Abaokouoa: EvayyeAia Mitovpa

> nuaotoloyikn Avaktnon NAnpodoploc.
Learning to Rank. Vector Search. RAG.

Akadnuaiko Etoc 2024-2025

MeptAnyn

= AloBaBuion Baolwopévn oe tf-idf

OPLOUOC, avAKTNON
SLaVUOUATLKY) avormapaotaon

= Embeddings (evowpatwoelc)
= poBaivoups TN SLOVUCUOTIKA OVATTOPAoTOON

= word2vec embeddings
" Baowkn apxttektoviki: CBOW, Skipgram

" sentence, paragraph, document
embeddings

Meplexopeva

= Inuaotoloyikn (Altovuopatikn Avaktnon)
= Learning to Rank

= Retrieval-Augmented Generation (RAG)

Semantic (vector) Search

Alavuopatikn Avaktnon

. Avamapaotoon KaBe eyypadou wc eva
Slavuopa

. AvamopaoTtaon ToU EpWTAHUATOC WG Eva
Slavuopa

. YtoAoylouoc tnc (cosine) opototntac ylo
KaBe (eVyoc epwTNUATOC, EYYpAdOU

. Alataén twv eyypadwv Pe faon TNV
opoLotTNTA

Vector Similarity Search

Goal: Find most similar vector to the query

e 3 semantic vectors = Search Space
® “today is a sunny day”
® “thatis a very happy person”

® “thatis a very happy dog”

e 1 Semantic vector = Query

® “Thatis a happy person”

Vectors generated by some embedding method

a

That is a very happy person

That is a happy person

That is a happy dog

\\ Cosine Similarity
\
\
1
1
1

Today is a sunny day

I

How? Calculate the distance (ex

That is a happy dog

That is a very happy person

Today is a sunny day

Acknowledgement: Slides taken from Sam Partee, Applied Al

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

L

. Cosine Similarity)

0.695
0.943

0.257

Vector database

Audio

Text

Image

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Unstructured Data

~ | Hugging Face

—»@OpenAI— [rnrararararaes

® cohere

Embedding model

75210 TosTor foz fastos o]

Vector
Embeddings

Acknowledgement: Slides taken from Sam Partee, Applied Al

Slides by Prashant Pandey

—

Vector Database

pmm laalaalos |
‘nr&mmmmmm

[02]04]os o7 Jo2]08]09]os]
ron

-I-m
procto.

[loalas
lumm e
.mmm-m [os [os]

N

Semantic or vector search

Semantic (vector) search Given a dense vector query g and a vector database of
document vectors return the k-most similar (e.g., using cosine similarity)
documents to g

K-nearest neighborhood search
Approximate K-nearest neighborhood search

= Baseline approach
calculate the distance between g and all documents

How to do this efficiently?

Classic (symbolic) search: dictionary and inverted indexes

Semantic or vector search

Index-based approaches
* Hashing-based
* Tree-based
* Quantization-based

* Proximity graph (PG)-based

Vector databases

* Specialized databases designed to store, index, and
retrieve high- dimensional vectors efficiently

* Particularly useful for tasks like similarity search,
recommendation systems, and Al model outputs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Metric-space vector databases

* These databases use distance metrics (e.g., Euclidean, cosine
similarity) to organize and search vectors

* Examples:
* Milvus
* Weaviate
* Pinecone

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Hash-based vector databases

* Use hashing techniques like Locality-Sensitive Hashing (LSH) for fast
approximate searches

* Suitable for sparse or low-dimensional datasets.

* Examples:
* FAISS (Flat and Hash-based indexing options)
* Annoy (Approximate Nearest Neighbors)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Graph-based vector databases

 Utilize graph structures (e.g., k-NN graphs, Hierarchical
Navigable Small-World (HNSW)) for efficient similarity search

* These are well-suited for large-scale datasets where approximate
nearest neighbor (ANN) searches are common

* Examples:
* ElasticSearch (with ANN plugins)
* Vespa
* HNSWIib-based databases

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Hybrid vector databases

* Combine vector indexing with traditional relational or document-
based databases

* |deal for applications needing structured data along with
unstructured vector queries

* Examples:
» Redis with vector similarity search
* PostgreSQL with vector search extensions (e.g., pgvector)
* MongoDB Atlas Search (supports vector fields)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Cloud-native vector databases

* Fully managed, scalable vector databases optimized for cloud
platforms

» Simplify setup, scaling, and maintenance

* Examples:
* Amazon Kendra
* Google Vertex Al Matching Engine
* Azure Cognitive Search

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Specialized vector databases

* Tailored for specific use cases, such as video search, genomics, or
geospatial data

* May incorporate domain-specific optimizations

* Examples:
« Zilliz (Al and ML-focused)
* Deep Lake (designed for Al datasets)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Proximity Graph (PG) based

(a) Dataset (b) PG index

link every vertex to its k nearest neighbors in the dataset

Vertex: document
Edge x ->yifyis ak-neighbor of x

17

Proximity Graph (PG) based

Select a seed vertex (the black vertex)
randomly sampled or obtained by an additional index such as tree, is
selected as the result vertex r

Conduct routing from the seed vertex
if d(n, q) < d(r, gq), where n is one of the neighbors of r, n replaces r
Repeat

18

Proximity Graph (PG) based

Increase k

Many more optimizations

19

Semantic or neural search

Classic (symbolic) search: dictionary and inverted
indexes

Semantic/neural search: map documents to
embeddings (low dimensional dense representations)

Vector index

+ resilient to noise, scale
- needs lots of data to train, lack of explainability

20

Neural (semantic) search in Lucene
(solr)

Given a dense vector g that models the query (information need) calculate
the distance (Euclidean, cosine, dot product, etc.) between g and every
vector d that represents a document

Nearest Neighborhood Search

Proximity Neighborhood Graph

= Vertices (documents) are mapped to nodes
= Edges between “similar” vertices
Navigable small world graph

https://sease.io/2022/01/apache-solr-neural-search.html
https://sease.io/2023/01/apache-solr-neural-search-tutorial.html

21

https://sease.io/2022/01/apache-solr-neural-search.html
https://sease.io/2023/01/apache-solr-neural-search-tutorial.html

Combine tf-idf and vector similarity

Use tf-idf as a filter

" Get the top-k F User query Results
Documents Peoe
documents l
(e.g., document
that have at Indexer Top-k retrieval Rank
least one of the documents

using cosine

guery terms)

D similarity
: bet
= Use the ranking SRS
embeddings
models to

create the final
ranking of the
top-k
documents

22

Meplexopeva

2 nuaotoAoyikn (Atavuopatikn Avaktnon)
Learning to Rank
Retrieval-Augmented Generation (RAG)

Lucene Project

Learning to rank

Learning to rank

Retrieval models so far
Classical: utilize exact matching signals to design a relevance scoring function (e.g.,
term frequency, document length, and inverse document frequency) to rank

documents
Semantic: Learn representations and use similarity to rank documents

Supervised learning for ranking

Ground truth (labeled data) regarding the relevance of documents to
gueries

= Manually labeled
" Historical data: Clickthrough data

Used them as training data to learn a ranking model

Learning to rank

= |nput:
Document features (tf, embeddings, k-grams, etc)
Query features

» Learn aranking function f (a ranking model)

= By solving a minimization problem with respect to a loss function
which is a measure of accuracy with respect to the training data

How do we specify the ranking?

Learning to rank

1. Point-wise approach

Training data (ground truth)

For each query-document pair (g, d) there is a numerical, or ordinal
score

The learning-to-rank problem can be approximated by a regression
problem:

Given a (q, d) pair, predict its score

Existing supervised machine learning algorithms can be used for this

urpose.
purp .

Learning to rank

2. Pair-wise approach

Training data

For each query g, a pair of documents (d4, d5), where d is better
than d,

The learning-to-rank problem can be seen as a binary classification
problem:

Given a (dq, d,), pair output 1 of d; is better and 0 otherwise

Existing supervised machine learning algorithms such as probabilistic
classifiers (e.g., logistic regression) can be used for this purpose.

28

Learning to rank

3. List-wise approach

= Training data not a single, or a couple of documents but an ordered list.

For example:
For each query g,
a list of documents d; associated with scores/judgements 1;

= Learning-to-rank

LLN(T(CI);f(CI))

minimize the sum of the differences between the predicted 7(q) and the
actual score 7(q).

29

Learning to Rank

Learning to rank models

apply supervised machine learning techniques to solve ranking problems
using hand-crafted, manually-engineered features

Neural retrieval models
use as input the embeddings of g and d are usually trained in an end-to-end
manner with relevance labels.

30

Learning to rank in IR

Use tf-idf as a filter I ~r
User query page
Documents
" Get the top-k t l _l~o
documents)) | Ranking \I
Indexer Top-k retrieva
(e.g., document i m‘;"e' /
that have at Learning ’
‘ algorithm '
least one of the - ~ {
Ny -_—
query terms)

Training
data

= |nput: Documents, query

= Learn some (partial) order
of the documents based on

top-k the relevance of each

documents document for the query

= Use the ranking
models to
create the final
ranking of the

There may be multiple re-ranker modules

31

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation

= lLarge Language Models (e.g., ChatGPT) suffer from

hallucination.
= Also lack current, or domain-specific information

= Retrieval Augmented Generation (RAG) is a framework
designed to make LLMs more reliable by retrieving
documents relevant to a user query.

RAG

Retrieval-
Augmented
Generation

o
ﬂh Linkedin.com/in/aurimas-griciunas

X fAurimas_Gr

P . newsletter.swirlai.com

@ ww . swirlai.com

Retne_vd Aug me;n'tepl
Generation (RAG;}

The Mov'm3 Parts

(- '
i : [Bocmeniaion } Private |
i @ I”j EEE.EEEE i Knowledge !
I[PnF ;----;----.' Base j
_____ ""“"'\""'J““"'“"'r"““""""""‘—‘
o /
R WW,, ¥ \ .
P | v Generation:
e b "D \ ALLM
, B) Prompt Engineering
F= Fe=9 ===
bood Lood ood ‘, Retrieval:
| C) Embedding
Fem D) Vector Database
r"71 - Text Chunk
wend T TGXITAUI : E) Search
@/ @ - Stored Vectors Vector Vestor . F) Chunking
® Embedded Query [0.01, ..., 0.43] 041, ..., 0.02] | ’ G) Heuristics
Context |I |
@ - Retrieved Vectors e ® e \'} -~
! 4
/ /
[d e A . Prompt
4,
E]/ Vector l! Answer the Query.
: 1 Index ' Only use Context
H / E to construct the answer.
— Locmmen - @ i O
@ ! e o e o®
' S P
S _ P A D -
m ' Approximate . .’. =—- e N - (D
= Nearest PSS e g 7 Voo —
w : Neighbour=7>/' g o @] ® Lo
' ') 3 [] ' . @
Q search L\ ee b - \ .
' (ANN) LS R 1 i =
[a B W=l F | : A)
] . |]]
H ~ [] ‘-’f ! E : j
Vector e . ; ; :
~ Database -': } - Embedding(Latent) Space i E LLM @
: L . '
| i A —— o
"""""""""""""""""""") I I
(i} l‘lr: N Al = Vi 1174 _:
T R T - :"_ _____________ BT I
i Observability ' Evaluation ; Monitoring ” Security .; Guardrails !
I]
__ T - - - - .

34

Create external data

Data outside of the LLM original training data

From multiple data sources, such as a APls, databases, or document repositories.
Embedding models, converts data into numerical representations and stores it in
a vector database

Chunking algorithms: break down documents into semantically cohesive chunks

Retrieve relevant information
The user query is converted to a vector representation and matched with the
vector databases.

Augment the LLM prompt

Augments the user input (or prompts) by adding the relevant retrieved data (text)
in context. This step uses prompt engineering techniques to communicate
effectively with the LLM.

LLMs

Frameworks

Vector
Databases

Data
Extraction

Open LLMs
Access

Text
Embeddings

Evaluation

RAG Developer's Stack

o &= H < W

Lama 3.3 Phi-4 6emma 2 Qwen 2.5 Mistral

B ¢ = as

OpenAL Claude Gemini Cohere Amazon

LangC ain Llama Index Haystack

www_linkedin.com/in/kalyanksnlp

Chroma Pmcone Qdrant Weaviate Milvus
- —\ Crawl4AI FireCrawl ScrapeGraphAL

Chw;&ﬂ\si é%%é ‘Fi' e
O bl-\ Nt

MegaParser Docling Llama Parse ExtractThinker

TS @ > {g} ®
Hugging Face Ollama 6roq Together AL
BAAI
~ N B S
g SBERT llama
c/Sde" il @ v * [
OpenAl Voyage AL Google C:herc

v ragas

I*@*

36

LLM + Vector DB Use Cases

Vector database for LLMs

=
Context Retrieval

e Search for relevant
sources of text from the

“‘knowledge base”

e Provide as “context” to

LLM

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

LLM “Memory”

e Persist embedded

conversation history

e Search for relevant
conversation pieces as

context for LLM

Acknowledgement: Slides taken from Sam Partee, Applied Al

LLM Cache

Search for semantically
similar LLM prompts

(inputs)

Return cached responses

Context retrieval (RAG

&P redis

OpenAl Embeddings

Q&A Reference Architecture i
| Find Relevant Documents

11— 6 — &

OpenAl Embeddings Redis Enterprise
Vector Database

Answer Question

Construct Prompt
—

Raw Documents OpenAl Generation

Semantic Search Layer

Acknowledgement: Slides taken from Sam Partee, Applied Al

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

® Description

® Vector database is used as an external
knowledge base for the large language model.

® Queries are used to detect similar information
(context) within the knowledge base

® Benefits

® Cheaper and faster than fine-tuning
® Real-time updates to knowledge base
°

Sensitive data doesn’t need to be used in
model training or fine tuning
® Use Cases

® Document discovery and analysis

® Chatbots

Long term memory for LLMs

(1)ask

.
o

Embed]
nstory Query | RETRIEVE

L

i
/

N
> oii/ffo A\

N\ /

R4

EmbeddingClient

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

emvosang | 097 | sure e redis
>0—0 ——>| | [—>
D0/ 5.21

Get

§ (3)answer

Users' - N
Input
o Assistant's
Response

0.33

0.10 4 | STORE

Embedding

Acknowledgement: Slides taken from Sam Partee, Applied Al

® Description

L/ Theoretically infinite, contextual memory that

encompasses multiple simultaneous sessions

Retrieves only last K messages relevant to the
current message in the entire history.

® Benefits

® Provides solution to context length

limitations of large language models

Capable of addressing topic changes in
conversation without context overflow

® Use Cases

® Chatbots

® Information retrieval

° Continuous Knowledge Gathering

U

LLM query caching

X 1ok
e Lem At | | Eeesting
ﬁ‘r— Generator
... Yes
: Cache Manager :
“ = Vector Store)=i—
z : o
: H S‘.-«ilm‘ty :the
: Evaluator
Cache S‘toro\f,e -
No
LM
Acknowledgement: Slides taken from Sam Partee, Applied Al
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Description

® Vector database used to cache similar
queries and answers
® Queries embedded and used as a cache
lookup prior to LLM invocation
Benefits
® Saves on computational and monetary cost
of calling LLM models.
® Can speed up applications (LLMs are slow)
Use Cases
°

Every single use case we’ve talked about that
uses an LLM.

End of lecture

XpnowomnotiOnke UALKSO aro

= (CS276: Information Retrieval and Web Search, Christopher Manning and Pandu Nayak, Lecture 14:

Distributed Word Representations for Information Retrieval
= https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
Mua rteptypadr) tou skipgram:
Chris McCormick
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
Aelte koL TO

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

42

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Semantic (vector) Search
	Slide 5: Διανυσματική Ανάκτηση
	Slide 6: Vector Similarity Search
	Slide 7: Vector database
	Slide 8: Semantic or vector search
	Slide 9: Semantic or vector search
	Slide 10: Vector databases
	Slide 11: Metric-space vector databases
	Slide 12: Hash-based vector databases
	Slide 13: Graph-based vector databases
	Slide 14: Hybrid vector databases
	Slide 15: Cloud-native vector databases
	Slide 16: Specialized vector databases
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Semantic or neural search
	Slide 21: Neural (semantic) search in Lucene (solr)
	Slide 22
	Slide 23
	Slide 24: Learning to rank
	Slide 25: Learning to rank
	Slide 26: Learning to rank
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Vector database for LLMs
	Slide 39: Context retrieval (RAG)
	Slide 40: Long term memory for LLMs
	Slide 41: LLM query caching
	Slide 42: End of lecture

