
1

Distributed Systems, Spring 2004
1

Naming

Distributed Systems, Spring 2004
2

Naming Entities

Locating Mobile Entities

Removing Unreferenced Entities

Topics to be covered

Distributed Systems, Spring 2004
3

Naming Entities
Definitions

Name Resolution
Name Spaces

Examples (DNS, X.500)

Distributed Systems, Spring 2004
4

Issues

• Names are used to uniquely identify resources/services.

• Name resolution: process to determine the actual entity
that a name refers to.

• In distributed settings, the naming system is often provided
by a number of sites.

Naming

Distributed Systems, Spring 2004
5

Name: strings of bits of characters used to denote an entity

What is an entity in a distributed system? Resources (hosts,
printers, etc) processes, users, newsgroup, web pages, network connections,
etc)

To operate on an entity, we need to access it at an access point.

Access points are entities that are named by means of an address.
Address: the name of an access point

An entity can offer more than one access points.

An entity may change its access point.

Why not use the address of an entity as its name?

Naming

Distributed Systems, Spring 2004
6

A location-independent name for an entity E, is independent from
the addresses of the access points of E.

Machine readable: memory addresses: 32/64 bit-string, 48bits
for Ethernet addresses) vs

User-friendly names or human-friendly names (in Unix each file
can have up to 255 bytes name).

Identifiers: special type of name with the following properties
an id refers to at most one entity
each entity is referred to by at most one id
an id always refers to the same entity (i.e., it is never

reused)

Naming

2

Distributed Systems, Spring 2004
7

Pure name: A name that has no meaning at all; it is just a
random string. Pure names can be used for comparison only.

Observation: An identifier need not necessarily be a pure name,
i.e., it may have content.

Question: Can the content of an identifier ever change?

A name is resolved when it is translated into data about the
named resource

Binding: the association between a name and the attributes of a
resources, usually its address
Unbound names (names that do not correspond to any resource)

Identifiers

Distributed Systems, Spring 2004
8

A name service stores a collection of one or more naming
contexts (binding between names of resources and attributes of
resources)

Should support:

Name resolution: lookup attributes from a given name

Also, create new bindings, deleting bindings etc

Requirements:
Scale (number of names and administrartive domains)
A long lifetime
High availability
Fault isolation
Tolerance of mistrust

Name Servers

Distributed Systems, Spring 2004
9

Name Spaces

Names organized into a name space

A name space a collection of valid names recognized by a particular service

Names may have an internal structure that represents their position if a
hierarchical name space

Main advantages:

Each part of a name is resolved relative to a separate context

Potentially infinite

Different contexts managed by different entities

Distributed Systems, Spring 2004
10

Name Spaces

Each node in a naming graph is consider as an entity, it has an associated id

A (hierarchical) name space can be represented as a labeled directed graph (naming graph)
• a leaf node represents a (named) entity
• a directory node refers to other nodes; stores a (directory) table of (edge
label, node identifier) pairs.

Root node

Path name: sequence of labels
• Absolute (first node in the path is the root) n0:<home, steen, mbox>
• Relative (otherwise)

Leaf node

Stores information about the entity (eg,
its address, or even the entity itself)

Internal node

Directory node: stores
directory table

Distributed Systems, Spring 2004
11

Name Spaces

Global vs local name
Global name denotes the same entity (i.e., always interpreted with respect to the
same directory node)
Local name: its interpretation depends on where the name is being used (context)

Close to what is implemented in many file systems

More than one paths to a node

Naming graph: tree (hierarchical), more than one roots, DAG

Distributed Systems, Spring 2004
12

Name Spaces

We can easily store all kinds of attributes in a node,
describing aspects of the entity the node represents:

• Type of the entity
• An identifier for that entity
• Address of the entity’s location
• Nicknames

Directory nodes can also have attributes, besides just
storing a directory table with (edge label, node identifier)
pairs.

3

Distributed Systems, Spring 2004
13

Name Spaces
UNIX File Systems

Directory node: file directory

Leaf node: file

Root node (single): root directory

Implemented as a logical disk of contiguous series of blocks

Boot block: used to load the OS

Super-block: contains information about the whole file system

i-nodes: contains information on where the data of its associated file can be found on
disk; referred to by an index number (index no 0 represents the root directory)

Directories implemented as files; Root directory contains a mapping between file names
and index numbers of i-nodes

Index of an i-node: id of a node in the naming graph
Distributed Systems, Spring 2004

14

Name Resolution

Name resolution: given a path name: lookup information stored in
the node referred to by that name

Example: n1:<steen, mbox>

Name lookup at each node (access the directory table of the
node) returns the id of a node where name resolution continues (in
UNIX?)

Distributed Systems, Spring 2004
15

Name Resolution: Closure Mechanisms

Problem: Where and how to start name resolution

Closure mechanism: The mechanism to select the implicit context
from which to start name resolution:

How to do it:
UNIX file system (example /home/steen/mbox)
Dial a phone number

Local names
Example environmental variables, e.g., HOME (refers to the user’s
local directory)

Observation: A closure mechanism may also determine how name
resolution should proceed

Distributed Systems, Spring 2004
16

Linking
Alias: another name for the same entity
(eg, an environmental variable)

Solution 1

Allow multiple absolute paths to the same node (hard links)
In term of i-nodes?

Distributed Systems, Spring 2004
17

Linking
Solution 2

Allow a leaf node to contain an absolute path name (symbolic link)

In terms of i-nodes?

Distributed Systems, Spring 2004
18

Merging Name Spaces

In general, if two name spaces exist NS1, NS2 – to mount a foreign entity in a
Distributed System, we require at least the following information:

1. Name the access protocol (resolved to the implementation of a communication
protocol)

2. Name the server (resolved to an address where the server can be reached)
3. Name the mounting point (resolved to a node id in the foreign name space, by

the foreign server)

Merging Name Spaces Problem: We have different name spaces
that we wish to access from any given name space.

4

Distributed Systems, Spring 2004
19

Merging Name Spaces

Solution 1: Introduce a naming scheme by which pathnames
of different namespaces are simply concatenated (URLs)

ftp://ftp.cs.vu.nl/pub/steen

Name of
protocol FTP

server
Name of a (context)

node in the name space
routed at the context

node mapped to the ftp
server

Distributed Systems, Spring 2004
20

Merging Name Spaces

Solution 2: Mounting

A directory node called a mount point stores the id of (or
all the necessary information for identifying and accessing)
a directory node from a foreign name space called mounting
point

Distributed Systems, Spring 2004
21

Merging Name Spaces

NFS: distributed file system that describes exactly how a client can access a
file stored on a (remote) NFS file server

Through a NFS URL

nfs://flits.cs.vu.nl//homes/steen

protocol NFS file server

file

/remote: includes
mount points for

foreign name spaces (in
the form of NFS URLs)

remote/vu/mbox

Distributed Systems, Spring 2004
22

Solution 3: Add a new root node and makes the existing root nodes its
children (example DEC’s Global Name Service (GNS))

Merging Name Spaces

Problem: existing names
need to be changed

home/steen ->
/vu/home/steen

Solution: New root
includes a mapping (old
roots, their new names).
(Implicitly) include the
identifier of the node
(old root) from where
resolution should start

/home/steen/keys->

n0:/home/steen/keys

Root node becomes a
bottleneck

Distributed Systems, Spring 2004
23

Merging Name Spaces

The Merging Name Spaces Problem

Solution 1: Introduce a naming scheme by which
pathnames of different name spaces are simply
concatenated (URLs).

Solution 2: Mounting

Solution 3: Add a new root node

Distributed Systems, Spring 2004
24

Name Space Implementation

Basic issue: Distribute the name resolution process as well as
name space management across multiple machines, by distributing
nodes of the naming graph.

Consider a hierarchical naming graph and distinguish three levels:

Global level: Consists of the high-level directory nodes (root and its
children). Stability (rarely change) Main aspect is that these directory
nodes have to be jointly managed by different administrations

Administrational level: Contains mid-level directory nodes that can
be grouped in such a way that each group can be assigned to a separate
administration.

Managerial level: Consists of low-level directory nodes within a single
administration. Typically change regularly. For example, hosts in a local
area network. Managed by end users. Main issue is effectively mapping
directory nodes to local name servers.

5

Distributed Systems, Spring 2004
25

Name Space Implementation

Example: DNS name space.

The name space is divided into non overlapping parts, called zones, each implemented
by a separate name server

Distributed Systems, Spring 2004
26

Name Space Implementation

SometimesYesYesIs client-side caching applied?

NoneNone or fewManyNumber of replicas

ImmediateImmediateLazyUpdate propagation

ImmediateMillisecondsSecondsResponsiveness to lookups

Vast numbersManyFewTotal number of nodes

DepartmentOrganizationWorldwideGeographical scale of network

ManagerialAdministrationalGlobalItem

Availability & Performance per level

Performance (client-side cache + replication)

Distributed Systems, Spring 2004
27

Iterative Name Resolution

Issue: Name resolution when the name space is
distributed across multiple name servers

Assume: no replication or client-side caching

Each client has access to a local name resolver

Example

root:<nl, vu, cs, ftp, pub, globe, index.txt>

Using URL notation

ftp://ftp.cs.vu.nl/pub/globe/index.txt

Distributed Systems, Spring 2004
28

Iterative Name Resolution
Method 1: Iterative Name Resolution
The name resolver hands over the complete name to the root server

The root server resolves the path name as far as it can and returns the result addr1
(address of the associated name server) to the client, then the client passes the
remaining path name server to the addr1 and so on

Note: the last resolution step (contacting the ftp server and asking it to transfer the indicated
file) is generally carried out as a separate process by the client (client asks to resolve the ftp)

Distributed Systems, Spring 2004
29

Recursive Name Resolution

Method 2: Recursive Name Resolution
Instead of returning each intermediate result back to the client’s name resolver,
each name server passes the result to the next name server it finds

Puts a higher performance demand on each name server (higher level nodes: iterative)

Caching results is more effective

Communication costs may be reduced
Distributed Systems, Spring 2004

30

Implementation of Name Resolution: Caching

What can be cached (recursive name resolution):

#<vu>
#<vu,cs>
#<vu,cs,ftp>

#<cs>
#<cs,ftp>

#<ftp>

--

Receives
and caches

#<nl>
#<nl,vu>
#<nl,vu,cs>
#<nl,vu,cs,ftp>

<vu,cs,ftp>#<nl><nl,vu,cs,ftp>root

#<vu>
#<vu,cs>
#<vu,cs,ftp>

<cs,ftp>#<vu><vu,cs,ftp>nl

#<cs>
#<cs, ftp>

<ftp>#<cs><cs,ftp>vu

#<ftp>--#<ftp><ftp>cs

Returns to
requester

Passes to
childLooks upShould

resolve
Server for

node

Caching with iterative name resolution?

Implement a local intermediate name server shared by all clients (besides caching,
only this server needs to know the root name server)

6

Distributed Systems, Spring 2004
31

Implementation of Name Resolution: Communication Cost

Distributed Systems, Spring 2004
32

Scalability Issues

Size scalability: We need to ensure that servers can handle a
large number of requests per time unit

Solution: Assume (at least at global and administrational level)
that content of nodes hardly ever changes. In that case, we
can apply extensive replication by mapping nodes to multiple
servers, and start name resolution at the nearest server.
Observation: An important attribute of many nodes is the
address where the represented entity can be contacted.
Replicating nodes makes large-scale traditional name servers
unsuitable for locating mobile entities.

Geographical scalability: We need to ensure that the name
resolution process scales across large geographical distances.

Problem: By mapping nodes to servers that may, in principle,
be located anywhere, we introduce an implicit location
dependency in our naming scheme.
Solution: No general one available yet.

Distributed Systems, Spring 2004
33

The DNS Name Space

Internet Domain Name Server (DNS): the largest distributed name
service in use

Primarily used to lookup host addresses and mail servers
The DNS name space is hierarchically organized as a rooted tree
Path name root:<nl, vu, cs, flits> represented as flits.cs.vu.nl. (rightmost dot
indicates the root)
Name of the node: label of the incoming edge

Domain: subtree

Domain name: path name to its root node

Contents of a node: a collection of resource records

A domain may be implemented by several zones

The DNS database is distributed across a logical network of servers (each
primarily data for the local domain

Distributed Systems, Spring 2004
34

The DNS Name Space

The most important types of resource records forming the
contents of nodes in the DNS name space.

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host this node representsHostHINFO

Contains the canonical name of a hostHostPTR

Symbolic link with the primary name of the represented nodeNodeCNAME

Refers to a name server that implements the represented zoneZoneNS

Refers to a server handling a specific serviceDomainSRV

Refers to a mail server to handle mail addressed to this nodeDomainMX

Contains an IP address of the host this node representsHostA

Holds information on the represented zoneZoneSOA

DescriptionAssociated
entity

Type of
record

Distributed Systems, Spring 2004
35

The DNS Name Space

Refers to a name server that implements the represented
zoneZone

NS
(name
server)

Contain the name of a server for a specific service
The service is identified by a name + name of a protocol
Example: the web server of the cs.vu.nl domain named
http.tcp.cs.vu.nl refer to the actual server soling.cs.vu.nl

DomainSRV

A symbolic link to a node representing a mail server
Example: the node representing the domain cs.vu.nl has an
MX record zephyr.cs.vu.nl

Domain
MX
(mail
exchange)

Contains an IP address of the host this node represents
(if several, an A record for each)

HostA
(address)

Holds information on the represented zone (such as an email
address of the system administrator, host name from where
data on the node can be fetched, etc)

Zone
SOA (start
of
authority)

DescriptionAssociate
d entity

Type of
record

Distributed Systems, Spring 2004
36

The DNS Name Space

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host this node represents (e.g.,
machine type, operating system)HostHINFO

Inverse mapping of IP addresses to host names
For instance, for host www.cs.vu.nl with IP 130.37.24.11 the
DNS creates a node named 11.24.37.130.in-addr.arpa used to
save the canonical name of the host (solings.cs.vu.ntl) in a PTR
record

HostPTR
(pointer)

Each host is assumed to have a canonical or primary name. An
alias is implemented by means of node storing a CNAME record
containing the canonical name of a host (symbolic link)

Node
CNAME
(canonical
names)

DescriptionAssociated
entity

Type of
record

Aliases vs canonical names

Each host has a canonical or primary name

To implement an alias, a node stores a CNAME record with the canonical name
(symbolic link)

7

Distributed Systems, Spring 2004
37

DNS Implementation

The name space is divided into non overlapping parts, called zones, each implemented
by a separate name server; almost always replicated

Updates by modifying the DNS database local to the primary server

Secondary name servers through zone transfer

Generally
formed by file
system;
formally, not
part of the
DNS

Distributed Systems, Spring 2004
38

DNS ImplementationAn excerpt from the DNS database for the zone
cs.vu.nl. cs.vu.nl (zone and domain)
start.cs.vu.nl (name server for the zone)

Domain & Zone

Host

Distributed Systems, Spring 2004
39

DNS Implementation

Part of the description for the vu.nl domain which
contains the cs.vu.nl domain.

130.37.21.1Asolo.cs.vu.nl

solo.cs.vu.nlNScs.vu.nl

Record valueRecord typeName

Distributed Systems, Spring 2004
40

The X.500 Name Space

A simple example of a X.500 directory entry using X.500 naming conventions.

130.37.21.11--WWW_Server
130.37.21.11--FTP_Server

130.37.24.6,
192.31.231,192.31.231.66--Mail_Servers

Main serverCNCommonName

Math. & Comp. Sc.OUOrganizationalUnit

Vrije UniversiteitLOrganization
AmsterdamLLocality
NLCCountry

ValueAbbr.Attribute

Directory Service: special form of a naming service, lookup an entity based
on a description of properties (rather than name)

Similar to Yellow-Page look up.

X.500 consists of a number of records (directory entries) <attribute, value>
Each attribute has a type, multiple-valued attributes

Distributed Systems, Spring 2004
41

The X.500 Name Space

The collection of all entries makes up the Directory Information Base (DIB)
Each record is uniquely named and can be looked up
A globally unique names: a sequence of naming attributes
Each naming attribute called RDN (Relative Distinguished Name).

Example: /C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server

Directory Information
Tree (DIT)

A node is both a
directory and an

X.500 record

Distributed Systems, Spring 2004
42

The X.500 Name Space

Two directory entries having Host_Name as RDN.

192.31.231.66Host_Address192.31.231.42Host_Address

zephyrHost_NamestarHost_Name

Main serverCommonNameMain serverCommonName

Math. & Comp.
Sc.OrganizationalUnitMath. & Comp. Sc.OrganizationalUnit

Vrije UniversiteitOrganizationVrije UniversiteitOrganization

AmsterdamLocalityAmsterdamLocality

NLCountryNLCountry

ValueAttributeValueAttribute

8

Distributed Systems, Spring 2004
43

The X.500 Name Space

Example:

list(/C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server)

read(/C=NL/O=Vrije Universiteit/OU=Math & Comp. Sc./CN=Main server)

A node is both a directory and an X.500 record

Two different lookup operations

read: returns a single record

list: returns the names of all outgoing edges

Distributed Systems, Spring 2004
44

X.500 Implementation

DIT is “partitioned” across several servers (termed Directory Service
Agents (DSA)- similar to zones in DNS)
Clients are represented by Directory User Agents (DUA): similar to a
name resolver
What is different between X.500-DNS?

Provides facilities for querying a DIB, example
answer = search(“&(C=NL)(O=Vrije Universiteit)(OU=*)(CN=Main Server))
Find all the “main servers” but not in a particular organizational unit

An operation may be “expensive” – the above will have to search all
entries for all departments (access many leaf nodes) and combine the
results..

LDAP (Lightweight Directory Access Protocol) a simplified protocol used
to accommodate X.500 directory services in the Internet

Application-level protocol on top of TCP

Distributed Systems, Spring 2004
45

Locating Mobile Entities
Difference from Naming

Simple Solutions
Home-Based Approach
Hierarchical Approach

Distributed Systems, Spring 2004
46

Naming versus Locating Entities

Problem: what happens and how are names resolved when
entities are mobile?

Example: move ftp.cs.uoi.gr to ftp.cs.unisa.edu.au

How is the change addressed? Create aliases!
1. Record the address of the new machine in the DNS

database of cs.uoi.gr (two addresses pointing to the same
node) hard link)
Lookup ok, but what if the server moves again?

2. Record the name of the new machine in the DNS database
of cs.uoi.gr (symbolic link)
Lookup less efficient, updates ok

For highly mobile entities both solutions are problematic
(especially if there are multiple phases in the name
resolution/address determination).

The name is not allowed to change.

Distributed Systems, Spring 2004
47

Naming versus Locating Entities

Decouple naming from locating entities

Separate naming from locating by introducing identifiers.
An identifier does not have a human-friendly representation (optimized for
machine processing only).
An entity’s name is now completely independent from its location.

In (a) there is a single level mapping between names and addresses. Each time an entity
changes location, the mapping needs to change!

Distributed Systems, Spring 2004
48

Naming versus Locating Entities

Location service: Solely aimed at providing the addresses of
the current locations of entities.

Assumption: Entities are mobile, so that their current address
may change frequently.

Naming service: Aimed at providing the content of nodes in a
name space, given a (compound) name.

Content consists of different (attribute, value) pairs.

Assumption: Node contents at global and administrational level
is relatively stable for scalability reasons.

Observation: If a traditional naming service is used to locate
entities, we also have to assume that node contents at the
managerial level is stable, as we can use only names as
identifiers (think of Web pages).

9

Distributed Systems, Spring 2004
49

Simple Solutions: Broadcasting

Broadcasting

Simply broadcast the id to each machine, each machine
is requested to check whether it has that entity, and if
so, send a reply message containing the address of the
access point

Can never scale beyond local-area networks (think of
ARP/RARP)

Requires all processes to listen to incoming location
requests

Distributed Systems, Spring 2004
50

Simple Solutions: Forwarding Pointers

Forwarding pointers

Each time an entity moves, it leaves behind a pointer telling where
it has gone to. Dereferencing can be made entirely transparent to
clients by simply following the chain of pointers
Update a client’s reference as soon as present location has been
found

Geographical scalability problems:

Long chains are not fault tolerant

Increased network latency at dereferencing

Essential to have separate chain reduction mechanisms

Distributed Systems, Spring 2004
51

Forwarding Pointers
SSP chains

Forwarding pointers for distributed objects

Each forwarding pointer is implemented as a (proxy, skeleton) pair

A skeleton (i.e., server-side stub) contains a local reference to the
actual object or a local reference to a proxy (i.e., client-side stub) for
the object

Skeleton (entry items for remote references) Proxies (exit items)

When an object moves
from A to B, it leaves
behind a proxy in its
place in A and installs a
skeleton that refers to
it in B.

Transparent to the
client

Distributed Systems, Spring 2004
52

Forwarding Pointers

A chain (proxy, skeleton) can be short cut.
• The current location is piggybacked with the response of the
distributed object.
• Send the response directly or along the reverse path?
• When no skeleton references a proxy, the skeleton can be removed.

Redirecting a forwarding pointer, by storing a shortcut in a proxy.

Distributed Systems, Spring 2004
53

Home-Based Approaches

An entity’s home address is registered at a naming
service.

The home registers the foreign address of the entity

Clients always contact the home first, and then continue
with the foreign location

Let the home location keep track of the entity’s current
address

(usually where the entity was created)

Distributed Systems, Spring 2004
54

Home-Based Approaches

The principle of Mobile IP

10

Distributed Systems, Spring 2004
55

Home-Based Approaches

Two-tiered scheme

Keep track of visiting entities:
Check local visitor register first
Fall back to home location if local lookup fails

Problems with home-based approaches:

The home address has to be supported as long as the entity lives.

The home address is fixed, which means an unnecessary burden
when the entity permanently moves to another location

Poor geographical scalability (the entity may be next to the
client)

Question: How can we solve the “permanent move” problem?

Distributed Systems, Spring 2004
56

Hierarchical Approaches

Basic idea: Build a large-scale search tree for which the underlying network is
divided into hierarchical domains.
Each domain is represented by a separate directory node dir(d)
Leaf domains typically correspond to a local-area network or a cell
The root (directory) node knows all the entities
Each entity currently in a domain D is represented by a location record in the
directory node dir(D) which is the entity’s current address or a pointer

Distributed Systems, Spring 2004
57

Hierarchical Approaches
The address of an entity is stored in a leaf node, or in an intermediate node

Intermediate nodes contain a pointer to a child if and only if the subtree rooted
at the child stores an address of the entity

The root knows about all entities

An entity may have multiple addresses (e.g., if it is replicated)

Distributed Systems, Spring 2004
58

Hierarchical Approaches: Lookup
Basic principles:

Start lookup at local leaf node
If node knows about the entity, follow downward

pointer, otherwise go one level up

Upward lookup always stops at root

Exploits locality

Distributed Systems, Spring 2004
59

Hierarchical Approaches: Update

a) An insert request is forwarded to the first node that knows about entity E.
b) A chain of forwarding pointers to the leaf node is created.

Distributed Systems, Spring 2004
60

Hierarchical Approaches: Pointer Caches

Caching a reference to a directory node of the lowest-level domain in which an entity will reside
most of the time.

Pointer caching: let D
be the smallest domain
in which a mobile entity
mover regularly, cache
a reference to dir(D)

11

Distributed Systems, Spring 2004
61

Hierarchical Architectures: Pointer Caches

A cache entry that needs to be invalidated because it returns a nonlocal address, while such an
address is available.

Let dir(D) not store a pointer to the subdomain where E resides but
the actual address of E

Cache invalidation:

Distributed Systems, Spring 2004
62

Hierarchical Approaches: Scalability Issues

Size scalability

The problem of overloading higher-level nodes

Only solution is to partition a node into a number of subnodes and
evenly assign entities to subnodes

Naive partitioning may introduce a node management problem, as a
subnode may have to know how its parent and children are
partitioned.

Geographical scalability

We have to ensure that lookup operations generally proceed
monotonically in the direction of where we’ll find an address:
Unfortunately, subnode placement is not that easy, and only a few
tentative solutions are known

Distributed Systems, Spring 2004
63

Hierarchical Approaches: Scalability Issues
Root is a bottleneck. Divide the root. The scalability issues related to

uniformly placing subnodes of a partitioned root node across the network
covered by a location service.

Distributed Systems, Spring 2004
64

Removing Unreferenced Entities
The Problem

Reference Counting
Reference Listing

Tracing

Distributed Systems, Spring 2004
65

Removing Unreferenced Objects

Distributed Garbage Collection:

Remove unreferenced entities

Distributed Systems, Spring 2004
66

The Problem of Unreferenced Objects

Reference through a (proxy, skeleton) pair
client-side proxy associated with a server-side skeleton

Assumption: Objects may exist only if it is known that they can be
contacted (may be accessed only if there is a remote reference to it)

Problem: Removing unreferenced objects:
How do we know when an object is no longer referenced (think of

cyclic references)?
Who is responsible for (deciding on) removing an object?

(proxy, skeleton) pair takes care of garbage collection (transparent to
objects/client)

12

Distributed Systems, Spring 2004
67

The Problem of Unreferenced Objects

Represented by a reference graph, each node represents an object

Garbage collection harder in distributed systems, because of
network communication (scalability/efficiency and failures)

Distributed Systems, Spring 2004
68

Reference Counting
Each time a client creates (removes) a reference to an object O, a
reference counter local to O (e.g., at the skeleton) is incremented
(decremented)

Problem 1: Dealing with lost (and duplicated) messages:

P creates a reference to remote object O, installs a
proxy p for O

p sends an incr message to s

s sends ACK to p

• An increment is lost so
that the object may be
prematurely removed

• An increment is send
twice

• A decrement is lost so
that the object is never
removed

• An ACK is lost, so that
the increment/decrement
is resent.

Distributed Systems, Spring 2004
69

Reference Counting

Solution 1:
• P1 tells O, it will pass a reference to P2
• O contacts P2 immediately
• A reference may never be removed, before O
has ack the reference to the holder

Problem 2: (copying a remote reference) process P1 passes a reference to process P2
of object O. (Skeleton s of) O does not know this, until P2 communicates with O

P2 creates a reference to O, but dereferencing (communicating with O) may
take a long time. If the last reference known to O is removed before P2 talks to
O, the object is removed prematurely Problem in (a) below

Passing a reference requires 3 messages
Distributed Systems, Spring 2004

70

Advanced Referencing Counting

(a) The initial assignment of weights in weighted reference counting (b) Weight assignment when creating a new
reference.

Solution 2: Avoid increment messages

Weighted reference counting

Associate a fixed total weight with each object O

Upon creation of O, each skeleton s of O: total weight, partial weight (=total
weight, initially

When a new remote reference is created, the new proxy is assigned half of the
partial weight. Remaining half at the skeleton.

Distributed Systems, Spring 2004
71

Advanced Referencing Counting

(c) Weight assignment when copying a reference.

When P1 passes O to P2, half of the partial weight of P1’s proxy assigned
to the copied proxy of P2

When a reference is destroyed, dec message (including the associated
partial weight) send to the skeleton

Distributed Systems, Spring 2004
72

Advanced Referencing Counting
Problem: maximum number of references

Solution: Indirection

When the partial weight of P1 reaches 1, P1 cerates a skeleton s’ in its address
space with an appropriate total weight

As with forwarding pointers: long chains degrade performance, more
susceptible to failures

13

Distributed Systems, Spring 2004
73

Advanced Referencing Counting

Creating and copying a remote reference in generation reference counting.

Solution: Generation Reference Counting

Associate with each proxy a generation number + a copy counter (number of times it
has been copied)

The skeleton s maintains a table G, G[i] number of generation i copies

When p is deletes, sends message to s with generation number, k, and number of
copies, n

s decrements G[k] by one, increments G[k+1] by n

Object deleted when all G[i] equal to 0

Distributed Systems, Spring 2004
74

Referencing Listing

The skeleton maintains an explicit list of all proxies pointing to it

Idempodent operation: an operation that can be repeated without
affecting the end result

Message to add/delete a proxy to a list as apposed to
increment/decrement operations

Used in Java RMI

Leases (timeout)

Distributed Systems, Spring 2004
75

Tracing
Entities that hold references to each other but none can be reached from
the root

Tracing-based garbage collection: check which methods can be reached
from the root and remove all others

Mark-and sweep collectors

Mark phase: follow chains of entities originated from entities
in the root set and mark them

Sweep phase: exhaustively examine memory to locate entities
that have not been marked

Distributed Systems, Spring 2004
76

Tracing
Distributed Version of Mark-and sweep collectors

A local garbage collector is started at each process, with all the collectors
running in parallel

Color proxies, skeletons and the actual objects

Three colors: white, grey, black

Initially, all white
An object in P, reachable form the root in P, marked grey

When an object is marked grey, all proxies contained in that object are marked grey

When a proxy is marked grey, a message is sent to the associate skeleton to mark
itself grey

The object becomes grey, when the skeleton becomes grey

When all proxies grey, the object and skeleton is marked black, and then the proxy

Mark phase ends when no greys

Remove all white objects

“Stop-the-world” assumption

Distributed Systems, Spring 2004
77

Tracing in Groups

Processes (which contain objects) are hierarchically organized in groups)

Phase 1: Initial marking, in which only skeletons are marked

Phase 2: Intra-process propagation of marks from skeleton to proxies

Phase 3: Inter-process propagation of marks from proxies to skeletons

Phase 4: Stabilization by repetition of the previous two steps

Phase 5: Garbage reclamation

Distributed Systems, Spring 2004
78

Tracing in Groups

For details, read the book

