
UthLib: A Portable Non-Preemptive

User-level Threads Package

P. E. Hadjidoukas
IRISA-INRIA, Campus de Beaulieu, 35042 Rennes cedex, France

Tel: +33 (0) 2 99 84 73 90, Fax: +33 (0) 2 99 84 71 71
Panagiotis.Hadjidoukas@irisa.fr

Version 1.0

21st March 2004

Abstract

UthLib (Underlying Threads Library) is a very portable thread pack-
age core that provides the primary primitives for managing non-preemptive
user-level threads (creation and context-switch) on Unix and Windows
platforms. UthLib is not a standalone thread package, it does not pro-
vide its own synchronization primitives and requires the presence of a
POSIX Threads library. Its purpose is to facilitate the implementa-
tion of two-level thread models (libraries), where virtual processors are
system scope POSIX Threads. It also exports a well-defined API that
can be easily implemented using custom (platform-specific) thread li-
braries. UthLib has been implemented using a minimal and modified
version of the State Threads Library. Therefore, it is freely available from
http://www.hpclab.ceid.upatras.gr/ peh/uthlib.html, under the terms
of the Mozilla Public License (MPL) version 1.1 or the GNU General Pub-
lic License (GPL) version 2 or later.

1 Introduction

It is common knowledge that the performance of kernel threads, although an
order of magnitude better than that of traditional processes, has been typically
an order of magnitude worse than the best-case performance of user-level threads
[6]. In an application that utilizes user threads, the threads of the application
are managed by the application itself. In this way, functionality and scheduling
policy can be chosen according to the application. These user threads are much
more efficient than kernel threads in carrying out operations such as context
switching, since no kernel intervention is necessary to manipulate threads.

In this work, we present UthLib (Underlying Threads Library), a very portable
thread package core that provides the primary primitives for managing portable

1

non-preemptive user-level threads (creation and context-switch) on Unix and
Windows platforms. UthLib is not a standalone thread package; it does not
provide its own synchronization primitives and requires/assumes the presence
of a POSIX Threads library [1]. Its purpose is to facilitate the implementa-
tion of two-level thread models (libraries), where virtual processors are system
scope POSIX Threads. It also exports a well-defined API that can be easily
implemented using custom (platform dependant) thread libraries. UthLib has
been implemented using a minimal and modified version of the State Threads
Library [9]. Therefore, it is distributed under the terms of the Mozilla Public
License (MPL) version 1.1 or the GNU General Public License (GPL) version
2 or later.

State Threads is an application library that provides a foundation for writ-
ing fast and highly scalable Internet Applications on UNIX-like platforms. It
combines the simplicity of the multithreaded programming paradigm, in which
one thread supports each simultaneous connection, with the performance and
scalability of event-driven state machine architecture. It is a very portable user-
level threads package based on the setjmp-longjmp primitives, but supports a
multi-process rather than a multithreaded environment. It can be combined
with traditional threading or multiple process parallelism to take advantage of
multiple processors. It has been derived from the Netscape’s Portable RunTime
Library [7], which however supports multithreading.

We have successfully used UthLib in order to provide a portable and modular
OpenMP implementation, through a two-level thread model, on both shared-
memory multiprocessors [3] and clusters of SMPs [5].

2 Compiling UthLib

In order to compile UthLib, the first step is to define (in Makefile) the ap-
propriate operating system and the compiler. Currently, UthLib is built only
as a static library. Moreover, UthLib has the following compile-time options
(defined in uth opt.h):

• UTH MAX CPUS: This option determines the maximum number of
supported virtual processors (default = 8).

• UTH DEFAULT STACK SIZE: This option determines the default
size of the user-level stacks. UthLib assumes that all user-level threads
have stack of equal size (default = 64K). This simplifies and optimizes the
reuse mechanism for stacks.

• REUSE THREADS: This option activates a reuse mechanism for the
threads. Thread creation tries to reuse a finished thread that has been
recycled before.

• LOCAL REUSE QUEUES: If the recycling mechanism has been acti-
vated, it is performed on a per-virtual processor rather than on a global
basis.

2

• CTXSW METHOD: This option determines the most platform-dependant
part of the runtime library, i.e. thread initialization and context-switch.
The available methods, which are further discussed later, are CTXSW SJLJ
and CTXSW MCSC, based on the setjmp/ longjmp and ucontext t
primitives respectively. Engelschall proposes in [2] a portable trick for
user-space thread creation and also refers these two methods.

2.1 Programming Interface

The API of UthLib provides the following definitions and calls (exported to the
user through uth.h):

• uth t: Type of the underlying thread

• void uth init (int stacksize): Initializes the library and sets the stack-
size of the user-level threads. It is called only once.

• int uth vp init (int vp): Initializes the current virtual processor. If
uth init has not been called yet, it is called setting the stack size equal to
128K. Returns 0 on success, -1 on error.

• int uth get vpid(void): Returns the rank (id) of the current virtual
processor (0...UTH MAX CPUS-1). On error, terminates the application.

• uth t uth create (void (*fn)(void *), void *arg): Creates a user-
level thread that will execute fn function, which receives a single argument
(arg). If the recycling mechanism is active, the routine tries to reuse a
finished thread. Upon successful completion, a (new) thread descriptor is
returned. Otherwise, it returns NULL.

• void uth reinit (uth t thread, void (*func)(void *), void *arg):
Reinitializes an underlying thread.

• void uth delete(uth t thread): Deletes (or recycles) and underlying
thread.

• void uth switchto(uth t old, uth t new): Performs thread context-
switching on the current virtual processor, saving the context of thread
old (if this is not NULL) and restoring the context new.

• uth t *uth self(void): Returns a reference to the current thread.

• void *uth getarg(uth t thread): Returns the function argument of a
thread.

• void *uth setarg(uth t thread, void *arg): Sets the function argu-
ment of a thread.

• uth t *uth self2(int vp): Returns a reference to the thread that is
currently executed on virtual processor with rank vp.

3

• void uth switchto2(int vp, uth t old, uth t new): Performs thread
context-switching on the virtual processor with rank vp. It can be used
for cases where the user’s runtime library can provide this information on
its own.

3 Implementation

In this section, we discuss the most significant implementation parts of UthLib.

Self-identification: UthLib targets two-level thread models, where non-
preemptive user-level threads are executed on top of kernel-level threads (vir-
tual processors, ranked from 0 to UTH MAX CPUS-1). For this reason, it maintains
per-virtual processor global data. Many operations require a self-identification
method of the current virtual processor. A portable way to perform this is
to use the self-identification mechanism provided by the POSIX Threads API:
pthread self. When a virtual processor is initialized, it stores its pthread t
identifier in a global array. It can find its rank by locating the position of its
identifier in this array.

Stack size: In the current implementation, all threads have stacks of equal
size, set with the uth init call. This design decision is not mandatory and has
been adopted because it simplifies the recycling of threads.

Synchronization: UthLib can optionally reuse a finished thread descriptor.
The recycling can be performed globally or on a per-processor basis, by utilizing
appropriate thread queues. The queues are protected with POSIX mutexes.

Internal data structures: The data structures that describe a user-level
thread and its stack (thread and stack descriptors) are similar with those defined
in the State Thread library. However, we have encapsulated the stack descrip-
tor in the thread descriptor and thus a single memory allocation operation for
creating a user-level thread and its stack is required.

Thread context: The only platform-dependant part of the library resides
in the thread context management (initialization and context-switch). The state
information of a user-level thread is manipulated using an appropriate structure
that is stored in its descriptor. We support two methods:

• SJLJ (setjmp/longjmp): According to this method, which is utilized
by the State Thread library, the thread descriptor includes a jmp buf
data structure, defined in the setjmp.h header file. Two ingredients of
the jmp buf data structure (the program counter and the stack pointer)
have to be manually set in the thread creation routine. The data struc-
ture differs from platform to platform. Usually the program counter is a
structure member with PC in the name and the stack pointer is a struc-
ture member with SP in the name. One can also look in the Netscape’s

4

NSPR library source, which already has this code for many UNIX-like
platforms (mozilla/nsprpub/pr/include/md/*.h files). Furthermore,
we have added support for the QNX 6.0 operating system and integrated
the code for Windows platforms as provided in an older version of the
State Threads Library for this operating system.

• MCSC (makecontext/swapcontext): Most modern Unix environments
provide one more option for user-level context-switching between multi-
ple threads of control within a process: the ucontext t data structure
defined in ucontext.h and the four functions: getcontext, setcontext,
makecontext and swapcontext. For more information on the usage of
these functions, you can look at [8]. Although the Microsoft C Runtime
Library does not provide these functions, we have implemented the Unix
ucontext t operations on Windows platforms by using the Win32 API
GetThreadContext and SetThreadContext functions.

4 Test Application

The successful execution of the following program (Figure 1 means the ability to
implement a two-level thread model on top of POSIX Threads. The main kernel
thread (vp 0 - virtualprocessorA) creates NumThreads user-level threads.
Next, it passes the control of execution to the first user-level thread, the first to
the second and so on (First Round), until the control of execution returns to the
main thread. Finally, it creates a kernel thread (vp 1 - virtualprocessorB)
that repeats the previous pass of execution on the same threads (Second Round).
The output of the program should be similar to the following:

[0x312c48] Master thread A starts - [pthread_t = 0x2f44a0 getpid = 816]

[0x45fffc] Round One: arg (0 / 0) - [Local = 1 Global = 1]

[0x480034] Round One: arg (1 / 1) - [Local = 1 Global = 2]

[0x312c48] Master thread A continues - [Global = 2]

[0x312d28] Master thread B starts - [pthread_t = 0x2f4528 getpid = 816]

[0x45fffc] Round Two: arg (0 / 0) - [Local = 2 Global = 3]

[0x480034] Round Two: arg (1 / 1) - [Local = 2 Global = 4]

[0x312d28] Master thread B exits - [Global = 4]

[0x312c48] Master thread A exits

UthLib, and particularly the test application, has been tested successfully
on the hardware/software configurations presented in Table 1.

5 Evaluation

In this section, we measure the overhead for the primary operations of UthLib:
context-switch and creation/re-initialization of user-level threads. In all exper-
iments, we use the default stack size (64KB) for the threads. The experiments
were performed on the following machines:

5

#include <pthread.h>
#include <uth.h>
#include <stdio.h>

#define NumThreads 2

uth_t worker[NumThreads];
uth_t virtualprocessorA;
uth_t virtualprocessorB;

int global_var = 0;

void workerFunc(void* arg) {
int id = (int)arg;
int local_var = 0;

global_var++;
local_var++;

printf("[0x%lx] round one: arg (%d / %d)\t [local = %d global = %d]\n",
uth_self(), id, (int) uth_getarg(uth_self()), local_var, global_var);

if (id == NumThreads-1)
uth_switchto(worker[id], virtualprocessorA);

else
uth_switchto(worker[id], worker[id+1]);

global_var++;
local_var++;

printf("[0x%lx] round two: arg (%d / %d)\t [local = %d global = %d]\n",
uth_self(), id, (int) uth_getarg(uth_self()), local_var, global_var);

if (id == NumThreads-1)
uth_switchto(NULL, virtualprocessorB);

else
uth_switchto(NULL, worker[id+1]);

}

void *kernelthreadfunc(void *arg) {
uth_vp_init(1);
virtualprocessorB = uth_self();

printf("[0x%lx] master thread B starts\t [pthread_t = 0x%lx getpid = %ld]\n",
uth_self(), pthread_self(), getpid());

uth_switchto(virtualprocessorB, worker[0]);
printf("[0x%lx] master thread B exits\t [global = %d]\n",

uth_self(), global_var);

return 0;
}

int main(void) {
int i;
pthread_t pth;
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

uth_init(0);
uth_vp_init(0);
for(i=0; i<NumThreads; ++i){

worker[i] = uth_create(workerFunc,(void *)i);
}

printf("[0x%lx] master thread A starts\t [pthread_t = 0x%lx getpid = %ld]\n",
uth_self(), pthread_self(), getpid());

virtualprocessorA = uth_self();
uth_switchto(virtualprocessorA, worker[0]);
printf("[0x%lx] master thread A continues\t [global = %d]\n",

uth_self(), global_var);
pthread_create(&pth, NULL, kernelthreadfunc, NULL);
pthread_join(pth, NULL);

for(i=0; i<NumThreads; ++i){
uth_delete(worker[i]);

}

printf("[0x%lx] master thread A exits\n", uth_self());
return 0;

}

Figure 1: Test application

6

OPERATING SYSTEM ARCH COMPILER METHOD

WINDOWS 2000 X86 MSVC, GCC, ICC SJLJ, MCSC

LINUX 2.4.18 X86 GCC, ICC SJLJ, MCSC

SOLARIS 8 X86, SPARC GCC, UCBCC SJLJ, MCSC

IRIX 6.5 - n32 MIPS GCC, CC SJLJ, MCSC

IRIX 6.5 - n32 MIPS CC SJLJ, MCSC

AIX 5.3 - 32 POWER GCC, XLC SJLJ, MCSC

AIX 5.3 - 64 POWER XLC MCSC

QNX 6.0 X86 GCC SJLJ

FREEBSD 5.0 X86 GCC SJLJ, MCSC

Table 1: Tested platforms

MACHINE OPERATING SYSTEM COMPILERS SJLJ MCSC

ALKAIOS WINDOWS 2000 MSVC 6.0 201 3012

ALKAIOS LINUX 2.4.18 GCC 3.2 129 644

GALOIS SOLARIS 8 UCBCC 5.0 336 6823

KARNAK IRIX 6.5 - n32 CC 7.30 101 4846

KARNAK IRIX 6.5 - n32 CC 7.30 118 5030

KADESH AIX 5.3 - 32 XLC 163 3196

KADESH AIX 5.3 - 64 XLC N/A 4343

Table 2: Context-Switch Overhead (processor cycles)

ALKAIOS Pentium III 866MHz, 256MB RAM
GALOIS UltraSparc 296MHz, 512 MB RAM

KARNAK MIPS R10000 250MHz, 512 MB RAM
KADESH RS-6000 POWER3 375MHz, 64 GB RAM

5.1 Context-switch overhead

We measure the pure context-switch overhead using a ping-pong benchmark
between two threads. The results are depicted in Table 2, presented in processor
cycles. We observe that the SJLJ method provides faster lightweight context-
switch, since it saves fewer registers than the MCSC method. This overhead,
however, is balanced with the portability of the MCSC method.

5.2 Creation and Re-Initialization Overhead

In this benchmark, we measure the average time required for creation, reuse and
re-initialization of a user-level thread. The benchmark measures the required
time for the creation (uth create) of 100 threads (allocation of memory and
initialization). These threads are recycled (uth delete) explicitly and the cre-
ation of the same number of (recycled) threads is measured again. Finally, we
measure the time to re-initialize all these threads (uth reinit). Tables 3 and 4

7

MACHINE OPERATING SYSTEM COMPILERS SJLJ MCSC

ALKAIOS WINDOWS 2000 MSVC 6.0 9.1 15.1

ALKAIOS LINUX 2.4.18 GCC 3.2 12.7 13.2

GALOIS SOLARIS 8 UCBCC 5.0 165.5 183.7

KARNAK IRIX 6.5 - n32 CC 7.30 148.6 195.8

KARNAK IRIX 6.5 - n32 CC 7.30 171.7 200.8

KADESH AIX 5.3 - 32 XLC 30.7 33.1

KADESH AIX 5.3 - 64 XLC N/A 36.9

Table 3: Creation Overhead (usec)

MACHINE OPERATING SYSTEM COMPILERS SJLJ MCSC

ALKAIOS WINDOWS 2000 MSVC 6.0 0.5 2.6

ALKAIOS LINUX 2.4.18 GCC 3.2 0.5 0.7

GALOIS SOLARIS 8 UCBCC 5.0 0.9 13.2

KARNAK IRIX 6.5 - n32 CC 7.30 2.1 13.2

KARNAK IRIX 6.5 - n32 CC 7.30 2.6 14.3

KADESH AIX 5.3 - 32 XLC 1.2 3.5

KADESH AIX 5.3 - 64 XLC N/A 4.9

Table 4: Recycling Overhead (usec)

present our measurements for the creation and reuse overheads of UthLib. The
creation overhead is dominated by the memory allocation call (malloc). We
observe that having pre-allocated the stacks decreases the overhead of thread
creation an order of magnitude.

Finally, Table 5 presents the overhead (in processor cycles) for re-initializing
(function and argument) an already created user-level thread.

MACHINE OPERATING SYSTEM COMPILERS SJLJ MCSC

ALKAIOS WINDOWS 2000 MSVC 6.0 117 1731

ALKAIOS LINUX 2.4.18 GCC 3.2 69 577

GALOIS SOLARIS 8 UCBCC 5.0 118 3448

KARNAK IRIX 6.5 - n32 CC 7.30 233 3165

KARNAK IRIX 6.5 - n32 CC 7.30 280 3320

KADESH AIX 5.3 - 32 XLC 158 983

KADESH AIX 5.3 - 64 XLC N/A 1538

Table 5: Re-initialization Overhead (processor cycles)

8

6 Possible Optimizations

1. In order to achieve maximum portability, UthLib has been built on top of
the POSIX Threads API. However, it can be also built on top of the native
kernel threads that operating systems provide. Furthermore, platform-
specific mechanisms for mutual exclusion can replace POSIX Threads mu-
texes while non-blocking algorithms can be utilized for the reuse queues.

2. Another possible POSIX Threads compliant self identification mechanism
is the use of thread-specific data (pthread set,get specific).

3. Alternatively, a stack-based implementation for thread self identification
can be used. This can be performed by allocating stacks on appropriate
page boundaries (memalign).

4. User-level threads are executed through a driver routine (uth main). This
routine identifies the currently executed thread and calls the user specified
function for this thread. This self-identification can be avoided by passing
an argument (a pointer to the thread descriptor) to the driver routine.

5. The context-switch mechanism can be based on assembly. For exam-
ple, the user can implement platform-specific versions of setjmp-longjmp,
which might result in faster code.

An optimized version of UthLib will be included in a future software distri-
bution of our work in the European FET-IST POP (Performance Portability
of OpenMP) program. For more information on this project you can visit:
www.cepba.upc.es/pop.

Acknowledgments

We would like to thank the European Center for Parallelism of Barcelona
(CEPBA) for providing us access to the Origin and SP3 parallel machines.

References

[1] Butenhof, D. R.: Programming with POSIX Threads. Professional Com-
puting Series, Addison-Wesley, ISBN 0-201-63392-2, May 1997.

[2] Engelschall, R.: Portable Multithreading: the Signal Stack Trick for User-
Space Thread Creation, In Proc. of the USENIX Annual Technical Confer-
ence, 2000.

[3] Hadjidoukas, P. E., Polychronopoulos, E. D., Papatheodorou, T. S.: Imple-
menting the Nano-Threads Programming Model on top of POSIX Threads.
In Proc. of the 20th IASTED Applied Informatics Conference, Innsburg,
Austria, February 2002.

9

[4] Hadjidoukas, P. E: Implementing Unix ucontext t operations on Windows
Platforms. The Code Project. Threads, Processes and IPC. May 2003.
Available at http://www.codeproject.com/threads/context.asp.

[5] Hadjidoukas, P. E., Polychronopoulos, E. D., Papatheodorou, T. S.:
OpenMP Runtime Support for Clusters of Multiprocessors. In Proc. Intl.
Workshop on OpenMP Applications and Tools (WOMPAT ’03), Toronto,
Canada, June 2003.

[6] Keppel, D.: Tools and Techniques for Building Fast Portable Thread Pack-
ages, University of Washington at Seattle, Technical Report UW-CSE-93-
05-06, June 1993.

[7] Netscape Portable Runtime Library. Available at
http://www.mozilla.org/docs/refList/refNSPR/.

[8] The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2003 Edi-
tion, http://www.opengroup.org/onlinepubs/007904975/.

[9] State Threads Library for Internet Applications. IBM Open Source
Projects, http://oss.sgi.com/projects/state-threads/.

10

