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Naming Entities

Locating Mobile Entities

Removing Unreferenced Entities

Topics to be covered
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Naming Entities
Definitions

Name Resolution
Name Spaces

Examples (DNS, X.500)
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Issues

• Names are used to uniquely identify resources/services.

• Name resolution: process to determine the actual entity 
that a name refers to.

• In distributed settings, the naming system is often provided
by a number of sites.

Naming
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Name: strings of bits of characters used to denote an entity

What is an entity in a distributed system? Resources (hosts, 
printers, etc) processes, users, newsgroup, web pages, network connections, 
etc)

To operate on an entity, we need to access it at an access point. 

Access points are entities that are named by means of an address.
Address: the name of an access point

An entity can offer more than one access points.

An entity may change its access point. 

Why not use the address of an entity as its name?

Naming
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A location-independent name for an entity E, is independent from 
the addresses of the access points of E.

Machine readable: memory addresses: 32/64 bit-string, 48bits 
for Ethernet addresses) vs

User-friendly names or human-friendly names (in Unix each file 
can have up to 255 bytes name).

Identifiers: special type of name with the following properties
an id refers to at most one entity
each entity is referred to by at most one id
an id always refers to the same entity (i.e., it is never 

reused)

Naming
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Pure name: A name that has no meaning at all; it is just a 
random string. Pure names can be used for comparison only.

Observation: An identifier need not necessarily be a pure name, 
i.e., it may have content.

Question: Can the content of an identifier ever change?

A name is resolved when it is translated into data about the 
named resource 

Binding: the association between a name and the attributes of a 
resources, usually its address
Unbound names (names that do not correspond to any resource)

Identifiers
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A name service stores a collection of one or more naming 
contexts (binding between names of resources and attributes of 
resources) 

Should support:

Name resolution: lookup attributes from a given name

Also, create new bindings, deleting bindings etc

Requirements:
Scale (number of names and administrartive domains)
A long lifetime
High availability
Fault isolation
Tolerance of mistrust

Name Servers
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Name Spaces

Names organized into a name space

A name space a collection of valid names recognized by a particular service

Names may have an internal structure that represents their position if a 
hierarchical name space

Main advantages:

Each part of a name is resolved relative to a separate context

Potentially infinite

Different contexts managed by different entities
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Name Spaces

Each node in a naming graph is consider as an entity, it has an associated id

A (hierarchical) name space can be represented as a labeled directed graph (naming graph)
• a leaf node represents a (named) entity
• a directory node refers to other nodes; stores a (directory) table of (edge 
label, node identifier) pairs.

Root node

Path name: sequence of labels
• Absolute (first node in the path is the root) n0:<home, steen, mbox>
• Relative (otherwise)

Leaf node

Stores information about the entity (eg, 
its address, or even the entity itself)

Internal node

Directory node: stores 
directory table
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Name Spaces

Global vs local name
Global name denotes the same entity (i.e., always interpreted with respect to the 
same directory node)
Local name: its interpretation depends on where the name is being used (context)

Close to what is implemented in many file systems

More than one paths to a node

Naming graph: tree (hierarchical), more than one roots, DAG
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Name Spaces

We can easily store all kinds of attributes in a node, 
describing aspects of the entity the node represents:

• Type of the entity
• An identifier for that entity
• Address of the entity’s location
• Nicknames

Directory nodes can also have attributes, besides just 
storing a directory table with (edge label, node identifier) 
pairs.
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Name Spaces
UNIX File Systems

Directory node: file directory

Leaf node: file

Root node (single): root directory

Implemented as a logical disk of contiguous series of blocks

Boot block: used to load the OS 

Super-block: contains information about the whole file system 

i-nodes: contains information on where the data of its associated file can be found on 
disk; referred to by an index number (index no 0 represents the root directory) 

Directories implemented as files; Root directory contains a mapping between file names 
and index numbers of i-nodes 

Index of an i-node: id of a node in the naming graph
Distributed Systems, Spring 2004
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Name Resolution

Name resolution: given a path name: lookup information stored in 
the node referred to by that name

Example:  n1:<steen, mbox>

Name lookup at each node (access the directory table of the 
node) returns the id of a node where name resolution continues (in 
UNIX?)
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Name Resolution: Closure Mechanisms

Problem: Where and how to start name resolution

Closure mechanism: The mechanism to select the implicit context 
from which to start name resolution:

How to do it: 
UNIX file system (example /home/steen/mbox)
Dial a phone number

Local names
Example environmental variables, e.g., HOME (refers to the user’s 
local directory)

Observation: A closure mechanism may also determine how name 
resolution should proceed
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Linking
Alias: another name for the same entity
(eg, an environmental variable)

Solution 1

Allow multiple absolute paths to the same node (hard links)
In term of i-nodes?
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Linking
Solution 2

Allow a leaf node to contain an absolute path name (symbolic link)

In terms of i-nodes?
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Merging Name Spaces

In general, if two name spaces exist NS1, NS2 – to mount a foreign entity in a 
Distributed System, we require at least the following information: 

1. Name the access protocol (resolved to the implementation of a communication 
protocol)

2. Name the server (resolved to an address where the server can be reached)
3. Name the mounting point (resolved to a node id in the foreign name space, by 

the foreign server)

Merging Name Spaces Problem: We have different name spaces 
that we wish to access from any given name space.
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Merging Name Spaces

Solution 1: Introduce a naming scheme by which pathnames 
of different namespaces are simply concatenated (URLs)

ftp://ftp.cs.vu.nl/pub/steen

Name of 
protocol FTP 

server
Name of a (context) 

node in the name space 
routed at the context 

node mapped to the ftp 
server

Distributed Systems, Spring 2004
20

Merging Name Spaces

Solution 2: Mounting

A directory node  called a mount point stores the id of (or 
all the necessary information for identifying and accessing) 
a directory node from a foreign name space called mounting 
point 
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Merging Name Spaces

NFS: distributed file system that describes exactly how a client can access a 
file stored on a (remote) NFS file server

Through a NFS URL

nfs://flits.cs.vu.nl//homes/steen

protocol NFS file server

file

/remote: includes 
mount points for 

foreign name spaces (in 
the form of NFS URLs)

remote/vu/mbox
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Solution 3: Add a new root node and makes the existing root nodes its 
children (example DEC’s Global Name Service (GNS))

Merging Name Spaces

Problem: existing names 
need to be changed

home/steen -> 
/vu/home/steen

Solution: New root 
includes a mapping (old 
roots, their new names). 
(Implicitly) include the 
identifier of the node 
(old root) from where 
resolution should start

/home/steen/keys->

n0:/home/steen/keys

Root node becomes a 
bottleneck
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Merging Name Spaces

The Merging Name Spaces Problem

Solution 1: Introduce a naming scheme by which
pathnames of different name spaces are simply 
concatenated (URLs).

Solution 2: Mounting

Solution 3: Add a new root node
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Name Space Implementation

Basic issue: Distribute the name resolution process as well as 
name space management across multiple machines, by distributing 
nodes of the naming graph.

Consider a hierarchical naming graph and distinguish three levels:

Global level: Consists of the high-level directory nodes (root and its 
children). Stability (rarely change) Main aspect is that these directory 
nodes have to be jointly managed by different administrations

Administrational level: Contains mid-level directory nodes that can 
be grouped in such a way that each group can be assigned to a separate 
administration.

Managerial level: Consists of low-level directory nodes within a single 
administration. Typically change regularly. For example, hosts in a local 
area network. Managed by end users. Main issue is effectively mapping 
directory nodes to local name servers.
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Name Space Implementation

Example: DNS name space.

The name space is divided into non overlapping parts, called zones, each implemented 
by a separate name server
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Name Space Implementation

SometimesYesYesIs client-side caching applied?

NoneNone or fewManyNumber of replicas

ImmediateImmediateLazyUpdate propagation

ImmediateMillisecondsSecondsResponsiveness to lookups

Vast numbersManyFewTotal number of nodes

DepartmentOrganizationWorldwideGeographical scale of network

ManagerialAdministrationalGlobalItem

Availability & Performance per level

Performance (client-side cache + replication)
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Iterative Name Resolution

Issue: Name resolution when the name space is 
distributed across multiple name servers

Assume: no replication or client-side caching

Each client has access to a local name resolver

Example

root:<nl, vu, cs, ftp, pub, globe, index.txt>

Using URL notation

ftp://ftp.cs.vu.nl/pub/globe/index.txt
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Iterative Name Resolution
Method 1: Iterative Name Resolution
The name resolver hands over the complete name to the root server

The root server resolves the path name as far as it can and returns the result addr1 
(address of the associated name server) to the client, then the client passes the 
remaining path name server to the addr1 and so on

Note: the last resolution step (contacting the ftp server and asking it to transfer the indicated 
file) is generally carried out as a separate process by the client (client asks to resolve the ftp)
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Recursive Name Resolution

Method 2: Recursive Name Resolution
Instead of returning each intermediate result back to the client’s name resolver, 
each name server passes the result to the next name server it finds

Puts a higher performance demand on each name server (higher level nodes: iterative)

Caching results is more effective

Communication costs may be reduced
Distributed Systems, Spring 2004
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Implementation of Name Resolution: Caching

What can be cached (recursive name resolution):

#<vu>
#<vu,cs>
#<vu,cs,ftp>

#<cs>
#<cs,ftp>

#<ftp>

--

Receives 
and caches

#<nl>
#<nl,vu>
#<nl,vu,cs>
#<nl,vu,cs,ftp>

<vu,cs,ftp>#<nl><nl,vu,cs,ftp>root

#<vu>
#<vu,cs>
#<vu,cs,ftp>

<cs,ftp>#<vu><vu,cs,ftp>nl

#<cs>
#<cs, ftp>

<ftp>#<cs><cs,ftp>vu

#<ftp>--#<ftp><ftp>cs

Returns to 
requester

Passes to 
childLooks upShould 

resolve
Server for 

node

Caching with iterative name resolution?

Implement a local intermediate name server shared by all clients (besides caching, 
only this server needs to know the root name server)
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Implementation of Name Resolution: Communication Cost
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Scalability Issues

Size scalability: We need to ensure that servers can handle a 
large number of requests per time unit 

Solution: Assume (at least at global and administrational level) 
that content of nodes hardly ever changes. In that case, we 
can apply extensive replication by mapping nodes to multiple 
servers, and start name resolution at the nearest server.
Observation: An important attribute of many nodes is the 
address where the represented entity can be contacted. 
Replicating nodes makes large-scale traditional name servers 
unsuitable for locating mobile entities.

Geographical scalability: We need to ensure that the name 
resolution process scales across large geographical distances.

Problem: By mapping nodes to servers that may, in principle, 
be located anywhere, we introduce an implicit location 
dependency in our naming scheme.
Solution: No general one available yet.
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The DNS Name Space

Internet Domain Name Server (DNS): the largest distributed name 
service in use

Primarily used to lookup host addresses and mail servers
The DNS name space is hierarchically organized as a rooted tree
Path name root:<nl, vu, cs, flits> represented as flits.cs.vu.nl. (rightmost dot 
indicates the root)
Name of the node: label of the incoming edge

Domain: subtree

Domain name: path name to its root node

Contents of a node: a collection of resource records

A domain may be implemented by several zones

The DNS database is distributed across a logical network of servers (each 
primarily data for the local domain

Distributed Systems, Spring 2004
34

The DNS Name Space

The most important types of resource records forming the 
contents of nodes in the DNS name space.

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host this node representsHostHINFO

Contains the canonical name of a hostHostPTR

Symbolic link with the primary name of the represented nodeNodeCNAME

Refers to a name server that implements the represented zoneZoneNS

Refers to a server handling a specific serviceDomainSRV

Refers to a mail server to handle mail addressed to this nodeDomainMX

Contains an IP address of the host this node representsHostA

Holds information on the represented zoneZoneSOA

DescriptionAssociated 
entity

Type of 
record
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The DNS Name Space

Refers to a name server that implements the represented 
zoneZone

NS
(name 
server)

Contain the name of a server for a specific service
The service is identified by a name + name of a protocol
Example:  the web server of the cs.vu.nl domain named 
http.tcp.cs.vu.nl refer to the actual server soling.cs.vu.nl

DomainSRV

A symbolic link to a node representing a mail server
Example: the node representing the domain cs.vu.nl has an 
MX record zephyr.cs.vu.nl

Domain
MX
(mail 
exchange)

Contains an IP address of the host this node represents
(if several, an A record for each)

HostA
(address)

Holds information on the represented zone (such as an email 
address of the system administrator, host name from where 
data on the node can be fetched, etc)

Zone
SOA (start 
of 
authority)

DescriptionAssociate
d entity

Type of 
record
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The DNS Name Space

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host this node represents (e.g., 
machine type, operating system)HostHINFO

Inverse mapping of IP addresses to host names
For instance, for host www.cs.vu.nl with IP 130.37.24.11 the 
DNS creates a node named 11.24.37.130.in-addr.arpa used to 
save the canonical name of the host (solings.cs.vu.ntl) in a PTR 
record

HostPTR
(pointer)

Each host is assumed to have a canonical or primary name. An 
alias is implemented by means of node storing a CNAME record 
containing the canonical name of a host (symbolic link)

Node
CNAME
(canonical 
names)

DescriptionAssociated 
entity

Type of 
record

Aliases vs canonical names 

Each host has a canonical or primary name 

To implement an alias, a node stores a CNAME record with the canonical name 
(symbolic link)
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DNS Implementation

The name space is divided into non overlapping parts, called zones, each implemented 
by a separate name server; almost always replicated

Updates by modifying the DNS database local to the primary server

Secondary name servers through zone transfer

Generally 
formed by file 
system; 
formally, not 
part of the 
DNS
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DNS ImplementationAn excerpt from the DNS database for the zone 
cs.vu.nl. cs.vu.nl (zone and domain)
start.cs.vu.nl (name server for the zone)

Domain & Zone

Host
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DNS Implementation

Part of the description for the vu.nl domain which 
contains the cs.vu.nl domain.

130.37.21.1Asolo.cs.vu.nl

solo.cs.vu.nlNScs.vu.nl

Record valueRecord typeName
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The X.500 Name Space

A simple example of a X.500 directory entry using X.500 naming conventions.

130.37.21.11--WWW_Server
130.37.21.11--FTP_Server

130.37.24.6, 
192.31.231,192.31.231.66--Mail_Servers

Main serverCNCommonName

Math. & Comp. Sc.OUOrganizationalUnit

Vrije UniversiteitLOrganization
AmsterdamLLocality
NLCCountry

ValueAbbr.Attribute

Directory Service: special form of a naming service,  lookup an entity based 
on a description of properties (rather than  name)

Similar to Yellow-Page look up.

X.500 consists of a number of records (directory entries) <attribute, value>
Each attribute has a type, multiple-valued attributes
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The X.500 Name Space

The collection of all entries makes up the Directory Information Base (DIB)
Each record is uniquely named and can be looked up 
A globally unique names: a sequence of naming attributes
Each naming attribute called RDN (Relative Distinguished Name).

Example: /C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server

Directory Information 
Tree (DIT)

A node is both a 
directory and an 

X.500 record
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The X.500 Name Space

Two directory entries having Host_Name as RDN.

192.31.231.66Host_Address192.31.231.42Host_Address

zephyrHost_NamestarHost_Name

Main serverCommonNameMain serverCommonName

Math. & Comp. 
Sc.OrganizationalUnitMath. & Comp. Sc.OrganizationalUnit

Vrije UniversiteitOrganizationVrije UniversiteitOrganization

AmsterdamLocalityAmsterdamLocality

NLCountryNLCountry

ValueAttributeValueAttribute
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The X.500 Name Space

Example:

list(/C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server)

read(/C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server)

A node is both a directory and an X.500 record

Two different lookup operations

read: returns a single record 

list: returns the names of all outgoing edges 
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X.500 Implementation

DIT is “partitioned” across several servers (termed Directory Service 
Agents (DSA)- similar to zones in DNS)
Clients are represented by Directory User Agents (DUA): similar to a 
name resolver
What is different between X.500-DNS?

Provides facilities for querying a DIB, example
answer = search(“&(C=NL)(O=Vrije Universiteit)(OU=*)(CN=Main Server))
Find all the “main servers” but not in a particular organizational unit

An operation may be “expensive” – the above will have to search all 
entries for all departments (access many leaf nodes) and combine the 
results..

LDAP (Lightweight Directory Access Protocol) a simplified protocol used 
to accommodate X.500 directory services in the Internet

Application-level protocol on top of TCP
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Locating Mobile Entities
Difference from Naming

Simple Solutions
Home-Based Approach
Hierarchical Approach
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Naming versus Locating Entities

Problem: what happens and how are names resolved when 
entities are mobile?

Example: move ftp.cs.uoi.gr to ftp.cs.unisa.edu.au

How is the change addressed? Create aliases!
1. Record the address of the new machine in the DNS 

database of cs.uoi.gr (two addresses pointing to the same 
node) hard link)
Lookup ok, but what if the server moves again?

2. Record the name of the new machine in the DNS database 
of cs.uoi.gr (symbolic link)
Lookup less efficient, updates ok

For highly mobile entities both solutions are problematic 
(especially if there are multiple phases in the name 
resolution/address determination).

The name is not allowed to change.
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Naming versus Locating Entities

Decouple naming from locating entities

Separate naming from locating by introducing identifiers.
An identifier does not have a human-friendly representation (optimized for 
machine processing only).
An entity’s name is now completely independent from its location.

In (a) there is a single level mapping between names and addresses. Each time an entity 
changes location, the mapping needs to change!
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Naming versus Locating Entities

Location service: Solely aimed at providing the addresses of 
the current locations of entities.

Assumption: Entities are mobile, so that their current address 
may change frequently.

Naming service: Aimed at providing the content of nodes in a 
name space, given a (compound) name.

Content consists of different (attribute, value) pairs.

Assumption: Node contents at global and administrational level 
is relatively stable for scalability reasons.

Observation: If a traditional naming service is used to locate 
entities, we also have to assume that node contents at the 
managerial level is stable, as we can use only names as 
identifiers (think of Web pages).
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Simple Solutions: Broadcasting

Broadcasting

Simply broadcast the id to each machine, each machine 
is requested to check whether it has that entity, and if 
so, send a reply message containing the address of the 
access point

Can never scale beyond local-area networks (think of 
ARP/RARP)

Requires all processes to listen to incoming location
requests
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Simple Solutions: Forwarding Pointers

Forwarding pointers

Each time an entity moves, it leaves behind a pointer telling where 
it has gone to. Dereferencing can be made entirely transparent to 
clients by simply following the chain of pointers
Update a client’s reference as soon as present location has been 
found

Geographical scalability problems:

Long chains are not fault tolerant

Increased network latency at dereferencing

Essential to have separate chain reduction mechanisms
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Forwarding Pointers
SSP chains 

Forwarding pointers for distributed objects

Each forwarding pointer is implemented as a (proxy, skeleton) pair

A skeleton (i.e., server-side stub) contains a local reference to the 
actual object or a local reference to a proxy (i.e., client-side stub) for 
the object

Skeleton (entry items for remote references) Proxies (exit items)

When an object moves
from A to B, it leaves 
behind a proxy in its 
place in A and installs a 
skeleton that refers to 
it in B.

Transparent to the 
client
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Forwarding Pointers

A chain (proxy, skeleton) can be short cut.
• The current location is piggybacked with the response of the 
distributed object. 
• Send the response directly or along the reverse path?
• When no skeleton references a proxy, the skeleton can be removed. 

Redirecting a forwarding pointer, by storing a shortcut in a proxy.
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Home-Based Approaches

An entity’s home address is registered at a naming
service. 

The home registers the foreign address of the entity

Clients always contact the home first, and then continue 
with the foreign location

Let the home location keep track of the entity’s current 
address

(usually where the entity was created)
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Home-Based Approaches

The principle of Mobile IP
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Home-Based Approaches

Two-tiered scheme

Keep track of visiting entities:
Check local visitor register first
Fall back to home location if local lookup fails

Problems with home-based approaches:

The home address has to be supported as long as the entity lives.

The home address is fixed, which means an unnecessary burden 
when the entity permanently moves to another location

Poor geographical scalability (the entity may be next to the 
client)

Question: How can we solve the “permanent move” problem?
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Hierarchical Approaches

Basic idea: Build a large-scale search tree for which the underlying network is 
divided into hierarchical domains.
Each domain is represented by a separate directory node dir(d)
Leaf domains typically correspond to a local-area network or a cell
The root (directory) node knows all the entities
Each entity currently in a domain D is represented by a location record in the 
directory node dir(D) which is the entity’s current address or a pointer
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Hierarchical Approaches
The address of an entity is stored in a leaf node, or in an intermediate node

Intermediate nodes contain a pointer to a child if and only if the subtree rooted 
at the child stores an address of the entity

The root knows about all entities

An entity may have multiple addresses (e.g., if it is replicated)
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Hierarchical Approaches: Lookup
Basic principles:

Start lookup at local leaf node
If node knows about the entity, follow downward

pointer, otherwise go one level up

Upward lookup always stops at root

Exploits locality

Distributed Systems, Spring 2004
59

Hierarchical Approaches: Update

a) An insert request is forwarded to the first node that knows about entity E.
b) A chain of forwarding pointers to the leaf node is created.
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Hierarchical Approaches: Pointer Caches

Caching a reference to a directory node of the lowest-level domain in which an entity will reside 
most of the time.

Pointer caching: let D 
be the smallest domain 
in which a mobile entity 
mover regularly, cache 
a reference to dir(D)
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Hierarchical Architectures: Pointer Caches

A cache entry that needs to be invalidated because it returns a nonlocal address, while such an 
address is available.

Let dir(D) not store a pointer to the subdomain where E resides but 
the actual address of E

Cache invalidation:
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Hierarchical Approaches: Scalability Issues

Size scalability

The problem of overloading higher-level nodes

Only solution is to partition a node into a number of subnodes and 
evenly assign entities to subnodes

Naive partitioning may introduce a node management problem, as a 
subnode may have to know how its parent and children are 
partitioned.

Geographical scalability

We have to ensure that lookup operations generally proceed 
monotonically in the direction of where we’ll find an address:
Unfortunately, subnode placement is not that easy, and only a few 
tentative solutions are known
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Hierarchical Approaches: Scalability Issues
Root is a bottleneck. Divide the root. The scalability issues related to 

uniformly placing subnodes of a partitioned root node across the network 
covered by a location service.
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Removing Unreferenced Entities
The Problem

Reference Counting
Reference Listing

Tracing
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Removing Unreferenced Objects

Distributed Garbage Collection:

Remove unreferenced entities
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The Problem of Unreferenced Objects

Reference through a (proxy, skeleton) pair
client-side proxy associated with a server-side skeleton

Assumption: Objects may exist only if it is known that they can be 
contacted (may be accessed only if there is a remote reference to it)

Problem: Removing unreferenced objects:
How do we know when an object is no longer referenced (think of 

cyclic references)?
Who is responsible for (deciding on) removing an object?

(proxy, skeleton) pair takes care of garbage collection (transparent to 
objects/client)
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The Problem of Unreferenced Objects

Represented by a reference graph, each node represents an object

Garbage collection harder in distributed systems, because of 
network communication (scalability/efficiency and failures) 

Distributed Systems, Spring 2004
68

Reference Counting
Each time a client creates (removes) a reference to an object O, a 
reference counter local to O (e.g., at the skeleton) is incremented 
(decremented)

Problem 1: Dealing with lost (and duplicated) messages:

P creates a reference to remote object O, installs a 
proxy p for O

p sends an incr message to s

s sends ACK to p

• An increment is lost so 
that the object may be 
prematurely removed

• An increment is send 
twice

• A decrement is lost so 
that the object is never 
removed

• An ACK is lost, so that 
the increment/decrement
is resent.
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Reference Counting

Solution 1:
• P1 tells O, it will pass a reference to P2
• O contacts P2 immediately 
• A reference may never be removed, before O 
has ack the reference to the holder 

Problem 2: (copying a remote reference) process P1 passes a reference to process P2 
of object O. (Skeleton s of) O does not know this, until P2 communicates with O 

P2 creates a reference to O, but dereferencing ( communicating with O) may 
take a long time. If the last reference known to O is removed before P2 talks to 
O, the object is removed prematurely Problem in (a) below

Passing a reference requires 3 messages
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Advanced Referencing Counting

(a) The initial assignment of weights in weighted reference counting (b) Weight assignment when creating a new 
reference.

Solution 2: Avoid increment messages

Weighted reference counting

Associate a fixed total weight with each object O

Upon creation of O, each skeleton s of O: total weight, partial weight (=total 
weight, initially 

When a new remote reference is created, the new proxy is assigned half of the 
partial weight. Remaining half at the skeleton.
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Advanced Referencing Counting

(c) Weight assignment when copying a reference.

When P1 passes O to P2, half of the partial weight of P1’s proxy assigned 
to the copied proxy of P2

When a reference is destroyed, dec message (including the associated 
partial weight) send to the skeleton
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Advanced Referencing Counting
Problem: maximum number of references

Solution: Indirection

When the partial weight of P1 reaches 1, P1 cerates a skeleton s’ in its address 
space with an appropriate total weight

As with forwarding pointers: long chains degrade performance, more 
susceptible to failures 
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Advanced Referencing Counting

Creating and copying a remote reference in generation reference counting.

Solution: Generation Reference Counting

Associate with each proxy a generation number + a copy counter (number of times it 
has been copied)

The skeleton s maintains a table G, G[i] number of generation i copies

When p is deletes, sends message to s with generation number, k, and number of 
copies, n

s decrements G[k] by one, increments G[k+1] by n

Object deleted when all G[i] equal to 0 

Distributed Systems, Spring 2004
74

Referencing Listing

The skeleton maintains an explicit list of all proxies pointing to it

Idempodent operation: an operation that can be repeated without 
affecting the end result

Message to add/delete a proxy to a list as apposed to 
increment/decrement operations

Used in Java RMI

Leases (timeout)
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Tracing
Entities that hold references to each other but none can be reached from 
the root

Tracing-based garbage collection: check which methods can be reached 
from the root and remove all others

Mark-and sweep collectors

Mark phase: follow chains of entities originated from entities 
in the root set and mark them

Sweep phase: exhaustively examine memory to locate entities 
that have not been marked
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Tracing
Distributed Version of Mark-and sweep collectors

A local garbage collector is started at each process, with all the collectors 
running in parallel

Color proxies, skeletons and the actual objects

Three colors: white, grey, black

Initially, all white
An object in P, reachable form the root in P, marked grey

When an object is marked grey, all proxies contained in that object are marked grey

When a proxy is marked grey, a message is sent to the associate skeleton to mark 
itself grey

The object becomes grey, when the skeleton becomes grey

When all proxies grey, the object and skeleton is marked black, and then the proxy

Mark phase ends when no greys

Remove all white objects

“Stop-the-world” assumption
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Tracing in Groups

Processes (which contain objects) are hierarchically organized in groups)

Phase 1: Initial marking, in which only skeletons are marked

Phase 2: Intra-process propagation of marks from skeleton to proxies

Phase 3: Inter-process propagation of marks from proxies to skeletons

Phase 4: Stabilization by repetition of the previous two steps

Phase 5: Garbage reclamation
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Tracing in Groups

For details, read the book


