
The HyperHotel Application Built over D.I.C.E. and Co.In.S.

Peter Triantafillou and Nikolaos Ntarmos
Computer Engineering & Informatics Dept.

University of Patras<peter,ntarmos>@ceid.upatras.gr

John Yannakopoulos
Computer Science Dept.

University of Crete<giannak@ics.forth.gr>
Abstract

Content integration of web data sources is becoming in-
creasingly important for the next generation information
systems. However, all proposed solutions are faced with
the same performance bottleneck: the network overhead
incurred when contacting the integrated e-sites. With this
demo paper we shall demonstrate the functionality of Hy-
perHotel. HyperHotel is used for finding appropriate hotel
rooms when travelling. Its novetlies are that it is designed
and implemented as an internet web-hotel content integra-
tion application and that it is built on top of D.I.C.E. and
Co.In.S.; a novel content integration infrastructure consist-
ing of a domain-independent COntent INtegration System
and its Data Integration Cache Engine. We’ll show how the
infrastructure of D.I.C.E. and Co.In.S. can be applied and
exploited in HyperHotel in order to improve the response
time of complex user queries. This exemplifies the signif-
icance of this infrastructure since HyperHotel is represen-
tative of a large class of e-commerce, content integration
applications.

1 Introduction

The unstructured and heterogeneous nature and the im-
mense proportions of data currently available through the
web, make information integration a vital part of many
modern data management systems and data warehouses.
The most wide-spread approach to automated data integra-
tion and dissemination utilizes a mediator and wrappers for
the back-end sites. Relevant research usually focuses on the
wrapping part of the integration process. In the real-world,
however, the bottleneck of the system is the network over-
head, incurred when contacting the integrated e-sites.

Co.In.S. – the Content Integration System, is a domain-
independent mediator-based system, featuring D.I.C.E. – a
caching engine based on novel techniques. DnC1 targets

1We use DnC to refer to D.I.C.E. and Co.In.S., where appropriate.

content integration systems, representative of those needed
to support a large class of e-commerce applications (e.g.
comparative e-shopping for books or CDs, e-hotels, online
auctions, etc.), with such characteristics as: (i) the needfor
translation of the large variety of different data models, used
by the back-end e-sites, into a single data model, (ii) the fact
that queries posed to the system are over all relations of the
unified data model and involve all attributes in the joined
relations, and (iii) the fact that the unified model and query
semantics are available a-priori at the mediator.

The key characteristics of D.I.C.E. include: (i) the use
of active caching ([2]) techniques in the context of content
integration – a context much more complex than that of tra-
ditional web proxy caching – as well as the use of seman-
tic information to achievefully semantic active cachingin
the specified context, (ii) the use of materialized views over
cached entries to extract themaximally containedcached
query results, with the minimum possible complexity, and
(iii) a novel use of Bloom filters ([1]) and of other related
novel data structures in the hit/miss detection algorithm and
in the production of queries (refered to assubqueries) corre-
sponding to the exact missing content, greatly reducing the
cost of these procedures.

2 D.I.C.E. & Co.In.S Architecture

The goal of the DnC system is to build a domain inde-
pendent, dynamic mediator system with caching, with an
emphasis on speed, platform independence, and ease of de-
ployment. For modularity and ease of maintenance, DnC is
built as a set of independent but cooperating components. A
schematic view of DnC is presented in fig. 1.

Briefly, DnC is a multi-tier architecture, consisting of:
(i) the user interface, (ii) the Front-end modules, imple-
mented using Java Servlets and XML-related technologies,
(iii) the caching subsystem (aka D.I.C.E.), based on off-the-
self database management systems and novel cache man-
agement techniques, (iv) an XML-enabled mediator, uti-
lizing third-party wrappers and standard XML-based tech-
nologies, and (v) the back-end e-sites. All internal commu-

1



�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Query
Generator

Web

Browser

Web

Browser

Web

Browser

HTML/XML
over the Web

HTML/XML
over the Web

back−end
e−sites

Agent

Agent

Mediator

Query
Generator

RDBMS
Data

Repository

Wrapper

Wrapper

Wrapper
Kernel
Cache

Caching
Subsystem

Clients

Front−End

Co.In.S. & D.I.C.E.

Mediator
Subsystem

Figure 1. DnC Architecture

nications between the components of DnC use XML docu-
ments, constructed according to a set of predefined DTDs:
theQueryandResponse DTDrespectively2.

2.1 D.I.C.E.: The Data Integration Cache Engine

Data integration systems solve the problems of hetero-
geneity of available content and of selectively querying
multiple sources. Such systems usually feature sophisti-
cated algorithms for data extraction and conversion and
strive to support the latest standards in the fields of query
languages and data representation. However, the real bot-
tleneck in such systems is the network overhead.

An effective and transparent method for tackling this
class of problems is to cache queries and their results within
the data integration system in an intelligent and efficient
way. D.I.C.E., a vital part of our system, deploys efficient
and flexible active semantic caching mechanisms for our
data integration infrastructure.

D.I.C.E. uses a RDBMS at its storage layer. Cached in-
formation is stored in tuples in the RDBMS’s relation and
cached queries are represented in the cache as materialized
views over the database relations.

The core idea of D.I.C.E. is the use of summarization
of cached entries, based on a novel utilization of Bloom
filters, along with specialized data structures, and of ma-
terialized views, in order to swiftly identify full and par-
tial cache hits of query results, and to compute the set of
queries whose results represent the data items not present
in the cache (called “missing queries”). Our approach al-
lows for very fast hit/miss identification and missing query
generation. We’d like to stress that our caching framework
provides the mediator with theexact set of missing queries
and delivers theexact query response to the front-end mod-
ules (full semantic active caching).

The characteristics of queries that can be handled by our
cache are shown in fig. 3. We assume that the projectionlist

2We’ll use the termsQDC-XMLdocument andRDC-XMLdocument to
refer to aQuery/Response DTD CompliantXML document respectively.

includes all attributes contained in the union of the tuplesin
each of the targetrelations (i.e. all possible attributes).

SELECT projection list
FROM target relations
WHERE (NOT) atomicconstraint (atomicattribute, value)
[AND j OR] (NOT) other atomicconstraints
AND (NOT) comparisonpredicateconstraint
[AND j OR] (NOT) other comparisonpredicateconstraints

Figure 3. Class of queries supported by
D.I.C.E.

Cache consistency and temporal coherency are issues
typically discussed in works focusing on caching of data
gathered from web sources. These notions are crucial to
data-centric applications, like the ones supported by our in-
frastructure. In this work, we have an orthogonal attitude
toward these problems. The requirements of these two con-
cepts are highly dependent on the application semantics.
We believe that some form of invalidation mechanism (e.g.
TTL-based a la web proxy caching) will fit well with the rest
of our system. In any case, the adoption of push-pull tech-
niques or of approaches based on expiration mechanisms
for dealing with the cached data invalidation problem effec-
tively, represents an opportunity for a possible future exten-
sion to our framework.

2.2 Request Processing

To illustrate the functionality of DnC, we will now de-
scribe the typical steps of processing of a user query.

1. The DnC server exports, through its front-end mod-
ules, an HTML-based query interface. The user con-
tacts the server, through her favorite web browser and
poses her query. The front-end modules convert the
user request to a QDC-XML document describing the
query, and forward it to the caching subsystem for fur-
ther processing.

2. The caching subsystem checks its internal data struc-
tures for whether there is a cache hit. In the case of
a full hit, the cached result is returned to the front-
end modules. In all other cases (partial/full miss), the
caching subsystem constructs a set of subqueries, rep-
resenting the missing data, and forwards them to the
mediator subsystem.

3. For each such subquery, the mediator subsystem uses
its semantic metadata repository to select the set of
back-end sites that have to be contacted in order to an-
swer the given queries, and retrieves the relevant web
pages. After the wrapping process, the translation of
information to the system’s internal data model, and a
preliminary query processing on behalf of the mediator
(e.g. duplicate elimination, conversion of semantically

2



Decoder
XML

Front-end
Request from

Decoded

Converter
XML-to-SQL

Decoded

Converter
SQL-to-XML

Encoder
XML(QDC-XML) XML Content XML Content

Cache Manager
Actual

SQL-to-XML
Converter

XML

Decoded
XML Content

S
Q

L
C

on
te

n
t S

Q
L

C
on

ten
t

XML-to-SQL
Converter

XML
DecoderDecoded

XML Content

Final RDC-XML

Generator

S
Q

L
C

on
ten

t

C
on

te
n

t
S

Q
L

from Cache Back-end
Reply from

(overall RDC-XML) Reply from Back-end (RDC-XML)

(RDC-XML)

Cache Update

(RDC-XML) Encoder

4

2

5

1 3

Initial Query Interpreter

Full or Partial Cache Hit

A B

Cache

B A

D C

Partial Cache Miss

Final QDC-XML

Generator

(QDC-XML)

(QDC-XML)

Request from Front-end

(QDC-XML)
Cache Miss
Partial

Final Request to Back-end

Final Reply to Front-end

7

S2

S1

C D

6

Figure 2. D.I.C.E.: The Cache Manager

identical tuples to a common format, etc. ), the result-
ing RDC-XML documents are returned to the caching
subsystem.

4. The caching subsystem stores the newly acquired data
and updates its internal data structures. It then con-
structs a single RDC-XML document, combining all
of the relevant cached tuples, and returns it to the front-
end modules.

At this point, the request processing has ended. The
front-end modules take on from here to pretty-format the
output and to create appropriate HTML pages in answer to
the initial user query.

3 Demonstration of the system

A classic example of data freely available through the
world-wide-web in unstructured or semi-structured form, is
data about accommodation facilities such as hotels and rent-
rooms. The common practice for such companies is to have
a web site offering location-related information (such as ad-
dress, transportation etc.), room rates, availability checking,
online booking etc. In order to demonstrate the functional-
ity of DnC, we have built a web content integration applica-
tion based on it – the HyperHotel.

3.1 HyperHotel: An example application

The HyperHotel is a data integration application, bring-
ing together the vast amounts of information available on-
line by real-world hotels. Users have the ability to search
for their residence-of-choice in multiple e-hotels, without
having to visit the web sites of each and every one of them.

Figure 4. The HyperHotel GUI

HyperHotel’s goal is to answer to this demand in a semi-
automated way, surpassing currently available paradigms
utilizing data-entry and/or proprietary communication pro-
tocols between the integrator and the back-end sites.

For the moment, HyperHotel integrates web content
from approximately 100 e-hotels, spread out in five ma-
jor cities in Greece (namely Athens, Thessaloniki, Chania,
Heraklion, Corfu). Users of HyperHotel pose their queries
through a HTML form (fig. 4), based on such attributes as
location, class, and facilities of the hotel, desired number of
beds, desired price range, and desired date range. The re-
sult set is again presented in HTML format (a screenshot is
omitted due to space considerations) and consists of tuples
of hotel rooms matching the user constraints, along with a

3



link to the corresponding e-site.
To achieve better performance, HyperHotel prefetches,

integrates, and stores all “static” data (i.e. data available
through static HTML pages) at start-up, while still offering
the capability of online dynamic querying through HTML
form interfaces. User queries can include such attributes
as hotel location, hotel class and facilities, number of beds
per room, desired time period, and desired cost range. Con-
straints concerning time period and desired cost are range-
based, while all other constraints are equality based (e.g.
constraints on dates are always of the form “datei f< j >g valuei”, while constraints on hotel class are always of the
form “hotel 
lassi = valuei”).
3.2 Example Query Workload

We would like to stress here that HyperHotel is much
more than yet-another price comparator; Because of
D.I.C.E., the amount of data needed to be transfered for
each query is cut down to a minimum. For example, let’s as-
sume that the cache is cold and a queryQ1 for 2-bed rooms
in A or B class hotels located in Athens, for the period from
August 1st to August 15th, with a maximum price of 100
Euros per day, is posed to the system. The query would be
expressed using a QDC-XML document and sent to DICE
for processing. The cache kernel would see that no relevant
data is stored in its repository and would forward the query
verbatim to the mediator. The latter would then contact the
appropriate e-sites, integrate and filter the results and return
them to DICE, which would update its repository and then
forward them to the front-end for proper formatting.

Now assume that a second queryQ2 is posed to the sys-
tem afterQ1, concerning 2-bed rooms in A class hotels in
Athens, for the period from August 10th to August 20th,
with a price ranging from 50 to 100 Euros per day. The
result-set forQ2 is obviously a subset of the result set ofQ1
for the time period until August 15th. DICE would notice
this and construct a set of subqueries concerning the data re-
quired to answerQ2 but missing from the cache (i.e. 2-bed
rooms in A-class hotels in Athens, for the period from Au-
gust 16th to August 20th with a price range from 50 to 100
Euros per day). It’s this set of subqueries that will then be
sent to the mediator for integration and further processing.

Finally, assume that a third queryQ3, concerning 2-bed
rooms in A-class hotels in Athens, from August 8th to Au-
gust 17th, with a price ranging from 60 to 80 Euros per day,
is entered in the system afterQ1 andQ2. As can be easily
seen, none of the result sets ofQ1 andQ2 can answerQ3
completely, but their union is a superset ofQ3’s result set.
DICE will use the cached data to answerQ3 and will not
engage the mediator for this query.

The demonstration will include query workloads such as
this to exemplify the efficiency and the offered services.

4 Related Work

Currently there are several e-hotel price comparators
available on-line (e.g. [4, 5, 7]). All of these sites are com-
mercial and don’t disclose information concerning the inner
workings of their architectures. To the authors knowledge,
it appears that these sites are using some kind of centralized
repository (e.g. RDBMS) for the data they manage, prob-
ably maintained and updated after manual intervention, in
cooperation with the back-end e-sites.

DnC and HyperHotel, as already explained, move sev-
eral steps forward. First, in DnC data is gathered from the
e-sites and integrated at query time when appropriate, with-
out requiring some proprietary communication protocol or
a-priori contract with the e-hotel. Second, DnC and Hyper-
Hotel feature novel caching techniques, using subqueries
for partial matches; this results in tremendous efficiency
gains when compared to bare-bone mediator-based systems,
while keeping cached data fresh and up-to-date. Third, Hy-
perHotel is relieved from the burden of maintaining the con-
sistency of integrated data: this chore falls onto the owners
of the integrated e-site (or their web host) to ensure their
data’s frreshness.

With respect to the research novelty of the infrastruc-
ture, we claim that it is the only to offer full active semantic
caching, allowing the identification of the exact maximum
contained partial cache hit and the missing queries to com-
pletely answer the user’s query (as opposed to [6, 3]), in a
setting representative of a large class of e-commerce appli-
cations.

5 Conclusions

In this paper we propose to demonstrate the D.I.C.E. and
Co.In.S. system, using the HyperHotel application, built on
top of DnC. DnC is a content integration system built to
facilitate efficient web content integration, utilizing novel
caching techniques for dynamic web content.

References

[1] B. Bloom. Space/time tradeoffs in hash coding with allowable
errors. InCommunications of the ACM, volume 7 of13, pages
422–426, July 1970.

[2] P. Cao, J. Zhang, and K. Beach. Active Cache: Caching Dy-
namic Contents on the Web. InProc. Middleware ’98.

[3] S. Dar, M. Franklin, B. Jonsson, D. Srivastava, and M. Tan.
Semantic data caching and replacement. InProc. VLDB ’96.

[4] Hotwire.com. http://www.hotwire.com.
[5] Lodging.com. http://www.lodging.com.
[6] Q. Luo and J. Naughton. Form-Based Proxy Caching for

Database-backed Web Sites. InProc. VLDB ’01.
[7] Travelocity. http://www.travelocity.com.

4


