
ΕΠΛ 602:Foundations of Internet

Technologies

Internet Protocols (TCP), DNS, Request-Reply (HTTP)

1

Lecture Outline

� Main points of Lecture 4

�The Internet Protocols: TCP�The Internet Protocols: TCP

� DNS (name services)

� Request-Reply Protocols (HTTP)

2

Main Points Main Points

3

Internet Protocols

IP

Application Application

TCP UDP

Internet does not follow the OSI

4

(inter) Network-layer packets consist of a header and a data field HOST TO HOST
(inter) Network Protocol: IP

Transport layer
Deliver messages to destinations with transport addresses PROCESS TO PROCESS

Transport protocols: TCP (reliable connection-oriented) UDP (datagram protocol that
does not guarantee reliable delivery)
Transport address: network address + a port number
– ports are software-defined destination points at a host computer attached to processes

Internet Protocols

Messages (UDP) or Streams (TCP)

Application

Transport

UDP or TCP packets

Message

Layers

5

Internet

IP datagrams

Network-specific frames

Underlying network

Network interface

Internet Protocols: IP addressing

IP version 4
� A unique 32-bit number

� Identifies an interface (on a host, on a router, …)

� Represented in dotted-quad notation

� Divided into network & host portions (left and right)

� CIDR (Classless Interdomain Routing) – how many bits for

network (prefix) specified through a mask to indicate bits for

6

network (prefix) specified through a mask to indicate bits for

network portion that is compared with the routing table entry

� 12.34.158.0/24 is a 24-bit prefix with 28 addresses

00001100 00100010 10011110 00000101

12 34 158 5

Network (24 bits) Host (8 bits)

� Scalability

� Easy to add new hosts - no need to update the routers

� E.g., adding a new host 5.6.7.213 on the right does not require

adding a new forwarding entry

... host...

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

Internet Protocols: IP addressing

host host host

LAN 1

... host host host

LAN 2

...

router router router
WAN WAN

1.2.3.0/24

5.6.7.0/24

forwarding table

host

5.6.7.213

7

Internet Protocols: IP Addressing (NAT)

� Not all computers and devices need to be assigned

globally unique (i.e., registered) IP addresses

� Computers attached to a local network -> access to NAT (Network

Address Translation)-enable router that redirects incoming UDP/TCP

packets for them

8

packets for them

o Router has a “global” IP address from ISP

o Local hosts have no register address - Each machine has a “local”

IP address via a Dynamic Host Configuration Protocol (DHCP)

NAT-enabled routers maintain an address translation table (ATT)

Internet Protocols: The IP Protocol

Transmits datagrams from one host to another, if necessary via
intermediate routers

dataIP address of destinationIP address of source

header

up to 64 kilobytes

9

o Provides only header checksum
o Unreliable or best effort (packets may be lost, duplicated, delayed or
delivered out of order)

If the IP datagram is longer than MTU, it is broken into network packets

Internet Protocols: The IP Protocol (ARP)

Address Resolution Protocol (ARP)
converts Internet (IP) addresses to network addresses for a

specific underlying network (link-layer or physical addresses)

e.g., 32-bit Internet addresses to 48-bit Ethernet (MAC) addresses

(the actual hardware interface)

10

Network topology dependent

� If hosts connected directly to Internet packet switches (no

translation)

� Some LANs allow network addresses to be assigned dynamically to

hosts chosen to match the id portion of the IP address

Translate IP addresses to Ethernet addresses.

� Translation done only for outgoing IP packets: this is when the IP
header and the Ethernet header are created.

� Translation is performed with a table look-up in an ARP Table; stored
(cached) in memory and contains a row for each computer:

Internet Protocols: The IP Protocol (ARP)

IP address Ethernet address

223.1.2.1 08-00-39-00-2F-C3

223.1.2.3 08-00-5A-21-A7-22

223.1.2.4 08-00-10-99-AC-54

11

Internet Protocols: The IP Protocol (ARP)

The sending host based on the IP address (and the subnet mask), decides if the
destination IP is a local IP or not.

ARP operation for a local host
� Look theARP table to find the MAC address. If not there,

� Broadcast an ARP request to find out the MAC address for the destination IP.

12

� Broadcast an ARP request to find out the MAC address for the destination IP.

�All machines on the LAN, receive it
� If the IP address in the request is their own, reply.

� On receiving this information,
� updateARP table to include the new information and
� send out the frame (addressed with MAC address).

Internet Protocols: The IP Protocol (ARP)

ARP operation for a remote host

local host -> local gateway (router)

If the sending host knows the subnet mask and has a default gateway
use its MAC address

Else

13

Else
The (local) gateway (router) will see the broadcast
and reply with its own MAC address.

The Router will un-encapsulate the data link frame and pass the data part up to the
network layer.

Internet Protocols: The IP Protocol (ARP)

Router ->* Destination Router

At the network layer, the router will
� see that the destination IP address (in the header of the IP packet) does not match
its own
� look in its routing table for the closest match to the destination IP
� create a new data link frame addressed to the next hop (and if the router does not
know the hardware address for the next hop it will request it using the appropriate
means for the technology in question).

14

means for the technology in question).
�The data portion of this frame will contain the complete IP packet (where the
destination IP address remains unchanged)

This process will continue at each router along the way until the information reaches a
router connected to the destination network.

Destination Router -> Destination Host

The router send out an ARP request for MAC addr of the destination IP (if not in its table)

ARP broadcasts are needed only when a computer is newly

connected to the local Ethernet

Internet Routing

Simplified Example
(subnet masks of 255.255.255.0)
1. Network 1 200.0.1.0/24 (ethernet)
Default gateway (Router A) 200.0.1.1 & also connected to Network 2 with 200.0.2

2. Network 2 200.0.1.1/24 (ethernet)
Default gateway (Router B) 200.0.2.2. & also connected to Network 3 with 200.0.3.1

3. Network 3 200.0.3.0/24 (ethernet)

15

Source IP 200.0.1.2 -> Destination IP 200.0.3.2

Assuming no information cached in ARP
1. Source creates an IP packet addressed to 200.0.3.2.
2. Packet sent to the data link layer, send an ARP request for the default MAC address of

the gateway (MAC for 200.0.1.1?).
3. The source sends out the IP packet (still addressed to 200.0.3.2) encapsulated within a

data link frame addressed to the MAC address of router A interface on Network 1

Internet Routing

Source IP 200.0.1.2 -> Destination IP 200.0.3.2
4. RouterA receive this frame and send the data portion up to the network layer
5. At the network layer, Router A will see that the packet is not addressed to it and look

in its routing table. The routing table shows that Network 3 (the closest match to
200.0.3.2) is reachable via Network 2 and the IP address 200.0.2.2 for the next hop

6. At the data link layer, Router A will send out an ARP request onto Network 2 asking
for the MAC of Router B (well at least for the interface connected to Network 2).

7. Router A will send the IP packet (still addressed to 200.0.3.2) encapsulated in a data

16

7. Router A will send the IP packet (still addressed to 200.0.3.2) encapsulated in a data
link frame addressed to router B MAC address.

8. Router B repeat the same and see that its is directly connected to Network 3
9. Router B will send out an ARP request to learn the MAC address for 200.0.3.2.
10. When received, router B will send out the IP packet (still addressed to 200.0.3.2)

encapsulated within a data link frame addressed to the MAC address of the
destination computer.

11. The destination computer will see that the data link frame is addressed to it and
will pass the IP packet to the network layer.

12. At the network layer, the IP address will also match that of the computer and the data
from the IP packet will be passed up to the transport layer.

Internet Routing

� Each layer examines the header and determines where to pass it up to until
the data reaches the application running on the destination computer

�The IP address of the packet never changes (global)

�At the data link layer, the address used changes at each hop, it is always

17

�At the data link layer, the address used changes at each hop, it is always
addressed to the next hop (local)

� Gateways and routers connected to two or more networks have one IP
address for each

� The topological map of the Internet is divided into regions
called Autonomous System (AS) subdivided in areas

� An Autonomous System (AS) is a collection of
connected Internet Protocol (IP) routing prefixes (group of

Internet Protocols: IP Routing

connected Internet Protocol (IP) routing prefixes (group of
network IDs) under the control of one or more network
operators that presents a common, clearly defined routing
policy to the Internet.

� This hierarchic structure is a conceptual one primarily for resource
management and maintenance

18

� Routing inside an AS is completely hidden from the rest of the
Internet

� Routing between ASs done using the Border Gateway
Protocol (BGP)

� BGP maintains a table of IP networks or 'prefixes' which designate
network reachability amongASs

Internet Protocols: IP Routing

network reachability amongASs

� Routes between ASs are computed in terms of AS hops: lists of
intermediaryASs from the sourceAS to the destinationAS.

� All outside networks that belong to the same AS share the same
route, expressed as the list of intermediaryASs.

� To route to arbitrary ASs on the Internet, a router need only know
the next-hop router to every AS, rather than to individual
destinations.

19

� The Internet backbone refers to the principal data routes
between large, strategically interconnected networks and core
routers in the Internet.

� The links in the backbone are usually of high bandwidth and

Internet Protocols: IP Routing

� The links in the backbone are usually of high bandwidth and
replicated for reliability

20

� Port numbers are used for
addressing messages to process
within a particular computer
and are valid only within that
computer

� A port number is a 16 bit

source port # dest port #

32 bits

other header fields

Internet protocols (Transport Layer)

� A port number is a 16 bit
integer

� Once an IP packet has been
delivered to the destination
host, the TCP/UDP layer
software dispatches it to a
process via a specific port at
that host

application
data

(message)

TCP/UDP segment format

21

User Datagram Protocol (UDP)
� IP plus port numbers to support (de)multiplexing

� Optional error checking on the packet contents (if checksum
field non-zero, receiver computes a check value on the packet
content, if no match, the packet is dropped)

Internet protocols: UDP

SRC port DST port

checksum length

DATA

22

Lecture Outline

� Main points of Lecture 4

�The Internet Protocols: TCP�The Internet Protocols: TCP

� DNS (name services)

� Request-Reply Protocols (HTTP)

23

Internet protocols: TCP

Transmission Control Protocol (TCP)

Reliable delivery of arbitrarily long sequences of bytes via a
stream-based abstraction

Connection-oriented: before any data transfer, the sender and
the receiver must cooperate in the establishment of a
bidirectional communication channel

End-to-end agreement (intermediate nodes and routers have
no knowledge)

24

TCP: Segments and sequencing

� TCP breaks the data stream into segments, which

the network layer encapsulates into IP datagrams.

MAC IP Packet TCP Segment ApplicationMAC
Header

IP Packet
Header

TCP Segment
Header

Application
Data

TCP Payload

IP Payload

Frame Payload

25

� IP packet

� No bigger than Maximum Transmission Unit (MTU)

E.g., up to 1500 bytes on an Ethernet

IP Hdr
IP Data

TCP HdrTCP Data (segment)

TCP: Segments and sequencing

� E.g., up to 1500 bytes on an Ethernet

� TCP packet

� IP packet with a TCP header and data inside

� TCP header is typically 20 bytes long

� TCP segment

� No more than Maximum Segment Size (MSS) bytes

� E.g., up to 1460 consecutive bytes from the stream

26

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

B
yte 80

TCP “Stream of Bytes” Service

TCP: Segments and sequencing

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host B

B
yte 80

27

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

B
yte 80

TCP Data

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out, (a timeout T on local

…Emulated Using TCP “Segments”

TCP: Segments and sequencing

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host B

TCP Data

TCP Data

B
yte 80

2. Not full, but times out, (a timeout T on local
buffering – typically 0.5 sec (data in small

quantities, e.g., keyboard input) or
3. “Pushed” by application.

28

TCP: Segments and sequencing

A sequence number is assigned to each TCP

segment

� The receiver uses the sequence number to order the received

segments before placing them in the input queue for the receiving

process

29

process

� No segments can be placed in the input stream until all

lowered-numbered segments have been received and placed in

the stream

� Out of order segments are held in buffer

Sequence number = the byte number within the stream for

the first byte in the segment

Host A

TCP Data

ISN (initial sequence number)

Sequence

TCP: Segments and sequencing
sequence number = the byte number within

the stream for the first byte in the segment

Used by the receiver

From time to time, the receiver sends an

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

Sequence
number = 1st

byte
ACK sequence
number = next
expected byte

From time to time, the receiver sends an

ACK to the sender + window size

30

TCP: Segments and sequencing

How to choose the Initial Sequence Number (ISN)?
(i.e., sequence number for the very first byte)

Why not a de facto ISN of 1?

� It introduces the possibility of segments from different

connections getting mixed up.

1. Suppose we established a TCP connection and sent a segment containing bytes 1

through 30.

31

through 30.

2. A problem with the internetwork caused this segment to be delayed, and eventually, the

TCP connection itself to be terminated.

3. We then started up a new connection (same IP and port) and again used a starting

sequence number of 1.

4. As soon as this new connection was started, however, the old segment with bytes

labeled 1 to 30 showed up.

5. The other device would erroneously think those bytes were part of the new connection.

Each TCP device, at the time a connection is initiated, chooses a 32-bit

ISN for the connection. How?

TCP: Segments and sequencing

Traditionally, each device chose the ISN from a timed counter

o Counter initialized to 0 when TCP started up

o Then its value increased by 1 every 4 microseconds until it reached the largest

32-bit value possible (4,294,967,295) at which point it “wrapped around” to 0

and resumed incrementing.

o Any time a new connection is set up, the ISN was taken from the current value

of this timer.

32

Since it takes over 4 hours to count from 0 to 4,294,967,295, this

virtually assured that each connection will not conflict with any previous

ones.

But, it makes ISNs predictable.
A malicious person write code to analyze ISNs and then predict the ISN of a subsequent TCP

connection based on the ISNs used in earlier ones.

Implementations now use a random number in their ISN selection

process.

A B

Three-way handshake to establish connection
1. Host A sends a SYN (open) to the host B <A tells B it wants to open a connection>

2. Host B returns a SYN acknowledgment (SYN ACK) <B tells A it accepts, and is

ready to hear the next byte. Upon receiving this packet, A can start sending data>

3. Host A sends an ACK to acknowledge the SYN ACK <A tells B it is okay to start

sending. Upon receiving this packet, B can start sending data>

TCP: 3-way handshake

Each host tells its ISN
to the other host.

33

� Suppose the SYN packet gets lost

� Packet is lost inside the network, or

� Server rejects the packet (e.g., listen queue is full)

� Eventually, no SYN-ACK arrives

What if the SYN Packet Gets Lost?

TCP: 3-way handshake

� Eventually, no SYN-ACK arrives

� Sender sets a timer and wait for the SYN-ACK and retransmits the
SYN-ACK if needed

� How should the TCP sender set the timer?

� Sender has no idea how far away the receiver is

� Hard to guess a reasonable length of time to wait

� Some TCPs use a default of 3 or 6 seconds

34

SYN Loss and Web Downloads

� User clicks on a hypertext link

� Browser creates a socket and does a “connect”

� The “connect” triggers the OS to transmit a SYN

� If the SYN is lost…

The 3-6 seconds of delay may be very long

TCP: 3-way handshake

� The 3-6 seconds of delay may be very long

� The user may get impatient and click the hyperlink again, or click
“reload”

� User triggers an “abort” of the “connect”

� Browser creates a new socket and does a “connect”

� Essentially, forces a faster send of a new SYN packet!

� Sometimes very effective, and the page comes fast

35

Performance implications

� TCP performance is suboptimal for transfers of small Web objects:

� nearly all TCP implementations send the first data after the
handshake is completed

TCP: 3-way handshake

handshake is completed

� this adds an additional round-trip time (RTT) to the application-layer
data transfer

36

Tearing Down the Connection

B

TCP: 3-way handshake

37

� Closing the connection

� Finish (FIN) to close and receive remaining bytes

� Other host sends a FIN ACK to acknowledge

� Reset (RST) to close and not receive remaining bytes

time
A

� Sending a FIN: close()

� Process is done sending
data via the socket

� Process invokes “close()”
to close the socket

Receiving a FIN: EOF
– Process is reading data from the

socket

– Eventually, the attempt to read

returns an EOF

TCP: 3-way handshake

to close the socket

� Once TCP has sent all of
the outstanding bytes
then TCP sends a FIN

returns an EOF

38

TPC: Retransmissions

� A mechanism to deal with unreliability (loss of packets)

� TCP sender retransmits segments that have not been

acknowledged by the receiver within a certain time after

the initial transmission (timeout)

� The timeout value is adapted according to previously

observed RTT (Round Trip Time) and RTT variance between

two communicating hosts

� Initial timeout value set to a predefined value

39

Reasons for Retransmission

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

TPC: Retransmissions

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

ACK lost
DUPLICATE
PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

40

Flow control limits the transmission rate to a rate that the
receiver can absorb the data

How?

1. TCP makes the sender wait for an ACK after
transmitting a certain amount of data

TCP: Flow control

transmitting a certain amount of data

� To decide how much data to send before waiting, TCP
uses the sliding window protocol

2. With every ACK segment, the receiver advertises a
window in bytes, using theWINDOW header field

� this window size indicates how many more bytes the receiver is
able to accept into its buffers

41

Receiver Buffering

� Window size

� Amount that can be sent without acknowledgment

� Receiver needs to be able to store this amount of data

� Receiver advertises the window to the sender

TCP: Flow control

� Tells the sender the amount of free space left and the sender
agrees not to exceed this amount – Can Re-adjust this!!

Window Size

Outstanding
Un-ack’d data

Data OK
to send

Data not OK
to send yet

Data ACK’d

42

TCP congestion control

� Applied in order to avoid packet loss and re-transmissions that
further increase the congestion.

� Timeout or dup ACKs

� TCP congestion control mechanism:

� Congestion window (cwnd): specifies the number of unacknowledged � Congestion window (cwnd): specifies the number of unacknowledged
segments one host may send to the other

� Basic idea:

� sender monitors the loss of packets; when this occurs, the
sender reduces quickly (multiplicatively) its transmission rate.

� if there are no lost packets, sender increases slowly its
transmission rate

43

Slow start mechanism

� Slow start and Congestion avoidance are implemented together

� Start with a small transfer rate (allow only two unacknowledged
segments)

� Initially, increase the congestion window by one segment for each
acknowledged segment:

this leads to an exponential increase of transfer rate� this leads to an exponential increase of transfer rate

� If a packet is lost, reduce drastically the transfer rate by reducing the
congestion window by half

� When receiving ACKs, increase cwnd

� If cwnd < half the window of congestion, do slow start else, do congestion avoidance

44

Performance implications

� The throughput of one large TCP transfer is usually
higher than the throughput of many short ones, with
the exception of very short connections that fit into
the initial congestion window of two segments (~3KB)

� Short TCP transfers are affected mostly by the TCP
handshake overhead, which cannot be amortized over
the life of a connection

45

TCP Header

Source port Destination port

Sequence number

Acknowledgment number

Advertised windowHdrLen Flags

Flags: SYN
FIN
RST Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

RST
PSH
URG
ACK

46

TCP Header Fields

� Source and Destination port numbers: for multiplexing/de-
multiplexing at the hosts

� Sequence number: the offset of a segment in a byte stream
(the sequence number of the first segment byte in the byte
stream)

� Acknowledgment number: confirms that the sender of the � Acknowledgment number: confirms that the sender of the
segment has received all bytes up to this number from the
other host (valid when the ACK bit is set)

� Code bits field (flags): deal with connection management and
urgency of the content of the segment (SYN, FIN, RST, ACK)

� Window field: used for flow control

47

Connection oriented
� Explicit set-up and tear-down of TCP session

� State maintained at both hosts

Stream-of-bytes service
� Sends and receives a stream of bytes, not messages (packets)

� Division of data into datagrams, headers etc are invisible to the application
above

TCP: Basic concepts

above

Reliable, in-order delivery
� Checksums to detect corrupted data

� Acknowledgments & retransmissions for reliable delivery

� Sequence numbers to detect losses and reorder data

Full duplex transfer

• Allows data transfer between two applications in both directions
at the same time

48

Flow control
• The sender takes care not to overwhelm the receiver or the
intervening nodes (overflow their buffer space)

� Congestion control

TCP: Basic concepts

� Congestion control
� Regulates the rate at which the network can transfer the data

49

compute

dialup

hammer

henry
138.37.88.230

bruno

138.37.88.249

138.37.95.241138.37.95.240/29

subnet

Eswitch

138.37.88

server

server

138.37.88.251

custard

138.37.94.246

Eswitch

138.37.94
Student subnetStaff subnet

other

router/
firewall

138.37.94.251

�

file server/
gateway

printers

Campus
router

Internetworking: Routers

50

file

hotpoint

138.37.88.230

138.37.88.162

router/
sickle

138.37.95.249

copper
138.37.88.248

firewall

web

138.37.95.248/29

server

desktop computers 138.37.88.xx

subnet

server

desktop computers

hubhub

other
servers

1000 Mbps Ethernet
Eswitch: Ethernet switch

100 Mbps Ethernet
Campus
router

138.37.94.xx

Lecture Outline

� Main points of Lecture 4

�The Internet Protocols: TCP�The Internet Protocols: TCP

� DNS (name services)

� Request-Reply Protocols (HTTP)

51

Middleware layers

Applications, services

Middleware

Request-Reply Protocols, RMI and RPC

Middleware
layersUnderlying Inter-process Communication Primitives

UDP and TCP

API for Internet Protocols

UDP and IP from a programmer’s point of view

�The application program interface to UDP provides a message passing
abstraction
A sending process transmits a single message to a receiving process
The independent packets containing the message are called datagrams

�The application program interface to TCP provides the abstraction of a
two-way stream between pairs of processes
The information communicated consists of a stream of data items with no
message boundaries
Producer-Consumer Communication
Data items are queued

API for Internet Protocols

Two message communication operations: send and receive

A queue is associated with each message destination

Synchronous and Asynchronous communication
Send

� blocking send: process (or thread) waits until the corresponding receive is issued

� non-blocking send: process (or thread) proceeds as soon as the message has been� non-blocking send: process (or thread) proceeds as soon as the message has been
copied to a local buffer

Receive
� blocking receive: waits until the msg is received

� non-blocking receive: if the msg is not here, moves on (a buffer to be filled in the
background, receives notifications by polling or interrupt)

� Synchronous Communication: blocking send and receive

� Asynchronous Communication non-blocking send and blocking or [non-blocking]
receive

API for Internet Protocols

Message Destination

� IP address + port: (in general) each port one receiver, many senders
� Location transparency

� name server or binder: translate service to location

ReliabilityReliability
� Validity: any message in the outgoing message buffer is eventually

delivered to the incoming message buffer
� Integrity: The message received is identical to the one sent

(uncorrupted) and no messages are delivered twice.

Ordering

Sockets and ports
� programming abstraction for UDP/TCP – provides an endpoint for communication

between processes

� Interprocess communication consists of transmitting a message between a socket
in one process and a socket in another process

� To receive messages, a process must be bound to a local port and IP address

� 216 ports per computer

message

agreed port
any port

socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

UDP Datagram

Without acknowledgments or replies

A datagram is transmitted between processes when one sends it
and another receives it

To send or receive, first create a socket bound to an IP of the local
host and a local port

� A server binds its socket to a server port, one that it makes
known to its clients

� A client binds is socket to any free local port

� The receive method returns the Internet address and port of
the sender, to allow the recipient to reply

UDP Datagram

� Message Size
The receiving process must specify an array of bytes of a particular size in which to

receive a message

IP up to 216, usually restrict to 8K

� Blocking� Blocking

non-blocking send, blocking receive

Send returns when it has handed the message to the underlying UDP)

A message can be collected from the queue by an outstanding or future receive on
that socket

Receive blocks until a datagram is received or timeout

Messages discarder if no process already a socket bound to the destination port

UDP Datagram

Receive from any:

Receive does not specify sender origin (possible to specify a

remote host for send and receive)

Failure model:
� omission failures: messages may be dropped (checksum errors, no buffer omission failures: messages may be dropped (checksum errors, no buffer

space, etc)

� ordering: can be out of order

� use of UDP

� DNS, Voice over IP

� less overhead: no state information, extra messages, latency due to start
up

TCP stream
Based on the abstraction of stream of bytes to which data is written and from which

data may be read

� Message size:
Unlimited (applications, if necessary, force data to be send immediately)

� Lost messages: sequence #, ack, retransmit after timeout of no ack

� flow control: sender can be slowed down or blocked by the receiver

� message duplication and ordering: sequence #

� message destination: establish a connection, one sender-one receiver, high overhead
for short communication

TCP stream

When a pair of processes establish a connection, one plays the role of the server and the
other of the client
Then they could be peers

The client role involves creating a stream socket bound to any port and then making a
connect request asking for a server to its server port

The server role involve creating a listening socket bound to a server port and waiting for
clients to request connectionsclients to request connections
The listening socket maintains a queue of incoming connection requests
When the server accepts the connection, a new stream socket is created for the server to
communicate with the client

The pair of sockets in the client and server are connected by a pair of streams. Each socket
has an input and an output stream – Each process can send information to the other by
writing to its output stream and the other process obtains information by reading from its
input stream

Close a socket – no more writes to its output stream

TCP stream

� matching of data items: two processes need to agree on format and order
(protocol)

� blocking: non-blocking send, blocking receive (send might be blocked due to flow
control)

� concurrency: one receiver, multiple senders, one thread for each connection

� failure model
� checksum to detect and reject corrupt packets

� sequence # to deal with lost and out-of-order packets

� connection broken if ack not received when timeout
� could be traffic, could be lost ack, could be failed process..

� can't tell if previous messages were received

� use of TCP: http, ftp, telnet, smtp

Lecture Outline

� Main points of Lecture 4

�The Internet Protocols: TCP�The Internet Protocols: TCP

� DNS (name services)

� Request-Reply Protocols (HTTP)

63

Name Services: DNS

64

Names, addresses and other attributes

� Resources or objects (web pages, files, nodes, etc) are
accessed using identifier, names, or addresses
� The term identifier is sometimes used to refer to names that are

interpreted only by programs

� A name is human-readable value (usually a string) that can be
resolved to an identifier or address

� Address identifies the location of the resource rather than the
resource itself

� Other descriptive attributes: values of some property associated
with the an object (address may consider a key such attribute)

� A name is resolved when it is translated into data about the named

resource or object by a name service

� Binding: the association between an object and a resource

65

http://www.cdk3.net:8888/WebExamples/earth.html

URL

Resource ID (IP number, port number, pathname)
DNS lookup

Names, addresses and other attributes

file

Web server
Socket

138.37.88.61 WebExamples/earth.html8888

(Ethernet) Network address

2:60:8c:2:b0:5a

ARP lookup

66

Currently, different name systems are used for each type of resource:

� resource name identifies

� File pathname file within a given file system

Process process id process on a given computer

Names, addresses and other attributes

� Process process id process on a given computer

� Port port number IP port on a given computer

67

� Uniform Resource Identifiers (URIs) offer a general solution for
any type of resource.

� There two main classes:

� URL Uniform Resource Locator

� typed by the protocol field (http, ftp, nfs, etc.)

Names, addresses and other attributes

� typed by the protocol field (http, ftp, nfs, etc.)

� part of the name is service-specific

� resources cannot be moved between domains

� URN Uniform Resource Name

� requires a universal resource name lookup service - a
DNS-like system for all resources

68

Name services

A name service stores information about a collection of textual

names in the form of binding between the names and the

attributes of the entities they denote, such as users,

computers, services and objects

The collection is subdivided into one or more naming contexts:

individual subsets of the binding that are managed as a unit

Main operation: Name resolution (look up attributes for a given

name)

69

Name spaces

Name space: the collection of all valid names recognized by a

particular service

Follow a syntax (valid vs invalid)

Hierarchical vs Flat name space

(+) more manageable(+) more manageable
each part is resolved relative to a separate context of relatively small

size and the same name may be used with different names in different

contexts (e.g., filesystem, URLs, etc)

(+) different contexts may be managed by different people or

organizations

(+) trust

(+) updates, allow restructure of subtrees

(+) potentially infinite, so a system may grow indefinitely

70

Name spaces

Alias: a name defined to denote the same information as

another name

e.g., symbolic links in file systems

URL shorteners in Twitter posts, e.g., http://bit.ly/ctqjvH

Friday (Feb 10), 15:00-16:00

Demetris Antoniades, "We.b: The web of short

URLs”

Naming domain: a name space for which there exists a single

administrative authority for assigning names within it

71

Name resolution

Data is partitioned into servers according to its domain

The process of locating naming data from more than one name

server in order to resolve a name is called navigation

72

Iterative navigation vs recursive navigation

Multicast navigation

Name resolution

Client 1

2

NS2

NS1 Name
servers

73

3

A client iteratively contacts name servers NS1–NS3 to resolve a name

NS3

Name resolution

1

2

31

2
4

client client

NS2

NS1

NS2

NS1

74

534

A name server NS1 communicates with other name servers on behalf of a client

client client

Recursive
server-controlled

NS1

NS3

NS1

NS3

Non-recursive
server-controlled

Name resolution

Caching

Client name resolution software and servers maintain a

cache of the results of previous name resolutions

� Eliminate load from high-level name servers (root)

75

� Eliminate load from high-level name servers (root)

� Availability

� Communication cost

The Domain Name System (DNS)

Internet supports a scheme for the use of symbolic names for

hosts and networks

Domain Name System: host names -> IP addresses

Organized into a naming hierarchy

76

Organized into a naming hierarchy

Hierarchy reflect organizational structure

Independent of the physical layer

� Host names
� Mnemonic name appreciated by humans

� Variable length, alpha-numeric characters

� Provide little (if any) information about location

� Examples: www.cnn.com and ftp.eurocom.fr

� IP addresses

The Domain Name System (DNS)

� IP addresses
� Numerical address appreciated by routers

� Fixed length, binary number

� Hierarchical, related to host location

� Examples: 64.236.16.20 and 193.30.227.161

77

Separating Naming and Addressing

� Names are easier to remember
� www.cnn.com vs. 64.236.16.20

� Addresses can change underneath
� Move www.cnn.com to 64.236.16.20

The Domain Name System (DNS)

� E.g., renumbering when changing providers

� Name could map to multiple IP addresses
� www.cnn.com to multiple replicas of the Web site

� Map to different addresses in different places
� Address of a nearby copy of the Web site

� E.g., to reduce latency, or return different content

� Multiple names for the same address
� E.g., aliases like ee.mit.edu and cs.mit.edu

78

com edu org ac uk zw arpa

unnamed root

bar ac in-
addr

generic domains country domains

top-level domains

second-level domains

Distributed Hierarchical Database

The Domain Name System (DNS)

bar

west east

foo my

ac

cam

usr

addr

12

34

56

my.east.bar.edu usr.cam.ac.uk

12.34.56.0/24

second-level domains

79

� Central server
� One place where all mappings are stored

� All queries go to the central server

� Many practical problems
� Single point of failure

The Domain Name System (DNS)

� Single point of failure

� High traffic volume

� Distant centralized database

� Single point of update

� Does not scale

Need a distributed, hierarchical collection of servers

80

DNS name servers

The DNS database is distributed across a logical network of servers

Each server holds part of the naming database (primarily data from its

local domain)

Client-server with multiple servers
DNS client, called resolver

� Accepts queries

� Formats them to messages according to the DNS protocol

81

� Formats them to messages according to the DNS protocol

� Communicates with one or more name servers (list in order of

preference)

Request-reply protocol + UDP

� Queries for hosts in the local domain are satisfied by servers within

that domain

� Each server also records the domain names and addresses of other

name servers to satisfy queries outside the domain

DNS name servers: partition

DNS naming data are divided into zones

Name servers maintain data for one or more zones

82

DNS name servers: partition

Authoritative data: data that can be relied upon as being up-to-date

A zone contains

� Attribute data for names in its domain except any sub-domains

administered by lower-level authorities

� Name and addresses of at least two name servers that provide

83

� Name and addresses of at least two name servers that provide

authoritative data for the zone

� The names of name servers that hold authoritative data for delegated

sub-domains

� Zone-management parameters (e.g., for caching)

Each zone must be replicated authoritatively in at least two servers

Primary (master) server and secondary servers

DNS name servers

Data are cached with a time-to-live value

When it expires, contact the server

84

All DNS servers store the address of one or more root name

servers

Note: Name server names
are in italics, and the
corresponding domains are in
parentheses.

Arrows denote name
server entries

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk

co.uk

yahoo.com

The Domain Name System (DNS)

dns0.dcs.qmul.ac.uk
(dcs.qmul.ac.uk)

alpha.qmul.ac.uk
(qmul.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ic.ac.uk

qmul.ac.uk

dcs.qmul.ac.uk
*.qmul.ac.uk

.ic.ac.uk.dcs.qmwul.ac.uk

* .purdue.edu

85

� Properties of DNS

� Hierarchical name space divided into zones

� Distributed over a collection of DNS servers

� Hierarchy of DNS servers

The Domain Name System (DNS)

� Root servers

� Top-level domain (TLD) servers

� Authoritative DNS servers

� Performing the translations

� Local DNS servers

� Resolver software

86

� Top-level domain (TLD) servers

� Generic domains (e.g., com, org, edu)

� Country domains (e.g., uk, fr, ca, jp)

� Typically managed professionally

� Network Solutions maintains servers for “com”

The Domain Name System (DNS)

� Network Solutions maintains servers for “com”

� Educause maintains servers for “edu”

� Authoritative DNS servers

� Provide public records for hosts at an organization

� For the organization’s servers (e.g., Web and mail)

� Can be maintained locally or by a service provider

87

� 13 DNS root servers (see http://www.root-servers.org/)

� Labeled A through M

K RIPE London (also Amsterdam, Frankfurt)

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles)
D U Maryland College Park, MD
G US DoD Vienna, VA

The Domain Name System (DNS)

88

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software C. Palo
Alto, CA (and 17 other
locations)

I Autonomica, Stockholm (plus
3 other locations)

K RIPE London (also Amsterdam, Frankfurt)

m WIDE Tokyo

G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign, (11 locations)

� A distributed naming database

� Name structure reflects administrative structure of the Internet

� Rapidly resolves domain names to IP addresses

� exploits caching heavily

The Domain Name System (DNS)

exploits caching heavily

� typical query time ~100 milliseconds

� Scales to millions of computers

� partitioned database

� caching

� Resilient to failure of a server

� replication

89

Using DNS

� Local DNS server (“default name server”)
� Usually near the end hosts who use it

� Local hosts configured with local server (e.g., /etc/resolv.conf) or
learn the server via DHCP

� Client application

90

� Extract server name (e.g., from the URL)

� Do gethostbyname() to trigger resolver code

� Server application
� Extract client IP address from socket

� Optional gethostbyaddr() to translate into name

root DNS server

local DNS server
dns.poly.edu

2
3

4

5

TLD DNS server

Example

� Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

requesting host
cis.poly.edu gaia.cs.umass.edu

dns.poly.edu

1

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

Recursive vs. Iterative Queries

� Recursive query

� Ask server to get
answer for you

� E.g., request 1 and
response 8

� Iterative query

root DNS server

local DNS server
dns.poly.edu

2
3

4

5

TLD DNS server

� Iterative query

� Ask server who
to ask next

� E.g., all other
request-response
pairs (2-7)

requesting host
cis.poly.edu

dns.poly.edu

1

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

92

DNS Caching (more)

� Performing all these queries takes time

� And all this before the actual communication takes place

� E.g., 1-second latency before starting Web download

� Caching can substantially reduce overhead

� The top-level servers very rarely change

Popular sites (e.g., www.cnn.com) visited often� Popular sites (e.g., www.cnn.com) visited often

� Local DNS server often has the information cached

� How DNS caching works

� DNS servers cache responses to queries

� Responses include a “time to live” (TTL) field

� Server deletes the cached entry after TTL expires

93

Negative Caching

� Remember things that don’t work

� Misspellings like www.cnn.comm and www.cnnn.com

� These can take a long time to fail the first time

� Good to remember that they don’t work� Good to remember that they don’t work

� … so the failure takes less time the next time around

94

Reliability

� DNS servers are replicated

� Name service available if at least one replica is up

� Queries can be load balanced between replicas

� UDP used for queries

� Need reliability: must implement this on top of UDP

� Try alternate servers on timeout

� Exponential backoff when retrying same server

� Same identifier for all queries

� Don’t care which server responds

Inserting Resource Records into DNS

� Example: just created startup “FooBar”

� Register foobar.com at Network Solutions

� Provide registrar with names and IP addresses of your
authoritative name server (primary and secondary)

� Registrar inserts two RRs into the com TLD server:

(foobar.com, dns1.foobar.com, NS) – domain server� (foobar.com, dns1.foobar.com, NS) – domain server

� (dns1.foobar.com, 212.212.212.1, A) – IP address

� Put in authoritative server dns1.foobar.com

� Type A record for www.foobar.com

� Type MX record for foobar.com

DNS Query in Web Download

� User types or clicks on a URL

� E.g., http://www.cnn.com/2006/leadstory.html

� Browser extracts the site name

� E.g., www.cnn.com

� Browser calls gethostbyname() to learn IP addressBrowser calls gethostbyname() to learn IP address

� Triggers resolver code to query the local DNS server

� Eventually, the resolver gets a reply

� Resolver returns the IP address to the browser

� Then, the browser contacts the Web server

� Creates and connects socket, and sends HTTP request

Multiple DNS Queries

� Often a Web page has embedded objects

� E.g., HTML file with embedded images

� Each embedded object has its own URL

� and potentially lives on a different Web server� and potentially lives on a different Web server

� E.g., http://www.myimages.com/image1.jpg

� Browser downloads embedded objects

� Usually done automatically, unless configured otherwise

� Requires learning the address for www.myimages.com

98

When are DNS Queries Unnecessary?

� Browser is configured to use a proxy

� E.g., browser sends all HTTP requests through a proxy

� Then, the proxy takes care of issuing the DNS request

� Requested Web resource is locally cached

E.g., cache has http://www.cnn.com/2006/leadstory.html� E.g., cache has http://www.cnn.com/2006/leadstory.html

� No need to fetch the resource, so no need to query

� Browser recently queried for this host name

� E.g., user recently visited http://www.cnn.com/

� So, the browser already called gethostbyname() and may be
locally caching the resulting IP address

99

Web Server Replicas

� Popular Web sites can be easily overloaded

� Web site often runs on multiple server machines

Internet

100

Directing Web Clients to Replicas

� Simple approach: different names

� www1.cnn.com, www2.cnn.com, www3.cnn.com

� But, this requires users to select specific replicas

� More elegant approach: different IP addresses� More elegant approach: different IP addresses

� Single name (e.g., www.cnn.com), multiple addresses

� E.g., 64.236.16.20, 64.236.16.52, 64.236.16.84, …

� Authoritative DNS server returns many addresses

� And the local DNS server selects one address

� Authoritative server may vary the order of addresses

101

Clever Load Balancing Schemes

� Selecting the “best” IP address to return

� Based on server performance

� Based on geographic proximity

� Based on network load

� …� …

� Example policies

� Round-robin scheduling to balance server load

� U.S. queries get one address, Europe another

� Tracking the current load on each of the replicas
102

Challenge: What About DNS Caching?

� Problem: DNS caching

� What if performance properties change?

� Web clients still learning old “best” Web server
until the cached information expires

� Solution: Small Time-to-Live values� Solution: Small Time-to-Live values

� Setting artificially small TTL values so replicas
picked based on fresh information

� Disadvantages: abuse of DNS?

� Many more DNS request/response messages

� Longer latency in initiating the Web requests

103

Request-Reply Protocols (HTTP)

104

Middleware layers

Applications, services

Middleware

Request-Reply Protocols, RMI and RPC

Middleware
layersUnderlying Inter-process Communication Primitives

UDP and TCP

Client-server communication

Request

ServerClient

doOperation
getRequestmessage
select operation

(wait)

(continuation)

Reply
message

execute

operation

select operation

sendReply

Synchronous: client waits for a reply
Asynchronous: client doesnot wait for a reply

Client-server communication

� Failure model

� UDP: could be out of order, lost...

� process can fail...

� not getting a reply

� timeout and retry

� duplicate request messages on the server

� How does the server find out?� How does the server find out?

� idempotent operation: can be performed repeatedly with the same effect as
performing once.

� idempotent examples?

� non-idempotent examples?

� history of replies

� retransmission without re-execution

� how far back if we assume the client only makes one request at a time?

http://www.webappbuilders.com/

108

http://www.webappbuilders.com/

Uniform Resource Locator (URL)

scheme://host [:port]/path/…/[;url-params][?query-string][#anchor]

Underlying protocol
to be used (e.g., http,
ftp)

http://

IP address or DNS
of the web server Optional – the

port number to
which the
target web

The path through the
file system from the
“root” directory of the
server to the desired

109

http://

http://www.mywebsite.com

which the
target web
server listens
(default is 80)

“root” directory of the
server to the desired
document – in practice,
web servers use aliasing

http://www.mywebsite.com/sj/test

Uniform Resource Locator (URL)

scheme://host [:port]/path/…/[;url-params][?query-string][#anchor]

Optional – name, value pairs;
commonly used for session ids in

http://www.mywebsite.com/sj/test

Optional – name, value pairs;
for dynamic parameters
associated with the request

Optional –
reference to a
positional

110

commonly used for session ids in
application servers supporting
the Java Servlet API

http://www.mywebsite.com/sj/test;id=8079

associated with the request
(for tracking or context
setting, also in HTML forms)

http://www.mywebsite.com/sj/test;id=8079 ?name=bob&x=true#label

positional
marker within
the document

application-protocol://IP-address[:port]path-from-the-root[;par][?dyn-par][#anchor]

HTTP

�Application-level protocol in the TCP/IP protocol suite

� Uses TCP

� Client-Server model

� Follows the request-response communication paradigm

� Stateless (more later)
vs stateful: sequences of related commands are treated as a a single

111

� vs stateful: sequences of related commands are treated as a a single
interaction, often called a session
� session are within a persistent connection

�Through Proxies
� Firewalls
� Support for caching
� Filtering

� Connection defined as a virtual circuit (browser, server, proxies)

HTTP message

[message header]

[message body]

Simple example request

Method /path-to-resource HTTP/version-number

Header-Name-1: value

112

Header-Name-1: value

Header-Name-2: value

[optional request body]

GET /sj/index.html HTTP/1.1

Host: www.mywebsite.com

HTTP message

[message header]

[message body]

Simple example reply

HTTP/version-number status-code explanation

Header-Name-1: value

113

Header-Name-1: value

Header-Name-2: value

[response body]

GET /sj/index.html HTTP/1.1

Host: www.mywebsite.com

Request Methods

Method /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

GET HEAD POST

PUT DELETE TRACE OPTIONS CONNECT

GET
Most common (type a URL, click on a link, etc), if the UR: refers to data, the web

114

Most common (type a URL, click on a link, etc), if the UR: refers to data, the web
server replies by returning the data, of refers to a program, then the web server runs
the program and returns its outpt

POST
POST has a body where the URL parameters are placed, GET appends them to the
path – usually used when the action may change data on the server

Web application dependent: e.g., display a form when GET request and process it
when POST

Request Methods

Method /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

GET /q?s=YHOO HTTP/1.1

Host: filename.yahoo.com

115

Host: filename.yahoo.com

User-Agent: Mozilla/5.0 (Windows; U; Windows XP; en-US; rv:1.8.0.1)

POST /q HTTP/1.1

Host: filename.yahoo.com

User-Agent: Mozilla/5.0 [en] (WinNT; U)

Content-Type: application/x-www-form-urlencoded

Content-Length: 6

s = YHOO

Request Methods

HEAD
Requests that use the HEAD method are processed similarly to request that use the
GET method but the server sends back only headers (not the body) in the response

Used to support caching

116

Used to support caching
Still useful for implementing change-tracking systems, testing and debugging new
applications and discovering server capabilities

Status Codes

1 Informational
100 (notify clients that they can continue) Expect:100-continue header

2 Successful responses
200

3 Tell the client to perform additional actions (redirection)
4 Client requests errors or special conditions

117

4 Client requests errors or special conditions
400 Bad Request 401 Not Authorized 403 Forbidden 404 Not found

5 Server errors
500 Internal Server Error 501 Not Implemented

Status Codes: Redirection (3xx)

� Redirection: the browser is instructed to resubmit the request to another URL
� 301 moved permanently
� 302 temporarily

� Browsers respond “silently” to redirection status codes
� (not supported or disabled) Web servers include a message body that explicitly
references a link to the new location -> follow the link manually

118

references a link to the new location -> follow the link manually

�Web servers treat a URL ending in a slash as a request for a directory (depending on
the server configuration return either a file with a default name (e.g., index.html or the
contents of the directory)
� If the user forgets the trailing “/”, the server a redirection response

� Proxies react to 301 status by updating internal relocation tables (cache 301
redirections) e.g., redirecting users to the login page when trying to access a protected
URL

Headers

General Headers
Apply to both request and response messages
Do not describe the body of the message
Example:

Date (time and date of the message creation),
Connection (keep-alive default setting for HTTP/1.1)

119

Request Headers
Allows clients to pass additional information
Example

User-Agent (type of software)
Host (may look redundant, but it is there for HTTP1.0 and virtual hosting)
Referee (context information about the request, e.g., if because of a click on a
link in a page, the header is set to the URL of that page)
Authorization Browsers include this header in all follow-up requests [after
being notified of an authorization challenge (401) and prompting the user for
credentials, once credential accepted included (expiration is browser-specific)

Headers

Response Headers
Help the server to pass additional information about the response that cannot be
inferred from the status code
Examples

Location for redirecting (used with 301, 302)
WWW-Authenticate (used with 401) Basic realm = “KremlinFiles”, if
browser, users are prompted for credentials
Realm: which resources require what type of authorization – web masters can

120

Realm: which resources require what type of authorization – web masters can
administrate web servers to define realms, associate them with files and
directories and establishe userid and passwords that limit access to these
resources
Server server software

Entity Headers
Either message bodies or (in the case of no body) target resources
Examples

Content-Type the MIME type of the message body
Content-Length to help the browser in rendering
Last-modified critical for caching

Support for content types

HTTP borrows its content typing system from Multipurpose Internet Mail Extensions
(MIME)

A two layer ordered encoding model
Content-Encoding (gzip, compress, deflate)

Content type

type */* subtype [“;” parameter-string]

121

type */* subtype [“;” parameter-string]

Examples
Content type: text/html

Content type: textplain; charset=‘us-ascii’

Content type: application/pdf

Content type: video/quicktime

Browsers use types and sub-types either to select a proper content-rendering module
or to invoke a third-party tool
Server-side applications use type information to process requests

Support for content types
Multipart message
A MIME multipart message contains a boundary in the "Content-Type: " header; this boundary, is
placed between the parts, and at the beginning and end of the body of the message

Content-Type: multipart/mixed; boundary="frontier"

This is a message with multiple parts in MIME format.

--frontier

Content-Type: text/plain

122

This is the body of the message.

--frontier

Content-Type: application/octet-stream

Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUg

Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg=

--frontier–

o Each part consists of its own content header (zero or more Content- header fields) and a body.
oThe sending client must choose a boundary string that doesn't clash with the body text. Typically this

is done by inserting a long random string.

Support for content types

Multipart message

The content type multipart/x-mixed-replace developed as part of a technology to emulate server
push and streaming over HTTP.
All parts of a mixed-replace message have the same semantic meaning. However, each part invalidates
- "replaces" - the previous parts as soon as it is received completely.
Clients should process the individual parts as soon as they arrive and should not wait for the whole
message to finish.

123

Content-Type: multipart/x-mixed-replaced; boundary=ThisRandomString

Connection: close

--ThisRandomString

Content-Type: image/gif

…

--ThisRandomString

Content-Type: image/gif

…

Caching
� Browser-side
� Proxy-side
� Server-side

HTTP1.1 provides a mechanism for enforcing caching rules based on the Cache-
Content header
� public setting authorizes both shared and user-localized caching
� private setting indicates that the response is directed to a single user and should not

124

� private setting indicates that the response is directed to a single user and should not
be stored in a shared cache (e.g., a secure request about their private accounts)
� no-cache setting indicates that neither browser nor proxies are allowed to cache, but
there are options

HTTP1.0 browsers and proxies are not guarantee to obey such instructions

Header with GET
If-Modified-Since: (If-Unmodied-Since)
304 Not Modified or the body

Security

� authentication vs
� authorization

Built-in support for basic authentication, where user credentials (userid and password)
are transmitted via the Authorization header as a single encoded (not encrypted) string
Safe only if performed over a secure connection (e.g., https)

125

Many web applications implement their own authentication and authorization schemes

401
After attempts 403

Session support
Server applications can use the Set-Cookie header

An attribute-value pair <name> = <value> is sent back by the browser in qualifying

Set-Cookie: <name>=<value>

[; Comment=<value>] [; Max-Age=<value>]

[; Expires=<date>] [; Path =<path>]

[; Domain=<domain name>] [; Secure]

[; Version=<version>]

126

An attribute-value pair <name> = <value> is sent back by the browser in qualifying
subsequent requests

Max-Age the lifetime of the cookie in secs (Expires)
The Path and Domain attributes delimit which request qualify, by specifying the server
domains and URL paths to which this cookie applies

Domains: suffixes of the originating server’s host name
Path attribute default to the path of the URL associated with the server application

For subsequent requests directed at URLs where the domain and path match, the browser
must include a Cookie header with the appropriate attribute-value pair
Secure tells the browser to submit corresponding Cookie headers only over secure
connections -- Version

Session support

Set-Cookie2: <name>=<value>

…

[; Expires=<date>] [; Path =<path>]

[; Domain=<domain name>] [; Port=<portlist>]

…

127

Persistent connection

HTTP/1.1 connections are persistent, except when explicitly
closed by a participating program via the Connection: close
header

Pipelining: browsers can queue requests messages without
waiting for resources

128

waiting for resources
Servers are responsible for submitting responses to browsers in
the order of their arrival

HTTP

� using TCP increase reliability and also cost

� HTTP uses TCP

� one connection per request-reply

� HTTP 1.1 uses "persistent connection"

� multiple request-reply

closed by the server or client at any time� closed by the server or client at any time

� closed by the server after timeout on idle time

� Marshal messages into ASCII text strings

� resources are tagged with MIME (Multipurpose Internet Mail
Extensions) types: test/plain, image/gif...

� content-encoding specifies compression alg

HTTP methods

� GET: return the file, results of a cgi program, …

� HEAD: same as GET, but no data returned, modification
time, size are returned

� POST: transmit data from client to the program at url

� PUT: store (replace) data at url� PUT: store (replace) data at url

� DELETE: delete resource at url

� OPTIONS: server provides a list of valid methods

� TRACE: server sends back the request

Questions?

131

