationships between classes, that denote natural relationships between indi-
viduals in the real world. For instance, the university ontology includes the relationship,
e.g., :TeachesIn. Relationships also have instances, e.g., TeachesIn(:Dupond,:CS101),
is an instance of :TeachesIn that has the meaning that Dupond teaches CS101. Class or
relationship instances form the database.

Let us now turn to the knowledge base. Perhaps the most fundamental constraint con-
sidered in this context is the subclass relationship. A class C is a subclass of a class C’ if
each instance of C is also an instance of C′. In other words, the set of instances of C is a subset
of the set of instances of C’. For instance, by stating that the class :Professor is a subclass
of the class :AcademicStaff, one expresses a knowledge that is shared with the university
setting: all professors are members of the academic staff. Stating a subclass relationship
between the class :AcademicStaff and the class :Staff expresses that all the members of
the academic staff, in particular the professors, belong to the staff of the university. So, in
particular, from the fact that :Dupond is an instance of the class :Professor, we also know
that he is an instance of :AcademicStaff and of :Staff.

It is usual to represent the set of subclass statements in a graphical way by a class hierarchy
(also called a taxonomy). Figure 1 shows a class hierarchy for the university domain.

Besides the class hierarchy, a very important class of ontology constraints allows fixing
the domains of relationships. For instance,

• :TeachesIn(:AcademicStaff, :Course) indicates that if one states that “X :TeachesIn
Y”, then X belongs to :AcademicStaff and Y to :Course,

• Similarly, :TeachesTo(:AcademicStaff, :Student), :Leads(:Staff, :Department)
indicate the nature of participants in different relationships.

A wide variety of other useful constraints are supported by ontology languages. For
instance:
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• Disjointness constraints between classes such as the classes :Student and :Staff are
disjoint, i.e., a student cannot belong to the staff.

• Key constraints (for binary relations) such as each department must have a unique
manager

• Domain constraints such as only professors or lecturers may teach undergraduate
courses.

We will show how to give a precise (formal) semantics to these different kinds of con-
straints based on logic. The use of logic enables reasoning. For instance, from the fact that
Dupond leads the CS department and the university ontology, it can be logically inferred that
:Dupond is in :Professor and :CSDept is in :Department. Indeed, such a reasoning based
on ontologies and inference rules is one of the main topics of this chapter. But before delving
in technicalities on inference, we devote the remaining of the section to illustrations of the
usefulness of inference.

Inference is first very useful for query answering. For instance, consider the query “Who
are the members of the academic staff living in Paris?”. Suppose Professor :Dupond lives
in Paris. He should be in the answer. Why? Because he lives in Paris and because he is a
professor. Note however that the only explicit facts we may have for :Dupond are that he
lives in Paris and that he is a professor. A query engine will have to use the formula that
states that professors are members of the academic staff and inference to obtain Dupond in the
answer. Without inference, we would miss the result.

Inference helped us in the previous example derive new facts such as Dupond is member
of the academic staff. It can also serve to derive new knowledge, i.e., new constraints even
in absence of any fact. For instance, suppose that we add to the class hierarchy of Figure 1,
the subclass relationship between :PhDStudent and :Lecturer. Then, it can be inferred
that :PhDStudent is also a subclass of the class :Staff. At the time one is designing such an
ontology, it is useful to be aware of such inference. For instance, membership in the staff class
may bring special parking privileges. Do we really mean to give such privileges to all PhD
students?

Furthermore, suppose that the ontology specifies the (already mentioned) disjointness
relationship between the classes :Staff and :Student. Then, from this constraint and the
subclass relationship between :PhDStudent and :Student, it can be inferred that the class
:PhDStudent is empty. This should be understood as an anomaly: why would a specification
bother to define an empty class? Highlighting in advance such anomalies in ontologies is
very important at the time the ontology is defined, because this may prevent serious errors at
the time the ontology is actually used in an application.

A last illustration of the use of ontologies pertains to integration. Consider again an
international university program. Suppose US students may follow some courses in France
for credits. Then we need to integrate the French courses with the American ones. Statement
such as “FrenchUniv:Cours is a subclass of :Course” serves to map French concepts to
American ones. Now a student in this international program who would ask the query
“database undergraduate”, may get as answers Database 301 and L3, Bases de données.

These are just examples to illustrate the usefulness of inference based on ontologies. In
the next section we describe the languages and formalisms that can be used to represent
ontologies. In Section 4, we will be concerned with inference algorithms that are sound and
complete with respect to the logical formal semantics, that is, algorithms guaranteeing to infer
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all the implicit information (data or knowledge) deriving from the asserted facts, relationships
and constraints declared in the ontology.

3 RDF, RDFS, and OWL

We focus on three ontology languages that have been proposed for describing Web resources.
We first consider the language RDF, a language for expressing facts (focusing primarily on
the database). The other two languages allow constraining RDF facts in particular application
domains: RDFS is quite simple, whereas OWL is much richer. We start by reviewing common
terminology and notions central to this context.

3.1 Web resources, URI, namespaces

A resource is anything that can be referred to: a Web page, a fragment of an XML document
(identified by an element node of the document), a Web service, an identifier for an entity, a
thing, a concept, a property, etc. This is on purpose very broad. We want to be able to talk
about and describe (if desired) anything we can identify. An URI may notably be a URL that
any (human or software) agent or application can access. In particular, we need to talk about
specific ontologies. The ontology that is used in the example of this chapter is identified by
the URL:

http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#

The instance Dupond in this ontology has URI:

http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#Dupond

To avoid carrying such long URIs, just like in XML (see Chapter ??), we can use names-
paces. So for instance, we can define the namespace jorge: with the URL of the example
ontology. Then the instance Dupond in the ontology jorge: becomes jorge:Dupond. This
is just an abbreviation of the actual URI for Dupond in that ontology.

The examples we will present are within the jorge ontology. When denoting individuals
or relationships in this ontology, we will use the notation :Name instead of jorge:Name,
considering that jorge is the default namespace. For example, the RDF triplet 〈 :Dupond,
:Leads, :CSDept 〉 expresses in RDF the fact that :Dupond leads :CSDept. Remember that
these are only abbreviations, e.g.,:

http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#Dupond
abbreviates to

Jorge:Dupond
abbreviates to

:Dupond.
One can publish standard namespaces to be used by all those interested in particular

domain areas. In this chapter, we will use the following standard namespaces:

rdf: A namespace for RDF.
The URI is: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: A namespace for RDFS.
The URI is: http://www.w3.org/2000/01/rdf-schema#
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owl: A namespace for OWL.
The URI is: http://www.w3.org/2002/07/owl#

dc: A namespace for the Dublin Core Initiative.
The URI is: http://dublincore.org/documents/dcmi-namespace/

foaf: A namespace for FOAF.
The URI is: http://xmlns.com/foaf/0.1/.

In each case, at the URL, one can find an ontology that, in particular, specifies a particular
vocabulary. Dublin Core is a popular standard in the field of digital libraries. The Friend of a
Friend (FOAF) initiative aims at creating a “social” Web of machine-readable pages describing
people, the links between them and the things they create and do. We will encounter examples
of both.

3.2 RDF

RDF (Resource Description Framework) provides a simple language for describing annotations
about Web resources identified by URIs. These are facts. Constraints on these facts in
particular domains will be stated in RDFS or OWL.

RDF syntax: RDF triplets.

In RDF, a fact expresses some metadata about a resource that is identified by a URI. An RDF
fact consists of a triplet. A triplet is made of a subject, a predicate and an object. It expresses a
relationship denoted by the predicate between the subject and the object. Intuitively, a triplet
〈a P b〉 expresses the fact that b is a value of property P for the subject a. (In general, a may
have several values for property p.) Don’t get confused by the terminology: a relationship, a
predicate, a property, are three terms for the same notion. The relationship 〈a P b〉 uses the
predicate P, and expresses that the subject a has value b for property P.

In a triplet, the subject, but also the predicate, are URIs pointing to Web resources, whereas
the object may be either a URI or a literal representing a value. In the latter case, a triplet
expresses that a given subject has a given value for a given property. RDF borrows from XML
the literal data types such as strings, integers and so forth, thanks to the predefined RDF data
type rdf:Literal. One can include an arbitrary XML value as an object of an RDF triplet,
by using the predefined RDF data type rdf:XMLLiteral.

In RDF, one can distinguish between individuals (objects) and properties (relationships).
This is not mandatory but it can be done using two rdf keywords (i.e., keywords defined in
the rdf namespace): rdf:type and rdf:Property. For instance, one can declare that the
term :Leads is a property name by the triplet 〈 :Leads rdf:type rdf:Property 〉.

Then data is specified using a set of triplets. These triplets may be represented either in a
tabular way, as a triplet table or as a RDF graph.

Representing a set of triplets as a directed graph is convenient to visualize all the informa-
tion related to an individual at a single node by bringing it together. In such a graph, each
triplet is represented as an edge from its subject to its object. Figure 2 and Figure 3 visualize
respectively the tabular form and the RDF graph corresponding to some set of triplets:

This is almost all there is in RDF. Trivial, no? There is one last feature, the use of blank
nodes to capture some form of unknown individuals. A blank node (or anonymous resource
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〈 :Dupond :Leads :CSDept 〉
〈 :Dupond :TeachesIn :UE111 〉
〈 :Dupond :TeachesTo :Pierre 〉
〈 :Pierre :EnrolledIn :CSDept 〉
〈 :Pierre :RegisteredTo :UE111 〉
〈 :UE111 :OfferedBy :CSDept 〉

Subject Predicate Object
:Dupond :Leads :CSDept
:Dupond :TeachesIn :UE111
:Dupond :TeachesTo :Pierre
:Pierre :EnrolledIn :CSDept
:Pierre :RegisteredTo :UE111
:UE111 :OfferedBy :CSDept

Figure 2: An RDF triplet table

:TeachesIn

:Dupond :Pierre

:InfoDept

UE111

:TeachesTo

:EnrolledIn

:RegisteredTo

:OfferedBy

:Leads

Figure 3: An RDF graph

or bnode) is a subject or an object in an RDF triplet or an RDF graph that is not identified by a
URI and is not a literal. A blank node is referred to by a notation _:p where p is a local name
that can be used in several triplets for stating several properties of the corresponding blank
node.

Example 3.1 The following triplets express that Pierre knows someone named “John Smith” wrote a
book entitled “Introduction to Java”.

:Pierre foaf:knows _:p
_:p foaf:name “John Smith”
_:p wrote _:b
_:b dc:title “Introduction to Java”

The predicates foaf:knows and foaf:name belong to the FOAF vocabulary. The predicate
dc:title belongs to the Dublin Core vocabulary.

We have used here an abstract syntax of RDF. One can clearly describe in a number of
ways using a “concrete” syntax. For instance, there exists an RDF/XML syntax for describing
RDF triplets. We now turn to the semantics that is, as we will see, quite simple as well.
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RDF semantics

A triplet 〈s P o〉 without blank node is interpreted in first-order logic (FOL) as a fact P(s,o),
i.e., a grounded atomic formula, where P is the name of a predicate and s and o denotes
constants in the FOL language.

Blank nodes, when they are in place of the subject or the object in triplets, are interpreted as
existential variables. Therefore a set of RDF triplets (represented with a triplet table or an RDF
graph or in RDF/XML syntax), possibly with blank nodes as subjects or objects, is interpreted
as a conjunction of positive literals in which all the variables are existentially quantified.

Giving a FOL semantics to triplets in which the predicates can be blank nodes is also
possible but a little bit tricky and is left out of the scope of this chapter (see Section 5).

Example 3.2 Consider again the four triplets that we used to express that Pierre knows someone
named “John Smith” wrote a book entitled “Introduction to Java”. They are interpreted in FOL by the
following positive existential conjunctive formula, where the prefixes (foaf:, dc:, _: and :) for
denoting the constants, predicates and variables have been omitted for readability.

∃p∃b[knows(Pierre, p) ∧ name(p,“John Smith”) ∧wrote(p,b) ∧ title(b,“Introduction to Java”)]

3.3 RDFS: RDF Schema

RDFS is the schema language for RDF. It allows specifying a number of useful constraints
on the individuals and relationships used in RDF triplets. In particular, it allows declaring
objects and subjects as instances of certain classes. In addition, inclusion statements between
classes and properties make it possible to express semantic relations between classes and
between properties. Finally, it is also possible to semantically relate the “domain” and the
“range” of a property to some classes. These are all very natural constraints that we consider
next.

Syntax of RDFS

The RDFS statements can be themselves expressed as RDF triplets using some specific
predicates and objects used as RDFS keywords with a particular meaning. We have already
seen the rdf:type predicate. This same keyword is used to declare that an individual i is an
instance of class C with a triplet of the form 〈i rdf:type C 〉.

Example 3.3 The following triplets express that :Dupond is an instance of the class :AcademicStaff,
:UE111 of the class :Java and :Pierre is an instance of the class :MasterStudent.

:Dupond rdf:type :AcademicStaff
:UE111 rdf:type :Java
:Pierre rdf:type :MasterStudent

RDFS provides a new predicate rdfs:subClassOf to specify that a class is a subclass of
another one. One can use it in particular to disambiguate terms. For instance, by specifying
that :Java is a subclass of :CSCourse, one say that, in the context of this particular ontol-
ogy, by Java, we mean exclusively the CS programming language. Subclass relationships
between classes, and thus a class hierarchy, can be declared as a set of triplets of the form 〈 C
rdfs:subClassOf D 〉. The class hierarchy of Figure1 can be described in RDFS by a set of
RDF triplets, an extract of which is given in Figure 4.
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:Java rdfs:subClassOf :CSCourse
:AI rdfs:subClassOf :CSCourse
:BD rdfs:subClassOf :CSCourse
:CSCourse rdfs:subClassOf :Course
:Logic rdfs:subClassOf :Course
:MathCourse rdfs:subClassOf :Course
:English rdfs:subClassOf :Course
:Algebra rdfs:subClassOf :MathCourse
:Probabilities rdfs:subClassOf :MathCourse

Figure 4: Some RDFS declarations for the class hierarchy of Figure 1

Similarly, RDFS provides a predicate rdfs:subPropertyOf to express structural rela-
tionships between properties. We could state for instance with the triplet

〈 :LateRegisteredTo rdfs:subPropertyOf :RegisteredTo 〉

that the relationship :LateRegisteredTo is more specific than the relationship :RegisteredTo.
So, suppose that we know:

〈 :Alice :LateRegisteredTo :UE111 〉

Then we can infer that, also:

〈 :Alice :RegisteredTo :UE111 〉

A property P (between subjects and objects) may be seen as a function that maps a subject
s to the set of objects related to s via P. This functional view motivates calling the set of
subjects of a property P, its domain, and the set of objects, its range.

Restricting the domain and the range of a property is also possible in RDFS using two
other new predicates rdfs:domain and rdfs:range and triplets of the form:

〈 P rdfs:domain C 〉

and

〈 P rdfs:range D 〉

Example 3.4 Some domain and range constraints on properties in the ontology of the university
domain mentioned in Section 2 can be expressed in RDFS by the set of RDF triplets given in Figure 5.

:TeachesIn rdfs:domain :AcademicStaff :TeachesIn rdfs:range :Course
:TeachesTo rdfs:domain :AcademicStaff :TeachesTo rdfs:range :Student
:Leads rdfs:domain :Staff :Leads rdfs:range :Department

Figure 5: Some RDFS declarations of domain and range constraints for the university domain
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RDFS semantics

Accordingly to the FOL semantics of RDF presented before, the RDFS statements can be
interpreted by FOL formulas. Figure 6 gives the logical semantics of the RDFS statements
by giving their corresponding FOL translation. The figure also gives the corresponding DL
notation, to be explained further on.

RDF and RDFS statements FOL translation DL notation
i rdf:type C C(i) i : C or C(i)
i P j P(i, j) i P j or P(i, j)
C rdfs:subClassOf D ∀X (C(X)⇒ D(X)) C v D
P rdfs:subPropertyOf R ∀X∀Y (P(X,Y)⇒ R(X,Y)) P v R
P rdfs:domain C ∀X∀Y (P(X,Y)⇒ C(X)) ∃P v C
P rdfs:range D ∀X∀Y (P(X,Y)⇒ D(Y)) ∃P− v D

Figure 6: RDFS logical semantics

Observe that these statements all have the same general form:

∀ . . . (· · · ⇒ . . . )

Such constraints are very useful in practice and are very adapted to inferencing. They are
called tuple generating dependencies. Intuitively, each such rule may be thought of as a factory
for generating new facts: no matter how (with which valuations of the variables) you can
match the left part of the arrow, you can derive the right part. Underneath this inference are
the notion of pattern, i.e., of a fact where some of the individuals are replaced by variables
(i.e., placeholder) and that of valuation. An example of a pattern is :TeachesIn(X, Y), where
X,Y are variables. A valuation ν may map X to :Dupond and Y to :UE111. It transforms the
pattern :TeachesIn(X, Y) into the fact :TeachesIn(:Dupond, :UE111).

The FOL translation that we presented suggests inference rules that can be used “opera-
tionally” to derive new RDF triplets. This is what is called the operational semantics of RDFS.
One starts with a set of facts, RDF triplets, and constraints. When the body of a rule matches
some knowledge we have, the head of the rule specifies some knowledge we can infer. To
illustrate, consider the inference rule for rdfs:subClassOf:

if 〈 r rdf:type A 〉 and 〈 A rdfs:subClassOf B 〉 then 〈 r rdf:type B 〉

where r, A, and B are variables.
This means that: if we know two triplets matching the patterns 〈 r rdf:type A 〉

and 〈 A rdfs:subClassOf B 〉 for some values of r, A, B, then we can infer the triplet 〈 r
rdf:type B 〉 with the values of r, B taken to be those of the match.

Or more formally, if there exists a valuation ν such that we know:

〈 ν(r) rdf:type ν(A) 〉

and

〈 ν(A) rdfs:subClassOf ν(B) 〉
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then we can infer:

〈 ν(r) rdf:type ν(B) 〉

Of course, triplets that have been inferred can be themselves used to infer more triplets.
We also need rules to capture the operational semantics of rdfs:subPropertyOf, rdfs:domain

and rdf:range constraints:

if 〈 r P s 〉 and 〈 P rdfs:subPropertyOf Q 〉 then 〈 r Q s 〉.
if 〈 P rdfs:domain C 〉 and 〈 x P y 〉 then 〈 x rdf:type C 〉.
if 〈 P rdfs:range D 〉 and 〈 x P y 〉 then 〈 y rdf:type D 〉.

An important issue is that of the soundness and completeness of the operational semantics
defined by the four above inference rules. Let A be a set of RDF triplets and T be a set of
associated RDFS triplets (expressing constraints on facts in A). The operational semantics
is sound if any fact f inferred from A and T by the rules (denoted: A ∪ T ` f ) is a logical
consequence of the facts in A together with the constraints in T (denoted: A∪ T |= f ).

The soundness of the operational semantics is easy to show, just because our rules are
very close to the constraints imposed by the RDFS statements. More formally it can be shown
by induction on the number of rules required to infer f (details are left as an exercise).

It is a little bit more difficult to show that the operational semantics is complete, i.e., for
any fact f , if A∪ T |= f then A∪ T ` f . We prove it by contrapositive, i.e., we show that if
A∪ T 6` f then A∪ T 6|= f . We consider the set of constants appearing in the facts in A as
the domain of an interpretation I, which is built as follows from the set of facts obtained by
applying the rules to the set of triplets in A∪ T :

• for each class C, I(C) = {i|A ∪ T ` C(i)}

• for each property R, I(R) = {(i, j)|A ∪ T ` R(i, j)}

It is easy to verify that I is a model of A∪ T (details are left as an exercise). Now, let f be
a fact such that A∪ T 6` f . By construction of I, since f is not inferred by the rules, f is not
true in I. Therefore, I is a model of A∪ T in which f is not true, i.e., A∪ T 6|= f .

It is important to note that the completeness we just discussed concerns the inference
of facts (possibly with blank nodes). For extending the completeness result to the inference
of constraints, we need additional inference rules (described in Figure 7) to account for the
combination of range and domain constraints with the subclass relationship, and also for
expressing the transitivity of the subclass and subproperty constraints. The proof is left as an
exercise (see Exercise 6.1).

The RDFS statements are exploited to saturate the RDF triplets by adding the triplets that
can be inferred with the rules. Then the resulting set of RDF triplets can be queried with a
query language for RDF, e.g., SPARQL. This will be explained in the next chapter.

3.4 OWL

OWL (the Web Ontology Language and surprisingly not the Ontology Web Language) extends
RDFS with the possibility to express additional constraints. Like RDFS, OWL statements
can be expressed as RDF triplets using some specific predicates and objects used as OWL
keywords with a particular meaning. In this section, we describe the main OWL constructs.
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if 〈 P rdfs:domain A 〉 and 〈 A rdfs:subClassOf B 〉
then 〈 P rdfs:domain B 〉

if 〈 P rdfs:range C 〉 and 〈 C rdfs:subClassOf D 〉
then 〈 P rdfs:range D 〉

if 〈 A rdfs:subClassOf B 〉 and 〈 B rdfs:subClassOf C 〉
then 〈 A rdfs:subClassOf C 〉

if 〈 P rdfs:subPropertyOf Q 〉 and 〈 Q rdfs:subPropertyOf R 〉
then 〈 P rdfs:subPropertyOf R 〉

Figure 7: The inference rules for RDFS constraints

Like RDFS, we provide their FOL semantics and, in anticipation to the next section, the
corresponding DL notation.

There are many constructs expressible in OWL that provide considerable modeling flexi-
bility and expressiveness for the Semantic Web. Providing an operational semantics for all
the OWL constructs is an open issue. However, most of the OWL constructs come from DL.
Therefore, we get for free all the positive and negative known results about reasoning in
DLs. This allows better understanding inferences when considering facts described with RDF
triplets and constraints in OWL.

OWL offers a number of rich semantic constructs, namely class disjointness, functional
constraint, intentional class definition, class union and intersection, etc.. We consider them in
turn.

Expressing class disjointness constraints

OWL provides a predicate owl:disjointWith to express that two classes C and D are
disjoint using the triplet: 〈 C owl:disjointWith D 〉

Although very natural, this constraint cannot be expressed in RDFS. For instance, in our
example, we can state the triplet: 〈 :Student owl:disjointWith :Staff 〉.

The following table provides the logical semantics of this construct.

OWL notation FOL translation DL notation
C owl:disjointWith D ∀X (C(X)⇒¬D(X)) C v ¬D

Observe the use of negation in the logical formulas. This is taking us out of tuple generat-
ing dependencies. Such rules are not used to produce new facts but for ruling out possible
worlds as inconsistent with what we know of the domain of interest.

Functional constraints

In OWL, it is possible to state that a given relationship between A and B is in fact a function
from A to B (resp. from B to A). One can also state that a property is the inverse of another, or
that a property is symmetric. Observe the use of equality in the logical formulas.
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OWL notation FOL translation DL notation
P rdf:type owl:FunctionalProperty ∀X∀Y∀Z ( f unct P)

(P(X,Y)∧ P(X, Z)⇒ Y = Z) or ∃P v (≤ 1 P)
P rdf:type ∀X∀Y∀Z ( f unct P−)
owl:InverseFunctionalProperty (P(X,Y)∧ P(Z,Y)⇒ X = Z) or ∃P− v (≤ 1 P−)
P owl:inverseOf Q ∀X∀Y (P(X,Y) ⇔
Q(Y, X))

P ≡ Q−

P rdf:type owl:SymmetricProperty ∀X∀Y (P(X,Y)⇒ P(Y, X)) P v P−

Recall that a triplet 〈a P b〉 is viewed in the model-theoretic interpretation as a pair in
relation P. An owl:FunctionalProperty thus expresses that the first attribute of P is a
key, while an owl:InverseFunctionalProperty expresses that its second attribute is a
key. Note that a property may be both an owl:FunctionalProperty and an
owl:InverseFunctionalProperty. It would be the case for instance for the property
hasIdentityNo that associates identification numbers to students in the university exam-
ple.

Example 3.5 In the university example, the constraint that every department must be led by a unique
manager is expressed in OWL by adding the triplet:

:Leads rdf:type owl:InverseFunctionalProperty

to the RDFS triplets we already have for the domain and range constraints for :Leads. See Figure 5.

Intentional class definitions.

A main feature of OWL is the intentional definition of new classes from existing ones. It
allows expressing complex constraints such as every department has a unique manager who is a
professor, or only professors or lecturers may teach to undergraduate students.

The keyword owl:Restriction is used in association with a blank node class, that
is being defined (without being given a name), and some specific restriction properties
(owl:someValuesFrom, owl:allValuesFrom, owl:minCardinality,
owl:maxCardinality) used for defining the new class. The blank node is necessary because
the expression of each restriction requires a set of triplets that are all related to the same class
description.

Example 3.6 The following set of triplets defines the blank (i.e., unnamed) class describing the set of
individuals for which all the values of the property :Leads come from the class :Professor:

_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty :Leads
_:a owl:allValuesFrom :Professor

The constraint that every department can be led only by professors is then simply expressed by adding
the following triplet (involving the same blank class _:a):

:Department rdfs:subClassOf _:a

Note that the constraint that every department must be led by a unique manager who is a professor is
actually the conjunction of the above constraint and of the functionality constraint of :Leads.

Also with restriction, one can use the owl:someValuesFrom keyword on a property P to
produce a class description denoting the set of individuals for which at least one value of the
property P comes from a given class C using:
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_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty P
_:a owl:someValuesFrom C

Finally, the owl:minCardinality and owl:maxCardinality restrictions allow ex-
pressing constraints on the number of individuals that can be related by a given property P.

Example 3.7 The following triplets describe the class (denoted by the blank node _:a) of individuals
having at least 3 registrations and the class (denoted by the blank node _:b) of individuals having
atmost 6 registrations.

_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty RegisteredTo
_:a owl:minCardinality 3
_:b rdfs:subClassOf owl:Restriction
_:b owl:onProperty RegisteredTo
_:b owl:maxCardinality 6

The constraint that each student must be registered to at least 3 courses and atmost 6 courses is then
simply expressed by adding the two following triplets (involving the same blank classes _:a and _:b):

:Student rdfs:subClassOf _:a
:Student rdfs:subClassOf _:b

The logical semantics of these different class descriptions defined by restrictions can be
given either in FOL as open formulas with one free variable or as DL concepts using DL
constructors. This is summarized in Figure 8, where X denotes a free variable.

OWL notation FOL translation DL notation
_:a owl:onProperty P
_:a owl:allValuesFrom C ∀Y (P(X,Y)⇒ C(Y)) ∀P.C
_:a owl:onProperty P
_:a owl:someValuesFrom C ∃Y (P(X,Y) ∧ C(Y)) ∃P.C
_:a owl:onProperty P
_:a owl:minCardinality n ∃Y1 . . .∃Yn(P(X,Y1) ∧ . . . ∧

P(X,Yn) ∧
∧

i,j∈[1..n],i 6=j(Yi 6= Yj))
(≥ n P)

_:a owl:maxCardinality n ∀Y1 . . .∀Yn∀Yn+1
(P(X,Y1) ∧ . . . ∧ P(X,Yn) ∧
P(X,Yn+1)

(≤ n P)

⇒ ∨
i,j∈[1..n+1],i 6=j(Yi = Yj))

Figure 8: Logical semantics of the OWL restriction constructs

Union and intersection.

The owl:intersectionOf and owl:unionOf constructs allow combining classes. The
intersection of (possibly unnamed) classes denotes the individuals that belong to both classes;
whereas the union denotes the individuals that belong to some. Note that the argument of
those two constructs is in fact a collection, for which we use the standard shortcut notation of
lists, as illustrated in the following example by the list (:Professor, :Lecturer) declared
as the argument of owl:unionOf.
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Example 3.8 The constraint that only professors or lecturers may teach to undergraduate
students can be expressed in OWL as follows:

_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty :TeachesTo
_:a owl:someValuesFrom :Undergrad
_:b owl:unionOf (:Professor, :Lecturer)
_:a rdfs:subClassOf _:b

In the spirit of union, and like union requiring logical disjunction, the owl:oneOf con-
struct allows describing a class by enumerating its elements as a collection. This corresponds
to the following FOL and DL semantics.

OWL notation FOL translation DL notation
owl:intersectionOf (C, D...) C(X) ∧ D(X) . . . C u D . . .
owl:unionOf (C, D...) C(X) ∨ D(X) . . . C t D . . .
owl:oneOf (e, f ...) X = e ∨ X = f . . . oneOf {e, f , . . .}

Class and property equivalence.

The construct owl:equivalentClass allows stating that two classes are equivalent, i.e., that
there are inclusions both ways. Similarly, owl:equivalentProperty allows stating that
two properties are equivalent. Strictly speaking, those two constructs do not add expressivity
to RDFS. In fact, 〈 C owl:equivalentClass D 〉 can be expressed in RDFS by the two
triplets: 〈 C rdfs:subClassOf D 〉 and 〈 D rdfs:subClassOf C 〉 .

As explained in the next section, OWL constructs are all syntactic variants of description
logic constructors.

4 Ontologies and (Description) Logics

First-order logic (FOL) is the formal foundation of the OWL ontology Web language. First-
order logic (also called predicate logic) is especially appropriate for knowledge representation
and reasoning. In fact, ontologies are simply knowledge about classes and properties. From a
logical point of view, classes are unary predicates while properties are binary predicates, and
constraints are logical formulas asserted as axioms on these predicates, i.e., asserted as true in
the domain of interest.

From the early days of computer science, the problem of automatic deduction in FOL has
been extensively studied. The main result that any computer scientist should know is that
the implication problem in FOL is not decidable but only recursively enumerable, which is stated
briefly as FOL is r.e.. That means that there exists an algorithm that given some formula ϕ
enumerates all the formulas ψ such ϕ implies ψ. On the other hand, there does not exist any
general algorithm (i.e., a systematic machinery) that, applied to two any input FOL formulas
ϕ and ψ, decides where ϕ implies ψ. Observe that ϕ implies ψ if and only if there is no
model for ϕ ∧ ¬ψ. Thus the seemingly simpler problem of deciding whether a FOL formula
is satisfiable is also not decidable.

A lot of research has then been devoted to exhibit fragments of FOL that are decidable,
i.e., subsets of FOL formulas defined by some restrictions on the allowed formulas, for
which checking logical entailment between formulas, possibly given a set of axioms, can be
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performed automatically by an algorithm. In particular, description logics (DLs) are decidable
fragments of first-order logic allowing reasoning on complex logical axioms over unary
and binary predicates. This is exactly what is needed for handling ontologies. Therefore,
it is not surprising that the OWL constructs have been borrowed from DLs. DLs cover a
broad spectrum of class-based logical languages for which reasoning is decidable with a
computational complexity that depends on the set of constructs allowed in the language.

Research carried out on DLs provides a fine-grained analysis of the trade-off between
expressive power and computational complexity of sound and complete reasoning. In this
section, we just give a minimal background on the main DLs constructs and the impact
of their combinations on the complexity of reasoning. This should first help practitioners
to choose among the existing DL reasoners the one that is the most appropriate for their
application. Also, for researchers it should facilitate further reading of advanced materials
about DLs.

4.1 Preliminaries: the DL jargon

A DL knowledge base is made of an intentional part (the Tbox) and an assertional part (the
Abox). The Tbox defines the ontology serving as conceptual view over the data in the Abox.
In DLs, the classes are called concepts and the properties are called roles.

A Tbox T is a set of terminological axioms which state inclusions or equivalences between
(possibly complex) concepts (Bv C or B≡ C) and roles (Rv E or R≡ E ), while an AboxA is
a set of assertions stating memberships of individuals in concepts (C(a)) and role memberships
for pairs of individuals (R(a,b)). The legal DL knowledge bases 〈T ,A〉 vary according to the
DL constructs used for defining complex concepts and roles, and to the restrictions on the
axioms that are allowed in the Tbox and the assertions allowed in the Abox. As said in the
previous section, the DL constructs are the OWL constructs, denoted with a different syntax.
The ingredients for constructing a DL knowledge base are thus:

• a vocabulary composed of a set C of atomic concepts (A, B. . . ), a set R of atomic roles (P,
Q. . . ), and a set O of individuals (a, b, c. . . ),

• a set of constructs used for building complex concepts and roles from atomic concepts
and roles,

• a language of axioms that can be stated for constraining the vocabulary in order to
express domain constraints.

Example 4.1 Student u Researcher is a complex concept built from the two atomic concepts Student
and Researcher using the conjunction construct (which is denoted owl:intersectionOf in
OWL). This complex concept can be related to the atomic concept PhDStudent by an inclusion
axiom:

PhDStudent v Student u Researcher

or by an equivalence axiom:

PhDStudent ≡ Student u Researcher
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The difference between inclusion and equivalence axioms will be clearer when we will
define the formal semantics underlying DLs. From a modeling point of view, the equivalence
axioms are used to define new concepts (such as PhDStudent) from existing concepts (such as
Student and Researcher). Concepts can be defined by restricting a role using either the value
restriction construct ∀R.C (denoted owl:allValuesFrom in OWL) or the existential restriction
construct ∃R.C (denoted owl:someValuesFrom in OWL). For example, we can define the
concept MathStudent as follows:

MathStudent ≡ Student u ∀ RegisteredTo.MathCourse

to specify that Math students are exactly those who are registered to Math courses only.
However, if we define the concept MathStudent instead as follows:

MathStudent ≡ Student u ∃ RegisteredTo.MathCourse

any student who is registered to at least one Math course will be considered as a Math student.
The inclusion axioms express relations between concepts. The simplest relations are the

inclusion relations between atomic concepts or roles, which correspond to the subClassOf
and to the subPropertyOf relations of RDFS. For example, if MathCourse and Course are
atomic concepts in the vocabulary, and LateRegisteredTo and RegisteredTo are atomic roles in
the vocabulary, the following inclusion axioms express that MathCourse is a more specific
concept than (i.e., a subclass of) Course, and that LateRegisteredTo is a more specific role than
(i.e., a subproperty of) RegisteredTo:

MathCourse v Course
LateRegisteredTo v RegisteredTo

General inclusion axioms (calleds GCIs) consist of inclusions between complex concepts. For
example, the following GCI expresses the constraint that only professors or lecturers may teach to
undergraduate students (which is expressible in OWL by a set of 5 triplets, as seen in Section 3.4):

∃ TeachesTo.Undergrad v Professor t Lecturer

Such a constraint can interact with other constraints expressed in the Tbox, or in the Abox.
For instance, suppose that we have in the Tbox (i.e., in the ontology) the following inclusion
axioms stating that researchers are neither professors nor lecturers, that only students are
taught to, and that students that are not undergraduate students are graduate students:

Researcher v ¬ Professor
Researcher v ¬ Lecturer
∃ TeachesTo− v Student
Student u ¬ Undergrad v GraduateStudent

Based on the logical semantics which will be detailed below, the following constraint can be
inferred:

Researcher v ∀ TeachesTo.GraduateStudent
Suppose now that the Abox contains the following assertions on the individuals dupond and
pierre:

TeachesTo(dupond,pierre)
¬ GraduateStudent(pierre)
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¬ Professor(dupond)
The new fact Lecturer(dupond) can be logically inferred from those facts and the above con-
straints in the Tbox.

The underlying reasoning leading to such inferences is quite elaborate and requires a
complex algorithmic machinery to make it automatic. It is the focus of the remaining of this
section.

FOL semantics of DL

Reasoning in DLs is based on the standard logical semantics in terms of FOL interpretations
of individuals as constants, of concepts as subsets, and of roles as binary relations.

An interpretation consists of a nonempty interpretation domain ∆I and an interpretation
function I that assigns an element to each individual in O, a subset of ∆I to each atomic
concept C and a binary relation over ∆I to each atomic role in R. Usually, in DL, the so called
unique name assumption holds and thus distinct individuals are interpreted by distinct elements
in the domain of interpretation.

The semantics of complex concepts using those constructs is recursively defined from the
interpretations of atomic concepts and roles as follows:

• I(C1 u C2) = I(C1) ∩ I(C2)

• I(∀R.C) = {o1 | ∀ o2 [(o1,o2) ∈ I(R)⇒ o2 ∈ I(C)]}

• I((∃R.C) = {o1 | ∃o2.[(o1,o2) ∈ I(R) ∧ o2 ∈ I(C)]}

• I(¬C) = ∆I \ I(C)

• I(R−) = {(o2,o1) | (o1,o2) ∈ I(R)}

Satisfaction is defined as follows:

• An interpretation I satisfies (i.e., is a model of) an class inclusion axiom B v C, resp.
B ≡ C, if I(B) ⊆ I(C), resp. I(B) = I(C).

• I satisfies a relationship inclusion axiom R v E, resp. R ≡ E, if I(R) ⊆ I(E), resp.
I(R) = I(E).

• I satisfies the membership assertion C(a), resp. R(a,b), if I(a)∈ I(C), resp., (I(a), I(b))∈
I(R).

• I satisfies or is model of a knowledge base K = 〈T ,A〉 if it is a model of all the statements
both in T and A. A knowledge base K is satisfiable (or consistent) if it has at least one
model.

Finally, a knowledge base K logically entails a (terminological or assertional) statement α,
written KB |= α, if every model of K is a also model of α.
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Reasoning problems considered in DLs

The main reasoning problems that have been extensively studied in the DL community are
satisfiability (i.e., consistency) checking of DL knowledge bases, and also instance checking
and subsumption checking. They are formally defined as follows.

• Satisfiability checking: Given a DL knowledge base K = 〈T ,A〉, is K satisfiable?

• Subsumption checking: Given a Tbox T and two concept expressions C and D, does
T |= C v D?

• Instance checking: Given a DL knowledge baseK= 〈T ,A〉, an individual e and a concept
expression C, does K |= C(e)?

Instance checking and subsumption checking are logical entailment problems that can in fact
be reduced to (un)satisfiability checking for DLs having full negation in their language, i.e., for
DLs in which the constructor ¬ can apply to any complex concept in the axioms of the Tbox.
The reason is that, based on the logical semantics, we have the following equivalences (in
which a is a new individual that we introduce):

• T |= C v D⇔ 〈T ,{(C u ¬D)(a)}〉 is unsatisfiable.

• 〈T ,A〉 |= C(e)⇔ 〈T ,A∪ {¬C(e)}〉 is unsatisfiable.

For simple DLs in which the constructor of negation is not allowed, instance checking can
be reduced to subsumption checking by computing the most specific concept satisfied by an
individual in the Abox. Given an Abox A of a given DL and an individual e, the most specific
concept of e in A (denoted msc(A, e)) is the concept expression D in the given DL such that for
every concept C in the given DL, A |= C(e) implies D v C. Clearly, once msc(A, e) is known,
we have:

〈T ,A〉 |= C(e)⇔ T |= msc(A, e) v C

We now focus on some representative DLs. We start with ALC (Section 4.2) which is the
basis of the most expressive DLs, and in particular those that led to OWL. Reasoning in these
expressive DLs (and thus in OWL) is decidable but at the price of some high complexity often
prohibitive in practice. We then survey DLs for which reasoning is polynomial: first FL and
EL in Section 4.3, and finally the most recent DL-LITE family in Section 4.4, which provides a
good trade-off between expressiveness and efficiency.

4.2 ALC: the prototypical DL

ALC is often considered as the prototypical DL because it corresponds to a fragment of FOL
that is easy to understand, and also because it is a syntactic variant of the basic modal logic K
(see references). ALC is the DL based on the following constructs:

• conjunction C1 u C2,

• existential restriction ∃R.C,

• negation ¬C.

As a result, ALC also contains de facto:
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• the disjunction C1 t C2 (which stands for ¬(¬C1 u ¬C2)),

• the value restriction (since ∀R.C stands for ¬(∃R.¬C)),

• the top > and bottom ⊥ (standing respectively for A t ¬A and A u ¬A).

An ALC Tbox may contain GCIs such as:

∃TeachesTo.Undergrad v Pro f essor t Lecturer

An ALC Abox is made of a set of facts of the form C(a) and R(a,b) where a and b are
individuals, R is an atomic role and C is a possibly complex concept.

Since ALC allows full negation, subsumption and instance checking in ALC can be
trivially reduced to satisfiability checking of ALC knowledge bases, as seen previously.

The algorithmic method for reasoning in ALC (and in all expressive DLs extending ALC)
is based on tableau calculus, which is a classical method in logic for satisfiability checking.
The tableau method has been extensively used in DLs both for proving decidability results and
for implementing DL reasoners such as Fact, Racer and Pellet, respectively implemented in
C++, Lisp-like, and in Java).

We just illustrate here the tableau method on a simple example, and refer the reader to the
last section for pointers to more detailed presentations. Consider an ALC knowledge base
whose Tbox T is without GCIs, i.e., T is made of concept definitions only. For instance:

T = {C1 ≡ A u B, C2 ≡ ∃R.A, C3 ≡ ∀R.B, C4 ≡ ∀R.¬C1}

Let us consider the following associated Abox A:

A = {C2(a),C3(a),C4(a)}

For checking whether the knowledge base 〈T ,A〉 is satisfiable, we first get rid of the Tbox
by recursively unfolding the concept definitions. This is always possible for Tbox composed
of a set of acyclic equivalence axioms of the form A ≡ C, where A is an atomic concept
appearing in the left-hand side of exactly one equivalence axioms (no multiple definition).
We obtain the following Abox which is equivalent to 〈T ,A〉:

A′ = {(∃R.A)(a), (∀R.B)(a), (∀R.¬(A u B))(a)}
We now apply a preprocessing that consists in transforming all the concepts expressions

in A′ into negation normal form so that the negation construct applies to only atomic concepts.
This transformation can be done in polynomial time. The result is the equivalent following
Abox A′′:

A′′ = {(∃R.A)(a), (∀R.B)(a), (∀R.(¬A t ¬B))(a)}
The tableau method tries to build a finite model of A′′ by applying tableau rules to extend
it. There is one rule per construct (except for the negation construct). From an extended
Abox which is complete (no rule applies) and clash-free (no obvious contradiction), a so-called
canonical interpretation can be built, which is a model of the initial Abox.

More precisely, the tableau rules applies to a set of Aboxes, starting from {A′′}. The rules
picks one Abox and replaces it by finitely many new Aboxes. New Aboxes containing a clash
(i.e., two contradictory facts A(e) and ¬A(e)) are simply deleted. The algorithm terminates if
no more rules apply to any Abox in the set. The returned answer is then yes (the input Abox
is satisfiable) if the set is not empty, and no otherwise.

The tableau rules for ALC (applied to an Abox A in the set of Aboxes) are the following:
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• The u -rule:

Condition: A contains (C u D)(a) but not both C(a) and D(a)

Action: add A′ =A∪ {C(a), D(a)}

• The t -rule:

Condition: A contains (C t D)(a) but neither C(a) nor D(a)

Action: add A′ =A∪ {C(a)} and A′′ =A∪ {D(a)}

• The ∃ -rule:

Condition: A contains (∃R.C)(a) but there is no c such that {R(a, c),C(c)} ⊆ A
Action: add A′ =A∪ {R(a,b),C(b)} where b is a new individual name

• The ∀ -rule:

Condition: A contains (∀R.C)(a) and R(a,b) but not C(b)

Action: add A′ =A∪ {C(b)}

The result of the application of the tableau method toA′′= {(∃R.A)(a), (∀R.B)(a), (∀R.(¬At
¬B))(a)} gives the following Aboxes:

A′′1 = {(∃R.A)(a), (∀R.B)(a), (∀R.(¬A t ¬B))(a), R(a,b), A(b), B(b),¬A(b)}

A′′2 = {(∃R.A)(a), (∀R.B)(a), (∀R.(¬A t ¬B))(a), R(a,b), A(b), B(b),¬B(b)}

They both contain a clash. Therefore, the original A′′ is correctly decided unsatisfiable by
the algorithm.

The interest of the tableau method is that it is “easily” extensible to new constructs and
new constraints. For instance, in order to extend the previous tableau method to ALC with
GCIs, we first observe that a finite set of GCIs {C1 v D1, . . . ,Cn v Dn} can be encoded into one
GCI of the form > v C where C is obtained by transforming (¬C1 t D1) u . . . u (¬Cn t Dn)
in negation normal form, and we add the following tableau rule:

The GCI -rule for > v C:

Condition: A contains the individual name a but not C(a)

Action: add A′ =A∪ {C(a)}

The subtle point is that by adding this rule, the termination of the tableau method is not
guaranteed, as it can be seen just by considering the Abox {P(a)} and the GCI >v ∃R.P. The
clue is to add a blocking condition for stopping the generation of new individual names and
to prevent the tableau rules for applying to blocked individuals. An individual y is blocked
by an individual x such as the set of concepts describing y is included in the set of concepts
describing x. In our example, from the Abox obtained by applying the GCI rule to {P(a)}, we
stop at the clash-free Abox A = {P(a), (∃R.P)(a), R(a,b), P(b), (∃R.P)(b), R(b, c), P(c)} since
the individual c is blocked by the individual b. The canonical interpretation I of a clash-free
Abox An to which no more rules applies is obtained by defining as domain of interpretation
∆I the set of all the individual appearing in the corresponding Abox and
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• for each atomic concept A: I(A) = {e ∈ ∆I | A(e) ∈ An}

• for each atomic role R: I(R) = {(e, f ) ∈ ∆I × ∆I | R(e, f ) ∈ An} ∪ {R( f , f ) | f is blocked
by e such that R(e, f ) ∈ An}

It can be shown that this canonical interpretation is in fact a model of the corresponding
clash-free Abox, and therefore of the original Abox which is therefore satisfiable.

The tableau method shows that the satisfiability of ALC knowledge bases is decidable
but with a complexity that may be exponential because of the disjunction construct and the
associated t-rule.

4.3 Simple DLs for which reasoning is polynomial

FL and EL are two minimal DLs for which subsumption checking is polynomial for Tboxes
without GCIs. For such simple Tboxes, as already mentioned previously, by concept unfolding,
we can get rid of the Tbox and the subsumption checking problem becomes: given two concept
expressions C and D, does |= C v D ?, i.e., for any individual x, does C(x) implies D(x) ?

The constructs allowed in FL are conjunction C1 u C2, value restrictions ∀R.C and also
unqualified existential restriction ∃R. Satisfiability is trivial in FL: every FL knowledge base is
satisfiable. Subsumption checking between two concept expressions C and D can be done in
quadratic time by a structural subsumption algorithm IsSubsumed?(C, D), which consists in:

• Normalizing the concept expressions. The normal form of a FL concept expression is
obtained by:

– flattening all nested conjunctions, i.e., by applying exhaustively the rewriting rule
to the concept expression: A u (B u C)→ A u B u C

– pushing value restrictions over conjunctions, i.e., by applying exhaustively the
rewriting rule to the concept expression: ∀R.(A u B)→ ∀R.A u ∀R.B.

For example, the normalization of ∀R.(A u ∀S.(B u ∀R.A)) returns the expression:
∀R.A u ∀R.∀S.B u ∀R.∀S.∀R.A.

The application of these rewriting rules preserves logical equivalence, hence the sub-
sumption is preserved by the normalization. (Proof left in exercise).

• Comparing recursively the structure of the normalized expressions C1 u . . . u Cn and
D1 u . . . u Dm as follows: IsSubsumed?(C, D) return true if and only if for all Di

– if Di is an atomic concept or an unqualified existential restriction, then there exists
a Cj such that Cj = Di

– if Di is a concept of the form ∀R.D′, then there exists a Cj of the form ∀R.C′ (same
role) such that IsSubsumed?(C′, D′)

By induction on the number of nesting of the ∀ constructs, it is easy to prove that the
above algorithm runs in O(|C| × |D|) where |C| denotes the size of the concept expression C
defined by the number of the constructs u and ∀ appearing in it.

The structural subsumption is sound since when IsSubsumed?(C, D) returns true, then
it holds that I(C) ⊆ I(D) for every interpretation I. Take any conjunct Di of D; either it
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appears as a conjunct Cj of C and by definition of the logical semantics of the conjunction
construct: I(C)⊆ I(Cj) = I(Di)⊆ I(D); or it is of the form ∀R.D′ and there exists as conjunct
of C of the form ∀R.C′ such that IsSubsumed?(C′, D′); then, by induction I(C′) ⊆ I(D′), and
by definition of the logical semantics of the ∀ construct: I(∀R.C′) ⊆ I(∀R.D′), and thus by
the conjunction semantics, I(C) ⊆ I(Cj) ⊆ I(Di) ⊆ I(D).

The completeness of the structural subsumption is a little bit harder to prove: it must be
shown that, whenever I(C)⊆ I(D) for all interpretations I, then the algorithm IsSubsumed?(C, D)
returns true. The proof is done by contrapositive, i.e., by showing that anytime IsSubsumed?(C, D)
returns f alse, then there exists an interpretation assigning an element of the domain to C and
not to D, i.e., C 6v D. The proof relies on the fact that anytime IsSubsumed?(C, D) returns
f alse, there exists a conjunct Di of D which has no correspondent conjunct in C. In this
case, we can build an interpretation I in which all the conjuncts in C are assigned to subsets
containing a given element e, and in which Di is assigned to the empty set: e ∈ I(C) and
e 6∈ I(D).

As an exercise, by applying the above algorithm, check that:

∀R.(∀S.B u ∀S.∀R.A) u ∀R.(A u B) v ∀R.(A u ∀S.(B u ∀R.A))

For FL general Tboxes, i.e., Tboxes including general concept inclusions (GCIs), sub-
sumption checking becomes intractable even for Tboxes containing inclusion axioms between
atomic concepts only. In this case, subsumption checking is co-NP complete (by reduction
from the inclusion problem for acyclic finite automata).

The constructs allowed in EL are conjunctions C1 uC2 and existential restrictions ∃R.C. Like
for FL, any EL knowledge base is satisfiable. Subsumption checking in EL is polynomial
even for general Tboxes, i.e., Tboxes including general concept inclusions (GCIs). The
subsumption algorithm for EL can also be qualified as a structural algorithm, although it
is quite different from the “normalize and compare” algorithm for FL concept expressions
described previously. In fact, it relies on the representation of EL concept expressions as
labeled trees (called description trees), in which nodes are labeled with sets of atomic concepts,
while edges are labeled with atomic roles. It is shown that an EL concept expression C is
subsumed by an EL concept expression D if there is an homomorphism from the description
tree of D to the description tree of C. Checking subsumption corresponds then to checking
the existence of an homomorphism between trees. This problem is known to be NP-complete
for graphs but to be polynomial for trees. Taking into account GCIs in the Tbox can be done
by extending accordingly the labels of the description trees.

Therefore, if we can say for short that subsumption checking is polynomial for EL, we
have to be more cautious for FL: we just can say that subsumption checking between two
FL concept expressions (w.r.t. an empty Tbox) is polynomial.

As explained previously, instance checking can be reduced to subsumption checking by
computing the most specific concept of a constant e in A (denoted msc(A, e)). The problem is
that in FL or EL the most specific concepts do not always exist. A solution for checking
whether C(e) is entailed from an FL or EL knowledge base is to adapt the tableau method:
first, the tableau rules corresponding to the constructs allowed in FL and EL can be applied
to saturate the original Abox; then, the negation of C(e) is injected and the tableau rules are
applied, including possibly the t-rule, since the t construct can be introduced by negating
FL or EL concept expressions; C(e) is entailed from the original knowledge base if and only
if all the resulting Aboxes contain a clash.
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If we combine the constructs of FL and EL, namely conjunction C1 u C2, value restrictions
∀R.C, and existential restrictions ∃R.C, we obtain the new DL called FLE for which even
checking subsumption between two concept expressions is NP-complete.

In fact, since the DL existential restrictions and value restrictions correspond to the OWL
restrictions owl:oneValuesFrom and owl:allValuesFrom (see Figure 8), that means that the
combination of those restrictions that are quite natural from a modeling point of view may
lead to intractability for automatic inferencing.

4.4 The DL-LITE family: a good trade-off

The DL-LITE family has been recently designed for capturing the main modeling primitives of
conceptual data models (e.g., Entity-Relationship) and object-oriented formalisms (e.g., basic
UML class diagrams1), while remaining reasoning tractable in presence of concept inclusion
statements and a certain form of negation.

The constructs allowed in DL-LITE are unqualified existential restriction on roles (∃R) and
on inverse of roles (∃R−), and the negation.

The axioms allowed in a Tbox of DL-LITE are concept inclusion statements of the form
B v C or B v ¬C, where B and C are atomic concepts, or existential restriction (∃R or ∃R−).

DL-LITEF and DL-LITER are then two dialects of DL-LITE that differ from some additional
allowed axioms:

• a DL-LITER Tbox allows role inclusion statements of the form P v Q or P v ¬Q, where
P and Q are atomic roles or inverse of atomic roles

• a DL-LITEF Tbox allows functionality statements on roles of the form ( f unct P) or
( f unct P−) . An interpretation I satisfies a functionality statement ( f unct R) if the binary
relation I(R) is a function, i.e., (o,o1) ∈ I(R) and (o,o2) ∈ I(R) implies o1 = o2.

It is worth noticing that negation is only allowed in right hand sides of inclusion state-
ments. Inclusion axioms with negation in the right-hand side are called negative inclusions (for
short NIs), while the inclusion axioms without negation are called positive inclusions (for short
PIs).

It can be shown that subsumption checking is polynomial both for DL-LITER and DL-
LITEF Tboxes, and that their combination (denoted DL-LITERF ) is PTIME-complete. The
subsumption algorithm is based on computing the closure of the Tbox, i.e., the set of all PIs
and NIs that can be inferred from the original Tbox. Checking T |= C v D consists then in
checking whether C v D belongs to the closure of T . Satisfiability checking and instance
checking also rely on exploiting the closure. In fact, they are particular cases of the most
general problem of answering conjunctive queries over DL-LITE knowledge bases, for which
the DL-LITE family has been designed. Answering conjunctive queries over ontologies is a
reasoning problem of major interest for the Semantic Web, the associated decision problem of
which is not reducible to (un)satisfiability checking or to subsumption or instance checking.
This problem has been studied quite recently and we will dedicate a whole chapter to it
(Chapter ??). In particular, we will see that the DL-lite family groups DLs that have been
specially designed for guaranteeing query answering to be polynomial in data complexity.

It is noticeable that DL-LITER has been recently incorporated into the version OWL2 of
OWL as the profile called OWL2 QL. This profile is an extension of RDFS.

1See http://www.omg.org/uml
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5 Further reading

We refer to existing books (e.g., [AH08, AvH08]) for a full presentation of RDF, RDFS and
OWL.

We use an abstract compact syntax for RDF, RDFS and OWL statements, instead of their
verbose XML notation. The usage of the XML syntax for RDF, RDFS or OWL is mainly for
exchanging metadata and ontologies in a standard format. XML name spaces and XML tools
for parsing, indexing, transforming, browsing can be used for that purpose. Several tools
such as Jena [Jen] are now widely available and used to store, manage and query RDFS data.
We will discuss a query language for RDF, namely SPARQL, in Chapter ??.

RDFS (without blank nodes) can be seen as a fragment of DL-LiteR, which is a DL of the
DL-Lite family, described in [CGL+07]. The DL-Lite family has been designed for enabling
tractable query answering over data described w.r.t. ontologies. We will consider the issue of
querying with ontologies in Chapter ??.

The readers interested by the translation in FOL of the full RDFS (possibly with blank
nodes in place of properties) are referred to [BFT05].

A set of RDFS triplets can also be formalized in conceptual graphs [CM08] that are graph-
ical knowledge representation formalisms that have a FOL semantics for which reasoning
can be performed by graph algorithms (such as projection). The formalization of RDFS in
conceptual graphs have been studied in [BCG+10].

At the moment, in contrast with RDFS, there is very little usage of tools supporting
reasoning over OWL statements. The only available reasoners are description logic reasoners
such as Fact [FAC], RACER [RAC] or Pellet [SPG+07].

Readers interested by a comprehensive summary of the complexity results and reasoning
algorithms on Description Logic are referred to [BCM+03]. There is a close relation between
some Description Logic (in particular ALC) and modal logics [BBW06] which have been
extensively studied in Artificial Intelligence.

Satisfiability checking in ALC (and thus also subsumption and instance checking) has
been shown EXPTIME-complete. Additional constructs like those in the fragment OWL DL of
OWL which corresponds to DLs 2 do not change the complexity class of reasoning (which
remains EXPTIME-complete). In fact, OWL DL is a syntactic variant of the so-called SHOIN
DL, which is obtained from ALC by adding number restrictions (≥ nP), nominals {a}, and
inverse roles P− of atomic roles. Nominals make it possible to construct a concept representing
a singleton set {a} (a nominal concept) from an individual a. In addition, some atomic roles
can be declared to be transitive using a role axiom Trans(P), and the Tbox can include role
inclusion axioms R1 v R2.

The semantics of those additional constructs and axioms is defined from the interpretations
of individuals, atomic concepts and roles as follows (]{S} denotes the cardinality of a set S):

• I((≥ nP)) = {d ∈ ∆I | ]{e | (d, e) ∈ I(P)} ≥ n}

• I(P−) = {(o2,o1) | (o1,o2) ∈ I(P)}

• I({a}) = {I(a)}

An interpretation I satisfies a role transitivity statement (Trans P) if the binary relation
I(P) is transitive, i.e., (o,o1) ∈ I(P) and (o1,o2) ∈ I(P) implies o = o2.

2OWL Full is undecidable
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SHIQ extends SHOIN with so-called qualified number restrictions (≥ nP.C) whose
semantics is defined by the following interpretation rule:

I((≥ n P.C)) = {d ∈ ∆I | ]{e | (d, e) ∈ I(P) ∧ e ∈ I(C)} ≥ n}.

Relating the ontology modeling OWL language to DLs is of primary importance since
it allows to understand the cost to pay if we want to automatically exploit constraints
requiring a given combination of OWL constructs. In particular, we know (from the EXPTIME-
completeness of ALC) that in the worst case an inference algorithm may take an exponential
time for reasoning on a set of constraints expressed using full negation, conjunction, existential
and value restriction. In practice however, the existing DL reasoners such as FaCT, RACER
and Pellet have acceptable performances for dealing with expressive ontologies of reasonable
size. The reason is that the constraints expressed in real-life ontologies usually do not
correspond to the pathological cases leading to the worst-case complexity.

6 Exercises

Exercise 6.1 Show that the inference rules of Table 7 are complete for the logical entailment of
constraints expressible in RDFS. More precisely, let T be a set of RDFS triplets expressing logical
constraints of the form A v B, P v R, ∃P v A or ∃P− v B, where A and B denote classes while P
and Q denote properties. Show that for every constraint C v D of one of those four previous forms,
if T |= C v D then the RDFS triplet denoting C v D is inferred by applying the inference rules of
Table 7 to T .

Exercise 6.2 AL is the Description Logic obtained from FL by adding negation on atomic concepts.

1. Based on the logical semantics, prove that the concept expression ∀R.A u ∀R.¬A is subsumed
by the concept expression ∀R.B, for any atomic concept B.

2. Show that the structural subsumption algorithm is not complete for checking subsumption in
AL.

Indication: apply the algorithm IsSubsumed?(∀R.A u ∀R.¬A,∀R.B).

3. Apply the tableau method for checking that ∀R.A u ∀R.¬A is subsumed by the concept expres-
sion ∀R.B.

Indication: apply the tableau rules to the Abox {(∀R.A u ∀R.¬A)(a), (∃R.¬B)(a)}

Exercise 6.3 Based on the logical semantics, show the following statements:

1. ∀R.(A u B) ≡ ∀R.A u ∀R.B.

2. ∃R.(A u B) 6≡ ∃R.A u ∃R.B

3. ∃R.(A u B) v ∃R.A u ∃R.B

4. ∃R.A u ∀R.B v ∃R.(A u B)
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