
ΕΠΛ 602:Foundations of Internet

Technologies

Cloud Computing

1

Outline

Bigtable (data component of cloud)

Web search

based on ch13 of the web data book

2

What is Cloud Computing?

A Cloud is

� an infrastructure, transparent to the end-user,

� which is used by a company or organization to provide services

to its customers

3

to its customers

� via network

� where the infrastructure resources are used elastically and the

� customer is charged according to usage.

under the hood: large clusters of commodity hardware

terms: virtualization, elasticity, utility computing, pay-as-you-go

Cloud Computing:
� the applications delivered as services over the Internet (SaaS) and
� the hardware and systems software in the datacenters that provide these

services (a Cloud)

What is Cloud Computing?

roles of the people as users or
providers of these layers of Cloud
Computing

What is Cloud Computing?

What is offered:
� Data Storage

Examples:
AWS Simple Storage System (S3)

� Infrastructure as a Sevice (IaaS)
Provide computing instances (e.g., servers running Linux) as a service.

Examples:

AWS Elastic Computing Cloud (EC2).

� Platform as a Service (PaaS)

5

� Platform as a Service (PaaS)
The delivery of a computing platform and solution stack as a service via
network.

Examples:

Google AppEngine

� Software as a Service (SaaS)
Software that is deployed over network as a service.

Examples:
Google Documents
Google Calendar
Google Reader

What is Cloud Computing?

Some Cloud Providers

� Amazon Web Services (AWS)
http://aws.amazon.com/
The most complete set of Cloud services.

� Google App Engine

6

� Google App Engine
http://code.google.com/appengine/

� IBM Cloud
http://www.ibm.com/ibm/cloud/

�Microsoft Windows Azure
http://www.microsoft.com/windowsazure/

Map Reduce

A programming paradigm that comes with a framework to provide to
the programmers an easy way for parallel and distributed computing.

� Designed by Google (published in 2004)
� Designed to scale well on large clusters --> Perfect for Cloud Computing.
� Input & output data stored in a distributed file system.
� Fault tolerance, status & monitoring tools
� It is attractive because it provides a simple model.

7

� It is attractive because it provides a simple model.
�More than 10,000 distinct MapReduce programs have been implemented
in Google.

� Graph processing, text processing, machine learning, statistical
machine translation etc

� Open source implementation (Hadoop)

MapReduce

� Programmers specify two functions:
map (k, v) → <k’, v’>*

Takes an input pair and produces an intermediate (key, value) pair

reduce (k’, v’) → <k’, v’>*

� All values with the same key are sent to the same reducer

Each reducer accepts as input all values associated with the same Each reducer accepts as input all values associated with the same
intermediate key and merges them together to produce a
possibly smaller set

The intermediate values are supplied to reduce function via an
iterator

� The execution framework handles everything else…

split 0

worker

Master

User

Program

output

(1) submit

(2) schedule map (2) schedule reduce

MapReduce Overall Architecture

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

output

file 0

output

file 1

(3) read
(4) local write

(5) remote read (6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

MapReduce “Runtime”

� Handles scheduling
� Assigns workers to map and reduce tasks

� Handles “data distribution”
� Moves processes to data

� Handles synchronization
� Gathers, sorts, and shuffles intermediate data� Gathers, sorts, and shuffles intermediate data

� Handles errors and faults
� Detects worker failures and automatically restarts

� Handles speculative execution
� Detects “slow” workers and re-executes work

� Everything happens on top of a distributed FS

MapReduce

� Programmers specify two functions:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
� All values with the same key are reduced together

� The execution framework handles everything else…
� Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’partition (k’, number of partitions) → partition for k’
� Often a simple hash of the key, e.g., hash(k’) mod R
� Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
� Mini-reducers that run in memory after the map phase
� Used as an optimization to reduce network traffic

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

MapReduce can refer to…

� The programming model

� The execution framework (aka “runtime”)

� The specific implementation

MapReduce Implementations

� Google has a proprietary implementation in C++

� Bindings in Java, Python

� Hadoop is an open-source implementation in Java

� Development led by Yahoo, used in production

� Now an Apache project� Now an Apache project

� Rapidly expanding software ecosystem, but still lots of
room for improvement

� Lots of custom research implementations

� For GPUs, cell processors, etc.

Distributed File System

� Don’t move data to workers… move workers to the
data!
� Store data on the local disks of nodes in the cluster
� Start up the workers on the node that has the data local

� Why?
� Network bisection bandwidth is limited
Not enough RAM to hold all the data in memory� Not enough RAM to hold all the data in memory

� Disk access is slow, but disk throughput is reasonable

� A distributed file system is the answer
� GFS (Google File System) for Google’s MapReduce
� HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

� Choose commodity hardware over “exotic” hardware
� Scale “out”, not “up”

� High component failure rates
� Inexpensive commodity components fail all the time

� “Modest” number of huge files� “Modest” number of huge files
� Multi-gigabyte files are common, if not encouraged

� Files are write-once, mostly appended to
� Perhaps concurrently

� Large streaming reads over random access
� High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions

� Files stored as chunks
� Fixed size (64MB)

� Reliability through replication
� Each chunk replicated across 3+ chunkservers

� Single master to coordinate access, keep metadata
� Simple centralized management� Simple centralized management

� No data caching
� Little benefit due to large datasets, streaming reads

� Simplify the API
� Push some of the issues onto the client (e.g., data layout)

From GFS to HDFS

� Terminology differences:

� GFS master = Hadoop namenode

� GFS chunkservers = Hadoop datanodes

� Functional differences:

� No file appends in HDFS (planned feature)

� HDFS performance is (likely) slower

Namenode Responsibilities

� Managing the file system namespace:
� Holds file/directory structure, metadata, file-to-block
mapping, access permissions, etc.

� Coordinating file operations:
� Directs clients to datanodes for reads and writes� Directs clients to datanodes for reads and writes

� No data is moved through the namenode

� Maintaining overall health:
� Periodic communication with the datanodes

� Block re-replication and rebalancing

� Garbage collection

(file name, block id)

(block id, block location)

HDFS namenode

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

Adapted from (Ghemawat et al., SOSP 2003)

instructions to datanode

datanode state
(block id, byte range)

block data
HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

MapReduce/GFS Summary

� Simple, but powerful programming model

� Scales to handle petabyte+ workloads

� Google: six hours and two minutes to sort 1PB (10
trillion 100-byte records) on 4,000 computers

Yahoo!: 16.25 hours to sort 1PB on 3,800 computers� Yahoo!: 16.25 hours to sort 1PB on 3,800 computers

� Incremental performance improvement with
more nodes

� Seamlessly handles failures, but possibly with
performance penalties

Bigtable

22

Bigtable

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah

A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert

E. Gruber: Bigtable: A Distributed Storage System for Structured

Data, OSDI 2006

Data Model

� A table in Bigtable is a sparse, distributed, persistent
multidimensional sorted map

� Map indexed by a row key, column key, and a timestamp
� (row:string, column:string, time:int64) → uninterpreted byte
array

Supports lookups, inserts, deletes� Supports lookups, inserts, deletes

� Single row transactions only

Image Source: Chang et al., OSDI 2006

Rows and Columns

� Rows maintained in sorted lexicographic order

� Applications can exploit this property for efficient row scans

� Row ranges dynamically partitioned into tablets (serve as units
of distribution and load balance)

Reads of short row ranges typically communication with a small number of machines.Reads of short row ranges typically communication with a small number of machines.

Exploit, this for example, pages in the same domain grouped together into contiguous
rows by reversing the hostname components of the URLs.
For example, store data for maps.google.com/index.html under key
com.google.maps/index.html.makes some host and domain analyses more efficient

Read/write on a single row is atomic

Rows and Columns

� Columns grouped into column families

� Stored same type of data

� Created before any key stored – after created any key can be
used – Unbounded number of columns

Column key = family:qualifierColumn key = family:qualifier

� example families: language, anchor

� anchor:my.look.ca -> cell contains the text of the link

Access control and disk and memory accounting

� Column families provide locality hints – multiple column
families can be grouped together to form a locality group

Timestamps

� Each cell can contain multiple versions of the same data indexed by timestamp.

� Timestamps can be assigned by Bigtable (real time in microseconds,) or by
client applications.

� Different versions of a cell are stored in decreasing timestamp order, so
that the most recent versions can be read first.

� Two per-column-family settings for garbage-collection:

only the last n versions of a cell, or

only new-enough versions (e.g., only values written in the last 7 days).

Example: the timestamps of the crawled pages in the contents: column equal
to the times at which these page versions were crawled.

APIs

� for creating and deleting tables and column families

� for changing cluster, table, and column family metadata, such as access control rights

� to look up values from individual rows, or iterate over a subset of the data in a
table.

� iterate over multiple column families -- several mechanisms for limiting the rows,
columns, and timestamps produced by a scan

Bigtable Building Blocks

� GFS

� Chubby (highly available distributed lock service)

� SSTable (file format used internally to store Bigtable data)

SSTable

� Basic building block of Bigtable

� Persistent, ordered immutable map from keys to values
� Stored in GFS

� Sequence of blocks on disk plus an index for block
lookup

Can be completely mapped into memory� Can be completely mapped into memory

� Supported operations:
� Look up value associated with key

� Iterate key/value pairs within a key range

Index

64K
block

64K
block

64K
block

SSTable

Source: Graphic from slides by Erik Paulson

Tablet

� Initially one tablet per table, as the table grows ->
automatically split into tablets (dynamically partitioned
range of rows)

� Built from multiple SSTables

Index

64K
block

64K
block

64K
block

SSTable

Index

64K
block

64K
block

64K
block

SSTable

Tablet Start:aardvark End:apple

Source: Graphic from slides by Erik Paulson

Architecture

� Client library

� Single master server

� Tablet servers

Bigtable Tablet Servers

� Each tablet server manages a set of tablets

� Typically between ten to a thousand tablets

� Each 100-200 MB by default

� Handles read and write requests to the tablets

� Splits tablets that have grown too largeSplits tablets that have grown too large

Clients communicate directly with tablets

Tablet Location
Using a 3-level B+-tree

Upon discovery, clients cache tablet locations

Image Source: Chang et al., OSDI 2006

The METADATA table stores the location of a tablet
under a row key that is an encoding of the tablet's table
identifier and its end row.
Each METADATA tablet contains the location of a
set of user tablets
Root tablet contains the location of all tablets in the
metadata table (never split)
1st level contains the location of the Root tablet
The client library caches tablet locations.

Tablet Assignment

� Master keeps track of:

� Set of live tablet servers

� Assignment of tablets to tablet servers

� Unassigned tablets

� Each tablet is assigned to one tablet server at a time

� Tablet server maintains an exclusive lock on a file in Chubby

� Master monitors tablet servers and handles assignment

� Changes to tablet structure

� Table creation/deletion (master initiated)

� Tablet merging (master initiated)

� Tablet splitting (tablet server initiated)

Bigtable Master

� Balances tablet server load. Tablets are distributed
randomly on nodes of the cluster for load balancing.

� Handles garbage collection

� Handles schema changes

Tablet Serving

Image Source: Chang et al., OSDI 2006

“Log Structured Merge Trees”

Persistent state is stored in GFS
Updates in a commit log that stores redo records
Recently committed ones in memtable

Compactions

� Minor compaction

� Converts the memtable into an SSTable

� Reduces memory usage and log traffic on restart

� Merging compaction

� Reads the contents of a few SSTables and the memtable, and
writes out a new SSTablewrites out a new SSTable

� Reduces number of SSTables

� Major compaction

� Merging compaction that results in only one SSTable

� No deletion records, only live data

Lock server

� Chubby

– Highly-available & persistent distributed lock service

– Five active replicas; one acts as master to serve requests

� Chubby is used to:

– Ensure there is only one active master

– Store bootstrap location of BigTable data– Store bootstrap location of BigTable data

– Discover tablet servers

– Store BigTable schema information

– Store access control lists

� If Chubby dies for a long period of time… Bigtable dies too….

� But this almost never happens…

Optimizations

� Log of tablets in the same server are merged in one log
per tablet server (node)

� Locality groups: separate SSTables are created for each locality
group of column families that form the locality groups.

� Use efficient and lightweight compression to reduce the
size of SSTable blocks. Since data are organized by size of SSTable blocks. Since data are organized by
column(s) very good compression is achieved (similar
values together)

� Tablet servers use two levels of caching (Scan Cache caches key-
value pairs returned by the SSTable interface to the tablet server code – Block
Cache caches SSTbables blocks read by the GFS)

� Bloom filters are used to skip some SSTables and reduce
read overhead.

HBase

� Open-source clone of Bigtable

� Implementation hampered by lack of file append in HDFS

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Need for High-Level Languages

� Hadoop is great for large-data processing!

� But writing Java programs for everything is verbose and slow

� Not everyone wants to (or can) write Java code

� Solution: develop higher-level data processing languages

� Hive: HQL is like SQL

� Pig: Pig Latin is a bit like Perl (relation-algebra like

Jaql from IBM
Pig reported to be used for over 60% of Yahoo!’s MapReduce use cases
Hive reported to be used for over 90%of the Facebook use cases

Hive and Pig

� Hive: data warehousing application in Hadoop

� Query language is HQL, variant of SQL

� Tables stored on HDFS as flat files

� Developed by Facebook, now open source

� Pig: large-scale data processing system

� Scripts are written in Pig Latin, a dataflow language

� Developed by Yahoo!, now open source

� Roughly 1/3 of all Yahoo! internal jobs

� Common idea:

� Provide higher-level language to facilitate large-data processing

� Higher-level language “compiles down” to Hadoop jobs

Hive and Pig

Layers in the software architecture of
Hadoop stack.

For batch analytics, the middle layer is the
Hadoop MapReduce system, which applies map
operations to the data in partitions of an HDFS file, sorts and
redistributes the results based on key values in the output data, and
then performs reduce operations on the groups of output data items
with matching keys from the map phase of the job. with matching keys from the map phase of the job.

For applications just needing basic key-
based record management operations, the
HBase store as a key-value layer (The contents of
HBase can either be directly accessed and manipulated by a client
application or accessed via Hadoop for analytical needs.

Clients of the Hadoop stack may use of
a declarative language over the bare
MapReduce programming model.

Questions?

45

