
1

Distributed Systems, Spring 2004
1

Consistency and Replication

Distributed Systems, Spring 2004
2

Introduction

Consistency Models

Distribution Protocols

Consistency Protocols

Topics to be covered

Distributed Systems, Spring 2004
3

Introduction

Distributed Systems, Spring 2004
4

+ Performance

+ Reliability

Availability: proportion of time for which a service is accessible
Delays due to pessimistic cc

Server failures

Network partitions and disconnected operation

N servers, independent probability p of failing

1- p(all failed or unreachable) = 1 – pn

p = 5%, n = 2, availability = 99.75%

Fault tolerance: guarantees strictly correct behavior despite a certain type and
number of faults

(correct: e.g., freshness, timeliness of response)

Up to f of f+1 crash

Up to f byzantine failures, 2f + 1

Introduction

Distributed Systems, Spring 2004
5

Requirements

Replication Transparency

One logical object (data item) – many physical copies

Consistency Problems: keep replica consistent – in general,
ensure that all conflicting operations (e.g., from the world of
transactions: RW, and WW) are executed in the same order
everywhere

Guaranteeing global ordering costly operation, downgrade scalability

Weaken consistency requirements

Introduction

Distributed Systems, Spring 2004
6

Organization of a distributed remote object shared by two
different clients.

Object Replication

2

Distributed Systems, Spring 2004
7

a) A remote object capable of handling concurrent invocations on its
own.

b) A remote object for which an object adapter is required to handle
concurrent invocations

Object Replication

Distributed Systems, Spring 2004
8

a) A distributed system for replication-aware distributed objects.
b) A distributed system responsible for replica management

Object Replication

Distributed Systems, Spring 2004
9

Consistency Models
Data-Centric

Client-Centric

Distributed Systems, Spring 2004
10

Data-Centric Consistency Models

Consistency Model: a contract between a (distributed) data store and
processes, in which the data store specifies precisely what the result of read
and write operations are in the presence of concurrency

Notation:

Wi(x)a Ri(x)b

Distributed Systems, Spring 2004
11

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
timeSequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Data-Centric Consistency Models

There are no explicit synchronization operations

There are explicit synchronization operations – updates are propagated
only when such operations are used

Distributed Systems, Spring 2004
12

Data-Centric Consistency Models

Strict Consistency

Any read on a data item x returns a value corresponding to the
results of the most recent write on x

Example

(a) A strictly consistent store (b) A store that is not strictly consistent.

Note: strict consistency is what we get in the normal sequential case, when each
program does not interfere with any other program

Absolute global time

3

Distributed Systems, Spring 2004
13

Data-Centric Consistency Models

Problem: It relies on absolute global time

Example

p1

p2

send(R2(x))

W1(x)a W2(x)b

R2(x)?

receive(R2(x))

If strict, p2 should read the value a

Strict Consistency

All writes are instantaneously visible to all processes and an absolute global time
order is maintained

Distributed Systems, Spring 2004
14

Sequential Consistency
The result of any execution is the same as if the (read and write) operations by all
processes on the data store are executed in the same sequential order and the
operations of each individual process appear in this sequence in the order specified
by its program.

Data-Centric Consistency Models

(a) A sequentially consistent data store. (b) A data store that is not sequentially consistent.

Example

Note: a process sees writes from all processes but only its own reads

Similar with (transaction) serializability but difference in granularity (transactions vs
single read and write operations)

All processes see the same interleaving of operations.

Distributed Systems, Spring 2004
15

Data-Centric Consistency Models

Serializability for replicated data

x logical data item
x1, x2, …, xn physical data items

Replica control protocols: maps each read/write on a logical data item x to
a read/write on one (or more) of the physical data items

One-copy serializability (equivalence with a serial execution on an one-
copy database – view equivalence same reads-from and same set of final
writes)

(assumption: unique reads-from relationships on data items)

Distributed Systems, Spring 2004
16

Linearizability
The result of any execution is the same as if the (read and write) operations by all
processes on the data store ere executed in some sequential order and the
operations of each individual process appear in this sequence in the order specified
by its program. In addition, if tsOP1(x) < tsOP2(y) then operation OP1(X) should
precede OP2(y) in this sequence.

Data-Centric Consistency Models

In particular, we assume that operations receive a timestamp using a loosely
synchronized clock (a finite precision global clock)

Notation: tsOP(x) where OP = R or W

A consistency model between strict consistency and sequential
consistency that uses loosely synchronized clocks.

A linearizable data store is also sequentially consistent.

The additional requirements of ordering according to timestamps makes it more
expensive to implement

Distributed Systems, Spring 2004
17

Data-Centric Consistency Models

Ways to express consistency

Consider an associated history (execution)

H1: W1(x)a

H2: W2(X)b

H3: R3(x)b R3(x)a

H4: R4(x)R4(x)a

Merge individual histories to get the execution
history H

W1(x)a W2(x)b R3(x)b R4(x)b R3(x)a R4(x)a

Legal history H, if

Rules:

1. Present program order (order of individual histories)

2. A read to x must always return the value most recently
written to x (data coherency)

Distributed Systems, Spring 2004
18

Sequential Consistency (2nd definition)
All legal values for history H must:

(i) Maintain the program order

(ii) Data coherency must be respected

Data-Centric Consistency Models

Data coherency: a R(x) must return the value most recently written to x; that is,
the value written by the W(x) immediately preceding it in H

Coherence examines each data item in isolation

Called memory coherence when dealing with memory locations instead of data
items

4

Distributed Systems, Spring 2004
19

Data-Centric Consistency Models

W1(x)a W2(x)b R3(x)b R4(x)b R3(x)a R4(x)a

Legal history:

W2(x)b R3(x)b R4(x)b W1(x)a R3(x)a R4(x)a

W1(x)a W2(x)b R3(x)b R4(x)a R3(x)a R4(x)b

No legal history

It has been proved that: for any sequentially consistent store, changing the
protocol to improve read performance makes write performance worse and
vice versa.

Distributed Systems, Spring 2004
20

z = 1;
print (x, y);

y = 1;
print (x, z);

x = 1;
print (y, z);

Process P3Process P2Process P1

Data-Centric Consistency Models

Example

Assume the following three concurrently executing processes (assign =
write and print = read). Assume, initially x = y = z = 0

• How many interleaved executions are possible?

With 6 statements: 6! = 720

• How many of them are valid, i.e., do not violate program order?

90 (why?)

Sequential Consistency

Distributed Systems, Spring 2004
21

Example: Four valid execution sequences for the processes of the previous slide.

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
111111

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
110101

x = 1;
y = 1;
print (x,z);
print(y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
101011

x = 1;
print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints: 001011

Signature:
001011

Signature: output of P1 Output of P2 output of P3 – 64 different signatures, valid ones?

90 different valid statement orderings produce a variety of different signatures

Data-Centric Consistency Models
Sequential Consistency

Distributed Systems, Spring 2004
22

Data-Centric Consistency Models

Casual Consistency

Writes that are potentially causally related must be seen by all processes in the
same order. Concurrent writes may be seen in different order on different
machines.

sequence allowed with a casually-consistent store, but not with sequentially or
strictly consistent store, assume W2(x)b and W1(x)c are concurrent

Example:

No need to preserve the order of non-related (that is, of concurrent) events (=
writes in our case, since reads depend on previous writes)

Casual relation = related say by happened-before

Distributed Systems, Spring 2004
23

(a) A violation of a casually-consistent store. (b) A correct sequence of events in a
casually-consistent store. – assume W2(x)b depends on W1(x)a

Data-Centric Consistency Models

Example:

Casual Consistency

Distributed Systems, Spring 2004
24

Data-Centric Consistency Models

Implementation

Dependency graph: need to know for each operation,
the operation it depends on

5

Distributed Systems, Spring 2004
25

Data-Centric Consistency Models

FIFO Consistency

Writes of a single process are seen by all other processes in the order in which
they were issued, but writes of different processes may be seen in a different
order by different processes.

Also called PRAM consistency in the case of distributed shard memory

Pipelined RAM

In other words: There are no guarantees about the order in which different
processes see writes, except that two or more writes of the same process must
arrive in order (that is, all writes generated by different processes are
concurrent).

Distributed Systems, Spring 2004
26

A valid sequence of events of FIFO consistency but not for casual

Data-Centric Consistency Models

Example:

Implementation: need just to guarantee that writes from the same process
arrive in order, tag writes with (process-id, sequence-number)

Perform writes with the same id based on sequence-number

FIFO Consistency

Distributed Systems, Spring 2004
27

Statement execution as seen by the three processes from the previous slide. The
statements in bold are the ones that generate the output shown.

y = 1;
print (x, z);
z = 1;
print (x, y);
x = 1;
print (y, z);

Prints: 01

(c) P3’s view

x = 1;
y = 1;
print(x, z);
print (y, z);
z = 1;
print (x, y);

Prints: 10

(b) P2’s view

x = 1;
print (y, z);
y = 1;
print(x, z);
z = 1;
print (x, y);

Prints: 00

(a) P1’s view

Data-Centric Consistency Models

FIFO Consistency

Distributed Systems, Spring 2004
28

y = 1;
if (x == 0) kill (P1);

x = 1;
if (y == 0) kill (P2);

Process P2Process P1

Data-Centric Consistency Models

Example

Initially, x = y = 0

FIFO Consistency

W1(x)1 R1(y)0

W2(y)1 R2(x)0

Distributed Systems, Spring 2004
29

Data-Centric Consistency Models

Strong Consistency Models: Operations on shared data are
synchronized:

Strict consistency (related to time)

Sequential Consistency (similar to database
serializability, what we are used to)

Causal Consistency (maintains only casual relations)

FIFO consistency (maintains only individual ordering)

Distributed Systems, Spring 2004
30

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
timeSequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Data-Centric Consistency Models

6

Distributed Systems, Spring 2004
31

Data-Centric Consistency Models

Each process operates on its own local copy of the data store.

Changes are propagated only when an explicit synchronization takes place

A synchronization variable S with one associated operation synchronize(S)
which synchronizes all local copies of the data store.

When the data store is synchronized al local copies of process P are
propagated to the other copies, whereas writes by other processes are
brought into P’s copies.

Don’t care that the reads and writes of a series of operations are
immediately known to other processes. Just want the effect of
the series itself to be known.

Weak Consistency

Distributed Systems, Spring 2004
32

Data-Centric Consistency Models

Weak Consistency

1. Accesses to synchronization variables with a data store are
sequentially consistent. (All processes see all operations on
synchronization variables in the same order)

2. No operation on a synchronized variable is allowed to be
performed until all previous writes are completed everywhere.

3. No read or write operation on data items are allowed to be
performed until all previous operations to synchronization
variables have been performed.

Distributed Systems, Spring 2004
33

A program fragment in which some variables may be kept in registers.

int a, b, c, d, e, x, y; /* variables */
int *p, *q; /* pointers */
int f(int *p, int *q); /* function prototype */

a = x * x; /* a stored in register */
b = y * y; /* b as well */
c = a*a*a + b*b + a * b; /* used later */
d = a * a * c; /* used later */
p = &a; /* p gets address of a */
q = &b /* q gets address of b */
e = f(p, q) /* function call */

Data-Centric Consistency Models

Weak Consistency

Distributed Systems, Spring 2004
34

Data-Centric Consistency Models

Weak Consistency
Example

(a) A valid sequence of events for weak consistency. (b) An invalid sequence for weak
consistency.

Weak consistency implies that we need to lock and unlock data (implicitly or not)

Two things: (i) propagate own updates, finish writing shared
data – leave CR, (ii) get all other writes, start, enter CR

Distributed Systems, Spring 2004
35

Data-Centric Consistency Models

Divide access to a synchronization variable into two parts: an acquire (for
entering a critical region) and a release (for leaving a critical region) phase.

Acquire forces a requestor to wait until the shared data can be accessed.
Release sends requestor’s local value to other servers in data store.

1. When a process does an acquire, the store will ensure that all the local
copies of the protected data are brought up to date

2. When a release is done, protected data that have been changed are
propagated to other local copies of the store.

Example

A valid event sequence for release consistency.

Release Consistency

Distributed Systems, Spring 2004
36

Data-Centric Consistency Models

Release Consistency

1. Before a read or write operation on shared data is performed, all
previous acquires done by the process must have completed
successfully

2. Before a release is allowed to be performed, all previous reads
and writes done by the process must have been completed.

3. Accesses to synchronization variables are FIFO consistent
(sequential consistency is not required).

7

Distributed Systems, Spring 2004
37

Data-Centric Consistency Models

With release consistency, all local updates are propagated to other
copies/servers during release of shared data.

With entry consistency: each shared data item is associated with a
synchronization variable.

When acquiring the synchronization variable, the most recent of its
associated shared data are fetched.

Whereas release consistency affects all data, entry consistency
affects only those shared data associated with a synchronization
variable.

Entry Consistency

Distributed Systems, Spring 2004
38

Data-Centric Consistency Models

Entry Consistency

1. Any acquire access of a synchronization variable is not allowed to
perform with respect to a process until all updates to the
guarded shared data have been performed with respect to that
process.

2. Before an exclusive mode access to a synchronization variable by
a process is allowed to perform with respect to that process, no
other process may hold the synchronization variable. Not even in
nonexclusive mode.

3. After an exclusive mode access to a synchronization variable has
been performed, any other process’ next nonexclusive mode
access to that synchronization variable may not be performed
until it has performed with respect to that variable’s owner.

Distributed Systems, Spring 2004
39

A valid event sequence for entry consistency.

Data-Centric Consistency Models

Entry Consistency

Example

Distributed Systems, Spring 2004
40

Data-Centric Consistency Models

Weak Consistency Models: Synchronization occurs only when
shared data are locked and unlocked:

General Weak Consistency

Release Consistency

Entry consistency

barriers: synchronization mechanism that prevents any process from starting
phase n +1 until all processes have finished phase n

When a process reaches a barrier, it must wait others to get there

When all arrive, data are synchronized, all processes are resumed

Distributed Systems, Spring 2004
41

(b)

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
timeSequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Data-Centric Consistency Models

Distributed Systems, Spring 2004
42

Client-Centric Consistency Models

Show how we can avoid system-wide
consistency, by concentrating on what specific
clients want, instead of what should be
maintained by the servers.

Eventual consistency: if no updates take place for a
long time, all replicas will gradually become
consistent

8

Distributed Systems, Spring 2004
43

The principle of a mobile user accessing different replicas of a distributed database.

Client-Centric Consistency Models

Distributed Systems, Spring 2004
44

Client-Centric Consistency Models

Monotonic Reads

If a process reads the value of a data item x, any successive read
operation on x by that process will always return the same or a more
recent value.

Notation

WS(xi[t]): the set of write operations (at site Li) that lead to version
xi of x (at time t);

WS(xi[t1];xj[t2]) indicates that is known that WS(xi[t1]) is part of
WS(xj[t2])

Example: reading incoming email while on the move; each time you
connect: monotonic reads

Distributed Systems, Spring 2004
45

The read operations performed by a single process P at two different local copies of
the same data store.

(a) A monotonic-read consistent data store (b) A data store that does not provide
monotonic reads.

Client-Centric Consistency Models

Example

Monotonic Reads

May not reflect
updates at site L1

Distributed Systems, Spring 2004
46

The write operations performed by a single process P at two different local copies
of the same data store

(a) A monotonic-write consistent data store. (b) A data store that does not provide
monotonic-write consistency.

Example

Monotonic Writes

A write operation by a process on a data item x is completed before
any successive write operation on x by the same process.

Client-Centric Consistency Models

Similar to FIFO but for a single process

Distributed Systems, Spring 2004
47

Client-Centric Consistency Models

Examples

Updating a program at server S2 and ensuring that all
components on which compilation and linking depends are also
placed at S2

Maintaining versions of replicated files in the correct order
everywhere (propagate the previous version to the server where
the newest version is installed).

Monotonic Writes

Distributed Systems, Spring 2004
48

(a) A data store that provides read-your-writes consistency. (b) A data store that
does not.

Client-Centric Consistency Models

Read Your Writes

The effect of a write operation by a process on data item x will be
always seen by a successive read operation on x by the same process.

Example

Example: Updating your web page and guaranteeing that your web
browser shows the newest version instead of the cached copy.

Similar with changing passwords

9

Distributed Systems, Spring 2004
49

Example

Client-Centric Consistency Models

Writes Follow Reads

A write operation by a process on a data item x following a previous
read operation on x by the same process is guaranteed to take place on
the same or a more recent value of x that was read

(a) A writes-follow-reads consistent data store (b) A data store that does not
provide writes-follow-reads consistency

Example: See reactions to posted articles only if you have the original
posting (a read “pulls in” the corresponding write operation)

Distributed Systems, Spring 2004
50

Distribution Protocols
Replica Placement

Update Propagation
Epidemic Protocols

Distributed Systems, Spring 2004
51

Replica Placement

Where, when and by whom data copies are placed in a distributed system?

Distributed Systems, Spring 2004
52

Replica Placement

Permanent Replicas

The initial set of replicas that constitute a distributed data store

Distributed Systems, Spring 2004
53

Replica Placement
Server-Initiated Replicas

Copies of data to enhance performance, created by the servers

Keep track of access counts per file plus the client that requested
the file aggregated by considering server closest to requesting clients

Number of accesses drop
below threshold D: drop file

Number of accesses
exceeds threshold R:
replicate file

Number of accesses
between D and R: file can
only be migrated (no drop or
replication), when? If the
requests from a specific
server exceeds half of the
total requests

Example, when two clients (C1 and C2 share
the same closest server (P)

Distributed Systems, Spring 2004
54

Replica Placement
Client-Initiated Replicas

Client initiated replicas or (client) caches

Generally kept for a limited amount of time (replaced or
become stale)

Cache hit

Share caches among clients

Normally placed at the same machine as the client

10

Distributed Systems, Spring 2004
55

Update Propagation

State vs Operation

Propagate only notification/invalidation of update

Often used for caches

Called invalidation protocols

Works well when read-to-write ratio is small

Transfer values/copies from one copy to the other

Works well when read-to-write ratio is relatively high

Log the changes, aggregate updates

Propagate the update operation to other copies (aka active
replication)

less bandwidth, more processing power

Distributed Systems, Spring 2004
56

Comparison between push-based and pull-based protocols in the case of
multiple client, single server systems.

Fetch-update timeImmediate (or fetch-update time)Response time at
client

Poll and updateInvalidation (and possibly fetch update
later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

Update Propagation

Push vs Pull

Push or server based (update is propagated without a client request)

Pull or client based

Distributed Systems, Spring 2004
57

Update Propagation

A Hybrid Protocol: Leases

Lease: A contract in which the server promises to push updates to
the client until the lease expires

Make lease expiration time depended on system behavior (adaptive
leases)

Age-based leases: an object that has not changed for long time,
will not change in the near future, so provide a long-lasting lease

Renewal-frequency based leases: The more often a client requests
a specific object, the longer the expiration time for that client (for
that object) will be

State-based leases: The more loaded a server is, the shorter the
expiration times become

Distributed Systems, Spring 2004
58

Epidemic Algorithms
Overview

Basic idea: assume there are no write-write conflicts (e.g., updates
for a specific item are initiated at a single server)

Update operations are initially performed at one or only a few
replicas

A replica passes its updated state to a limited number of neighbors

Update propagation is lazy. i.e., not immediate

Eventually, each update should reach every replica

Anti-entropy: Each replica regularly chooses another replica at
random, and exchanges state differences, leading to identical states
at both afterwards

Gossiping: A replica that has just been updated (i.e., has been
contaminated) tells a number of other replicas about its update
(contaminating them as well).

Distributed Systems, Spring 2004
59

Epidemic Algorithms

System Model

A collection of servers, each storing a number of objects

Each object O has a primary server at which updates for O are initiated

An update of an object O at server S is timestamped

Notation: timestamp T(O, S), value VAL(O, S)

Infective server/susceptible server

Distributed Systems, Spring 2004
60

Epidemic Algorithms

Anti-Entropy

A server S picks another server S* randomly and exchange updates with it

When S contacts S* to exchange state information, three strategies:

PUSH: S only forwards all its updates to S*

if T(O, S*) < T(O, S) then VAL(O, S*) = VAL(O, S)

PULL: S only fetches updates from S*

if T(O, S*) > T(O, S) then VAL(O, S) = VAL(O, S*)

PUSH&PULL: S and S* exchange their updates by pushing an pulling values

If each server randomly chooses another server for exchanging updates, an
update is propagated in O(log(N)) time units

Why pushing alone is not efficient when many servers have already been
infected?

11

Distributed Systems, Spring 2004
61

Epidemic Algorithms

Gossiping

A server S having an update to report, contacts other servers. If a
server is contacted to which the update has already been propagated, S
stops contacting other servers with probability 1/k.

IF s is the fraction of susceptible servers (i.e., which are unaware of the
updates), it can be shown that with many servers:

s = e –(k+1)(1-s)

k s

1 0.2

2 0.06

3 O.02

4 0.007

5 0.0025

If we really have to ensure that all servers are eventually updated, gossiping
alone is not enough.

Distributed Systems, Spring 2004
62

Epidemic Algorithms

Deleting Values

We cannot remove an old value from a server and expect the removal to
propagate. Why?

Treat removal as a special update by inserting a death certificate

When to remove a death certificate:

Run a global algorithm to detect whether the removal is known everywhere,
and then collect the death certificates (looks like garbage collection)

Assume that death certificates propagate in finite time, and associate a
maximum lifetime for a certificate (can be done at the re=isk of not reaching
all servers)

It is necessary that a removal actually reaches all servers.

Scalability?

Distributed Systems, Spring 2004
63

Client-Centric Consistency Models

Use timestamps and maintain read and write sets

Sessions!

Implementation

Distributed Systems, Spring 2004
64

Consistency Protocols
Primary-Based Protocols

Replicated-Write Protocols
Cache-Coherence Protocols

Distributed Systems, Spring 2004
65

Consistency Protocols

Implementation of a specific consistency model. We will concentrate on
sequential consistency.

Distributed Systems, Spring 2004
66

Primary-Based Protocols

Primary-based protocols: each data item x has an associated primary responsible
for coordinating write operations on x

Remote-Write protocols
Simplest model: no replication, all read and writes operations are forwarded to a
single server

12

Distributed Systems, Spring 2004
67

Primary-Based Protocols
Remote-Write protocols

Primary-backup protocol: reads on local copies, but writes at a (fixed) primary copy

An updated is applied as a blocking operation.

Sequential consistency. Why?

Non-blocking write variant: as soon as the primary has updated its local copy, it
returns an ack, then it tells the backup to perform the update as well. Consistency?

Distributed Systems, Spring 2004
68

Primary-Based Protocols

Local-Write protocols
Case 1: there is only a single copy of each data item x (no replication) a single copy
is migrated between processes
a single copy is migrated between processes

Useful when writes are expected to come in series from the same client
(e.g., mobile computing without replication)

Distributed Systems, Spring 2004
69

Primary-Based Protocols
Local-Write protocols

Case 2 (primary back-up): the primary copy migrates

distributed shared memory systems, but also mobile computing in
disconnected mode

Distributed Systems, Spring 2004
70

Active Replication: updates are propagated to multiple replicas where they
are carried out.

The problem of replicated invocations.

Replicated-Write Protocols

Distributed Systems, Spring 2004
71

Replicated-Write Protocols

(a) Forwarding an invocation request from a replicated object. (b) Returning a
reply to a replicated object.

Assign a coordinator on each side (client and server)
that ensures that only one invocation and one reply is
sent

Distributed Systems, Spring 2004
72

Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

Replicated-Write Protocols

Quorum-based protocols: ensure that each operation is carried out in such
a way that a majority vote is established: distinguish read quorum and write
quorum

1. NR + NW > N

2. NW > N/2

13

Distributed Systems, Spring 2004
73

Cache Consistency Protocols

Write-through caches: clients directly modify
the cached data and forward the update to the
servers

Write-back caches: delay the propagation of
updates by allowing multiple writes to take place

Distributed Systems, Spring 2004
74

The general organization of a distributed data store. Clients
are assumed to also handle consistency-related communication.

Casually-Consistent Lazy Replication

Number of replica servers jointly implement a causal-consistent data store.
Clients normally talk to front ends which maintain data to ensure causal
consistency (eventual consistency but also causal relationships between
operations)

Distributed Systems, Spring 2004
75

Casually-Consistent Lazy Replication

Vector Timestamps

Two vector timestamps per local copy Li:

VAL(i): VAL(i)[i] denotes the total number of write operations sent
directly by a front end (client). VAL(i)[j] denotes the number of
updates sent from local copy Lj

WORK(i): WORK(i)[i] total number of write operation directly from
front ends, including the pending ones. WORK(i)[j] is the total
number of updates from local copy Lj, including pending ones

Each client:

LOCAL(C): LOCAL(C)[j] is (almost) most recent value of VAL(j)[j]
known to front end C (will be refined …)

DEP(R): Timestamp associated with a request, reflecting what the
request depends on.

Distributed Systems, Spring 2004
76

Performing a read operation at a local copy.

Casually-Consistent Lazy Replication

Client C performs R It is necessary that Li knows
about that state

Distributed Systems, Spring 2004
77

Performing a write operation at a local copy.

Casually-Consistent Lazy Replication

Client C performs W

