
1

Distributed Systems, Spring 2004
1

Synchronization

Distributed Systems, Spring 2004
2

Discuss how processes can synchronize

For example, agree on the ordering of events, or avoid
accessing a shared resource simultaneously

Distributed Systems, Spring 2004
3

Clock Synchronization

Logical Clocks

Global State

Election Algorithms

Mutual Exclusion

Distributed Transactions

Topics to be covered

Distributed Systems, Spring 2004
4

Model

Assume we have N processes pi (i = 1, 2, …, N)

Each process

executes on a single processor

has a state that changes as it executes

executes a series of actions (either a message send or receive
operation or an internal operation of the process (e.g., update of one of
its variables)

Event: the occurrence of a single action

Events within a single process pi can be placed in a single total order →i

Each process is characterized by its history, a series of events that occur
at each process.

hi = <ei
0, ei

1, ei
2, …>

si
0: initial state

Distributed Systems, Spring 2004
5

Clock Synchronization
Physical Clocks

Cristian’s Algorithm
The Berkeley Algorithm

Distributed Systems, Spring 2004
6

When each machine has its own clock, an event that occurred
after another event may nevertheless be assigned an earlier
time.

Clock Synchronization

The Problem:

In a centralized system, time is unambiguous.

In a distributed system, achieving agreement on time is not trivial

Example (make)

2

Distributed Systems, Spring 2004
7

Physical Clocks

Computation of the mean solar day.

How time is actually measured: Astronomically
Transit of the sun: sun reaching its highest apparent point in the sky
Solar day: interval between two consecutive sun transits. Solar second 1/864000 of a solar
day
However, the period of the earth’s rotation is not constant, earth is slowing down -> mean solar
second

Distributed Systems, Spring 2004
8

Physical Clocks

How time is actually measured: Atomic Time: Counting transitions of
the cesium 133 atom

Based on the number of transitions per second of the cesium 133 atom (1 sec =
time it takes to make 9,192,631,770 transitions

At present, the real time is taken as the average of some 50 cesium-clocks around
the world

International Atomic Time

Introduces a leap second from time to time to compensate that days are getting
longer

Universal Coordinated Time (UTC)

Distributed Systems, Spring 2004
9

TAI seconds are of constant length, unlike solar seconds.

Physical Clocks

UTC = TAI with leap seconds

Introduce leap seconds whenever the discrepancy grows to 800 msec

UTC is broadcasted through short wave radio (WWV receivers) and satellite.

Satellites can give an accuracy of about ±0.5 ms
Does this solve all our problems?

Distributed Systems, Spring 2004
10

Physical Clocks

Is it possible to synchronize all clocks in a distributed system?

Each computer has a circuit for keeping track of time

clock – timer a quartz crystal, when kept under tension, quartz crystals
oscillate at a well-defined frequency

A counter & holding register: the counter is decremented by one at each
crystal oscillation, when it gets to zero, an interrupt (clock tick) the
counter is reloaded from the register

Can be programmed to give an interrupt say 60 times a sec

(software) clock: each interrupt adds 1 to the time stored in memory

With a single computer and a single clock, does not matter if the clock is
off by a small amount – all processes use the same clock

Clock skew: difference in time values between the software clocks

Distributed Systems, Spring 2004
11

Clock Synchronization Algorithms

Each machine has a timer that causes an interrupt H times per second

A (software) clock keeps track of the number of ticks (interrupts) since some
agreed-upon time in the past.

When the timer goes off, the interrupt handler adds 1 to the software clock

Let C be the value of the clock. Specifically, if UTC time is t, let the value of
the clock on machine p be Cp(t)

Perfect world, Cp(t) = t for all p and t, dC/dt = 1 (dC = Cp(t’) – Cp(t), dt = t’ – t)

Theoretically, a timer with H = 60, generate 216,000 (= 24*60*60) ticks per
hour

Real world, relative error 10-5, 215,998 to 216,002 ticks per hour

Maximum drift rate p:

1 – p ≤ dC/dt ≤ 1 + p

Distributed Systems, Spring 2004
12

Clock Synchronization Algorithms

The relation between clock time and UTC when clocks tick at different rates.

If two clocks, drift in the opposite direction, max 2p ∆t apart

No clocks differ more than δ: resynchronize (in software) at least every
δ/2p (must have 2 p dt < δ)

1 - p ≤ dC/dt ≤ 1 + p

3

Distributed Systems, Spring 2004
13

Physical Clocks

How to synchronize clocks

Internal synchronization: Synchronize them with each other

For a synchronization bound D > 0, |Ci(t) – Cj(t)| < D

External Synchronization: synchronize them with real world clocks, say
a source S of UTC time.

For a synchronization bound D > 0, |S(t) – Ci(t)| < D

If a system is externally synchronized with bound D then it is
internally synchronized with bound 2D

Distributed Systems, Spring 2004
14

Clock Synchronization Algorithms
Cristian’s Algorithm

There is a time server (WWV receiver)

Goal: have all other machines synchronized with it (external synchronization)

1. Periodically with period T < δ/2p, each machine asks the time server for
the current time

2. The server responds asap with the current time, CUTC

3. The client set its clock to CUTC

Distributed Systems, Spring 2004
15

Clock Synchronization Algorithms

Problems

1. Time must never run backwards, why? (Monotonicity condition)

t’ > t ⇒ Cp(t’) > Cp(t)

Introduce changes gradually

How,

Say a clock generates 100 interrupts per sec, an interrupt adds 10msec

Advance the clock: 11 msec

Slow down the clock: 9 msec

Distributed Systems, Spring 2004
16

Clock Synchronization Algorithms
Problems

2. It takes a nonzero amount of time for the time server’s reply gets
back to the sender

Measure it, best estimate (T1 – T0)/2

If the interrupt handling time, I, is known, (T1 – T0 – I)/2

Make a series of
measurements

Any measurements in which
T1 – T0 exceeds some
threshold value are
discarded

Average the estimations, or
the faster messages are the
most accurate

Distributed Systems, Spring 2004
17

Clock Synchronization Algorithms

If the system is synchronous, and we know max and min
(round trip) delay,

Let u = max - min

Then, best estimate (max + min) / 2

Skew at most u/2

Distributed Systems, Spring 2004
18

Clock Synchronization Algorithms
The Berkeley Algorithm

(internal synchronization)

1. A time deamon periodically polls every machine to ask the time

2. Each machine replies

3. Based on the answers, computes an average. Informs every machine to
advance or slow down its clock

The time daemon asks
all the other machines
for their clock values

The machines
answer

The time daemon tells
everyone how to adjust
their clock

4

Distributed Systems, Spring 2004
19

Clock Synchronization Algorithms

A Decentralized Algorithm

Divide time into fixed-length (R) resynchronization intervals

i-th interval: [T0 + iR, T0 + (i + 1)R), T0 some agreed-upon time instance in the
past

Each machine:

1. At the beginning of each interval, broadcasts its current time (note, these
broadcasts will not happen precisely simultaneously, why?)

2. Starts collecting all other broadcasts that arrive during an interval S

3. Runs an algorithm (e.g., average; discard m highest and m lower values and
average the rest) to compute a new time from them

Distributed Systems, Spring 2004
20

Use of Synchronized Clocks

New algorithms that utilize synchronized clocks

Example: Enforcing at-most-once message delivery, even in the face of crashes

Traditional approach: each message bears a unique message number (the server store
all message number it has seen. Problem, if the server crashes and reboots, also how
long to keep message numbers)

Modified approach: each message carries a connection identifier (chosen by the server)
+ a timestamp (its local time)

For each connection (i.e., sending process), the server records the most recent
timestamp (that is, the largest timestamp) it has seen

Any incoming message for a connection with a timestamp that is lower than the stored
timestamp is rejected as duplicate

Distributed Systems, Spring 2004
21

Use of Synchronized Clocks

To determine, when to remove a timestamp, each server maintains a variable G

G = CurrentTime – MaxLifeTime – MaxClockSkew

MaxLifeTime (how long a message can live)

MaxClockSkew (synchronization bound among clocks)

Write G to disk every ∆t

During recovery,

Reload G, increment it by ∆t

Distributed Systems, Spring 2004
22

Logical Clocks
Lamport Timestamps

Vector Timestamps

Distributed Systems, Spring 2004
23

Lamport Timestamps
Lamport Timestamps

It suffices that two processes agree on the order in which events
occur (no need to synchronize their clocks)

The happens-before relation

a happens-before b, a → b: means that each process agrees that first
event a occurs, then afterwards event b occurs

Two cases, where happens-before can be directly observed:

1. If ∃ process pi: a →i b, then a → b (that is if a and b are events in the
same process, and a occurs before b then a → b is true)

2. If a is the event of a message being sent by one process and b is the
event of the message being received by another process, then a → b is
true. (For any message m, send(m) → receive(m))

Transitive relation, If a → b and b → c, then a → c.

Distributed Systems, Spring 2004
24

Lamport Timestamps

If e and e’ are events, and if e → e’, then we can find a series of events e1,
e2, …, en occurring at one or more processes such that e1 = e and e’ = en and
for i = 1, 2, …, n, either case 1 or case 2 applies between ei and ei+1 (that is,
either they occur in succession in the same process, or there is a message m
such that ei = send(m) and ei+1 = receive(m)

The sequence of events e1, e2, …, en may not be unique.

time
Case 1: a → b, c → d, e → f Case 2: b → c, d → f. What about a and e?

Two events, a and b, such that neither a → b nor b → a holds are said to be
concurrent (happens-before is a partial order)

p2

a b

c d

p1

p3
e f

Example:

5

Distributed Systems, Spring 2004
25

Goal: For every event a, assign a time value L (Lamport timestamp)
such that all processes agree on it

Property of L: If a → b, then L(a) < L(b)

L must always go forward (increasing)

Algorithms for assigning timestamps to events

Each process pi maintains its own logical clock Li.

A Lamport logical clock is a monotonically increasing counter used to apply
Lamport timestamps to events. (we denote them Li(e) or L(e)).

1. Li is incremented before each event is issued: Li = Li + 1

2.

(a) When a process sends a message m, it also sends a timestamp t = Li

(b) When a message (m, t) arrives at the receiver process pj, then pj sets
Lj = max(Lj, t) and before timestamping the event receive(m) applies
rule 1

Lamport Timestamps

Distributed Systems, Spring 2004
26

Lamport Timestamps

p2

a b

c d

p1

p3
e f

Example
1 2

3 4

1 5

It can be shown that:

For any two events a and b, a → b ⇒ L(a) < L(b)

The converse in not true. For instance in the example, L(b) > L(e) but b
and e are concurrent

Distributed Systems, Spring 2004
27

Lamport Timestamps

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

61 X

X 70

X 86

No need to
increment by 1, but
any positive number

X

X

X

69

77

85

Distributed Systems, Spring 2004
28

Lamport Timestamps

Totally ordered logical clocks

An additional requirement, no two events have numerically identical
Lamport timestamps Attach the number (identifier) of the process in
which the event occurs at the timestamp.

For instance, the low-order end of time separated by a decimal point e.g.,
40.1 or 40.2

In general: Li(e).i

Thus for all distinct events, a and b, L(a) ≠ L(b)

Distributed Systems, Spring 2004
29

Totally-Ordered Multicast

Example: a database replicated across several sites

Issue: update operations must be performed in the same order
at each copy, so that all copies are exactly the same
Example:

Account = 1000, p1 adds 100, p2 increments by 1%

Replica1 1111 Replica2 1110

Distributed Systems, Spring 2004
30

Totally-Ordered Multicast

Requirement of a totally-ordered multicast: a multicast operation by which all
messages are delivered in the same order to each receiver

Assumption: reliable (no message lost) FIFO (messages from the same sender are
received in the order they are sent) delivery of messages

When a message is multicast, it is conceptually also send to its sender

Each message is timestamped with the current (logical) time of its sender

Process pi sends timestamped messages msgi, to all others. (puts message in a local
queue queuei)

Process pj receives msgi

Puts it in a local queue queuej ordered according to its timestamp

Multicasts an acknowledgment (note, the timestamp of the received message is
lower than the timestamp of the acknowledgement)

A process pj can deliver a queued message msgi to an application, only when:

(1) the message is at the head of the queuej

(2) For each process pk there is a message msgk in queuej with a larger timestamp
(i.e., the message has been acknowledged by each other process)

6

Distributed Systems, Spring 2004
31

Vector Clocks
Vector Clocks

Goal: overcome the fact that we cannot conclude the order of events
from the values of their timestamps, that is, from L(a) < L(b), we
cannot conclude that a → b

A vector clock for a system of N processes is an array of N integers.

Each process keeps each own vector clock Vi which it uses to
timestamp local events. Processes add vector timestamps on the
messages they send.
1. Initially, Vi[j] = 0, for i, j = 1, 2, …, n

2. Just before pi timestamps an event, it sets Vi[i] = Vi[i] + 1

3. pi includes the value t = Vi in every message it sends (the whole vector)

4. When pi receives a message with timestamp t, it sets Vi[j] = max(Vi[j],
t[j]) for j = 1, 2, n (that is, it takes, the component-wise maximum of
two vector timestamps, known as a merge operation)

For a vector clock Vi, Vi[i] is the number of events that pi has timestamped
and Vi[j] for i ≠ j is the number of events that have occurred at pj that pi has
potentially been affected by

Distributed Systems, Spring 2004
32

Vector Clocks

p2

a b

c d

p1

p3
e f

Example

(1, 0, 0) (2, 0, 0)

(2, 1, 0 (2, 2, 0)

(0, 0, 1) (2,2,2)

How to compare vector timestamps:

V = V’ iff V[j] = V’[j] for j = 1, 2, …, n

V ≤ V’ iff V[j] ≤ V’[j] for j = 1, 2, …, n

V < V’ iff V[j] ≤ V’[j] and V ≠ V’

It can be shown that:

For any two events a and b, a → b ⇒ L(a) < L(b)

The converse also holds, L(a) < L(b) ⇒ a → b

For instance in the example, b and e are concurrent which can be also
concluded by the fact that neither V(e) ≤ V(b) nor V(b) ≤ V(e)

Distributed Systems, Spring 2004
33

Clock Synchronization

Logical Clocks

Global State

Election Algorithms

Mutual Exclusion

Distributed Transactions

Topics to be covered

Distributed Systems, Spring 2004
34

Global State

Distributed Systems, Spring 2004
35

Global State

How to ascertain a global state in the absence of global time?

Global state = Local state of each process +

messages currently in transit

If all processes had perfectly synchronized clocks, then
agree on a time that each process would record each state,
but …

Distributed Systems, Spring 2004
36

Global State
Model

Assume we have N processes pi (i = 1, 2, …, N)

Characterize each process by its history, a series of events that occur at
each process.

hi = <ei
0, ei

1, ei
2, …>

Finite prefix of the history

hi
k = < ei

0, ei
1, …, ei

k>

event: an internal action of the process (e.g., update of one of its
variables) or sending/receipt of a message

state of a process pi, si
k, the state of process immediately after the kth

event occurred

si
0: initial state

7

Distributed Systems, Spring 2004
37

Global State

Global history

H = h0 ∪ h1 ∪ .. . ∪ hN-1

Global State (or distributed snapshot)

Which states are meaningful, which combination of process states could have
occurred at the same time?

Corresponds to initial prefixes of the individual process histories

A cut of the system’s execution is a subset of its global state that is a union
of prefixes of process histories

C = h0
c1 ∪ h1

c2 ∪.. ∪ hN-1
cn

p1

p2
time

e1
0 e1

3e1
1 e1

2

e2
0 e2

1 e2
2

cuts

Distributed Systems, Spring 2004
38

Global State

e2
1 e2

2

P1

P2
time

e1
0 e1

3e1
1 e1

2

e2
0

Are all cuts acceptable?

Say e1
1 is the sending of a message and e2

1 is the receipt

The actual execution never was in a global state corresponding to the
process states at that frontier, examine the relation about events

A cut C is consistent if, for each event it contains, it also contains all the
events that happened-before that event,

For all events e ∈ C, if f → e, then f ∈ C

Distributed Systems, Spring 2004
39

Global State

More examples

Distributed Systems, Spring 2004
40

Global State

A consistent global state is one that corresponds to a consistent cut

The execution of a distributed system as a transition between global states
of the system

S0 → S1 → S2 → …

In each transition, precisely one event occurs at some single process of the
system

A run is a total ordering of all events in a global history that is consistent
with each local history’s ordering

A consistent run or linearization is an ordering of the events in a global
history that is consistent with the happened-before relation on H

Not all runs pass through consistent global states, but all linearizations do

A state S’ is reachable from state S if there is a linearization that passes
through S and S’

Distributed Systems, Spring 2004
41

Global State
Global State Predicates, stability, safety and liveness

Testing for properties amounts for evaluating a global state predicate

A global state predicate is a function that maps from the set of global
states of processes in the system to {True, False}

Stable properties: once True at a state, remain True for all future states
reachable from that state

Two interesting properties:

Suppose a is an undesirable property (e.g., deadlock)

Safety with respect to α is the assertion that α evaluates to False for all
states S reachable from S0.

Conversely, let β be a desirable property (e.g., reaching termination)

Liveness with respect to β is the property that, for any linearization L
starting in state S0, β evaluates to True for some state SL reachable
from S0

Distributed Systems, Spring 2004
42

Global State

The Chandy and Lamport Snapshot Algorithm

Goal: record a set of process and channel states

If a message has been sent by a process P but not received by a process Q,
we consider it part of the channel between them

Assumptions:

• Neither channels nor processes fail

• Reliable communication, any message sent is received exactly once

• Unidirectional channels, FIFO-ordered message delivery

• There is a path between any two processes

• The processes may continue their execution and send and receive messages
while the snapshot algorithm takes place

8

Distributed Systems, Spring 2004
43

Global State
The Chandy and Lamport Snapshot Algorithm

Any process, say P, initiates the algorithm:

P records its own state

P sends a marker along each of its outgoing channels

Process Q:

When Q receives a marker through incoming channel C

If it has not saved its local state,

Records it, starts recording all incoming messages

Sends a marker along each of its outgoing channels

Else,

Stops recording the state of channel C (state of C from R to Q:
Q records any message on C that arrived after Q recorded its state and
before the sender (R) recorded its own state)

Finishes when it has received and processed a marker along each of its
incoming channels

Distributed Systems, Spring 2004
44

Global State

Q receives marker for first time

Example

Channel C’

Distributed Systems, Spring 2004
45

Global State

Q records its local
state and sends
markers along each of
its outgoing edges

Q records all incoming
messages

Q finishes recording
the state of incoming
channel

Channel C

Example (continued)

Distributed Systems, Spring 2004
46

Global State

Note

Records a consistent state but one that may
never have occurred at the same time

Distributed Systems, Spring 2004
47

Global State

Termination of the snapshot algorithm

Proof
We assume that a process that has received a marker
records its state within a finite time and send
markers over each outgoing channel within a finite
time.

If there is a path of communication channels and
processes from pi to pj, then pj will record its state a
finite time after pi recorded its state

Since the graph is strongly connected, it follows that
all processes will record their states and the states of
their incoming channels a finite time after some
process initially records its state

Distributed Systems, Spring 2004
48

Global State

The algorithm selects a cut from the history of execution

We shall prove that this cut is consistent

Proof
Let ei and ej be events occurring at pi and pj respectively such that ei → ej

We need to show that if ej is in the cut then ei is also in the cut

For the purposes of contradiction, assume that ei is not in the cut, that is,
pi recorded its state before ei occurred

Let m1, m2, …, mk the sequence of messages that lead to ei → ej

By FIFO ordering, the marker from pi would have reached pj before these
messages, thus pj would have recorded its state before event ej

This contradicts our assumption that ej is in the cut.

9

Distributed Systems, Spring 2004
49

Global State

We shall prove a reachability relation between the observed global state and the
initial and final states when the algorithm runs

Let

Sinit: the global state immediately before the first process recorded its state

Sfinal: the global state when the snapshot algorithm terminates (immediately after
the last state recording action)

Ssnap the recorded global state

Sys = e0, e1, … a linearization of the system as it executed (actual execution)

We shall show that there is a permutation of Sys, Sys’ = e’0, e’1, e’2, … such that all
three states, Sinit, Ssnap and Sfinal occur in Sys’

Distributed Systems, Spring 2004
50

Global State
Proof.

Categorize all events in Sys as pre-snap and post-snap events

A pre-snap event at process pi is one that occurred at pi before pi recorded its
state. All other post-snap.

(Note a post-snap event may occur before a pre-snap event in Sys, if the two
events belong to different processes)

Suppose ej is a post-snap event at one process and ej+1 is a pre-snap event at a
different process:

It cannot be that ej → ej+1 (why?)

Thus, we can swap the two events without violating the happened-before relation

We continue swapping until all pre-snap events e’0, e’1, e’2, …. e’R-1 are ordered prior
to all post-snap events e’R, e’R+1, e’R+2, …

Ssnap = e’0, e’1, e’2, …. e’R-1

Sinit Sfinal

actual execution (Sys)

Ssnap

Distributed Systems, Spring 2004
51

Global State
Example:

Take a snapshot for detecting termination of a computation

How? Use the snapshot algorithm

When Q receives the marker for
the first time, considers the
process that sent that marker as
its predecessor

When Q completes sends its
predecessor a DONE message

When the initiator of the
distributed snapshot receives a
DONE from all its successors,
the snapshot has been completely
taken

Problem: incoming messages
We need a snapshot in which all
channels are empty

Sends a DONE or a
CONTINUE

When it sends a DONE?

All of Q’s successors have
returned a DONE message

Q has not received any
message between the point it
recorded its state, and the
point it had received the
marker along each of its
incoming channels

If the initiator receives all
DONE, concludes that the
termination has completed

Else, initiates a new round
Distributed Systems, Spring 2004

52

Clock Synchronization

Logical Clocks

Global State

Election Algorithms

Mutual Exclusion

Distributed Transactions

Topics to be covered

Distributed Systems, Spring 2004
53

Election Algorithms

The Bully Algorithm
A Ring Algorithm

Distributed Systems, Spring 2004
54

Election Algorithms

Election algorithm: an algorithm for choosing a
unique process to play a particular role, i.e.,
coordinator

All processes must agree on the choice

10

Distributed Systems, Spring 2004
55

The Bully Election Algorithm

1. P sends an ELECTION message to all processes with higher
numbers

2. If no one responds, P wins the election and becomes the
coordinator

3. If one of the higher-ups answers, it takes over.

Assumes:

Reliable message delivery, but processes may crash

That the system is synchronous (assumes timeouts to detect a
process failure)

Each process knows which processes have higher identifiers and
can communicate with them

Distributed Systems, Spring 2004
56

The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

The Bully Election Algorithm

Example

Distributed Systems, Spring 2004
57

The Bully Election Algorithm

• Process 6 tells 5 to stop
• Process 6 wins and tells everyone

Example (continued)

When 7 comes back, it holds an election

Distributed Systems, Spring 2004
58

The Ring Election Algorithm

1. Any site P may initiate the procedure.

2. Each site:

Sends an ELECTION message to its successor, adds
its number in the list

If the successor is down, the sender skips over the
successor and goes to the next member along the ring

3. When the message arrives at the initiating site P (how is
this detected?) P circulates a COORDINATOR message
with the higher number in the list as the coordinator

Assumption: each site knows its successor in the ring

Distributed Systems, Spring 2004
59

The Ring Election Algorithm

Example

Two simultaneous elections

Distributed Systems, Spring 2004
60

Mutual Exclusion

A Centralized Algorithm
A Distributed Algorithm
A Token-Ring Algorithm

11

Distributed Systems, Spring 2004
61

Mutual Exclusion

To read or update shared data structures, enter a
critical region (CR) to achieve mutual exclusion

In centralized systems: semaphores, monitors, etc

Distributed Systems, Spring 2004
62

Mutual Exclusion

Essential requirements for mutual exclusion:

Safety: At most one process may execute in the CR at a time

Liveness: Requests to enter and exit the CR eventually succeed

Liveness implies freedom of deadlocks and starvation (indefinite
postponement of entry for a process that has requested it)

Absence of starvation is a fairness condition.

Another fairness conditions: order in which process enter the CR

The order that process enter the CR follows their requests to enter the
CR:

If one request to enter the CR happened-before another, then
entry to the CR is granted in that order

Distributed Systems, Spring 2004
63

A Centralized Mutual Exclusion Algorithm

Select one process as the coordinator

To enter a CR, sent a <request> message to the coordinator

If no other process in the CR, the coordinator sends a <grant>
message

Else, denies permission (e.g., does not reply and thus blocks the
requesting process, or send a deny message)

Upon exiting a CR, send a <release> message to the coordinator.
The coordinator grants access to another process (e.g., takes the
first item of the queue and sends a grant message)

Distributed Systems, Spring 2004
64

A Centralized Mutual Exclusion Algorithm

Process 1 asks the
coordinator for
permission to enter
a critical region.
Permission is
granted

Process 2 then asks
permission to enter the
same critical region. The
coordinator does not reply.

When process 1
exits the critical
region, it tells the
coordinator, when
then replies to 2

Example

Distributed Systems, Spring 2004
65

A Centralized Mutual Exclusion Algorithm

Correct (safety): Guarantees mutual exclusion?

Fair: No starvation? Order?

Easy to implement

But: the coordinator is a single point of failure & a performance
bottleneck/no way to distinguish a dead coordinator from
“permission denied”

Distributed Systems, Spring 2004
66

A Decentralized Mutual Exclusion Algorithm

Ricart and Agrawala’s algorithm

Requires that there be a total order of all events in the system

(this can be achieved by using for example the Lamport’s
algorithm for providing timestamps)

Assumes reliable sending of messages (i.e., every message is
acknowledge)

12

Distributed Systems, Spring 2004
67

A Decentralized Mutual Exclusion Algorithm
When a process wants to enter the CR,

builds a <request> message M = (CR-id, process-number, timestamp)

sends the message to all other processes (including itself)

Upon receipt of a <request> message M

i. If the receiver is not in the CR and does not want to enter the CR,
replies <OK>

ii. If the receiver is in the CR, it does nor reply, queues M

iii. Else (the receiver is not in the CR, but wants to enter the CR),

Compares the timestamp with the timestamp of its own request,

if lower, replies <OK>, else does not reply, queues M

Waits till it receives OK from all processes

Upon exit from a CR,

sends OK to all processes in its queue
deletes them from the queue

Distributed Systems, Spring 2004
68

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the

critical region.

A Distributed Mutual Exclusion Algorithm

Example

Distributed Systems, Spring 2004
69

A Decentralized Mutual Exclusion Algorithm

Correct: guarantees mutual exclusion

No deadlock or starvation

However, worst than the centralized solution:

Number of messages: 2(n-1)

N points of failures! If a process fails, all others are blocked

Solution?

Each process must maintain a list with all other processes

Load balancing?

Slight improvement: Enter the CR, when granted permission from the
majority (to work, a process after granting permission to a process, cannot
grant permission to another one)

Distributed Systems, Spring 2004
70

a) An unordered group of processes on a network.
b) A logical ring constructed in software.

A Token-Ring Mutual Exclusion Algorithm

Construct a logical ring in which each process is assigned a position in the
ring.

Each process knows who is next.

Distributed Systems, Spring 2004
71

A Token-Ring Mutual Exclusion Algorithm

When the ring is initialized, process 0 is given a token.

The token circulates the ring

When a process k acquires the token:

If it wants to enter the CR,

it enters the CR, does all the work, leaves the region,

passes the ring to k+1

Else,

it just passes the ring to k+1

Distributed Systems, Spring 2004
72

A Token-Ring Mutual Exclusion Algorithm

Correctness (safety)?

Starvation?

Problems:

Lost token

Process crashes: require acknowledging the receipt of a token

13

Distributed Systems, Spring 2004
73

Lost token, process
crash0 to n – 11 to ∞Token ring

Crash of any process2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

Problems
Client delay before
entry (in message

times)

Messages per
entry/exitAlgorithm

Comparison

Messages per entry/exit determine the bandwidth consumed

System throughput (the rate at which the collection of
processes as a whole can access the critical region).

It is based on the synchronization delay between one process
exiting the critical region and the next process entering it (not
shown in the Table above)

Distributed Systems, Spring 2004
74

Distributed Transactions

The Transaction Model
Classification of Transactions

Implementation
Concurrency Control

Distributed Systems, Spring 2004
75

The Transaction Model

Updating a master tape is fault tolerant.

Distributed Systems, Spring 2004
76

Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

The Transaction Model

The ACID properties

Distributed Systems, Spring 2004
77

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

The Transaction Model

Distributed Systems, Spring 2004
78

Classification of Transactions

14

Distributed Systems, Spring 2004
79

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0

and appended block 3
c) After committing

Implementation

Distributed Systems, Spring 2004
80

a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

Implementation

Distributed Systems, Spring 2004
81

Concurrency Control

General organization of managers for handling transactions.

Distributed Systems, Spring 2004
82

General organization of managers for
handling distributed transactions.

Concurrency Control

Distributed Systems, Spring 2004
83

a) – c) Three transactions T1, T2, and T3
d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

Concurrency Control

Distributed Systems, Spring 2004
84

Two-phase locking.

Concurrency Control

15

Distributed Systems, Spring 2004
85

Strict two-phase locking.

Concurrency Control

Distributed Systems, Spring 2004
86

Concurrency control using timestamps.

Concurrency Control

