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▪ Διαβάθμιση βασισμένη σε tf-idf
ορισμός, ανάκτηση

 διανυσματική αναπαράσταση

▪ Embeddings (ενσωματώσεις)
▪ μαθαίνουμε τη διανυσματική αναπαράσταση

▪ word2vec embeddings
▪ Βασική αρχιτεκτονική: CBOW, Skipgram

▪ sentence, paragraph, document 
embeddings

Περίληψη
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▪ Σημασιολογική (Διανυσματική Ανάκτηση)

▪ Learning to Rank

▪ Retrieval-Augmented Generation (RAG)

Περιεχόμενα



Semantic (vector) Search

4



Διανυσματική Ανάκτηση

1. Αναπαράσταση κάθε εγγράφου ως ένα  
διάνυσμα

2. Αναπαράσταση του ερωτήματος ως ένα 
διάνυσμα

3. Υπολογισμός της (cosine) ομοιότητας για 
κάθε ζεύγος ερωτήματος, εγγράφου

4. Διάταξη των εγγράφων με βάση την 
ομοιότητα
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Vector Similarity Search

• 1 Semantic vector = Query

• “That is a happy person”
How? Calculate the distance (ex. Cosine Similarity)

Goal: Find most similar vector to the query
• 3 semantic vectors = Search Space

• “today is a sunny day”

• “that is a very happy person”

• “that is a very happy dog”

Acknowledgement: Slides taken from Sam Partee, Applied AI

Vectors generated by some embedding method



Vector database

Embedding model

Vector 

Embeddings

Vector Database

Audio

Text

Image

Unstructured Data

Acknowledgement: Slides taken from Sam Partee, Applied AI

Slides by Prashant Pandey 



Semantic or vector search
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Semantic (vector) search Given a dense vector query q and a vector database of 
document vectors return the k-most similar (e.g., using cosine similarity) 
documents to q

𝐾-nearest neighborhood search
Approximate 𝐾-nearest neighborhood search

▪ Baseline approach
calculate the distance between q and all documents

How to do this efficiently?

Classic (symbolic) search: dictionary and inverted indexes



Semantic or vector search
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Index-based approaches

• Hashing-based

• Tree-based

• Quantization-based

• Proximity graph (PG)-based



Vector databases

• Specialized databases designed to store, index, and
retrieve high- dimensional vectors efficiently

• Particularly useful for tasks like similarity search,
recommendation systems, and AI model outputs



Metric-space vector databases

• These databases use distance metrics (e.g., Euclidean, cosine 
similarity) to organize and search vectors

• Examples:
• Milvus

• Weaviate

• Pinecone



Hash-based vector databases

• Use hashing techniques like Locality-Sensitive Hashing (LSH) for fast 
approximate searches

• Suitable for sparse or low-dimensional datasets.

• Examples:
• FAISS (Flat and Hash-based indexing options)

• Annoy (Approximate Nearest Neighbors)



Graph-based vector databases

• Utilize graph structures (e.g., k-NN graphs, Hierarchical 
Navigable Small-World (HNSW)) for efficient similarity search

• These are well-suited for large-scale datasets where approximate 
nearest neighbor (ANN) searches are common

• Examples:
• ElasticSearch (with ANN plugins)

• Vespa

• HNSWlib-based databases



Hybrid vector databases

• Combine vector indexing with traditional relational or document-
based databases

• Ideal for applications needing structured data along with 
unstructured vector queries

• Examples:
• Redis with vector similarity search

• PostgreSQL with vector search extensions (e.g., pgvector)

• MongoDB Atlas Search (supports vector fields)



Cloud-native vector databases

• Fully managed, scalable vector databases optimized for cloud 
platforms

• Simplify setup, scaling, and maintenance

• Examples:
• Amazon Kendra

• Google Vertex AI Matching Engine

• Azure Cognitive Search



Specialized vector databases

• Tailored for specific use cases, such as video search, genomics, or 
geospatial data

• May incorporate domain-specific optimizations

• Examples:
• Zilliz (AI and ML-focused)

• Deep Lake (designed for AI datasets)
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Proximity Graph (PG) based 

link every vertex to its k nearest neighbors in the dataset

Vertex: document
Edge  x -> y if y is a k-neighbor of x 
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Proximity Graph (PG) based 

Select a seed vertex (the black vertex) 
randomly sampled or obtained by an additional index such as tree, is 
selected as the result vertex r

Conduct routing from the seed vertex
if d(n, q) < d(r, q), where n is one of the neighbors of r, n replaces r 
Repeat
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Proximity Graph (PG) based 

Add reverse edge

Increase k Many more optimizations



Semantic or neural search
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Classic (symbolic) search: dictionary and inverted 
indexes

Semantic/neural search: map documents to 
embeddings (low dimensional dense representations)

Vector index
+ resilient to noise, scale
- needs lots of data to train, lack of explainability



Neural (semantic) search in Lucene 
(solr)
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Given a dense vector 𝑞 that models the query (information need) calculate 
the distance (Euclidean, cosine, dot product, etc.) between 𝑞 and every 
vector 𝑑 that represents a document

Nearest Neighborhood Search
Proximity Neighborhood Graph
▪ Vertices (documents) are mapped to nodes
▪ Edges between “similar” vertices
Navigable small world graph

https://sease.io/2022/01/apache-solr-neural-search.html
https://sease.io/2023/01/apache-solr-neural-search-tutorial.html

https://sease.io/2022/01/apache-solr-neural-search.html
https://sease.io/2023/01/apache-solr-neural-search-tutorial.html
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▪ Get the top-k
documents 
(e.g., document 
that have at 
least one of the 
query terms)

▪ Use the ranking 
models to 
create the final 
ranking of the 
top-k
documents

Combine tf-idf and vector similarity

Rank 
documents 
using cosine 

similarity 
between 

embeddings

Use tf-idf as a filter
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▪ Σημασιολογική (Διανυσματική Ανάκτηση)

▪ Learning to Rank

▪ Retrieval-Augmented Generation (RAG)

▪ Lucene Project

Περιεχόμενα



Learning to rank
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Learning to rank

Ground truth (labeled data) regarding the relevance of documents to 
queries

▪ Manually labeled
▪ Historical data: Clickthrough data

Used them as training data to learn a ranking model 

Retrieval models so far
Classical: utilize exact matching signals to design a relevance scoring function (e.g., 
term frequency, document length, and inverse document frequency) to rank 
documents
Semantic: Learn representations and use similarity to rank documents

Supervised learning for ranking



Learning to rank

▪ Input:
Document features (tf, embeddings, k-grams, etc) 
Query features

▪ Learn a ranking function f  (a ranking model) 

▪ By solving a minimization problem with respect to a loss function 
which is a measure of accuracy with respect to the training data 

How do we specify the ranking? 
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1. Point-wise approach

▪ Training data (ground truth)
For each query-document pair (𝑞, 𝑑) there is a numerical, or ordinal 
score

▪ The learning-to-rank problem can be approximated by a regression 
problem:

Given a (𝑞, 𝑑) pair, predict its score

▪ Existing supervised machine learning algorithms can be used for this 
purpose. 

Learning to rank
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2. Pair-wise approach

▪ Training data
For each query 𝑞,  a pair of documents (𝑑1, 𝑑2), where 𝑑1 is better 
than 𝑑2

▪ The learning-to-rank problem can be seen as a binary classification 
problem:

Given a (𝑑1, 𝑑2), pair output 1 of 𝑑1 is better and 0 otherwise

▪ Existing supervised machine learning algorithms such as probabilistic 
classifiers (e.g., logistic regression) can be used for this purpose. 

Learning to rank
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3. List-wise approach

▪ Training data not a single, or a couple of documents but an ordered list.
For example:

For each query 𝑞,  
a list of documents 𝑑𝑖 associated with scores/judgements 𝑟𝑖

▪ Learning-to-rank 

minimize the sum of the differences between the predicted Ƹ𝑟(𝑞) and the 
actual score 𝑟(𝑞). 

Learning to rank

𝐿𝐿𝑁 𝑟 𝑞 , Ƹ𝑟 𝑞
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Learning to rank models
apply supervised machine learning techniques to solve ranking problems 
using hand-crafted, manually-engineered features

Neural retrieval models
use as input the embeddings of 𝑞 and 𝑑 are usually trained in an end-to-end
manner with relevance labels.

Learning to Rank
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▪ Get the top-k
documents 
(e.g., document 
that have at 
least one of the 
query terms)

▪ Use the ranking 
models to 
create the final 
ranking of the 
top-k
documents

Learning to rank in IR

There may be multiple re-ranker modules

▪ Input: Documents, query
▪ Learn some (partial) order 

of the documents based on 
the relevance of each 
document for the query 

Use tf-idf as a filter
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Retrieval Augmented Generation (RAG)
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▪ Large Language Models (e.g., ChatGPT) suffer from 
hallucination. 

▪ Also lack current, or domain-specific information

▪ Retrieval Augmented Generation (RAG) is a framework 
designed to make LLMs more reliable by retrieving 
documents relevant to a user query.

Retrieval Augmented Generation
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RAG

Retrieval-
Augmented
Generation
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Create external data
Data outside of the LLM original training data 
From multiple data sources, such as a APIs, databases, or document repositories. 
Embedding models, converts data into numerical representations and stores it in 
a vector database

Chunking algorithms: break down documents into semantically cohesive chunks

Retrieve relevant information
The user query is converted to a vector representation and matched with the 
vector databases.

Augment the LLM prompt
Augments the user input (or prompts) by adding the relevant retrieved data (text) 
in context. This step uses prompt engineering techniques to communicate 
effectively with the LLM. 
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LLM + Vector DB Use Cases



LLM Cache

● Search for semantically 

similar LLM prompts 

(inputs)

● Return cached responses

Context Retrieval

● Search for relevant 

sources of text from the 

“knowledge base”

● Provide as “context” to 

LLM

LLM “Memory”

● Persist embedded 

conversation history

● Search for relevant 

conversation pieces as 

context for LLM

Vector database for LLMs

Acknowledgement: Slides taken from Sam Partee, Applied AI



Context retrieval (RAG)

• Description

• Vector database is used as an external

knowledge base for the large language model.

• Queries are used to detect similar information

(context) within the knowledge base

• Benefits

• Cheaper and faster than fine-tuning

• Real- time updates to knowledge base

• Sensitive data doesn’t nee d to be used in

model training or fine tuning

• Use Ca ses

• Document discovery and analysis

• Chatbots

Acknowledgement: Slides taken from Sam Partee, Applied AI



Long term memory for LLMs

•Description
• Theoretically infinite, contextual memory that

encompasses multiple simultaneous sessions

• Retrieves only last K me ssages relevant to the 

current message in the entire history.

•Benefits
• Provides solution to context length 

limitations of large language models

• Capable of addressing topic cha nges in 

conversation without context overflow

•Use Cases
• Chatbots

• Information retrieval

• Continuous Knowledge Gathering

Acknowledgement: Slides taken from Sam Partee, Applied AI



LLM query caching

• Description

• Vector database used to cache similar 

queries and answers

• Queries em be dded and used as a cache

lookup prior to LLM invocation

• Benefits

• Saves on computational and monetary cost

of calling LLM models.

• Can speed up applications (LLMs are slow)

• Use Ca ses

• Every single use case we’ve talked about that

uses an LLM.

Acknowledgement: Slides taken from Sam Partee, Applied AI



End of lecture
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Χρησιμοποιήθηκε υλικό από
▪ CS276: Information Retrieval and Web Search, Christopher Manning and Pandu Nayak, Lecture 14: 

Distributed Word Representations for Information Retrieval
▪ https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
Μια περιγραφή του skipgram:
Chris McCormick
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
Δείτε και το 
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
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