
ΜΥΕ003: Ανάκτηση Πληροφορίας
Διδάσκουσα: Ευαγγελία Πιτουρά

Σημασιολογική Ανάκτηση Πληροφορίας.
Learning to Rank. Vector Search. RAG.

1Ακαδημαϊκό Έτος 2024-2025

2

▪ Διαβάθμιση βασισμένη σε tf-idf
ορισμός, ανάκτηση

 διανυσματική αναπαράσταση

▪ Embeddings (ενσωματώσεις)
▪ μαθαίνουμε τη διανυσματική αναπαράσταση

▪ word2vec embeddings
▪ Βασική αρχιτεκτονική: CBOW, Skipgram

▪ sentence, paragraph, document
embeddings

Περίληψη

3

▪ Σημασιολογική (Διανυσματική Ανάκτηση)

▪ Learning to Rank

▪ Retrieval-Augmented Generation (RAG)

Περιεχόμενα

Semantic (vector) Search

4

Διανυσματική Ανάκτηση

1. Αναπαράσταση κάθε εγγράφου ως ένα
διάνυσμα

2. Αναπαράσταση του ερωτήματος ως ένα
διάνυσμα

3. Υπολογισμός της (cosine) ομοιότητας για
κάθε ζεύγος ερωτήματος, εγγράφου

4. Διάταξη των εγγράφων με βάση την
ομοιότητα

5

Vector Similarity Search

• 1 Semantic vector = Query

• “That is a happy person”
How? Calculate the distance (ex. Cosine Similarity)

Goal: Find most similar vector to the query
• 3 semantic vectors = Search Space

• “today is a sunny day”

• “that is a very happy person”

• “that is a very happy dog”

Acknowledgement: Slides taken from Sam Partee, Applied AI

Vectors generated by some embedding method

Vector database

Embedding model

Vector

Embeddings

Vector Database

Audio

Text

Image

Unstructured Data

Acknowledgement: Slides taken from Sam Partee, Applied AI

Slides by Prashant Pandey

Semantic or vector search

8

Semantic (vector) search Given a dense vector query q and a vector database of
document vectors return the k-most similar (e.g., using cosine similarity)
documents to q

𝐾-nearest neighborhood search
Approximate 𝐾-nearest neighborhood search

▪ Baseline approach
calculate the distance between q and all documents

How to do this efficiently?

Classic (symbolic) search: dictionary and inverted indexes

Semantic or vector search

9

Index-based approaches

• Hashing-based

• Tree-based

• Quantization-based

• Proximity graph (PG)-based

Vector databases

• Specialized databases designed to store, index, and
retrieve high- dimensional vectors efficiently

• Particularly useful for tasks like similarity search,
recommendation systems, and AI model outputs

Metric-space vector databases

• These databases use distance metrics (e.g., Euclidean, cosine
similarity) to organize and search vectors

• Examples:
• Milvus

• Weaviate

• Pinecone

Hash-based vector databases

• Use hashing techniques like Locality-Sensitive Hashing (LSH) for fast
approximate searches

• Suitable for sparse or low-dimensional datasets.

• Examples:
• FAISS (Flat and Hash-based indexing options)

• Annoy (Approximate Nearest Neighbors)

Graph-based vector databases

• Utilize graph structures (e.g., k-NN graphs, Hierarchical
Navigable Small-World (HNSW)) for efficient similarity search

• These are well-suited for large-scale datasets where approximate
nearest neighbor (ANN) searches are common

• Examples:
• ElasticSearch (with ANN plugins)

• Vespa

• HNSWlib-based databases

Hybrid vector databases

• Combine vector indexing with traditional relational or document-
based databases

• Ideal for applications needing structured data along with
unstructured vector queries

• Examples:
• Redis with vector similarity search

• PostgreSQL with vector search extensions (e.g., pgvector)

• MongoDB Atlas Search (supports vector fields)

Cloud-native vector databases

• Fully managed, scalable vector databases optimized for cloud
platforms

• Simplify setup, scaling, and maintenance

• Examples:
• Amazon Kendra

• Google Vertex AI Matching Engine

• Azure Cognitive Search

Specialized vector databases

• Tailored for specific use cases, such as video search, genomics, or
geospatial data

• May incorporate domain-specific optimizations

• Examples:
• Zilliz (AI and ML-focused)

• Deep Lake (designed for AI datasets)

17

Proximity Graph (PG) based

link every vertex to its k nearest neighbors in the dataset

Vertex: document
Edge x -> y if y is a k-neighbor of x

18

Proximity Graph (PG) based

Select a seed vertex (the black vertex)
randomly sampled or obtained by an additional index such as tree, is
selected as the result vertex r

Conduct routing from the seed vertex
if d(n, q) < d(r, q), where n is one of the neighbors of r, n replaces r
Repeat

19

Proximity Graph (PG) based

Add reverse edge

Increase k Many more optimizations

Semantic or neural search

20

Classic (symbolic) search: dictionary and inverted
indexes

Semantic/neural search: map documents to
embeddings (low dimensional dense representations)

Vector index
+ resilient to noise, scale
- needs lots of data to train, lack of explainability

Neural (semantic) search in Lucene
(solr)

21

Given a dense vector 𝑞 that models the query (information need) calculate
the distance (Euclidean, cosine, dot product, etc.) between 𝑞 and every
vector 𝑑 that represents a document

Nearest Neighborhood Search
Proximity Neighborhood Graph
▪ Vertices (documents) are mapped to nodes
▪ Edges between “similar” vertices
Navigable small world graph

https://sease.io/2022/01/apache-solr-neural-search.html
https://sease.io/2023/01/apache-solr-neural-search-tutorial.html

https://sease.io/2022/01/apache-solr-neural-search.html
https://sease.io/2023/01/apache-solr-neural-search-tutorial.html

22

▪ Get the top-k
documents
(e.g., document
that have at
least one of the
query terms)

▪ Use the ranking
models to
create the final
ranking of the
top-k
documents

Combine tf-idf and vector similarity

Rank
documents
using cosine

similarity
between

embeddings

Use tf-idf as a filter

23

▪ Σημασιολογική (Διανυσματική Ανάκτηση)

▪ Learning to Rank

▪ Retrieval-Augmented Generation (RAG)

▪ Lucene Project

Περιεχόμενα

Learning to rank

24

Learning to rank

Ground truth (labeled data) regarding the relevance of documents to
queries

▪ Manually labeled
▪ Historical data: Clickthrough data

Used them as training data to learn a ranking model

Retrieval models so far
Classical: utilize exact matching signals to design a relevance scoring function (e.g.,
term frequency, document length, and inverse document frequency) to rank
documents
Semantic: Learn representations and use similarity to rank documents

Supervised learning for ranking

Learning to rank

▪ Input:
Document features (tf, embeddings, k-grams, etc)
Query features

▪ Learn a ranking function f (a ranking model)

▪ By solving a minimization problem with respect to a loss function
which is a measure of accuracy with respect to the training data

How do we specify the ranking?

27

1. Point-wise approach

▪ Training data (ground truth)
For each query-document pair (𝑞, 𝑑) there is a numerical, or ordinal
score

▪ The learning-to-rank problem can be approximated by a regression
problem:

Given a (𝑞, 𝑑) pair, predict its score

▪ Existing supervised machine learning algorithms can be used for this
purpose.

Learning to rank

28

2. Pair-wise approach

▪ Training data
For each query 𝑞, a pair of documents (𝑑1, 𝑑2), where 𝑑1 is better
than 𝑑2

▪ The learning-to-rank problem can be seen as a binary classification
problem:

Given a (𝑑1, 𝑑2), pair output 1 of 𝑑1 is better and 0 otherwise

▪ Existing supervised machine learning algorithms such as probabilistic
classifiers (e.g., logistic regression) can be used for this purpose.

Learning to rank

29

3. List-wise approach

▪ Training data not a single, or a couple of documents but an ordered list.
For example:

For each query 𝑞,
a list of documents 𝑑𝑖 associated with scores/judgements 𝑟𝑖

▪ Learning-to-rank

minimize the sum of the differences between the predicted Ƹ𝑟(𝑞) and the
actual score 𝑟(𝑞).

Learning to rank

𝐿𝐿𝑁 𝑟 𝑞 , Ƹ𝑟 𝑞

30

Learning to rank models
apply supervised machine learning techniques to solve ranking problems
using hand-crafted, manually-engineered features

Neural retrieval models
use as input the embeddings of 𝑞 and 𝑑 are usually trained in an end-to-end
manner with relevance labels.

Learning to Rank

31

▪ Get the top-k
documents
(e.g., document
that have at
least one of the
query terms)

▪ Use the ranking
models to
create the final
ranking of the
top-k
documents

Learning to rank in IR

There may be multiple re-ranker modules

▪ Input: Documents, query
▪ Learn some (partial) order

of the documents based on
the relevance of each
document for the query

Use tf-idf as a filter

32

Retrieval Augmented Generation (RAG)

33

▪ Large Language Models (e.g., ChatGPT) suffer from
hallucination.

▪ Also lack current, or domain-specific information

▪ Retrieval Augmented Generation (RAG) is a framework
designed to make LLMs more reliable by retrieving
documents relevant to a user query.

Retrieval Augmented Generation

34

RAG

Retrieval-
Augmented
Generation

35

Create external data
Data outside of the LLM original training data
From multiple data sources, such as a APIs, databases, or document repositories.
Embedding models, converts data into numerical representations and stores it in
a vector database

Chunking algorithms: break down documents into semantically cohesive chunks

Retrieve relevant information
The user query is converted to a vector representation and matched with the
vector databases.

Augment the LLM prompt
Augments the user input (or prompts) by adding the relevant retrieved data (text)
in context. This step uses prompt engineering techniques to communicate
effectively with the LLM.

36

LLM + Vector DB Use Cases

LLM Cache

● Search for semantically

similar LLM prompts

(inputs)

● Return cached responses

Context Retrieval

● Search for relevant

sources of text from the

“knowledge base”

● Provide as “context” to

LLM

LLM “Memory”

● Persist embedded

conversation history

● Search for relevant

conversation pieces as

context for LLM

Vector database for LLMs

Acknowledgement: Slides taken from Sam Partee, Applied AI

Context retrieval (RAG)

• Description

• Vector database is used as an external

knowledge base for the large language model.

• Queries are used to detect similar information

(context) within the knowledge base

• Benefits

• Cheaper and faster than fine-tuning

• Real- time updates to knowledge base

• Sensitive data doesn’t nee d to be used in

model training or fine tuning

• Use Ca ses

• Document discovery and analysis

• Chatbots

Acknowledgement: Slides taken from Sam Partee, Applied AI

Long term memory for LLMs

•Description
• Theoretically infinite, contextual memory that

encompasses multiple simultaneous sessions

• Retrieves only last K me ssages relevant to the

current message in the entire history.

•Benefits
• Provides solution to context length

limitations of large language models

• Capable of addressing topic cha nges in

conversation without context overflow

•Use Cases
• Chatbots

• Information retrieval

• Continuous Knowledge Gathering

Acknowledgement: Slides taken from Sam Partee, Applied AI

LLM query caching

• Description

• Vector database used to cache similar

queries and answers

• Queries em be dded and used as a cache

lookup prior to LLM invocation

• Benefits

• Saves on computational and monetary cost

of calling LLM models.

• Can speed up applications (LLMs are slow)

• Use Ca ses

• Every single use case we’ve talked about that

uses an LLM.

Acknowledgement: Slides taken from Sam Partee, Applied AI

End of lecture

42

Χρησιμοποιήθηκε υλικό από
▪ CS276: Information Retrieval and Web Search, Christopher Manning and Pandu Nayak, Lecture 14:

Distributed Word Representations for Information Retrieval
▪ https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
Μια περιγραφή του skipgram:
Chris McCormick
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
Δείτε και το
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Semantic (vector) Search
	Slide 5: Διανυσματική Ανάκτηση
	Slide 6: Vector Similarity Search
	Slide 7: Vector database
	Slide 8: Semantic or vector search
	Slide 9: Semantic or vector search
	Slide 10: Vector databases
	Slide 11: Metric-space vector databases
	Slide 12: Hash-based vector databases
	Slide 13: Graph-based vector databases
	Slide 14: Hybrid vector databases
	Slide 15: Cloud-native vector databases
	Slide 16: Specialized vector databases
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Semantic or neural search
	Slide 21: Neural (semantic) search in Lucene (solr)
	Slide 22
	Slide 23
	Slide 24: Learning to rank
	Slide 25: Learning to rank
	Slide 26: Learning to rank
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Vector database for LLMs
	Slide 39: Context retrieval (RAG)
	Slide 40: Long term memory for LLMs
	Slide 41: LLM query caching
	Slide 42: End of lecture

