
1

Distributed Systems, Spring 2004
1

Consistency and Replication

Distributed Systems, Spring 2004
2

Introduction

Consistency Models

Distribution Protocols

Consistency Protocols

Topics to be covered

Distributed Systems, Spring 2004
3

Introduction
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+ Performance

+ Reliability

Availability: proportion of time for which a service is accessible
Delays due to pessimistic cc

Server failures

Network partitions and disconnected operation

N servers, independent probability p of failing

1- p(all failed or unreachable) = 1 – pn

p = 5%, n = 2, availability = 99.75%

Fault tolerance: guarantees strictly correct behavior despite a certain type and
number of faults

(correct: e.g., freshness, timeliness of response)

Up to f of f+1 crash

Up to f byzantine failures, 2f + 1 

Introduction
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Requirements

Replication Transparency

One logical object (data item) – many physical copies

Consistency Problems: keep replica consistent – in general, 
ensure that all conflicting operations (e.g., from the world of 
transactions: RW, and WW) are executed in the same order 
everywhere

Guaranteeing global ordering costly operation, downgrade scalability

Weaken consistency requirements

Introduction
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Organization of a distributed remote object shared by two 
different clients.

Object Replication
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a) A remote object capable of handling concurrent invocations on its 
own.

b) A remote object for which an object adapter is required to handle 
concurrent invocations

Object Replication
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a) A distributed system for replication-aware distributed objects.
b) A distributed system responsible for replica management

Object Replication
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Consistency Models
Data-Centric

Client-Centric
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Data-Centric Consistency Models

Consistency Model: a contract between a (distributed) data store and 
processes, in which the data store specifies precisely what the result of read 
and write operations are in the presence of concurrency

Notation:

Wi(x)a Ri(x)b
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Shared data pertaining to a critical region are made consistent when a critical region is 
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

All processes see writes from each other in the order they were used.  Writes from 
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order.  Accesses are not ordered in 
timeSequential

All processes must see all shared accesses in the same order.  Accesses are 
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Data-Centric Consistency Models

There are no explicit synchronization operations 

There are explicit synchronization operations – updates are propagated 
only when such operations are used
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Data-Centric Consistency Models

Strict Consistency

Any read on a data item x returns a value corresponding to the 
results of the most recent write on x

Example

(a) A strictly consistent store (b) A store that is not strictly consistent.

Note: strict consistency is what we get in the normal sequential case, when each 
program does not interfere with any other program

Absolute global time
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Data-Centric Consistency Models

Problem: It relies on absolute global time

Example

p1

p2

send(R2(x))

W1(x)a W2(x)b

R2(x)?

receive(R2(x))

If strict, p2 should read the value a

Strict Consistency

All writes are instantaneously visible to all processes and an absolute global time 
order is maintained
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Sequential Consistency
The result of any execution is the same as if the (read and write) operations by all 
processes on the data store are executed in the same sequential order and the 
operations of each individual process appear in this sequence in the order specified 
by its program.

Data-Centric Consistency Models

(a) A sequentially consistent data store. (b) A data store that is not sequentially consistent.

Example

Note: a process sees writes from all processes but only its own reads

Similar with (transaction) serializability but difference in granularity (transactions vs
single read and write operations)

All processes see the same interleaving of operations.
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Data-Centric Consistency Models

Serializability for replicated data

x logical data item
x1, x2, …, xn physical data items

Replica control protocols: maps each read/write on a logical data item x to 
a read/write on one (or more) of the physical data items 

One-copy serializability (equivalence with a serial execution on an one-
copy database – view equivalence same reads-from and same set of final 
writes)

(assumption: unique reads-from relationships on data items)
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Linearizability
The result of any execution is the same as if the (read and write) operations by all 
processes on the data store ere executed in some sequential order and the 
operations of each individual process appear in this sequence in the order specified 
by its program. In addition, if tsOP1(x) < tsOP2(y) then operation OP1(X) should 
precede OP2(y) in this sequence.

Data-Centric Consistency Models

In particular, we assume that operations receive a timestamp using a loosely 
synchronized clock (a finite precision global clock)

Notation: tsOP(x) where OP = R or W

A consistency model between strict consistency and sequential 
consistency that uses loosely synchronized clocks.

A linearizable data store is also sequentially consistent.

The additional requirements of ordering according to timestamps makes it more 
expensive to implement
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Data-Centric Consistency Models

Ways to express consistency

Consider an associated history (execution)

H1: W1(x)a

H2: W2(X)b

H3: R3(x)b R3(x)a

H4: R4(x)R4(x)a

Merge individual histories to get the execution 
history H

W1(x)a W2(x)b R3(x)b R4(x)b R3(x)a R4(x)a

Legal history H, if

Rules: 

1. Present program order (order of individual histories)

2. A read to x must always return the value most recently 
written to x (data coherency)
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Sequential Consistency (2nd definition)
All legal values for history H must:

(i) Maintain the program order

(ii) Data coherency must be respected

Data-Centric Consistency Models

Data coherency: a R(x) must return the value most recently written to x; that is, 
the value written by the W(x) immediately preceding it in H

Coherence examines each data item in isolation

Called memory coherence when dealing with memory locations instead of data 
items
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Data-Centric Consistency Models

W1(x)a W2(x)b R3(x)b R4(x)b R3(x)a R4(x)a

Legal history:

W2(x)b R3(x)b R4(x)b W1(x)a R3(x)a R4(x)a

W1(x)a W2(x)b R3(x)b R4(x)a R3(x)a R4(x)b

No legal history

It has been proved that: for any sequentially consistent store, changing the 
protocol to improve read performance makes write performance worse and 
vice versa.
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z = 1;
print (x, y);

y = 1;
print (x, z);

x = 1;
print ( y, z);

Process P3Process P2Process P1

Data-Centric Consistency Models

Example

Assume the following three concurrently executing processes (assign = 
write and print = read). Assume, initially x = y = z = 0

• How many interleaved executions are possible?

With 6 statements: 6! = 720

• How many of them are valid, i.e., do not violate program order?

90 (why?)

Sequential Consistency
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Example: Four valid execution sequences for the processes of the previous slide.  

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
111111

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
110101

x = 1;
y = 1;
print (x,z);
print(y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
101011

x = 1;
print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints:  001011

Signature:
001011

Signature: output of P1 Output of P2 output of P3 – 64 different signatures, valid ones?

90 different valid statement orderings produce a variety of different signatures

Data-Centric Consistency Models
Sequential Consistency
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Data-Centric Consistency Models

Casual Consistency

Writes that are potentially causally related must be seen by all processes in the 
same order. Concurrent writes may be seen in different order on different 
machines.

sequence allowed with a casually-consistent store, but not with sequentially or 
strictly consistent store, assume W2(x)b and W1(x)c are concurrent

Example:

No need to preserve the order of non-related (that is, of concurrent) events (= 
writes in our case, since reads depend on previous writes)

Casual relation = related say by happened-before
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(a) A violation of a casually-consistent store. (b) A correct sequence of events in a 
casually-consistent store. – assume W2(x)b depends on W1(x)a

Data-Centric Consistency Models

Example:

Casual Consistency
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Data-Centric Consistency Models

Implementation

Dependency graph: need to know for each operation, 
the operation it depends on
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Data-Centric Consistency Models

FIFO Consistency

Writes of a single process are seen by all other processes in the order in which 
they were issued, but writes of different processes may be seen in a different 
order by different processes.

Also called PRAM consistency in the case of distributed shard memory

Pipelined RAM

In other words: There are no guarantees about the order in which different 
processes see writes, except that two or more writes of the same process must 
arrive in order (that is, all writes generated by different processes are 
concurrent).
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A valid sequence of events of FIFO consistency but not for casual

Data-Centric Consistency Models

Example:

Implementation: need just to guarantee that writes from the same process 
arrive in order, tag writes with (process-id, sequence-number)

Perform writes with the same id based on sequence-number

FIFO Consistency
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Statement execution as seen by the three processes from the previous slide.  The 
statements in bold are the ones that generate the output shown.

y = 1;
print (x, z);
z = 1;
print (x, y);
x = 1;
print (y, z);

Prints:  01

(c) P3’s view

x = 1;
y = 1;
print(x, z);
print ( y, z);
z = 1;
print (x, y);

Prints: 10

(b) P2’s view

x = 1;
print (y, z);
y = 1;
print(x, z);
z = 1;
print (x, y);

Prints: 00

(a) P1’s view

Data-Centric Consistency Models

FIFO Consistency
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y = 1;
if (x == 0) kill (P1);

x = 1;
if (y == 0) kill (P2);

Process P2Process P1

Data-Centric Consistency Models

Example

Initially, x = y = 0

FIFO Consistency

W1(x)1 R1(y)0

W2(y)1 R2(x)0
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Data-Centric Consistency Models

Strong Consistency Models: Operations on shared data are 
synchronized:

Strict consistency (related to time)

Sequential Consistency (similar to database 
serializability, what we are used to)

Causal Consistency (maintains only casual relations)

FIFO consistency (maintains only individual ordering)
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Shared data pertaining to a critical region are made consistent when a critical region is 
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

All processes see writes from each other in the order they were used.  Writes from 
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order.  Accesses are not ordered in 
timeSequential

All processes must see all shared accesses in the same order.  Accesses are 
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Data-Centric Consistency Models
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Data-Centric Consistency Models

Each process operates on its own local copy of the data store. 

Changes are propagated only when an explicit synchronization takes place

A synchronization variable S with one associated operation synchronize(S)
which synchronizes all local copies of the data store. 

When the data store is synchronized al local copies of process P are 
propagated to the other copies, whereas writes by other processes are 
brought into P’s copies.

Don’t care that the reads and writes of a series of operations are 
immediately known to other processes. Just want the effect of 
the series itself to be known.

Weak Consistency
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Data-Centric Consistency Models

Weak Consistency

1. Accesses to synchronization variables with a data store are 
sequentially consistent. (All processes see all operations on 
synchronization variables in the same order)

2. No operation on a synchronized variable is allowed to be 
performed until all previous writes are completed everywhere. 

3. No read or write operation on data items are allowed to be 
performed until all previous operations to synchronization 
variables have been performed.
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A program fragment in which some variables may be kept in registers.

int a, b, c, d, e, x, y; /* variables */
int *p, *q; /* pointers */
int f( int *p, int *q); /* function prototype */

a = x * x; /* a stored in register */
b = y * y; /* b as well */
c = a*a*a + b*b + a * b; /* used later */
d = a * a * c; /* used later */
p = &a; /* p gets address of a */
q = &b /* q gets address of b */
e = f(p, q) /* function call */

Data-Centric Consistency Models

Weak Consistency
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Data-Centric Consistency Models

Weak Consistency
Example

(a) A valid sequence of events for weak consistency. (b) An invalid sequence for weak 
consistency.

Weak consistency implies that we need to lock and unlock data (implicitly or not)

Two things: (i) propagate own updates, finish writing shared 
data – leave CR, (ii)  get all other writes, start, enter CR
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Data-Centric Consistency Models

Divide access to a synchronization variable into two parts: an acquire (for 
entering a critical region) and a release (for leaving a critical region) phase.

Acquire forces a requestor to wait until the shared data can be accessed. 
Release sends requestor’s local value to other servers in data store.

1. When a process does an acquire, the store will ensure that all the local 
copies of the protected data are brought up to date 

2. When a release is done, protected data that have been changed are 
propagated to other local copies of the store.

Example

A valid event sequence  for release consistency.

Release Consistency
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Data-Centric Consistency Models

Release Consistency

1. Before a read or write operation on shared data is performed, all 
previous acquires done by the process must have completed 
successfully

2. Before a release is allowed to be performed, all previous reads 
and writes done by the process must have been completed.

3. Accesses to synchronization variables are FIFO consistent 
(sequential consistency is not required).
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Data-Centric Consistency Models

With release consistency, all local updates are propagated to other 
copies/servers during release of shared data.

With entry consistency: each shared data item is associated with a 
synchronization variable.

When acquiring the synchronization variable, the most recent of its 
associated shared data are fetched.

Whereas release consistency affects all data, entry consistency 
affects only those shared data associated with a synchronization
variable.

Entry Consistency
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Data-Centric Consistency Models

Entry Consistency

1. Any acquire access of a synchronization variable is not allowed to 
perform with respect to a process until all updates to the 
guarded shared data have been performed with respect to that 
process.

2. Before an exclusive mode access to a synchronization variable by
a process is allowed to perform with respect to that process, no
other process may hold the synchronization variable. Not even in
nonexclusive mode.

3. After an exclusive mode access to a synchronization variable has
been performed, any other process’ next nonexclusive mode 
access to that synchronization variable may not be performed 
until it has performed with respect to that variable’s owner. 
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A valid event sequence for entry consistency.

Data-Centric Consistency Models

Entry Consistency

Example
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Data-Centric Consistency Models

Weak Consistency Models: Synchronization occurs only when 
shared data are locked and unlocked:

General Weak Consistency

Release Consistency 

Entry consistency

barriers: synchronization mechanism that prevents any process from starting 
phase n +1 until all processes have finished phase n

When a process reaches a barrier, it must wait others to get there

When all arrive, data are synchronized, all processes are resumed
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(b)

Shared data pertaining to a critical region are made consistent when a critical region is 
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used.  Writes from 
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order.  Accesses are not ordered in 
timeSequential

All processes must see all shared accesses in the same order.  Accesses are 
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Data-Centric Consistency Models
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Client-Centric Consistency Models

Show how we can avoid system-wide 
consistency, by concentrating on what specific 
clients want, instead of what should be 
maintained by the servers.

Eventual consistency: if no updates take place for a 
long time, all replicas will gradually become 
consistent
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The principle of a mobile user accessing different replicas of a distributed database.

Client-Centric Consistency Models
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Client-Centric Consistency Models

Monotonic Reads

If a process reads the value of a data item x, any successive read 
operation on x by that process will always return the same or a more 
recent value.

Notation

WS(xi[t]): the set of write operations (at site Li) that lead to version 
xi of x (at time t); 

WS(xi[t1];xj[t2]) indicates that is known that WS(xi[t1]) is part of 
WS(xj[t2])

Example: reading incoming email while on the move; each time you
connect: monotonic reads
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The read operations performed by a single process P at two different local copies of 
the same data store.

(a) A monotonic-read consistent data store (b) A data store that does not provide 
monotonic reads.

Client-Centric Consistency Models

Example

Monotonic Reads

May not reflect 
updates at site L1
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The write operations performed by a single process P at two different local copies 
of the same data store

(a) A monotonic-write consistent data store. (b) A data store that does not provide 
monotonic-write consistency.

Example

Monotonic Writes

A write operation by a process on a data item x is completed before 
any successive write operation on x by the same process.

Client-Centric Consistency Models

Similar to FIFO but for a single process
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Client-Centric Consistency Models

Examples

Updating a program at server S2 and ensuring that all 
components on which compilation and linking depends are also 
placed at S2

Maintaining versions of replicated files in the correct order 
everywhere (propagate the previous version to the server where 
the newest version is installed).

Monotonic Writes
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(a) A data store that provides read-your-writes consistency. (b) A data store that 
does not.

Client-Centric Consistency Models

Read Your Writes

The effect of a write operation by a process on data item x will be 
always seen by a successive read operation on x by the same process.

Example

Example: Updating your web page and guaranteeing that your web 
browser shows the newest version instead of the cached copy.

Similar with changing passwords
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Example

Client-Centric Consistency Models

Writes Follow Reads

A write operation by a process on a data item x following a previous 
read operation on x by the same process is guaranteed to take place on 
the same or a more recent value of x that was read

(a) A writes-follow-reads consistent data store (b) A data store that does not 
provide writes-follow-reads consistency

Example: See reactions to posted articles only if you have the original 
posting (a read “pulls in” the corresponding write operation)
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Distribution Protocols
Replica Placement

Update Propagation
Epidemic Protocols
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Replica Placement

Where, when and by whom data copies are placed in a distributed system?
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Replica Placement

Permanent Replicas

The initial set of replicas that constitute a distributed data store

Distributed Systems, Spring 2004
53

Replica Placement
Server-Initiated Replicas

Copies of data to enhance performance, created by the servers

Keep track of access counts per file plus the client that requested 
the file aggregated by considering server closest to requesting clients

Number of accesses drop 
below threshold D: drop file

Number of accesses 
exceeds threshold R: 
replicate file

Number of accesses 
between D and R: file can 
only be migrated (no drop or 
replication), when? If the 
requests from a specific 
server exceeds half of the 
total requests

Example, when two clients (C1 and C2 share 
the same closest server (P)
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Replica Placement
Client-Initiated Replicas

Client initiated replicas or (client) caches

Generally kept for a limited amount of time (replaced or 
become stale)

Cache hit

Share caches among clients

Normally placed at the same machine as the client
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Update Propagation

State vs Operation

Propagate only notification/invalidation of update 

Often used for caches

Called invalidation protocols

Works well when read-to-write ratio is small 

Transfer values/copies from one copy to the other 

Works well when read-to-write ratio is relatively high

Log the changes, aggregate updates

Propagate the update operation to other copies (aka active 
replication)

less bandwidth, more processing power
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Comparison between push-based and pull-based protocols in the case of 
multiple client, single server systems.

Fetch-update timeImmediate (or fetch-update time)Response time at 
client

Poll and updateInvalidation (and possibly fetch update 
later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

Update Propagation

Push vs Pull

Push or server based (update is propagated without a client request)

Pull or client based
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Update Propagation

A Hybrid Protocol: Leases

Lease: A contract in which the server promises to push updates to 
the client until the lease expires

Make lease expiration time depended on system behavior (adaptive
leases)

Age-based leases: an object that has not changed for  long time, 
will not change in the near future, so provide a long-lasting lease

Renewal-frequency based leases: The more often a client requests 
a specific object, the longer the expiration time for that client (for 
that object) will be

State-based leases: The more loaded a server is, the shorter the 
expiration times become
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Epidemic Algorithms
Overview

Basic idea: assume there are no write-write conflicts (e.g., updates 
for a specific item are initiated at a single server)

Update operations are initially performed at one or only a few 
replicas

A replica passes its updated state to a limited number of neighbors

Update propagation is lazy. i.e., not immediate

Eventually, each update should reach every replica

Anti-entropy: Each replica regularly chooses another replica at 
random, and exchanges state differences, leading to identical states 
at both afterwards

Gossiping: A replica that has just been updated (i.e., has been 
contaminated) tells a number of other replicas about its update 
(contaminating them as well).
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Epidemic Algorithms

System Model

A collection of servers, each storing a number of objects

Each object O has a primary server at which updates for O are initiated

An update of an object O at server S is timestamped

Notation: timestamp T(O, S), value VAL(O, S)

Infective server/susceptible server
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Epidemic Algorithms

Anti-Entropy

A server S picks another server S* randomly and exchange updates with it

When S contacts S* to exchange state information, three strategies:

PUSH: S only forwards all its updates to S*

if T(O, S*) < T(O, S) then VAL(O, S*) = VAL(O, S)

PULL: S only fetches updates from S*

if T(O, S*) > T(O, S) then VAL(O, S) = VAL(O, S*)

PUSH&PULL: S and S* exchange their updates by pushing an pulling values

If each server randomly chooses another server for exchanging updates, an 
update is propagated in O(log(N)) time units

Why pushing alone is not efficient when many servers have already been 
infected?
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Epidemic Algorithms

Gossiping

A server S having an update to report, contacts other servers. If a 
server is contacted to which the update has already been propagated, S 
stops contacting other servers with probability 1/k.

IF s is the fraction of susceptible servers (i.e., which are unaware of the 
updates), it can be shown that with many servers:

s = e –(k+1)(1-s)

k s

1 0.2

2 0.06

3 O.02

4 0.007

5 0.0025

If we really have to ensure that all servers are eventually updated, gossiping 
alone is not enough.

Distributed Systems, Spring 2004
62

Epidemic Algorithms

Deleting Values

We cannot remove an old value from a server and expect the removal to 
propagate. Why?

Treat removal as a special update by inserting a death certificate

When to remove a death certificate:

Run a global algorithm to detect whether the removal is known everywhere, 
and then collect the death certificates (looks like garbage collection)

Assume that death certificates propagate in finite time, and associate a 
maximum lifetime for a certificate (can be done at the re=isk of not reaching 
all servers)

It is necessary that a removal actually reaches all servers.

Scalability?
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Client-Centric Consistency Models

Use timestamps and maintain read and write sets

Sessions!

Implementation
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Consistency Protocols
Primary-Based Protocols

Replicated-Write Protocols
Cache-Coherence Protocols
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Consistency Protocols

Implementation of a specific consistency model. We will concentrate on 
sequential consistency.
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Primary-Based Protocols

Primary-based protocols: each data item x has an associated primary responsible 
for coordinating write operations on x

Remote-Write protocols
Simplest model: no replication, all read and writes operations are forwarded to a 
single server 
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Primary-Based Protocols
Remote-Write protocols

Primary-backup protocol: reads on local copies, but writes at a (fixed) primary copy

An updated is applied as a blocking operation. 

Sequential consistency. Why?

Non-blocking write variant: as soon as the primary has updated its local copy, it 
returns an ack, then it tells the backup to perform the update as well. Consistency?
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Primary-Based Protocols

Local-Write protocols
Case 1: there is only a single copy of each data item x (no  replication) a single copy 
is migrated between processes
a single copy is migrated between processes

Useful when writes are expected to come in series from the same client 
(e.g., mobile computing without replication)
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Primary-Based Protocols
Local-Write protocols

Case 2 (primary back-up): the primary copy migrates 

distributed shared memory systems, but also mobile computing in
disconnected mode
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Active Replication: updates are propagated to multiple replicas where they 
are carried out. 

The problem of replicated invocations.

Replicated-Write Protocols
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Replicated-Write Protocols

(a) Forwarding an invocation request from a replicated object. (b) Returning a 
reply to a replicated object.

Assign a coordinator on each side (client and server) 
that ensures that only one invocation and one reply is 
sent
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Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

Replicated-Write Protocols

Quorum-based protocols: ensure that each operation is carried out in such 
a way that a majority vote is established: distinguish read quorum and write 
quorum

1. NR + NW > N

2. NW > N/2



13

Distributed Systems, Spring 2004
73

Cache Consistency Protocols

Write-through caches: clients directly modify 
the cached data and forward the update to the 
servers

Write-back caches: delay the propagation of 
updates by allowing multiple writes to take place

Distributed Systems, Spring 2004
74

The general organization of a distributed data store.  Clients 
are assumed to also handle consistency-related communication.

Casually-Consistent Lazy Replication

Number of replica servers jointly implement a causal-consistent data store. 
Clients normally talk to front ends which maintain data to ensure causal 
consistency (eventual consistency but also causal relationships between 
operations)
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Casually-Consistent Lazy Replication

Vector Timestamps

Two vector timestamps per local copy Li:

VAL(i): VAL(i)[i] denotes the total number of write operations sent 
directly by a front end (client). VAL(i)[j] denotes the number of 
updates sent from local copy Lj

WORK(i): WORK(i)[i] total number of write operation directly from 
front ends, including the pending ones. WORK(i)[j] is the total 
number of updates from local copy Lj, including pending ones

Each client:

LOCAL(C): LOCAL(C)[j] is (almost) most recent value of VAL(j)[j] 
known to front end C (will be refined …)

DEP(R): Timestamp associated with a request, reflecting what the 
request depends on.
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Performing a read operation at a local copy.

Casually-Consistent Lazy Replication

Client C performs R It is necessary that Li knows 
about that state
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Performing a write operation at a local copy.

Casually-Consistent Lazy Replication

Client C performs W


