
A Cache Engine
for E-Content Integration
Content-integration systems generally suffer performance bottlenecks due to

network overhead. To address this problem, the authors developed the Data

Integration Cache Engine (DICE), which uses summarization techniques

(subqueries and Bloom filters) and semantic metadata to achieve semantic active

caching in the context of Internet-based data integration applications. The system

uses algorithms and specialized data structures to generate exact remainder

queries to locate content that is missing from cache in case of partial hits.The

authors’ performance results indicate that DICE outperforms existing options

in terms of response time, network overhead, and server load.
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The most widespread approach to
automating data integration and dis-
semination over the Web is to employ

wrappers — software components that
extract information from back-end sites
and translate it to a common model — and
a mediator, which combines the data
gathered by the wrappers and provides
uniform access to it. Researchers general-
ly focus on the wrapping aspect, but bot-
tlenecks in the real world usually come
from the network overhead incurred when
contacting integrated e-commerce sites.
Although wrapping can be a tedious task,
it requires only processing horsepower,
which is abundant in modern computer
systems. On the other hand, network con-
gestion and link failures are part of every-
day life on the Internet.

Caching queries and their results with-
in a data integration system provides an
effective and transparent method for

tackling the network overhead problem.
To that end, we developed the Data Inte-
gration Cache Engine (DICE), which
employs semantic active caching tech-
niques1 and novel data structures and
algorithms to quickly identify whether
queries on integrated content can be
answered completely or partially from
cache. In the latter case, DICE can form
the queries for the exact missing content. 

We have developed the domain-
independent mediator-based Content Inte-
gration System (Coins; http://netcins.ceid.
upatras.gr/Software/DnC/), which includes
the DICE cache subsystem, and imple-
mented several applications on top of it.
In this article, we describe DICE’s overall
architecture and present HyperHotel as an
example application to show how our sys-
tem can be used in the field. We also dis-
cuss performance results that show the
system’s efficiency.



DnC Architectural Overview
Coins uses off-the-shelf wrapper-generation
toolkits and standard XML technologies to
extract and integrate information from Web sites.
It also incorporates an XML-based semantic
metadata repository, created and maintained by
the Coins’ administrator, including declarative
descriptions of the source sites’ content and
capabilities.

DICE and Coins — collectively referred to as
DnC — target content-integration issues represen-
tative of those found in e-commerce applications
that compare products, hotels, online auctions, and
so on. Such systems are characterized by:

• the need to translate the back-end sites’ data
models into a single overarching data model;

• the fact that queries posed to the system refer
to all relations in the unified data model and
involve all attributes in the joined relations; and 

• the fact that the unified model and query
semantics are available a priori at the mediator.

Using a mediator-based system to deploy such
applications avoids obsolete techniques built
around data entry. However, we decided to intro-
duce DICE between the mediator and end user in
order to minimize network accesses, and thus, the
network overhead.

As shown in Figure 1, DnC’s multitier architec-
ture includes

• front-end subsystem,
• a caching subsystem (DICE), and 
• an XML-enabled mediator subsystem. 

For maximum interoperability and code reusability,
all DnC components communicate via XML docu-
ments constructed according to a pair of predefined
DTDs: Query and Response. These DTDs define the
interface between any two DnC components.

In processing a typical user query, DnC per-
forms the following steps:

• The front-end modules accept user queries
through an HTML-based interface and convert
them to Query-DTD-compliant (QDC) XML
form. These query-generator modules then for-
ward the QDC-XML documents to the DICE
caching subsystem for further processing.

• DICE checks its internal data structures to see if
the query can be answered from cache. For a full
hit, DICE returns the cached result to the front-
end modules. For a partial or full miss, it con-
structs a set of queries representing the missing
data in QDC-XML form and forwards the result-
ing document to the mediator subsystem.

• The mediator subsystem uses its semantic
metadata repository to select the set of back-
end sites to contact and retrieves the relevant
Web pages. After the wrapping process and a
preliminary query processing on the mediator’s
behalf (to eliminate duplication, integrate
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Related Work in Dynamic Content Caching

Researchers have extensively studied the
problem of answering queries by using

materialized views — the query-containment
phase of the semantic-caching scenario — in
the contexts of query optimization and data-
integration and data-warehouse design. (The
problem is known to be NP-complete.1)
With our techniques, we solve the related
problem of obtaining the maximal set of
cached results for each query.Our algorithm
is similar to,but less complex than,Pottinger
and Levy’s2 because all queries in our setting
are over the same set of relations and involve
all the joined relations’ attributes.

Our work is most closely related to that
of Luo and Naughton.3 However, DICE can
produce remainder queries for the com-
plete and exact missing results to a given

query, while their work uses heuristics to
provide approximate answers to user
queries. Furthermore, whereas Luo and
Naughton process only simple conjunctive
queries, DICE can also handle queries with
predicates connected by AND and OR and
that might include a constant number of
joins and comparison predicate values.

Our techniques and algorithms further
guarantee that we always get the maximum
out of our cache by combining data from
multiple cached queries; the Luo and
Naughton approach uses data from a single
cached query each time. Using novel data
structures and Bloom filters, DICE can
identify hits and misses and produce the
remainder (missing) queries to locate the
full results. In contrast, Luo and Naughton

use linked lists for lookups and file-system-
based data for storage and retrieval.
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semantically identical tuples to a common for-
mat, and so on), the mediator subsystem
returns the resulting Response-DTD-compliant
(RDC) XML documents to DICE.

• DICE stores the newly acquired data and
updates its internal data structures. It then
combines all the relevant cached tuples to con-
struct a single RDC-XML document, which it
returns to the front-end modules to format the
output and create appropriate HTML pages in
response to the initial user query.

Now that we have a broad overview of the DnC
system, we can delve into DICE’s design and
implementation to understand the workings of this
key subsystem.

Data Integration Cache Engine
Figure 2 (next page) shows an overview of the
DICE architecture. The core idea is to use summa-
rizations of cached entries to identify full and par-
tial cache hits of query results and to compute the
set of missing queries — those whose results rep-
resent the data items not present in the cache. DICE
uses a relational database management system
(RDBMS) to store cached information as tuples
within relations. It then represents cached queries
as materialized views over these relations. The
cache summaries are created by using the materi-
alized views, Bloom filters,2 and specialized data
structures in the hit/miss-detection algorithm and
in the production of (sub)queries corresponding to
the exact missing content, all of which greatly
reduce the cost of performing these procedures.

Bloom filters provide a nice way to summarize
distinct values. A Bloom filter comprises a bit vec-
tor and a set of hash functions that map input val-
ues to positions in the bit vector. Data that is to be
added to a Bloom filter is hashed using these func-
tions, and the corresponding bits in the bit vector
are set to 1. We can thus check a value’s existence
in a Bloom filter by taking the same hashes and
checking whether all the corresponding bits are
indeed set to 1.

By using query rewriting and materialized
views over cached entries, DICE can extract the
maximally contained cached query results (that is,
any and all cached data relevant to the current
query) with minimal complexity. Our caching
framework provides the mediator subsystem with
the exact set of missing queries and delivers the
exact query response to the front-end modules (full
semantic active caching).

DICE can handle queries of the following form:

• SELECT projection_list FROM relations
• WHERE (NOT) atomic_constraint (attribute, value)
• [AND|OR] (NOT) atomic_constraints
• AND (NOT) comparison_constraint
• [AND|OR] (NOT) comparison_constraints

In the class of applications targeted by DnC, the
projection_list includes all attributes con-
tained in the union of the tuples in each of the
relations (that is, all possible attributes). 

We process atomic constraints (predicates con-
taining only equality constraints) separately from
predicates with comparison (≤ or ≥) constraints. This
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Figure 1. DICE-and-Coins architecture. Coins consists of three distinct but cooperating components: the front-end
subsystem, the Data Integration Cache Engine (DICE), and a mediator.
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is because Bloom filters can effectively summarize
distinct values (equality constraints), but ranges of
values (comparison constraints) require additional
mechanisms. We thus separate query predicate con-
straints into two major categories:

• Atomic-attribute-value predicate combinations
of constraints (AACs) — the set of all atomic
constraints in the query expression — take the
form attribute=value.

• Comparison predicate constraints (CPCs) always
take the form attribute {£|≥} value.

As mentioned, a Bloom filter consists of a bit vec-
tor and a set of hash functions. To minimize the
possibility of more than two input values hashing
to the same bits in the filter’s vector, we use a
cryptographic hash function (namely, MD5): to
insert or look up an entry in a Bloom filter, we first
hash it to create a 128-bit pseudo-unique number,
which we divide into equal segments for DICE to
use as indexes in the filter’s bit vector.

In a new filter, all bits are set to 0 (indicating
that the filter contains no items). For an insertion
operation, DICE sets the corresponding bits to 1 in
the filter’s bit vector. (Note that a single bit could
be set to 1 more than once because some of the fil-
ter’s hash functions might be identical for two val-
ues. However, we minimize that possibility by
using MD5 and tuning it by varying the bit vec-
tor). For a lookup operation, the response is the
bitwise AND of all relevant bits.

Query Bloom filter. DICE represents the set of
cached queries using a query Bloom filter (QBF).
DICE uses semantic information (supplied at the
configuration step, as described earlier) to apply a
predefined ordering to the positions of projection
attributes, relations, and query predicates in incom-
ing queries. (Remember that in the class of appli-
cations our system addresses, queries are over all
relations and attributes, and that query semantics
are known a priori; thus, a simple lexicographic
ordering of the relations and attributes is suffi-
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Figure 2. DICE cache manager architecture. As a user query moves into the cache subsystem, DICE: (1) translates it into
an internal form; (2) checks for partial and full cache hits; (3) creates queries for missing content as necessary; (4) gathers
cached data; (5) constructs a preliminary response document, and (6) incorporates data integrated by the mediator. If the
query was a full miss, DICE (7) forwards it to the mediator and moves on to steps (5) and (6). Note that the use of XML
and the Query and Response DTDs lets us reuse components such as the XML encoders and decoders and the
converters for moving between SQL and XML.
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cient.) It then uses the text representation of the
resulting queries to perform a simple lookup in the
QBF to check whether the incoming query is iden-
tical to one in the cache (a full cache hit in passive-
caching terminology). In case of a cache miss, DICE
decomposes the query into its AACs and CPCs.

AACs and Bloom filters. DICE stores the AACs for
all cached queries in a second Bloom filter, called
the atomic attribute predicate Bloom filter (ABF).
The cache engine also maintains a hash table of all
views, using the AACs as the keys in determining
which cached materialized views answer which
atomic attribute-value subqueries. DICE uses this
scheme in cache-miss scenarios to locate the max-
imally contained results from the cache. It then
creates the minimal set of queries whose union
corresponds to the exact missing information, and
delivers them to the mediator for processing.

There is a small chance of false positives when
using Bloom filters to identify hits and misses. To
avoid such errors, the kernel maintains a counter
(instead of the one-bit identifiers) for each posi-
tion in the filter’s bit vector. DICE increments the
counter each time it hashes a query to a location
in the filter. If the counter values at all locations
corresponding to an incoming query are less than
one, the kernel assumes a false positive and for-
wards the original query to the back-end mediator
subsystem. This simply results in the generation of
an extra message to — and the retrieval of an extra
object from — the mediator.

CPCs and paths. As mentioned, CPCs are predicate
constraints using comparison (≤ or ≥) operators.
Such constraints are usually found in queries for

ranges of values (for example, “find all hotels with
a per-night price between $100 and $200”). Bloom
filters are not appropriate for storing ranges of val-
ues; each value stored in a Bloom filter must be con-
stant, distinct, and randomly distributed in the fil-
ter’s bit vector. Hence, the cache engine also
maintains data structures as a tree of paths — lists of
ordered value pairs that correspond to the lower and
upper bounds of comparison predicates. This tree of
paths provides the cache engine with the range of
values, if any, in each cached materialized view.

For example, CPCs might appear in the Dates
and Prices query fields in the application
described in the sidebar, “HyperHotel: An Exam-
ple Application,” because users are generally inter-
ested in vaguely defined time periods and price
ranges. For each AAC in ABF, the kernel maintains
an ordered list of Date nodes. For each path in the
date list, there is a corresponding ordered list of
Price nodes. Thus, each CPC is represented as a
list of value-pair lists. DICE splits or merges the
paths so that no overlapping occurs between them.

Deployment Issues
DICE requires a priori semantic knowledge of the
queries it receives from the system’s users. Fur-
thermore, to enable active caching, the cache
administrator must provide DICE with all possible
values for each atomic attribute in the query
expression, as well as the minimum and maximum
values for the attributes that contain comparison
predicate values. Manual configuration of this kind
is very similar to that required in the field of proxy
servers; when configuring a regular proxy server,
the administrator specifies which URLs to cache by
adding them to a configuration file. Form-based
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HyperHotel: An Example Application

To showcase the DICE and Coins
(DnC) architecture, we developed

HyperHotel (http://netcins.ceid.upatras.
gr/Software/DnC/HyperHotel/).This data-
integration application brings together
vast amounts of unstructured and semi-
structured information available online
from real-world hotels (location informa-
tion, room rates, availability, online book-
ing, and so on). Our main goal was to cre-
ate a semiautomated way to uniformly
query all such facilities.We aimed to sur-
pass currently available paradigms based

on data entry and proprietary communi-
cation protocols between service pro-
viders and back-end sites.

HyperHotel lets users search across
multiple sites. User queries include such
attributes as hotel location, hotel class
and facilities, number of beds per room,
desired stay length, and desired cost
range. Constraints concerning stay and
desired cost are range-based, while all
other constraints are equality based (that
is, constraints on dates are of the form
datei {≤|≥} valuei, while constraints on

hotel class are of the form hotel_classi

= valuei).
This type of application is a perfect

match for DnC. Content integration pro-
vides end users a uniform mechanism for
selectively querying multiple hotel Web
sites, and DnC’s interface makes it easy to
compare between candidates. Coupled
with DICE's advanced features, the fact that
DnC fetches and integrates content on
demand guarantees the timeliness and cor-
rectness of returned results,while keeping
query-completion time low.



proxy caching systems also require a priori speci-
fication of the cacheable forms.3,4

All queries that DICE handles refer to the same
set of data sources, which greatly simplifies the
process of answering queries using the cached
views. Unlike some related applications,5–7 the class
of applications supported by our data-integration
infrastructure requires no complex, generalized
algorithms to solve the problem of query contain-
ment (known to be NP-complete).5 Because a fixed
number of relations participates in each query (that
is, a constant number of joins), we do not try to
rewrite the query as a conjunction of the relevant
views. Instead, we use the ABF and the functional-
ity provided by the relevant data structures to work
from the maximal result set in each relevant view.

Performance Study
Although our approach’s novelty is in the DICE
caching subsystem, we choose to analyze its perfor-
mance in conjunction with the mediator subsystem
— specifically, testing DnC’s performance operating
within a real-world application such as HyperHotel.
This will also stress our solution’s appropriateness
for the domain of content-integration applications.

Benchmarking
We believe mediated data represents a harder case
for caching mechanisms than static information or
simple SQL queries over a local database, because
the queries’ semantics cause variations in the set
of sites to contact on every user request. As a
direct consequence of this complexity, traditional
workloads — such as the TPC-W benchmark (www.
tcp.org/tcpw) — aren’t applicable for benchmark-
ing DnC because they focus primarily on perfor-
mance aspects of the overall system rather than the
cache in particular. We thus created a synthetic
workload to measure all of the system’s query-
execution stages:

• Front-end modules’ interactions with the
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Figure 3. Network overhead expressed as a
percentage of total data-integration time during
data download.The charts show results for Coins
in three usage cases: (a) With the Data Integration
Cache Engine (DICE) in place, (b) with the Squid
cache engine in place for static caching, and (c)
with no cache engine in place. Distinct points
correspond to queries, and the green line shows
the average overhead.
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caching subsystem (via Java RMI);
• Hit/miss detection and remainder-query gen-

eration (if required);
• Interactions between the caching and integra-

tion subsystems (via Java RMI);
• Information retrieval and integration (media-

tion); and
• Cache update and query-result generation.

We implemented a specialized query generator to
simulate real-world user behavior, which is by no
means uniform with respect to HyperHotel’s vari-
ous query attributes (four-star hotels are more
popular than two-star facilities, for example). We
associate a probability with each possible attribute
value, which the query generator uses to random-
ly choose values.

In the content-integration stage of query exe-
cution, network-intensive information retrieval
forms the main bottleneck. Remember that gener-
ating remainder queries can increase the number
of queries posed to back-end sites, and that the
amount of data downloaded depends primarily on
the queries’ quantity, not quality. Therefore, a
workload that causes many partial misses or hits
presents greater difficulty than a workload that
generates full cache misses or hits, because of the
network overhead it inflicts.

We executed all benchmark tests on a 733-MHz
Pentium III PC, with 256 Mbytes of memory and a
2-Mbps network connection, running Debian Linux
3.0 and using the Java Developer Kit versions 1.3.1
and 1.4.1. We performed several workload runs of
100, 200, 500, 1,000, and 1,500 queries each. Due
to space considerations, we present results only for
the 500-query test case, but we obtained very sim-
ilar figures for the other test cases.

To provide reference points, we also ran the tests

• using an off-the-self Web proxy cache
engine, and 

• without any caching.

For the former, we used the Squid proxy cache
(www.squid-cache.org), which we placed between
DnC and the Internet so that all requests over the
Web passed through it. (For performance metrics
comparing Squid to other caching products, see
http://cacheoff.ircache.net.) We explicitly provided
Squid with enough storage space to ensure that it
wouldn’t invalidate cached data during our bench-
mark runs.

Because the mediation tasks are network-

bound, we opted to benchmark network traffic, net-
work overhead (that is, the ratio of data-retrieval
time to total content-integration time, which
includes the time spent at the wrappers, mediator,
and network), and back-end server access. To focus
on the caching subsystem’s performance, we also
measured each query’s execution time.

Results
Our analysis of the benchmark results reveals sev-
eral facts. As Figure 3 illustrates, data-retrieval
constitutes 90 percent of the total data-integration
time (by far the most time-consuming phase of
query processing) in all three approaches — active
caching with DICE (Figure 3a), static caching with
Squid (Figure 3b), and no caching (Figure 3c). The
other 10 percent includes the time for wrapping,
integration, and preliminary reply processing on
the mediator’s behalf, which proves that network
overhead is the main bottleneck.

With DICE, queries took an average of 38.7 per-
cent less time to complete than without caching
and 42.3 percent less than the static caching
scheme (see Figure 4). Indeed, because data is
drawn from back-end Web sites using their HTML
form-based interfaces, the static caching scheme
merely adds extra overhead to query processing.

As Figure 5 (next page) shows, our caching
scheme averaged just half the back-end network
accesses that the other caching schemes
required. Thus, DnC creates a much lower back-
end server load.
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Figure 4. Average query-response times. DICE cuts the average
turnaround time for queries to almost half of that needed without
caching, whereas Squid, which is optimized for static data, adds
overhead.
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As Figure 6 demonstrates, our caching scheme
causes an average of 15 percent less network traf-
fic than with no caching, and 40 percent less than
with the static caching scheme. However, Squid
rewrites cached pages so that they contain session-
specific information (such as session IDs), which is
usually kept in cookies at the browser. This leads

to a somewhat artificial increase in the raw byte
count of data fetched over the Web because we can
measure only the results Squid returns, and thus
must use the “augmented” Web pages.

Conclusions
Cache consistency is a key issue when working with
data gathered from Web sources. However, it is high-
ly dependent on the application semantics; for exam-
ple, a scheme that would do well under a Web-
caching scenario might fall apart if applied to a
database environment. We believe that some form of
invalidation mechanism (such as time-to-live, as in
Web-proxy caching) will fit well with the rest of our
system. Push–pull8 techniques or approaches based
on expiration mechanisms9 also represent opportu-
nities for future extensions to our framework.

We would also like to experiment with distrib-
uting our system’s caching and query-processing
chores across multiple computers on the Internet.
Our use of an RDBMS at the storage layer simpli-
fies migration to a distributed environment, but it
leaves many open issues: optimal forwarding and
redirecting of queries between multiple DnC
servers, optimal data placement, and DICE state
consistency are just a few of problems that would
arise in a distributed world. We believe that bor-
rowing techniques from the field of content distri-
bution networks and distributed databases might
help us in this direction.
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