
Replication, Load Balancing and Efficient Range Query
Processing in DHTs

Theoni Pitoura1, Nikos Ntarmos1, Peter Triantafillou1

1Research Academic Computer Technology Institute, and Computer Engineering and
Informatics Department, University of Patras, Greece

{pitoura, ntarmos, peter}@ceid.upatras.gr

Abstract. We consider the conflicting problems of ensuring data-access load
balancing and efficiently processing range queries on peer-to-peer data net-
works maintained over Distributed Hash Tables (DHTs). Placing consecutive
data values in neighboring peers is frequently used in DHTs since it accelerates
range query processing. However, such a placement is highly susceptible to
load imbalances, which are preferably handled by replicating data (since repli-
cation also introduces fault tolerance benefits). In this paper, we present Hot-
RoD, a DHT-based architecture that deals effectively with this combined prob-
lem through the use of a novel locality-preserving hash function, and a tunable
data replication mechanism which allows trading off replication costs for fair
load distribution. Our detailed experimentation study shows strong gains in
both range query processing efficiency and data-access load balancing, with
low replication overhead. To our knowledge, this is the first work that concur-
rently addresses the two conflicting problems using data replication.

1 Introduction

Structured peer-to-peer (P2P) systems have provided the P2P community with effi-
cient and combined routing and location primitives. This goal is accomplished by
maintaining a structure in the system, emerging by the way that peers define their
neighbors. Different structures have been proposed, the most popular of which being:
distributed hash tables (DHTs), such as CAN [17], Pastry [18], Chord [21], Tapestry
[24], which use hashing schemes to map peers and data keys to a single, modular
identifier space; distributed balanced trees, where data are stored at the nodes of a
tree, such as P-Grid[1], PHT [16], BATON [11], etc.

One of the biggest shortcomings of DHTs that has spurred considerable research is
that they only support exact-match queries. Therefore, the naïve approach to deal with
range queries over DHTs would be to individually query each value in the range,
which is greatly inefficient and thus infeasible in most cases. Although there are many
research papers that claim to support range queries over DHTs more “cleverly” and,
thus, efficiently ([2], [9], [19], [22]), all of them suffer from access load imbalances in
the presence of skewed data-access distributions. Only a few approaches deal with
both problems, i.e. load balancing and efficient range query processing, in DHTs
([5]), or other structures ([3], [7], [11]). However, these solutions are based on data
migration which is sometimes inadequate in skewed data access distributions. This is

more apparent in the case of a single popular data value which makes the peer that
stores it heavily loaded. Transferring this value to another peer only transfers the
problem. In such cases, access load balancing is best addressed using replication of
popular values to distribute the access load among the peers storing such replicas.

In this work we propose solutions for efficiently supporting range queries together
with providing a fair load distribution over DHTs using replication. Our approach is
based on two key ideas. The first is to use locality-preserving data placement, i.e. to
have consecutive values stored on neighboring peers; thus, collecting the values in a
queried range can be achieved by single-hop neighbor to neighbor visits. The second
is to replicate popular values or/and ranges to fairly distribute access load among
peers. However, using data replication together with a locality-preserving data place-
ment is not simple: if the replicas of a popular value are placed in neighboring peers,
the access load balancing problem still exists in this neighborhood of peers that is al-
ready overloaded; On the other hand, if the replicas are randomly distributed, addi-
tional hops are required each time a replica is accessed during range query processing.
Addressing these two conflicting goals is the focus of this paper.

Specifically, we make the following contributions:
1. We define a novel locality-preserving hash function, used for data placement in a

DHT, which both preserves the order of values and handles value/range replica-
tion. The above can be applied to any DHT with slight modifications (we use
Chord [] for our examples and in our experiments). 21

2. We propose a tunable replication scheme: by tweaking the degree of replication, a
system parameter, we can trade off replication cost for access load balancing. This
is useful when we know, or can predict the characteristics of the query workload.

3. We develop a locality-preserving, DHT architecture, which we coin HotRoD, that
incorporates the above contributions, employing locality-preserving replication to
ensure access-load balancing, and efficient range query processing.

4. We comprehensively evaluate HotRoD. We propose the use of a novel load bal-
ancing metric, Lorenz curves and the Gini coefficient (which is being heavily used
in other disciplines, such as economics and ecology), that naturally captures the
fairness of the load distribution. We compare HotRoD against baseline competitors
for both range query processing efficiency and load distribution fairness. Further,
we study the trade-offs in replication costs vs. achievable load balancing.

5. Our results from extensive experimentation with HotRoD show that HotRoD
achieves its main goals: significant speedups in range query processing and dis-
tributes accesses fairly to DHT nodes, while requiring only small replication over-
head. Specifically, a significant hop count saving in range query processing, from
5% to 80% compared against standard DHTs. Furthermore, data-access load is sig-
nificantly more fairly distributed among peers, with only a small number of repli-
cas (i.e. less than 100% in total). As the range query spans, or data-access skew-
ness increases, the benefits of our solution increase.
To our knowledge, this is the first work to concurrently address the issues of repli-

cation-based data-access load balancing and efficient range query processing in
structured P2P networks and study in detail its performance features.

The rest of the paper is organized as follows: In section 2 we introduce the Hot-
RoD architecture, its locality-preserving hash function, and the mechanisms for rep-
lica management, and in section 3 we present the algorithm for range query process-

ing. In section 4 we experimentally evaluate HotRoD, and present its ability to tune
replication. Finally, we discuss related work, in section 5, and conclude in section 6.

2 HotRoD: A Locality-Preserving Load Balancing Architecture

The main idea behind the proposed architecture is a novel hash function which: (a)
preserves the ordering of data to ensure efficient range query processing, and, (b) rep-
licates and fairly distributes popular data and their replicas among peers.

HotRoD is built over a locality-preserving DHT, i.e. data are placed in range parti-
tions over the identifier space in an order-preserving way. Many DHT-based data
networks are locality-preserving (Mercury [5], OP-Chord [22, 15], etc) in order to
support range queries. However, this additional capability comes at a price: locality-
preserving data placement causes load imbalances, whereas trying to provide load
balancing, the order of data breaks. HotRoD strives for a uniform access load distribu-
tion by replicating popular data across peers in the network: its algorithms detect
overloaded peers and distribute their access load among other, underloaded, peers in
the system, through replication. (We should mention that instances of the algorithms
run at each peer, and no global schema knowledge is required).

In the following sub-sections, we overview the underlying locality-preserving
DHT, define a novel locality-preserving hash function, and algorithms to detect load
imbalances and handle data replication and load balancing.

2.1 The Underlying Locality-Preserving DHT

We assume that data objects are the database tuples of a k-attribute relation R(A1, A2,
…, Ak), where Ai (1 ≤ i ≤ k) are R’s attributes. The attributes Ai are used as single-
attribute indices of any tuple t in R. Their domain is DAi, for any 1 ≤ i ≤ k . Every tu-
ple t in R is uniquely identified by a primary key, key(t), which can be either one of its
Ai attributes, or calculated by more than one Ai attributes.

In DHT-based networks, peers and data are assigned unique identifiers in an m-bit
identifier space (here, we assume an identifier ring modulo-2m). Traditional DHTs use
secure hash functions to randomly and uniquely assign identifiers to peers and data.
Here, a tuple’s identifier is produced by hashing its attributes’ values using k (at
most1) order-preserving hash functions, hashi(), to place tuples in range partitions
over the identifier space. For fault tolerance reasons, a tuple is also stored at the peer
mapped by securely hashing its key(t). Thus, data placement requires O((k+1)⋅logN)
hops - N is the number of peers ([22]).

Note: We may apply an additional level of indirection by storing pointers to tuples, as
index tuples Ii(t): {vi(t) key(t)}, instead of tuples themselves. At this point, we make
no distinction.

1 Functions hash () may be different for each one of the k different attributes A .i i

As most existing DHTs, tuples use consistent hashing ([12]): a tuple with identifier
id is stored at the peer whose identifier is the “closest” to id in the identifier space (i.e.
the successor function, succ(), of Chord [21]). Peers also maintain routing information
about peers that lie on the ring at logarithmically increasing distance (i.e. the finger
tables of Chord [21]). Using this information, routing a message from one peer to an-
other requires O(logN) hops in the worst case, where N is the number of peers. For
fault-tolerance reasons, each peer also maintains a maximum of logN successors.

Example 2.1. Fig 1 illustrates data placement in a 14-bit order-preserving Chord-like
ring, i.e. the id space is [0, 16383]. We assume single-attribute A tuples, DA=[0,
4096). Let N=7 peers inserted in the network with identifiers 0, 2416, 4912, 7640,
10600, 11448, and 14720. Each peer is responsible for storing a partition of the at-
tribute domain DA, in an order-preserving way, as shown.

Fig 1. The substrate locality-preserving DHT. (a) A tuple with value v∈DA is stored on peer
succ(hash(v)), (b) The range query [1000, 2000] is routed from peer succ(hash(1000))=4912,
through the immediate successors, to peer succ(hash(2000))=10600

A range query is pipelined through those peers whose range of index entries stored
at them overlaps with the query range. It needs O(logN+ n') routing hops – n' is the
number of these peers ([22]).

Example 2.2. Fig 1 also illustrates how the range query [1000, 2000] initiated at peer
11448 is answered. Using the underlying DHT network look up operation, lookup()
(i.e. Chord lookup, if the underlying network is Chord), we move to peer
succ(hash(1000)), which is peer 4912. Peer 4912 retrieves all tuples whose values fall
into the requested range, and forwards the query to its successor, peer 7640. The
process is repeated until the query reaches peer 10600 (i.e. succ(hash(2000))), which
is the last peer keeping the requested tuples.

Although it accelerates routing for range queries, this scheme cannot handle load
balancing in the case of skewed data-access distributions. HotRoD, the main contribu-
tion of this work, deals with this problem while still attaining the efficiency of range
query processing. From this point forward, we assume that R is a single-attribute in-
dex A relation, whose domain is DA. Handling multi-index attribute relations is
straightforward ([14]), and beyond the scope of this paper.

2.2 Replication and Rotation

Each peer keeps track of the number of times, α, it was accessed during a time inter-
val, and the average low and high bounds of the ranges of the queries it processed, at
this time interval – avgLow and avgHigh respectively. We say that a peer is over-
loaded, or “hot” when its access count exceeds the upper limit of its resource capac-
ity, i.e. when α>αmax. An arc of peers (i.e. successive peers on the ring) is “hot” when
at least one of these peers is hot.

In our scheme, “hot” arcs of peers are replicated and rotated over the identifier
space. Thus, the identifier space can now be visualized as a number of replicated, ro-
tated, and overlapping rings, the Hot Ranges/Rings of Data, which we call HotRoD
(see fig 2). A HotRoD instance consists of a regular DHT ring and a number of virtual
rings where values are addressed using a multi-rotation hash function, mrhf(), defined
in the following sub-section. By the term “virtual” we mean that these rings material-
ize only through mrhf(); there are no additional successors, predecessors or other links
among the peers in the different rings.

2.3 Multi-Rotation Hashing

We assume that ρmax(A) is the maximum number of instances that each value of an at-
tribute A can have (including the original value and its replicas). This parameter de-
pends on the capacity of the system and the access load distribution of A’s values; in-
dicative values for ρmax(A) are discussed in section 4.4. We also define the index
variable δ∈[1, ρmax(A)] to distinguish the different instances of A’s values, i.e. an
original value v corresponds to δ=1 (it is the 1st instance of v), the first replica of v
corresponds to δ=2 (it is the 2nd instance of v), and so on. Then, the δth instance of a
value v is assigned an identifier according to the following function, mrhf()2.

Definition 1: mrhf(). For every value, v∈DA, and δ∈[1, ρmax(A)], the Multi-Rotation
Hash Function (MRHF) is defined as: }12,,1,0{)](,1[: −→× mADAmrhf Kρmax

msrandomvhashvmrhf 2mod)][)((),(⋅+= δδ (1)

where m
As 2)(

1
max

⋅= ρ is the rotation unit (or else, “stride”), and random[] is a

pseudo-random permutation of the integers in [1, ρmax(A)] and random[1]=0.

It is obvious that for δ=1, mrhf() is a one-to-one mapping from DA to {0, 1, …, 2m-
1} and a mod2m order-preserving hash function. This means that, if v and v' ∈ DA and
v≤ v', then mrhf(v,1)≤mod2m mrhf(v',1) , which means that mrhf(v,1) lies before
mrhf(v',1) in a clockwise direction over the identifier ring. For any δ>1, HotRoD is

2 Mapping data to peers (i.e. using consistent hashing) are handled by the underlying DHT.

also mod2m order-preserving (the proof is straightforward and omitted for space rea-
sons).

Therefore, a value v is placed on the peer whose identifier is closer to mrhf(v,1) ,
according to the underlying DHT. When the δth instance of a value v is created, or else
the (δ-1)th replica of v (i.e. δ>1), it will be placed on the peer whose identifier is closer
to mrhf(v,1) shifted by δ·s clockwise. This can be illustrated as a clockwise rotation
of the identifier ring by δ·s, and, thus, s is called rotation unit, whereas δ is also re-
ferred as the number of rotations.

Example 2.3. Fig 2 illustrates a HotRoD network with δ=2, where ring 1 is the net-
work of fig 1. We assume that peers 4912 and 7640 are “hot”, and, thus, have created
replicas of their tuples in the peers 14720, and 0. Let s=8191 (i.e. half the identifier
space). The partitions of the attribute domain that these peers are responsible to store
in the ring 2 (i.e. the first replicas) are shown in the figure.

Fig 2. HotRoD for δ=2. (a) The hot peers 4912, 7640 create replicas of their tuples at peers
14720, 0 of ring 2. (b) The range query [1000, 2000] initiated at peer 11448 is sent to peer
mrhf(1000, 2)=14720 at ring 2, then to 0, and it jumps to ring 1, to complete

mrhf() leverages the existence of a maximum of ρmax(A) replicas per value v, thus
being able to choose one out of ρmax(A) possible positions for v in the system. That
way it fights back the effects of load imbalances caused by hash() (which are ex-
plained in [22]). Note that randomly selecting replicas, using random[], leads to a uni-
form load distribution among replica holders. The result can be thought of as super-
imposing multiple rotated identical rings (as far as data is concerned) on each other,
and projecting them to the original unit ring. Thus, “hot” (overloaded) and “cold”
(underloaded) areas of the rings are combined through rotation, to give a uniform
overall “temperature” across all peers.

2.4 Replicating Arcs of Peers: Implementation Issues

We assume that each peer keeps ρmax(A), the per-attribute maximum number of in-
stances of a value of attribute A (and, thus, it can calculate stride s)3. In addition,
each peer can calculate the highest value of DA that it is responsible to store at a spe-
cific ring; we call it higherValue (this is achieved through the reverse function of
mrhf(), mrhf ()).-1

We also define ρ(v(A)) to be the replication factor for a value v(A), i.e. the (current)
number of its replicas, which should be equal to, or less than ρmax(A). Each peer must
have “write” access to this measure during replication (see PutRho() below), or “read”
access during query processing and data placement (see GetRho() below).

When a peer, p, is detected “hot”, it starts replication. Instead of replicating a sin-
gle peer, we decide to replicate arcs of peers, and specifically the arc consisting of p’s
successive neighbors that correspond to the range [avgLow, avgHigh]. In that way,
costly jumps between rings during range query processing are reduced; jumps be-
tween rings happen when different replication factors exist between consecutive val-
ues (i.e. when two non successive peers store their replicas in one peer at a higher
ring, whereas the peers that lie between them in the lower ring do not have replicas at
the higher ring).

In terms of simplicity, in the algorithms presented below we assume that replica-
tion is only initiated at the original ring, i.e. ring 1.

Each peer periodically (or upon a request of another peer) runs the algorithm
REPLICATE_ARC() which detects whether it is hot, or not (if α > amax); if it is hot, it
creates replicas of its tuples, and sends replication messages, CREATE_REPLICA(),
to both its successor (succ()) and predecessor (pred()). The number of replicas that
creates is equal to ⎡ ⎤ }}],[)()),(({,(max max avgHighavgLowAvAvrho ∈= ραα (if
rho≤ρmax(A)). Upon receiving a replication message, a peer creates rho replicas of
those tuples that have less than rho replicas, and sends replication messages to its suc-
cessor (or predecessor, depending on which peer sent the message). Besides, each
peer sets the replication factor ρ(v(A)) equal to rho, for all values v(A) ∈ [avgLow,
avgHigh] that had less than rho replicas. The message is sent to all peers that are re-
sponsible to store all values v ∈ [avgLow, avgHigh], which form an arc on the identi-
fier ring.

 The pseudocode follows (it uses the inverse function of MRHF, mrhf--1).

1. REPLICATE_ARC()
2. /* p is the current peer */
3. BEGIN
4. rho = ceiling(a / amax);
5. if (rho <= 1) exit;
6. for each v(A) , v(A) >= avgLow and v(A) <= avgHigh {

3 We assume integer domains, whereas real domains can be handled in a similar way. Attribute
domains other than integer/real valued can be handled by converting them to an appropriate
integer/real form. Note that this conversion is also central to the design of range queries; e.g.
range queries for string-valued attributes ought to define some sort of binary comparison op-
erator between values of the attribute.

7. tmp = GetRho(v(A));
8. rho = max(rho, tmp); }
9. if (rho > ρmax(A)) rho = ρmax(A);
10. for each tuple t in p, and v(A) ∈ t
11. copy t to succ(mrhf(v(A), k)), for all k:ρ(v(A)) ≤ k ≤ rho;
12. for each value v(A) in (avgLow, avgHigh) {
13. if (ρ(v(A)) < rho) putRho(v(A), rho); }
14. send create_replica(p,(avgLow, avgHigh), rho, 1) to succ(p);
15. send create_replica(p,(avgLow, avgHigh), rho, 0) to pred(p);
16. END

17. CREATE_REPLICA(n, (low, high), rho, succ)
18. /* n is the initiator peer; succ is equal to 1/0, if the
 message is propagated through successsor/predecessor l
 inks; p is the current peer */
19. BEGIN
20. higherValue = mrhf-1(p, 1);
21. if (succ==0 and higherValue<low)
22. exit;
23. for each tuple t in p, and v(A) ∈ t
24. copy t to succ(mrhf(v(A), k)), for all k:ρ(v(A)) ≤ k ≤ rho;
25. for each value v(A) in (avgLow, avgHigh) {
26. if (ρ(v(A)) < rho) putRho(v(A), rho); }
27. if (succ==1 and higherValue<high)
28. send create_replica(n,(avgLow, avgHigh),rho,1) to succ(p);
29. else if (succ==0)
30. send create_replica(n,(avgLow, avgHigh),rho,0) to pred(p);
31. END

Functions GetRho(), PutRho() manipulate the replication factor, ρ(v(A)) of an at-
tribute value v(A) over the network; the former gets ρ(v(A)), while the latter sets
ρ(v(A)) equal to a specific number. The replication factor, ρ(v(A)), is uniformly
hashed in the underlying DHT architecture (using the secure hash function). The ini-
tial values for ρ(v(A)) is 1, for all v(A)∈DA. Since both functions use the underlying
DHT architecture, their hop-count complexity is O(logN).

Please note that we do not necessarily replicate all tuples that belong to a peer
which is replicated. We replicate only the tuples whose values have fewer replicas
than target rho (this concerns only the first and last peer of the arc). This reduces rep-
lication costs without affecting the efficiency of range query processing; we simply
assume that each peer keeps track of the ranges that stores at each ring it belongs to.

2.5 Fault-tolerance and High Availability

The existence of replicas in addition to being critical for load balancing purposes is
instrumental in providing increased data availability and fault-tolerance during query
processing. Although details are beyond the scope of this paper, HotRoD can straight-
forwardly provide fault tolerance as follows: when a peer storing a queried value does

not respond, the requesting peer simply selects another ρ-value and redirects the query
to the peer which keeps a replica of the queried values at a different ring. This contin-
ues until one available replica is retrieved.

2.6 Managing Tuple Updates

Tuple Insertion. The peer publishing the tuple stored the tuple at peer
succ(mrhf(v(A), 1)), and checks if ρ(v(A)) > 1. If true, it creates ρ(v(A))-1 replicas of
the tuple (or of its indices) and stores them to succ(mrhf(v(A), k)), for 2 ≤ k ≤ ρ(v(A)).

This operation needs O(logN) hops to retrieve ρ(v(A)) plus O(ρmax(A) · logN) hops
when ρ(v(A)) > 1, in the worst case (since ρ(v(A)) ≤ ρmax(A)).

Tuple Deletion. A tuple deletion message is sent to peer succ(mrhf(v(A), 1)) and to
all ρ(v(A))-1 replica holders, if ρ(v(A)) > 1. In addition, peer succ(mrhf(v(A),1))
checks if there are other tuples having value v(A), and if not, it sets ρ(v(A)) equal to 1.

The cost of a tuple deletion is, in the worst case, O((ρmax(A)+2)·logN)) hops (in-
cluding a GetRho() operation to get ρ(v(A)), and a PutRho() operation, to set ρ(v(A))
equal to 1, if needed).

Tuple Update. It consists of one tuple deletion and one tuple insertion operations.

Naturally, as with all data replication strategies, the load balancing and fault tolerance
benefits come at the expense of dealing with updates. However, our experimental re-
sults (presented below) show that with a relatively small overall number of replicas
our central goals can be achieved, indicating that the relevant replication (storage and
update overheads) will be kept low.

2.7 Discussion

Optimal ρmax Values
The calculation of optimal ρmax(A) is important for the efficiency and scalability of
HotRoD. This value should be selected without assuming any kind of global knowl-
edge. Fortunately, the skewness of expected access distributions has been studied, and
it can be given beforehand; for example, the skewness parameter (i.e. theta-value) for
the Zipf distribution ([20]). Given this, and the fact that each additional replica cre-
ated is expected through HotRoD to take on an equal share of the load, our present
approach is based on selecting a value for ρmax(A) to bring the total expected hits for
the few heaviest-hit peers (e.g., 2-3%) close to the expected average hits all peers
would observe, if the access distribution was completely uniform.

Data Hotspots at ρ-value Holders
In order to avoid creating new data hotspots at the peers responsible for storing
ρ(v(A)) of a value v(A), our approach is as follows:

• ρmax(A) instances for this metadata information (ρ-value) of each value can be
easily maintained, with each replica selected at random at query start time (re-
call that ρmax(A) is kept in each peer).

• The hottest values are values that participate in a number of range queries of
varying span. Thus, all these queries may start at several different points.

3 Range Query Processing

Consider a range query [vlow(A), vhigh(A)] on attribute A initiated at peer pinit. A brief
description of the algorithm to answer the query follows: peer pinit randomly selects a
number, r from 1 to ρ(vlow(A)), the current number of replicas of vlow(A). Then, it for-
wards the query to peer pl: succ(mrhf(vlow(A), r)). Peer pl searches for matching tuples
and forwards the query to its successor, p. Peer p repeats similarly as long as it finds
replicas of values of R at the current ring. Otherwise, p forwards the range query to a
(randomly selected) lower-level ring and repeats. Processing is finished when all val-
ues of R have been looked up. The pseudocode of the algorithm follows:

1. PROCESS_RANGE_QUERY(pinit,(vlow(A),vhigh(A)))
2. BEGIN
3. rho = GetRho(vlow(A));
4. r = random(1, rho);
5. send Forward_Range(pinit, (vlow(A), vhigh(A)), r) to
 succ(mrhf(vlow(A)), r);
6. END

7. FORWARD_RANGE(pinit, (vl(A), vh(A)), r)
8. /* p is the current peer */
9. BEGIN
10. Search p locally and send matching tuples to pinit;
11. higherValue = mrhf-1(p, r);
12. if (higherValue < vh(A)) {
13. vnext(A) = higherValue+1;
14. rho = GetRho(vnext(A));
15. if (rho >= r)
16. send Forward_Range(pinit,(vnext(A),vh(A)),r) to succ(p);
17. else {
18. r_next=random(1, rho);
19. send Forward_Range(pinit,(vnext(A), vh(A)), r_next)
 to succ(mrhf(vnext(A), r_next)); } }
20. END

higherValue of p is used to forward the query to the peer responsible for the lowest
value of DA that is higher than higherValue. Let this value be vnext(A). If there is such
a peer in ring r (i.e. this happens when ρ(vnext(A)) is equal to, or higher than r), p for-
wards the query to its successor. Otherwise, p sends the query to a peer at a lower-
level ring, selected randomly from 1 to ρ(v (A)) (using the lookup operation of the
underlying DHT)

next
. This happens when the range consists of values with different

number of replicas. The algorithm finishes when the current higherValue is equal to,
or higher than vhigh(A).

Example 3.1. Fig 2b illustrates how the range query of example 2.2 is processed in
HotRoD. First, we assume that peer 11448 forwards the query to peer 14720, i.e.
lookup(mrhf(1000, 2)). Moving through successors, the query reaches peer 0. But, the
range partition (1910, 2000] is not found at ring 2. Therefore, the query “jumps” to
ring 1, peer 10600 (i.e. lookup(mrhf(1911, 2))), where it finishes.

4 Experimental Evaluation

We present a simulation-based evaluation of HotRoD. The experiments have been
conducted on a heavily modified version of the internet-available Chord simulator,
extended to support relations, order-preserving hashing, replication, and range queries.

We compare the performance of HotRoD against:
− Plain Chord (PC), as implemented by the original Chord simulator;
− an imaginary enhanced Chord (EC), assuming that for each range the system

knows the identifiers of the peers that store all values of the range;
− OP-Chord, a locality preserving Chord-based network ([22, 15])
The results are presented in terms of:

a. efficiency of query processing, mainly measured by the number of hops per
query, assuming that for each peer, the local query processing cost is O(1) ;

b. access load balancing, measured by the cumulative access load distribution
curves and the Gini coefficient (defined below);

c. overhead costs, measured by the number of peers’ and tuples’ replicas.

4.1 Simulation Model

The experiments are conducted in a system with N =1,000 peers, and a maximum of
10 (i.e. logN) finger table entries and 10 immediate successors for each peer. We use
a single-index attribute relation over a domain of 10,000 integers, i.e. DA=[0, 10,000).

We report on 5,000 tuples and a series of 20,000 range queries generated as fol-
lows: the mid point of a range is selected using a Zipf distribution ([20]) over DA with
a skew parameter θ taking values 0.5, 0.8, and 1. The lower and upper bounds of a
range are randomly computed using a maximum range span equal to 2·r, for a given
parameter r (i.e. r is equal to the average range span). In our experiments, r ranges
from 1 to 400, and, thus, yielding an average selectivity from 0.01% to 4% of the do-
main size DA.

Finally, we present experimental results of the HotRoD simulator with different
maximum numbers of instances, ρmax(A), ranging from 2, i.e. one replicated Chord
ring, to 150 (in this section, ρmax(A) is denoted as ρmax), to illustrate the trade-off load
imbalances with replication overhead costs. We should mention here that the reported
load imbalances are collected when the system has entered a steady state with respect
to the peer population and the number of replicas.

4.2 Efficiency of Query Processing

Chord and OP-Chord resolve equality queries (i.e. r =1) in ½ ·logN hops, on aver-
age. In HotRoD, this becomes logN since two Chord lookup operations are needed:
one for the GetRho() operation and one for the lookup operation on the selected ring.

Let a range query RQ of span r (i.e. there are r integer values in the query). We as-
sume that the requested index tuples are stored on n peers under Chord and enhanced
Chord, and on n' peers under OP-Chord. Thus, the average complexity of the range
query processing is estimated as follows:

• PC: r equality queries are needed to gather all possible results (one for each
one of the values belonging to RQ) for an overall hop count of O(r·logN).

• EC: n equality queries must be executed to gather all possible results for an
overall hop count of O(n·logN).

• OP-Chord and HotRoD: one lookup operation is needed to reach the peer
holding the lower value of RQ (logN hops), and n'-1 forward operations to the
successors (n'-1 hops), for a final overall hop count of O(logN + n'); note that
the constant factor hidden by the big-O notation is higher in HotRoD, due to
the GetRho() operations needed to be executed first of all.

The experimental results in terms of hop counts per range query are shown in Ta-
ble 1. Comparing HotRoD against OP-Chord, we conclude, as expected, that HotRoD
is more expensive; the extra hops incurred are due to the GetRho() operations, which
facilitate load balancing. We should note, however, that HotRoD compares very well
even against EC, ensuring hop-count savings from 4% to 78% for different r’s. As r
increases, the hop-count benefits of OP-Chord/HotRoD versus PC/EC increase.

Table 1. Average number of hops per query for different range spans r (θ = 0.8)

 r 50 100 200 400

PC 123 246 489 898

EC 25 48 87 190

OP–Chord 18 20 25 33

HotRoD (ρmax=30) 24 27 31 41

4.3 Access Load Balancing

We compare load balance characteristics between OP-Chord and HotRoD. We use the
access count, α, which, as defined above, measures the number of successful accesses
per peer (i.e. hits). We illustrate results using the Lorenz curves and the Gini Coeffi-
cient, borrowed from economics and ecology because of their distinguished ability to
capture the required information naturally, compactly, and adequately.

 Lorenz curves ([6]) are functions of the cumulative proportion of ordered indi-
viduals mapped onto the corresponding cumulative proportion of their size. In our
context, the ordered individuals are the peers ordered by the number of their hits. If all
peers have the same load, the curve is a straight diagonal line, called the line of equal-
ity, or uniformity in our context. If there is any imbalance, then the Lorenz curve falls
below the line of uniformity. Given n ordered peers with li being the load of peer i,

and l1 ≤ l2 ≤ … ≤ ln, the Lorenz curve is expressed as the polygon joining the points

(h/n, Lh/Ln), where h=0, 1, 2, …, n, L0= 0, and . ∑
=

=
h

i
ih lL

1

The total amount of load imbalance can be summarized by the Gini coefficient (G)
([6]), which is defined as the relative mean difference, i.e. the mean of the difference
between every possible pair of peers, divided by their mean load. It is calculated by:

,)12(2

1

μ⋅⋅−−⋅=∑
=

nlniG
n

i
i

 (3)

where μ is the mean load. G also expresses the ratio between the area enclosed by the
line of uniformity and the Lorenz curve, and the total triangular area under the line of
uniformity. G ranges from a minimum value of 0, when all peers have equal load, to a
maximum of 1, when every individual, except one has a load of zero. Therefore, as G
comes closer to 0, load imbalances are reduced, whereas, as G comes closer to 1, load
imbalances are increased.

We should mention here that G=0 if and only if all peers in the network have equal
load. However, this is extremely rare in a P2P network. Therefore, we measured G in
different setups with different degrees of fairness in load distributions. We noticed
that G was very close to 0.5 in all setups with quite a fair load distribution. In general,
in fair load distributions G’s values ranged from 0.5 to 0.65, whereas in very unfair
load distribution, from 0.85 to 0.99. Therefore, our target is to achieve values of G
close to 0.5. Besides, G is used as a summary metric to compare load imbalances be-
tween different architectures (i.e. PC, EC, etc) and different setups.

We ran experiments with different range spans, r’s, and Zipf parameters, θ’s. In
figure 3, hits distribution is illustrated for r=200 and θ=0.8 (here, HotRoD ran with
ρmax = 400, and ρmax=15). The Gini coefficient (G) in PC and EC is 0.784, in OP-
Chord 0.87, and in HotRoD 0.53. G in HotRoD is significantly reduced comparing to
the other architectures, with a decrease of 32% comparing with PC/EC and 39% com-
paring to OP-Chord. The results of experiments with lower range spans are similar.
As example, for r=50 and θ=0.8, G in PC and EC is 0.81, in OP-Chord 0.95, whereas
in HotRoD (ρmax=100, ρmax=50) G is 0.64, i.e. decreased by 20% and 32%, respec-
tively (see figure 4). Both examples show clearly how HotRoD achieves a great im-
provement in access load balancing. All experiments have shown similar results.

Furthermore, the resulting Lorenz curves (figures 3 and 4) show that the top 3%
heaviest-hit peers receive about an order of magnitude fewer hits in HotRoD than in
OP-Chord. At the same time, the mostly-hit of the remaining (underutilized) 97% of
the peers receive a hit count that is very slightly above the load they would receive if
the load was uniformly balanced. The load balancing benefits and key philosophy of
HotRoD are evident in Lorenz curves. HotRoD attempts to off-load the mostly-hit
peers by involving the remaining least-hit peers. Thus, intuitively, we should expect
to see a considerable off-loading for the heaviest-hit peers, while at the same time, we
should expect to see an increase in the load of the least-hit peers.

4 Although Chord uniformly distributes values among peers (using consistent hashing), it does
not succeed in fairly distributing access load in case of skewed query distributions.

Lorenz Curves for Access Load Distribution
(r = 200, θ = 0.8)

 97%; 90%

 97%; 40%

 97%; 73%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

cumulative percentage of peers

cu
m

ul
at

iv
e

pe
rc

en
ta

ge
 o

f h
its

HotRoD OP-Chord Chord Line of uniformity

HotRoD

OP-Chord

Line of uniformity

Chord

97%

Fig 3. In Chord, OP-Chord, HotRoD, the top 3% heaviest peers receive almost 27%, 60%, 10%
of total hits

We should mention that, in our experiments, the upper access count threshold,
ρmax, was set equal to the average (value) access load expected to be received by each
peer in a uniform access load distribution. The latter is equal to 2·r, as we briefly
prove below.
Proof sketch. We assume that Q=20,000 queries request r values each, on average,
and each peer is responsible for an average of |DA|/N=10 values. Therefore, we have
Q·r·N/|DA| hits uniformly distributed among N peers, and, thus an average of Q·r/|DA|
hits per peer, which is equal to 2·r, since |DA| = 10,000. �

In our experiments, ρmax was kept low (i.e. less than 50), which introduces a total
of about 100% additional replicas. This is definitely realistic, given typical sharing
network applications ([21], [24]); however, we stress that good load balancing can be
achieved using even fewer replicas– see below.

4.4 Overhead Costs – Tuning Replication

An important issue is the degree of replication required to achieve a good load
balancing performance. Therefore, we study the HotRoD architecture when tuning the
parameter ρmax, the maximum allowed number of rings in HotRoD.

We ran experiments with different range spans, r’s, and different access skew pa-
rameters, θ’s. All experiments show that, as ρmax increases, the numbers of peers’ and
tuples’ replicas are increased till they reach an upper bound each (i.e. for r=50, θ=0.8,
the upper bounds are 1449 for peers and 8102 for tuples).

 Access Load Distribution for different ρmax's
(r=50, θ=0.8)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
cumulative percentage of peers

cu
m

ul
at

iv
e

pe
rc

en
ta

ge
 o

f h
its

HotRoD (117) HotRoD (50) HotRoD (5)
HotRoD (2) OP-Chord Line of uniformity

ρ max =2

OP-Chord

Line of uniformity

ρ max =50ρmax =117 ρ max =5

Fig 4. As ρmax increases, the Lorenz curves that illustrate the access load distribution come
closer to the line of uniformity, which means that load imbalances and, thus, G are decreased

Figure 5 illustrates how different ρmax’s affect the number of peers’ and tuples’ rep-
licas for r=50 and θ=0.8. Specifically: for ρmax=2, 11% of peers and 12% of tuples
have been replicated; for ρmax=5, 25% and 30% respectively; for ρmax=10, 38% and
47%; for ρmax=50, 85% and 103%. For high ρmax’s, peers and replicas are heavily rep-
licated, till ρmax reaches 117 (as it was experimentally proven), beyond which there is
no replication and, thus, there are no further benefits in load balancing.

Similar conclusions are drawn from experiments with different r’s and θ’s. In gen-
eral, it holds that the lower the range span, r, or the higher the skew parameter, θ, the
higher the upper limit of ρmax. For example, for r=50 and θ=0.5, the upper limit of ρmax
is 90; for r=200, θ=0.8, it is 59; for r=200, θ=0.5, it is 23.

Figures 4 and 5 illustrate the role that ρmax plays in the access load distribution. As
ρmax increases, the load imbalances are decreased, and G is decreased. Specifically, G
is decreased as follows: for ρmax = 2, G=0.92; for ρmax = 5, G=0.88; for ρmax = 50,
G=0.64; for ρmax ≥ 117, G=0.50. On the other hand, the degree of replication (RD) for
the number of tuple replicas is increased as follows: for ρmax = 2, RD = 12%; for
ρmax = 5, RD =30%; for ρmax = 50, RD =103%; for ρmax ≥ 117, RD =162%.

It is obvious that high values of ρmax provide diminished returns in load balancing,
although the degree of replication is very high. This means that we can achieve a very
good access load balancing with low values of ρmax, and thus, low overhead costs.

To recap: In terms of average hop-counts per range query, HotRoD ensures signifi-
cant savings, which increase as the range span r, or the access skew parameter θ in-
creases. At the same time, with respect to load balancing, HotRoD achieves its goal of
involving the lightest hit peers to offer significant help to the heaviest hit peers, while
the total replication overhead is no more than 100%.

Number of Replicas per ρmax
(r=50, θ=0.8, αmax =100)

(117, 145%)

117

(117, 162%)

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 25 50 75 100 125 150 175

ρmax

nu
m

be
r o

f r
ep

lic
as

 (%
)

node replicas
tuple replicas

5 10

Fig 5. Tuning replication degree by ρmax

5 Related Work

There are quite a few solutions supporting range queries, either relying on an underly-
ing DHT, or not. Some indicative examples of such DHTs solutions follow. Andrze-
jak and Xu ([2]) and Sahin, et al. ([19]) extended CAN ([17]) to allow for range query
processing; however, performance is expected to be inferior compared to the other
DHT-based solutions, since CAN lookups require O(2·N1/2) hops, for a two-
dimensional identifier space. Gupta et. al ([]) propose an architecture based on
Chord, and a hashing method based on a min-wise independent permutation hash
function, but they provide only approximate answers to range queries.

9

The system
proposed in Ntarmos et al. ([14]) optimizes range queries by identifying and exploit-
ing efficiently the powerful peers which have been found to exist in several environ-
ments. Ramabhadran et al ([16]) superimpose a trie (prefix hash tree – PHT) onto a
DHT. Although their structure is generic and widely applicable, range queries are
highly inefficient, since locality is not preserved. Triantafillou and Pitoura ([]) out-
lined a Chord-based framework for complex query processing,

22
 supporting range que-

ries. This was the substrate architecture of HotRoD, which we extended here to ad-
dress replication-based load balancing with efficient range query processing.
Although capable to support range queries, none of the above support load balancing.

Among the non-DHT solutions, the majority of them (such as Skip Graphs ([4]),
SkipNet ([10]), etc) do not support both range queries and load balance. In a recent
work ([3]), Aspnes et al provide a mechanism for providing load balancing using skip
graphs. With the use of a global threshold to distinguish heavy from light nodes, they
let the light nodes continue to receive elements whereas the heavy ones attempt to
shed elements. However, many issues have been left unanswered, such as fault toler-
ance. Ganesan et al ([7]) propose storage load balance algorithms combined with dis-
tributed routing structures which can support range queries. Their solution may sup-
port load balance in skewed data distributions, but it does not ensure balance in
skewed query distributions. BATON ([11]) is a balanced binary tree overlay network

which can support range queries, and query load balancing by data migration between
two, not necessarily adjacent, nodes. In their Mercury system ([5]), Bharambe et al
support multi-attribute range queries and explicit load balancing, using random sam-
pling; nodes are grouped into routing hubs, each of which is responsible for various
attributes.

In all the above approaches, load balancing is based on transferring load from peer
to peer. We expect that this will prove inadequate in highly-skewed access distribu-
tions where some values may be so popular that single-handedly make the peer that
stores them heavy. Simply transferring such hot values from peer to peer only trans-
fers the problem. Related research in web proxies has testified to the need of replica-
tion ([23]). Replication can also offer a number of important advantages, such as fault
tolerance and high availability ([13]) albeit at the storage and update costs. Besides,
we have experimentally shown that storage and update overheads can be kept low,
since we can achieve our major goals with a relatively small number of replicas.

Finally, an approach using replication-based load balancing, as ours, is [8], where a
replication-based load balancing algorithm over Chord is provided; however, it ap-
pears that knowledge about the existence of replicas is slowly propagated, reducing
the impact of replication. Besides, it only deals with exact-match queries, avoiding the
most difficult problem of balancing data access loads in the presence of range queries.

6 Conclusions

This paper presents an attempt at concurrently attacking two key problems in struc-
tured P2P data networks: (a) efficient range query processing, and (b) data-access
load balancing. The key observation is that replication-based load balancing tech-
niques tend to obstruct techniques for efficiently processing range queries. Thus, solv-
ing these problems concurrently is an important goal and a formidable task. Some re-
searchers claim that existing DHTs are ill-suited to range queries since their property
of uniform distribution is based on randomized hashing, which does not comply with
range partitioning (i.e. [5]). However, HotRoD succeeded in combining the good
properties of DHTs (simplicity, robustness, efficiency, and storage load balancing)
with range partitioning using a novel hash function which is both locality-preserving
and randomized (in the sense that queries are processed in randomly selected – repli-
cated - partitions of the identifier space).

We have taken an encouraging step towards solving the two key aforementioned
problems through the HotRoD architecture. HotRoD reconciles and trades-off hop-
count efficiency gains for improved data-access load distribution among the peers.
Compared to base architectures our detailed experimentation clearly shows that Hot-
RoD achieves very good hop-count efficiency coupled with a significant improve-
ment in the overall access load distribution among peers, with small replication over-
heads. Besides, in parallel with the evaluation of HotRoD, we have introduced novel
load balancing metrics (i.e. the Lorenz curves and the Gini coefficient) into the area
of distributed and p2p computing, a descriptive and effective way to measure and
evaluate fairness of any load distribution. Finally, HotRoD can be superimposed over
any underlying DHT infrastructure, ensuring wide applicability/impact.

7 References

1. Aberer, K.: P-Grid: A self-organizing access structure for P2P information systems. In Proc
of CoopIS (2001)

2. Andrzejak, A., and Xu, Z.: Scalable, efficient range queries for Grid information services.
In Proc. of P2P (2002)

3. Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable
data structures. In Proc. of PODC (2004)

4. Aspnes, J., Shah, G: Skip graphs. In ACM-SIAM Symposium on Discrete Algorithms
(2003)

5. Bharambe, A., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-attribute range
queries. In Proc. of SIGCOMM04 (2004)

6. Damgaard, C., and Weiner, J.: Describing inequality in plant size or fecundity. Ecology 81
(2000) pp. 1139-1142

7. Ganesan, P., Bawa, M., and Garcia-Molina, H.: Online balancing of range-partitioned data
with applications to peer-to-peer systems. In Proc. of VLDB (2004)

8. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., and Keleher, P.: Adaptive replication in
peer-to-peer systems. In Proc. of ICDCS (2004)

9. Gupta, A., Agrawal, D., and Abbadi, A.E.: Approximate range selection queries in peer-to-
peer systems. In Proc. of CIDR (2003)

10. Harvey, N., et al.: SkipNet: A scalable overlay network with practical locality preserving
properties. In Proc.of 4th USENIX Symp. on Internet Technologies and Systems (2003)

11. Jagadish, H.V., Ooi, B.C., Vu, Q. H..: BATON: A balanced tree structure for peer-to-peer
networks. In Proc. of VLDB (2005)

12. Karger, D., et al.: Consistent hashing and random trees: distributed caching protocols for
relieving hot spots on the World Wide Web. In Proc. ACM STOC (1997)

13. Mondal, A., Goda, K., Kitsuregawa, M.: Effective Load-Balancing via Migration and Rep-
lication in Spatial Grids. In Proc of DEXA 2003 (2003)

14. Ntarmos, N., Pitoura, T., and Triantafillou, P.: Range query optimization leveraging peer
heterogeneity in DHT data networks. In Proc. of DBISP2P (2005)

15. Pitoura, T., Ntarmos, N., and Triantafillou, P.: HotRoD: Load Balancing and Efficient
Range Query Processing in Peer-to-Peer Data Networks. Technical Report No.
T.R.2004/12/05, RACTI (2004)

16. Ramabhadran, S., Ratnasamy, S., Hellerstein, J., Shenker, S.: Brief Announcement: Prefix
Hash Tree. In Proc. of PODC (2004)

17. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S.: A scalable content-
addressable network. In Proc. ACM SIGCOMM (2001)

18. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In Proc. of Middleware (2001)

19. Sahin, O.D., Gupta, A., Agrawal, D., and Abbadi, A.E.: A peer-to-peer framework for
caching range queries. In Proc. of ICDE (2004)

20. Saroiu, S., Gummadi, P., and Gribble, S.: A measurement study of peer-to-peer file sharing
systems. In Proc. of MMCN (2002)

21. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., and Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applications. In Proc. of SIGCOMM (2001)

22. Triantafillou, P., and Pitoura, T.: Towards a unifying framework for complex query proc-
essing over structured peer-to-peer data networks. In Proc. of DBISP2P (2003)

23. Wu, K., and Yu, P.S.: Replication for load balancing and hot-spot relief on proxy web
caches with hash routing. Distributed and Parallel Databases, 13(2) (2003) pp.203-220.

24. Zhao, Y.B., Kubiatowitcz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report UCB/CSD-01-1141 (2001)

