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Naming

Issues

+ Names are used to uniquely identify resources/services.

* Name resolution: process to determine the actual entity
that a name refers to.

+ Indistributed settings, the naming system is often provided
by a number of sites.
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Naming

Name: strings of bits of characters used to denote an entity

What is an entity in a distributed system? Resources (hosts,
printers, etc) processes, users, newsgroup, web pages, network connections,
etc)

To operate on an entity, we need fo access it at an access point.
Access points are entities that are named by means of an address.
Address: the name of an access point

= An entity can offer more than one access points.

= An entity may change its access point.

Why not use the address of an entity as its name?
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Naming

= A location-independent name for an entity £, is independent from
the addresses of the access points of £

= Machine readable: memory addresses: 32/64 bit-string, 48bits
for Ethernet addresses) vs

= User-friendly names or human-friendly names (in Unix each file
can have up to 255 bytes name).

= Identifiers: special type of name with the following properties
= an id refers to at most one entity
= each entity is referred to by at most one id

= an id always refers to the same entity (i.e., it is never
reused)
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Identifiers

Pure name: A name that has no meaning at all; it is just a
random string. Pure names can be used for comparison only.

Observation: An identifier need not necessarily be a pure name,
i.e., it may have content.

Question: Can the content of an identifier ever change?

A name is resolved when it is translated into data about the
named resource

Binding: the association between a name and the attributes of a

resources, usually its address
Unbound names (names that do not correspond to any resource)
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Name Servers

A name service stores a collection of one or more naming
contexts (binding between names of resources and attributes of
resources)

Should support:
Name resolution: lookup attributes from a given name
Also, create new bindings, deleting bindings etc
Requirements:
= Scale (number of names and administrartive domains)
= A long lifetime
= High availability

= Fault isolation
= Tolerance of mistrust

Distributed Systems, Spring 2004

Name Spaces

Names organized into a name space

A name space a collection of valid names recognized by a particular service
Names may have an internal structure that represents their position if a
hierarchical name space

Main advantages:

Each part of a name is resolved relative to a separate context

Potentially infinite

Different contexts managed by different entities
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Name Spaces

A (hierarchical) name space can be represented as a labeled directed graph (naming graph)
* a /eaf node represents a (named) entity
+ a directory node refers fo other nodes: stores a (directory) table of (edge
label, node identifier) pairs.

Root node
Data stored in n1 o e
n2: “elke" heme L keys
Internal node A3 " - R )
f——
Directory node: stores | M4: “steen’ | w5 "-'hO:'-’e.'sneen-’ke-,'s"
directory table - p
elke, steen
Ad bl
2 keys
2ol 4 Leaf node

Leaf node
[~ gy Stores information about the entity (eg,
Directory node P AT address, or even the entity itself)

“fhomessteen/mbox”

= Each node in a naming graph is consider as an entity, it has an associated id
Path name: sequence of labels

« Absolute (first node in the path is the root) n0:<home, steen, mbox>
« Relative (otherwise)
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Diata stored in n1 nEl.

n2: “elke” home ke

n3: “max" & oys”

nd: “steen | : “Mhomelsteen/keys"

elke _— steen
L4 Y <
o’ n3) ndl keys
Leaf node

twmnire > 4 mbox

Directory node “ihomelsteen/mbox™

= Global vs local name

Global name denotes the same entity (i.e., always interpreted with respect to the
same directory node)

Local name: its interpretation depends on where the name is being used (context)
= Close to what is implemented in many file systems
= More than one paths to a node

= Naming graph: tree (hierarchical), more than one roots, DAG
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Name Spaces

We can easily store all kinds of attributes in a node,
describing aspects of the entity the node represents:

+ Type of the entity

* An identifier for that entity

* Address of the entity's location
* Nicknames

Directory nodes can also have attributes, besides just

storing a directory table with (edge /abel, node identifier)
pairs.
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Name Spaces
UNIX File Systems

Directory node: file directory

Leaf node: file

Root node (single): root directory

Implemented as a logical disk of contiguous series of blocks

Super-biock File data blocks
v
4 11 | -
Baok black Index nodes Dis block

Boot block: used to load the OS
Super-block: contains information about the whole file system

i-nodes: contains information on where the data of its associated file can be found on
disk; referred fo by an index number (index no O represents the root directory)

Directories implemented as files; Root directory contains a mapping between file names
and index numbers of i-nodes

Index of an i-node: id of a node in the naming graph
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Name Resolution
Name resolution: given a path name: lookup information stored in
the node referred to by that name
Exumple: n1:<steen, mbox>

Name lookup at each node (access the directory table of the
node) returns the id of a node where name resolution continues (in
UNIX?)

Data stored in a1 nEl.

n2: “elke” home iy

n3: “max” & . :

nd: “steen’ |n ") mometsteenkeys’

L - steen
L4 4 A
2 na ndl keys
Leaf node

twmnire > 4 mbox

Directory node “ihomelsteen/mbox™
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Name Resolution: Closure Mechanisms

Problem: Where and how to start name resolution

Closure mechanism: The mechanism to select the implicit context
from which fo start name resolution:

How to do it:
UNIX file system (example /home/steen/mbox)
Dial a phone number

Local names
Example environmental variables, e.g., HOME (refers to the user's
local directory)

Observation: A closure mechanism may also determine how name
resolution should proceed
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Linking
Alias: another name for the same entity
(eg, an environmental variable)

Solution 1

Allow multiple absolute paths to the same node (hard links)

In term of i-nodes?

Data stored in n1 nEl.
n2: “elke” home keys
n3: “max" & “Tkeys”
nd: “steen |n "5 | hometsteenikeys”
elke _— steen
L4 Y <
n2 n3 nd | keys
Leaf node
bwmnie b
Directory node ' b

“fhomelsteen/mbox™
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Linking
Solution 2
Allow a leaf node to contain an absolute path name (symbolic link)

In terms of i-nodes?

Data stored in n1 [no

n2 “elke” home _-——-. keys

n3: "max" ki .

nd: "steen” | :n1. ns) “keys"

elke . steen
AN
n2 n3 nd .
Leaf node ) . ! — Data stored in n&
. twrmire - miboi keys |'Mkeys’
Directory node ¥ ) J

Thomelsteen'keys”
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Merging Name Spaces

Merging Name Spaces Problem: We have different name spaces
that we wish to access from any given name space.

In general, if two name spaces exist NS1, NS2 - to mount a foreign entity in a
Distributed System, we require at least the following information:

1. Name the access protocol (resolved to the impl tation of a c ication
protocol)

2. Name the server (resolved to an address where the server can be reached)

3. Name the mounting point (resolved to a node id in the foreign name space, by
the foreign server)
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Merging Name Spaces

Solution 1: Introduce a haming scheme by which pathnames
of different namespaces are simply concatenated (URLs)

ftp://ftp.cs.vu.nl/pub/steen

- — ; S
’:;‘u";jc‘:f’ FTP Name of a (context)
server node in the name space

routed at the context
node mapped to the f1p
server
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Merging Name Spaces

Solution 2: Mounting

A directory node called a mount point stores the id of (or
all the necessary information for identifying and accessing)
a directory node from a foreign name space called mounting
point
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Merging Name Spaces

NFS: distributed file system that describes exactly how a client can access a
file stored on a (remote) NFS file server

Through a NFS URL file
nfs://flits.cs.vunl//homes/steen

protocol NFS file server

/remote: includes
mount points for
foreign name spaces (in
the form of NFS URLs)

remote/vu/mbox
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Merging Name Spaces

Solution 3: Add a new root node and makes the existing root nodes its
children (example DEC's Global Name Service (6NS))

mid —+home
nl —pvu et Problem: existing names
NSt vy NS2 need to be changed
r &
s mo home/steen ->
- o ARY /vu/home/steen
Solution:  New  root

“mi):frmibox”

“nll Mhormelsteenieys”

includes a mapping (old
roots, their new names).
(Implicitly) include the
identifier of the node
(old root) from where
resolution should start

/home/steen/keys->
n0:/home/steen/keys

Root node becomes a
bottleneck
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Merging Name Spaces
The Merging Name Spaces Problem

Solution 1: Introduce a naming scheme by which
pathnames of different name spaces are simply
concatenated (URLs).
Solution 2: Mounting

Solution 3: Add a new root node
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Name Space Implementation

Basic issue: Distribute the name resolution process as well as
name space management across multiple machines, by distributing
nodes of the naming graph.

Consider a hierarchical haming graph and distinguish three levels:

= Global level: Consists of the high-level directory nodes (root and its
children). Stability (rarely change) Main aspect is that these directory
nodes have to be jointly managed by different administrations

= Administrational level: Contains mid-level directory nodes that can
be grouped in such a way that each group can be assigned to a separate
administration.

= Managerial level: Consists of low-level directory nodes within a single
administration. Typically change regularly. For example, hosts in a local
area network. Managed by end users. Main issue is effectively mapping
directory nodes to local name servers.

Distributed Systems, Spring 2004




Name Space Implementation

Example: DNS name space.

a AT e Y e .
LASH el R ek g step o v
Beime LA Ak Tl By 4 ek I s LA
' A SR R A
e ¥
okt b ¥
Mana. ety

The name space is divided into non overlapping parts, called zones, each implemented
by a separate name server
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Name Space Implementation

Item Global Admini: ional | M
Geographical scale of network Worldwide Organization Department
Total number of nodes Few Many Vast numbers
Responsiveness to lookups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None
Is client-side caching applied? Yes Yes Sometimes

Availability & Performance per level

Performance (client-side cache + replication)
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Tterative Name Resolution
Issue: Name resolution when the name space is
distributed across multiple name servers
Assume: no replication or client-side caching
Each client has access to a local name resolver
Example
rooti<nl, vu, cs, ftp, pub, globe, index.txt>

Using URL notation
ftp://ftp.cs.vu.nl/pub/globe/index.txt
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Iterative Name Resolution
Method 1: Iterative Name Resolution
The name resolver hands over the complete name to the root server

The root server resolves the path name as far as it can and returns the result addrl
(address of the associated name server) to the client, then the client passes the
remaining path name server fo the addrl and so on

‘1 <nl,vu,cs. ftps - Roct
2 Fenb, wvucs g name server
al
3 =vucs fp> »  Marme server i
-« l
Chents | 4 fovus, <cs fips nlnode
vu
name r b}
resolver | 5 <csfips »  Mame server 1
- wun
B Hecs>, <Mpe u node |
s,
7. <ftp= > Mame server Y
‘8 - 1 ©5 node |
A
<nlvu.cs fip= w #enlvucs fip> Nodes are v ‘m’ 1
managed by

the same server

Note: the last resolution step (contacting the ftp server and asking it to transfer the indicated
file) is generally carried out as a separate process by the client (client asks to resolve the ftp)
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Recursive Name Resolution

Method 2: Recursive Name Resolution

Instead of returning each intermediate result back to the client's name resolver,
each name server passes the result to the next name server it finds

1. <nl,vu,cs ftp=

-« Root
8. #=nlvu,cs fip> y  name server -, 2. =vu,cs fip>
7. #ovu,cs fip> | Name server 4
nl node < >
Client's . | 3. <cs/ftp
name - y
resolver . #<cs fp> MName server &
v vu node 4, <ftp=
5, #<ftp> | Mame server &
<5 node

A
<l vu,cs fip= y #enlvu,cs fip>
= Puts a higher performance demand on each name server (higher level nodes: iterative)
= Caching results is more effective

= Communication costs may be reduced
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Implementation of Name Resolution: Caching

What can be cached (recursive name resolution):

Server for Should Passes to Receives Returns to
Looks up N
node resolve child and caches requester
cs <ftp> #<ftp> - - #<ftp>
vu <cs,ftp> #<cs> <ftp> #<ftp> #<cs>
#<cs, ftp>
nl <vu,cs,ftp> #<vu> <cs,ftp> #<cs> #<vu>
#<cs, ftp> #<vu,cs>
#<vu,cs,ftp>
root <nl,vu,cs,ftp> | #<nl> <vu,cs,ftp> | #<vu> #<nl>
#<vu,cs> #<nl,vu>
#<vu,cs,ftp> | #<nl,vu,cs>
#<nl,vu,cs,ftp>

Caching with iterative name resolution?

Implement alocal intermediate name server shared by all clients (besides caching,
only this server needs to know the root name server)
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Implementation of Name Resolution: Communication Cost

Recursive name rescluticn

R1
LY : Mame server
i nl node ¥
Pe " R2
Name server |
Chent 3 » i node ™
< 12
» MName server R2
Iterative name resclution csnode &
Long-distance communication
- »
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Scalability Issues

Size scalability: We need to ensure that servers can handle a
large number of requests per time unit

Solution: Assume (at least at global and administrational level)
that content of nodes hardly ever changes. In that case, we
can apply extensive replication by mapping nodes to multiple
servers, and start name resolution at the nearest server.
Observation: An important attribute of many nodes is the
address where the represented entity can be contacted.
Replicating nodes makes large-scale traditional hame servers
unsuitable for locating mobile entities.

Geographical scalability: We need to ensure that the name
resolution process scales across large geographical distances.

Problem: By mapping nodes to servers that may, in principle,
be located anywhere, we infroduce an implicit location
dependency in our naming scheme.

Solution: No general one available yet.
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The DNS Name Space

Internet Domain Name Server (DNS): the largest distributed name
service in use

Primarily used to lookup host addresses and mail servers
The DNS name space is hierarchically organized as a rooted tree

Path name root:<nl, vu, cs, flits> represented as flits.cs.vu.nl. (rightmost dot
indicates the root)

Name of the node: label of the incoming edge
Domain: subtree

Domain name: path name to its root node

Contents of a node: a collection of resource records
A domain may be implemented by several zones

The DNS database is distributed across a logical network of servers (each
primarily data for the local domain
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The DNS Name Space

The most important types of resource records forming the
contents of nodes in the DNS name space.

Type of | Associated

record entity Description
SOA Zone Holds information on the represented zone
A Host Contains an IP address of the host this node represents
MX Domain Refers to a mail server to handle mail addressed to this node
SRV Domain Refers to a server handling a specific service
NS Zone Refers to a name server that implements the represented zone
CNAME | Node Symbolic link with the primary name of the represented node
PTR Host Contains the canonical name of a host
HINFO Host Holds information on the host this node represents
TXT Any kind Contains any entity-specific information considered useful
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The DNS Name Space

Type of | Associate Lo
record d entity Description
SOA (start Holds information on the represented zone (such as an email
of Zone address of the system administrator, host name from where
authority) data on the node can be fetched, etc)
A Host Contains an IP address of the host this node represents
(address) (if several, an A record for each)
MX A symbolic link to a node representing a mail server
(mail Domain Example: the node representing the domain cs.vu.nl has an
exchange) MX record zephyr.cs.vu.nl
Contain the name of a server for a specific service
SRV Domain The service is identified by a name + name ofé protocol
Example: the web server of the cs.vu.nl domain named
http.tcp.cs.vu.nl refer to the actual server soling.cs.vu.nl
NS
Refers to a name server that implements the represented
(name Zone zone
server)
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The DNS Name Space

Aliases vs canonical names
Each host has a canonical or primary name

To implement an alias, a node stores a CNAME record with the canonical name
(symbolic link)

Type of | Associated P
record entity Description
CNAME Each host is assumed to have a canonical or primary name. An
(canonical alias is implemented by means of node storing a CNAME record
names) containing the canonical name of a host (symbolic link)
Inverse mapping of IP addresses to host names
PTR For instance, for host www.cs.vu.nl with IP 130.37.24.11 the
(pointer) Host DNS creates a node named 11.24.37.130.in-addr.arpa used to
P save the canonical name of the host (solings.cs.vu.ntl) in a PTR
record
HINFO Host Holds. information on .1he host this node represents (e.g.,
machine type, operating system)
TXT Any kind Contains any entity-specific information considered useful
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DNS Implementation

Gickal

e oo L
e T R R
Ll L g qees wp g sep 4w
e LA Ak Tl By 4 oy g otes ¥.ea
' A SR R A
pesa ¥ I
okt b ¥
Generally
formed by file ... getey
system; genal Zone i
formally, not " Rty
part of the
DNs

The name space is divided into non overlapping parts, called zones, each implemented
by a separate name server; almost always replicated

Updates by modifying the DNS database local fo the primary server
Secondary name servers through zone transfer
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An excerpt from the DNS database for the zone

cs.vunl. cs.vunl (zone and domain)
start.cs.vunl (name server for the zone)

ca.
cs.
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DNS Implementation

Record type

Record value |
2.7200,3600,2415200,66400)

DNS Implementation

Name Record type Record value
cs.vu.nl NS solo.cs.vu.nl
solo.cs.vu.nl A 130.37.21.1

Part of the description for the vu.n/domain which
contains the c¢s.vu.n/ domain.
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Similar to Yellow-Page look up.

The X.500 Name Space

Directory Service: special form of a naming service, lookup an entity based
on a description of properties (rather than name)

X.500 consists of a number of records (directory entries) <attribute, value>
Each attribute has a type, multiple-valued attributes

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization L Vrije Universiteit
OrganizationalUnit ou Math. & Comp. Sc.
CommonName CN | Main server
Mail_Servers - 130.37.24.6,

- 192.31.231,192.31.231.66

FTP_Server - 130.37.21.11
WWW_Server — 130.37.21.11

A simple example of a X.500 directory entry using X.500 naming conventions.
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The X.500 Name Space

The collection of all entries makes up the Directory Information Base (DIB)
Each record is uniquely named and can be looked up

A globally unique names: a sequence of naming attributes

Each naming attribute called RDN (Relative Distinguished Name).

Example: /C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server

Directory Information

Tree (DIT) TCENL

7,0 = Vrije Universiteit

A node is both a
directory and an N
X.500 record QU= Math. & Comp. S¢
T, CN = Main server

N

Host_Name = star’ . Host_Mame = zephyr
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The X.500 Name Space

Attribute Value Attribute Value
Country NL Country NL
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Organization Vrije Universiteit

OrganizationalUnit

Math. & Comp. Sc.

OrganizationalUnit

Math. & Comp.
Sc.

CommonName

Main server

CommonName

Main server

Host_Name

star

Host_Name

zephyr

Host_Address

192.31.231.42

Host_Address

192.31.231.66

Two directory entries having Host_Name as RDN.
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The X.500 Name Space
A node is both a directory and an X.500 record

Two different lookup operations
= read: returns a single record

= list: returns the names of all outgoing edges

Example:

list(/C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server)

read(/C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server)

X.500 Implementation

DIT is "partitioned” across several servers (termed Directory Service
Agents (DSA)- similar to zones in DNS)
Clients are represented by Directory User Agents (DUA): similar to a
name resolver
What is different between X.500-DNS?
= Provides facilities for querying a DIB, example
= answer = search("&(C=NL)(O=Vrije Universiteit)(OU=*)(CN=Main Server))
= Find all the "main servers” but not in a particular organizational unit
= An operation may be “"expensive" - the above will have to search all
entries for all departments (access many leaf nodes) and combine the
results..

LDAP (Lightweight Directory Access Protocol) a simplified protocol used
to accommodate X.500 directory services in the Internet
= Application-level protocol on top of TCP
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Naming versus Locating Entities
Problem: what happens and how are names resolved when
entities are mobile?
Example: move ftp.cs.uoi.gr to ftp.cs.unisa.edu.au
How is the change addressed? Create aliases!
H . [ 1. Record the address of the new machine in the DNS
LO CGT | ng MO b | Ie EHTITIZS database of cs.uoi.gr (two addresses pointing to the same
Difference from Naming E"di) h”'Ldt')'"T") hat if 1h .
. . ookup ok, but wha e server moves again?
Simple Solutions p ot : - moves ag
Home-Based Approach 2. Record the name of the new machine in the DNS database
om : PP of cs.uoi.gr (symbolic link)
Hierarchical Approach Lookup less efficient, updates ok
For highly mobile entities both solutions are problematic
(especially if there are multiple phases in the name
resolution/address determination).
The name is not allowed to change.
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Naming versus Locating Entities Naming versus Locating Entities
In (a) there is a single level mapping between names and addresses. Each time an entity
changes location, the mapping needs to change!
Location service: Solely aimed at providing the addresses of
Decouple naming from locating entities the current locations of entities.
Name | | Name Name | | Narne. Name ][ Hame [ Name. Mame Assumption: Entities are mobile, so that their current address
B - - —— — n — - may change frequently.
x . " Maming . ice: Aimed i h £ nodes i
A4 Fa sarvice Naming service: Aime at providing the content of nodes in a
A i - name space, given a (compound) name.
--| Entity ID |-
. y | Locatior Content consists of different (attribute, value) pairs.
ALY Avry kALY A LA ¥ seme Assumption: Node contents at global and administrational level
Address Address Address Address Address | | Address is relatively stable for scalability reasons.
(a) 5] Observation: If a traditional naming service is used to locate
. 5 ) L. . entities, we also have to assume that node contents at the
Separate naming from locating by introducing identifiers. managerial level is stable, as we can use only names as
An identifier does not have a human-friendly representation (optimized for identifiers (think of Web pages).
machine processing only).
An entity's name is now completely independent from its location.
a7 a8
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Simple Solutions: Broadcasting

Broadcasting

Simply broadcast the id to each machine, each machine
is requested to check whether it has that entity, and if
so, send a reply message containing the address of the
access point

= Can never scale beyond local-area networks (think of
ARP/RARP)

= Requires all processes to listen fo incoming location
requests

4
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Simple Solutions: Forwarding Pointers

Forwarding pointers

Each time an entity moves, it leaves behind a pointer telling where
it has gone to. Dereferencing can be made entirely transparent to
clients by simply following the chain of pointers

Update a client’s reference as soon as present location has been
found

Geographical scalability problems:
= Long chains are not fault tolerant

= Increased network latency at dereferencing

= Essential to have separate chain reduction mechanisms
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Forwarding Pointers
SSP chains

Forwarding pointers for distributed objects
Each forwarding pointer is implemented as a (proxy, skeleton) pair

A skeleton (i.e., server-side stub) contains a local reference to the
actual object or a local reference to a proxy (i.e., client-side stub) for
the object

Skeleton (entry items for remote references) Proxies (exit items)

Process P2 Prexy p’ refers to
Proxy ¢ same skeleton as
- ) proy p When an object moves
| Process P3 from A to B, it leaves
Identical proxy behind a proxy in its

Skeleton — % &

place /n A and installs a

p:,:,:m skeleton that refers to
’ 34 =4 A P
: L Lt Process F --‘ gect it in B
invocation Transparent to the
e on wentical T client
skeleton
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Forwarding Pointers

A chain (proxy, skeleton) can be short cut.

+ The current location is piggybacked with the response of the
distributed object.

+ Send the response directly or along the reverse path?

* When no skeleton references a proxy, the skeleton can be removed.

. Skeleton is no
Invacation longer referenced
request = by any prox i,
sent to obpect Ll v any ey
« 1
4
1 4
- v I v
Skeleton at object's Client prouy sets
current process retums a shartcut
the current location
(@) )

Redirecting a forwarding pointer, by storing a shortcut in a proxy.
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Home-Based Approaches

Let the home location keep track of the entity's current

address

(usually where the entity was created)

An entity's home address is registered at a naming

service.

The home registers the foreign address of the entity

Clients always contact the home first, and then continue

with the foreign location
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Home-Based Approaches

The principle of Mobile IP

Host's home

oeatan 1. Send packet 1 hest a1 s home

A 2 Rotun addeoss
.
of current location
Clenls
., locaton
agla
=, 3. Tunmel packet to ?
curment location

) 2. Send succosse packets
vl to current location

Host's present locaton
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Home-Based Approaches
Two-tiered scheme
Keep track of visiting entities:
Check local visitor register first
Fall back to home location if local lookup fails
Problems with home-based approaches:
= The home address has to be supported as long as the entity lives.

* The home address is fixed, which means an unnecessary burden
when the entity permanently moves to another location

= Poor geographical scalability (the entity may be next to the
client)

Question: How can we solve the “permanent move" problem?
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Hierarchical Approaches

Basic idea: Build a large-scale search tree for which the underlying network is
divided into hierarchical domains.

Each domain is represented by a separate directory node dir(d)

Leaf domains typically correspond to a local-area network or a cell

The root (directory) node knows all the entities

Each entity currently in a domain D is represented by a location record in the
directory node dir(D) which is the entity's current address or a pointer

The root directorny

nede dir(T) Top-level

domain T

Cirectory node

dir{S) of domain 5
A subdomain S
of top-level domain T
(S ts contained in T)

o

«

A leat domain, contained in S

Distributed Systems, Spring 2004

Hierarchical Approaches
The address of an entity is stored in a leaf node, or in an intermediate node

Intermediate nodes contain a pointer to a child if and only if the subtree rooted
at the child stores an address of the entity

The root knows about all entities

An entity may have multiple addresses (e.g., if it is replicated)

Field with no data
Foeld for domain

Hierarchical Approaches: Lookup
Basic principles:
Start lookup at local leaf node

If node knows about the entity, follow downward
pointer, otherwise go one level up

Upward lookup always stops at root

MNode knows

about E, 50 request
Hede has no is forwarded to child
record for E. so
that request is

domiN) with .. ,-Locson tecord forwarded to
pointer to N - 4 for E at nad?:‘/‘ parent
M
A
/ [ 10 >
NA/ \ -
Location record T T
with only one feld
containing an address g : : M Ay
Lock-up Dormain O
» Y request
Domain 01 Oomein 012 Exploits locality
i . 57 - . 58
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Hierarchical Approaches: Update Hierarchical Approaches: Pointer Caches
Pointer caching: let D
Node k be the smallest domain
& knows B : : ;.
Mode has no about E, so request in which a n}ob'ule enh;y
:o’ocrqudﬁ;Els i no longer forwarded Node creates record mover regularly, cache
forwarded i and stores pointer - a reference to dir(D)
1o parent P / -
11 \ Mode creates -
record and
é " stores address '/ \ > -
. ) I Diormain O
- ' hl | { ]
A > ' '
Domain D 4 o
Insert
request @) )
{ Cached pointers E moves regularly between
to node dir(D) the two subdomains
a) An insert request is forwarded to the first node that knows about entity £
b) A chain of forwarding pointers to the leaf node is created. Caching a reference fo a directory node of the lowest-level domain in which an entity will reside
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most of the time.
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Hierarchical Architectures: Pointer Caches

= Let dir(D) not store a pointer to the subdomain where E resides but
the actual address of E

= Cache invalidation:

Cached pointer
to node dir(D) which

should be invalidated / A

4 / =
\ J \ Criginal address
]
¥

‘ - 1 A (is still valid)
MNew address

A cache entry that needs to be invalidated because it returns a nonlocal address, while such an
address is available.
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Hierarchical Approaches: Scalability Issues

Size scalability
The problem of overloading higher-level nodes

Only solution is to partition a node into a humber of subnodes and
evenly assign entities to subnodes

Naive partitioning may introduce a node management problem, as a
subnode may have to know how its parent and children are
partitioned.

Geographical scalability
We have to ensure that lookup operations generally proceed
monotonically in the direction of where we'll find an address:

Unfortunately, subnode placement is not that easy, and only a few
tentative solutions are known
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Hierarchical Approaches: Scalability Issues

Root is a bottleneck. Divide the root. The scalability issues related fo
uniformly placing subnodes of a partitioned root node across the network
covered by a location service.

_ | Subnode of the root, responsible
Damain where

for handling requests for &
E currently resides™ ‘A
! = LR
v, - A 1
.‘ " Alternative, and better choice
.“ for a subnode to handle E
A

- Current route

Alternative route of lookup request

of lockup request

L ]
o

. Client requesting the current address of E
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Removing Unreferenced Entities
The Problem

Reference Counting

Reference Listing

Tracing
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Removing Unreferenced Objects

Distributed Garbage Collection:

Remove unreferenced entities
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The Problem of Unreferenced Objects

Reference through a (proxy, skeleton) pair
client-side proxy associated with a server-side skeleton

Assumption. Objects may exist only if it is known that they can be
contacted (may be accessed only if there is a remote reference to it)

Problem: Removing unreferenced objects:

= How do we know when an object is no longer referenced (think of
cyclic references)?

= Who is responsible for (deciding on) removing an object?

(proxy, skeleton) pair takes care of garbage collection (transparent to
objects/client)
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The Problem of Unreferenced Objects Reference COUHTII’]g
Each time a client creates (removes) a reference to an object O, a
. reference counter local to O (e.g., at the skeleton) is incremented
Represented by a reference graph, each node represents an object (decremented)
::1?&:‘:;3;»“ Problem 1: Dealing with lost (and duplicated) messages:
Raot sat
- - L8 P creates a reference to remote object O, installs a
< ik - proxy p for O
.t . -+ An increment is lost so
- ¥ ot p sends an incr message fo s that the object may be
ey I - s sends ACK to p prematurely removed
%
Tonchiabie sty 1‘ «An increment is send
e be P twice
P p Skeleton (Maintains reference counter)
oeess

. . : 2| y) Obect© . A decrement is lost so
Hiigesanndaing b ek is st Yt — ar that the object is never

™ H removed

Ay 341 §

¥, i = v | « An ACK is lost, so that
Garbage collection harder in distributed systems, because of Proxy p S ifsh'fese'::m"‘e“f/ decrement

network communication (scalability/efficiency and failures) 4lack | Prowy p is now counted twice :
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Reference Countin . .
9 Advanced Referencing Counting
Problem 2: (copying a remote reference) process P1 passes a reference to process P2
of object O. (Skeleton s of) O does not know this, until P2 communicates with O Solution 2: Avoid increment messages
P2 creates a reference to O, but dereferencing ( communicating with O) may ) .
take a long time. If the last reference known to Ois removed before £2 talks to Weighted reference counting
O, the object is removed prematurely Problem in (a) below Associate a fixed total weight with each object O
Solution 1: = Upon creation of O, each skeleton s of O: total weight, partial weight (=total
« P1tells O, it will pass a reference to P2 weight, initially
: 2:Z?:_‘:::\f::fnImmnzsg:‘leeyremoved before O = When a new remote reference is created, the new proxy is assigned half of the
has ack the refealyence to the holder ‘ partial weight. Remaining half at the skeleton.
P1 sends P1 deletes its 1 telis O that it will P1 dolotes its Partial weight at
o eterence to P2 _reference to 0 oy M2 reterence to P2 referencs 1o O Sheleton ObjectQ  Partial  ProcessF A& skeleton is halved
» A O has been - . L e ¥ weight . 128
A rernaved A Total m!gh[ [128]" ¥ ofproxy | | 64 |64
o h 1 . \ o - \ ; 4 Partial weight |128] -
f P ACK
+1 -
P2 -« v Tirme - ) « 4 L — m —
P2 infarms O it P1 sends © acks it knows (a) ¥ (6}
has a reference reference to P2 about PZ's reference
(a) Passing a reference requires 3 message. s[:’] (4 The it assignment of weghts inweighted reference counting (5) Weight assignment when cratinga ew
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Advanced Referencing Counting Advanced Referencing Counting
Problem: maximum number of references

= When P1 passes O to P2, half of the partial weight of P1's proxy assigned Solution: Indirection
to the copied proxy of P2

= When a reference is destroyed, dec message (including the associated

When the partial weight of P1 reaches 1, P1 cerates a skeleton s’ in its address
partial weight) send to the skeleton

space with an appropriate total weight

half Progess P2 P1 has run out
;2"?:‘5%‘;“ a3 of weightand _ Object has no
of prosy at P1 —_ ) ) Total and partial creates skeleton s more partial
o1 w ,.123* - weight at skeletor o P2 -, Process P1 ; weight left
passes . 647 remain the same rocess
reference to P2 )

T

-
— P2 refers ‘S . [ 16 |Total weight
object via P1 |8 |Partial weight
()
. X . As with forwarding pointers: long chains degrade performance, more
(c) Weight assignment when copying a reference. susceptible to failures
Distributed Systems, Spring 2004 7
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Advanced Referencing Counting
Solution: Generation Reference Counting

Associate with each proxy a generation number + a copy counter (number of times it
has been copied)
The skeleton s maintains a table 6, G[i] number of generation i copies

When p is deletes, sends message to s with generation number, k, and number of
copies, n

s decrements G[Kk] by one, increments G[k+1] by n
Object deleted when all G[i] equal to O

Process P2
P1 passes a7
reference to P2 )
Process P1 . A
Coj b | g +
py counter —{ g — "

Generation —®_3 |

Creating and copying a remote reference in generation reference counting.
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Referencing Listing

The skeleton maintains an explicit list of all proxies pointing to it

Idempodent operation: an operation that can be repeated without
affecting the end result

Message to add/delete a proxy to a list as apposed to
increment/decrement operations

Used in Java RMI

Leases (timeout)
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Tracing

Entities that hold references to each other but none can be reached from
the root

Tracing-based garbage collection: check which methods can be reached
from the root and remove all others

Mark-and sweep collectors

Mark phase: follow chains of entities originated from entities
in the root set and mark them

Sweep phase: exhaustively examine memory to locate entities
that have not been marked
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Tracing
Distributed Version of Mark-and sweep collectors

A local garbage collector is started at each process, with all the collectors
running in parallel

Color proxies, skeletons and the actual objects

Three colors: white, grey, black

Initially, all white

An object in P, reachable form the root in P, marked grey

When an object is marked grey, all proxies contained in that object are marked grey

When a proxy is marked grey, a message is sent to the associate skeleton fo mark
itself grey

The object becomes grey, when the skeleton becomes grey
When all proxies grey, the object and skeleton is marked black, and then the proxy
Mark phase ends when no greys

Remove all white objects

“Stop-the-world” assumption
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Tracing in Groups

= Processes (which contain objects) are hierarchically organized in groups)

= Phase 1: Initial marking, in which only skeletons are marked

= Phase 2: Intra-process propagation of marks from skeleton to proxies
= Phase 3: Inter-process propagation of marks from proxies to skeletons
= Phase 4: Stabilization by repetition of the previous two steps

= Phase 5: Garbage reclamation
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Tracing in Groups

For details, read the book
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