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Abstract

Counting in general, and estimating the cardinality of
(multi-) sets in particular, is highly desirable for a large va-
riety of applications, representing a foundational block for
the efficient deployment and access of emerging internet-
scale information systems. Examples of such applications
range from optimizing query access plans in internet-scale
databases, to evaluating the significance (rank/score) of
various data items in information retrieval applications.
The key constraints that any acceptable solution must sat-
isfy are: (i) efficiency: the number of nodes that need be
contacted for counting purposes must be small in order to
enjoy small latency and bandwidth requirements; (ii) scala-
bility, seemingly contradicting the efficiency goal: arbitrar-
ily large numbers of nodes nay need to add elements to a
(multi-) set, which dictates the need for a highly distributed
solution, avoiding server-based scalability, bottleneck, and
availability problems; (iii) access and storage load balanc-
ing: counting and related overhead chores should be dis-
tributed fairly to the nodes of the network; (iv) accuracy:
tunable, robust (in the presence of dynamics and failures)
and highly accurate cardinality estimation; (v) simplicity
and ease of integration: special, solution-specific indexing
structures should be avoided. In this paper, first we con-
tribute a highly-distributed, scalable, efficient, and accurate
(multi-) set cardinality estimator. Subsequently, we show
how to use our solution to build and maintain histograms,
which have been a basic building block for query optimiza-
tion for centralized databases, facilitating their porting into
the realm of internet-scale data networks.

1 Introduction

Peer-to-peer (P2P) networks came into existence as a
means of sharing files and/or CPU cycles among end-users.
Over time, they evolved from the anarchy of the early small-
world architectures to the cutting-edge structured data net-
works of today. The main advance that made this feasi-
ble was the introduction of the Distributed Hash Tables
(or DHTs)[10, 26, 31, 34]. The common denominator of

all these systems is their ability to scale to large numbers
of nodes and to manage an even larger amount of data
objects, while providing probabilistic (under node failures
and skewed data/access distributions) guarantees for the at-
tained degree of efficiency, fault tolerance, and availability.

As a natural evolution of the widespread adoption of P2P
technologies by end-users and the enterprise alike, and the
much desirable properties of structured P2P overlays, the
academic community has started considering the possibil-
ity of using such networks as the substrate for widely dis-
tributed database and data integration systems[15, 16, 18,
19, 23, 28, 30]. Thus, peer-to-peer networks have departed
from their file/CPU-sharing origins and are rapidly evolving
into a powerful infrastructure, capable of supporting data
management systems of huge scale.

Motivation

In this new era of internet-scale peer-to-peer data net-
works, the need for a distributed counting mechanism arises
in many occasions. More often than not, the quantity
to be counted contains duplicates and the candidate al-
gorithm must provide duplicate insensitivity: file-sharing
peer-to-peer systems often need to know the total num-
ber of (unique) documents shared by their users; widely
distributed peer-to-peer search engines need a method to
evaluate the significance of various keywords, expressed
as the ratio of the number of unique indexed documents
containing each keyword to the total number of unique in-
dexed documents; conversely, internet-scale information re-
trieval systems need a method to deduce the rank/score
of various data items; sensor networks need methods to
compute aggregates in a duplicate-insensitive manner since
multiple sensors may be sensing and reporting the same
event; internet-scale database systems can harness such
distributed counting mechanisms to build histograms over
stored/shared data, en route to selectivity estimation and op-
timization algorithms for query access plans; etc.

Especially for the latter case, traditionally query optimiz-
ers heavily rely on histograms over stored data, in order to
estimate the size of intermediate results and the cost of can-
didate access plans, en route to choosing the optimal query
evaluation strategy[6, 20, 33]. The issue of minimizing
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the size of the intermediate result-sets is further aggravated
when moving to the peer-to-peer world.

Furthermore, with wide distribution comes the need for
completely decentralized methods of performing tradition-
ally centralized operations, and the lack of knowledge with
regard to overall/global system properties. As a conse-
quence, computing such metrics (e.g. number of documents
in the network, sizes of database relations, distributions of
data values) in peer-to-peer systems, in a scalable, efficient,
and accurate manner, has long been neglected. The key con-
straints that any acceptable solution must satisfy are:

1. Efficiency: the number of nodes that need be contacted
for counting purposes must be small in order to enjoy
small latency and bandwidth requirements;

2. Scalability and availability, seemingly contradicting the
efficiency goal: arbitrarily large numbers of nodes nay
need to add elements to a (multi-) set, which dictates the
need for a highly distributed solution, avoiding server-
based scalability, bottleneck, and availability problems;

3. Access and storage load balancing: counting and related
overheads should be distributed fairly across all nodes;

4. Accuracy: tunable, robust (in the presence of dynamics
and failures) and highly accurate cardinality estimation;

5. Simplicity and ease of integration: special, solution-
specific indexing structures should be avoided; and

6. Duplicate (in)sensitivity: the proposed solution must be
able to count both the total number of items as well as the
number of unique items in multisets, as outlined earlier.

Related Work

Distributed counting/aggregation solutions proposed by the
peer-to-peer research corpus so far, can be categorized in
one of the following groups:

• One-node-per-counter protocols.
• Gossip-based protocols.
• Broadcast/convergecast-type protocols.
• Sampling-based protocols.

The first type of solutions is also the first that comes to
mind when using a structured overlay (DHT): select a node
in the overlay (e.g. by using the hash function(s) of the DHT
overlay) and use it to maintain the counter value (e.g. see
the distributed counting mechanism outlined in [12]). Hash-
partitioned counters, where the counting space is partitioned
into disjoint intervals, with each such interval mapped to a
(set of) node(s) in the overlay, also fall in this category.

Solutions of this type suffer from many shortcomings,
more notable of which is their very poor scalability; having
one node per counter means that this node will be contacted
on every update of, and on every query for, the current value
of the counter, resembling more of a centralized system,
violating constraint (2). Moreover, each of these counting
nodes withstands a high access and storage load, violating
constraint (3), while one can argue that such highly-loaded
nodes will exhibit high response times, also violating con-
straint (1). Using a fixed small number of nodes for each
counter does not solve the problem. On the other hand, us-
ing a large number of nodes for each counter merely miti-

gates the problem of scalability to the cost of gathering the
value of such a counter, while also violating constraint (1).

The second type of solutions [2, 21, 22, 27] usually pro-
vide weak probabilistic semantics of “eventual consistency”
for their outcome; gossip-based protocols are based on an it-
erative procedure, according to which every node exchanges
information with a (set of) node(s) on every iteration. Even-
tual consistency means that, in the presence of failures and
dynamicity in the P2P overlay, the algorithm will eventually
converge to a stable state after the overlay has itself stabi-
lized. Although the bandwidth requirements of these ap-
proaches are low when amortized over all nodes, the over-
all bandwidth consumption and hop-count are usually very
high. The multi-round property of these solutions violates
constraint (1), while their semantics violate constraint (4).

The third type of solutions [3, 4, 8, 32, 36] is based on a
two-round procedure: (i) a broadcast phase, during which
the querying node broadcasts a query through the network,
creating a (virtual) tree of nodes as the query propagates
in the overlay; and (ii) a convergecast phase, during which
each node sends its local part of the answer, along with an-
swers received from nodes deeper down the tree, to its “par-
ent” node. Solutions that are based on pre-built tree struc-
tures also belong in this group.

Astrolabe[32] was among the first works to talk of ag-
gregation in the peer-to-peer landscape; the authors pro-
posed the creation and maintenance of a hierarchical, tree-
like overlay, used to propagate complex queries and their
results through the peer-to-peer overlay. A similar work
has been proposed in [36]. [3] propose building a (set of)
multicast overlay tree(s) to propagate queries and results
back and forth, while using flood-like methods to send mes-
sages around the network. Although these structures have
nice properties and are capable of computing aggregates in
a wide scale, they are not fit for the creation and mainte-
nance of histograms and there seems to be no efficient/easy
way in which their functionality could be extended to such
tasks as selectivity estimation and histogram construction.
One could argue that such solutions are a sort of “directed
gossip”, since the core functionality is very similar to that
of gossip-based algorithms, with the exception that during
phase (ii) nodes only exchange information with their par-
ent and children nodes in the (virtual) tree. As of this, these
solutions violate constraint (1), while most of them (with
the exception of [4]) also violate constraints (3) and (4).

The core idea of the last type of solutions [5, 25] is to
estimate the value of the counter in question, by selectively
querying (sampling) a set of nodes in the network. [5] at-
tempt to compute approximate histograms of system statis-
tics by using random sampling of nodes in the network. [25]
estimate the number of nodes in the overlay by also using
a random sampling algorithm. Sampling-based techniques
are known to suffer from accuracy issues[7], thus violat-
ing constraint (4). On the other hand, if the sample is big
enough[7] to guarantee a certain level of confidence then
these solutions violate constraint (1). Last but not least,
sampling-based techniques are usually duplicate-sensitive,
thus violating constraint (6).



As a matter of fact, the duplicate insensitivity con-
straint seems like the most difficult to abide to. Hash
sketches[11, 12], to be presented shortly, provide a dis-
tributable, duplicate-insensitive method of estimating the
cardinality of (multi-)sets. All known works that man-
age to provide duplicate-insensitive counting[3, 4, 8] use
hash sketches. However, they all fall into the broad-
cast/convergecast type of counting algorithms, thus having
the disadvantages mentioned earlier.

Contributions

With this work we propose Distributed Hash Sketches (or
DHS); a novel, fully decentralized mechanism, capable of
providing estimates on the cardinality of multi-sets of ob-
jects in a peer-to-peer system. DHS is, to our knowledge,
the first truly distributed version of hash sketches – a proba-
bilistic counting mechanism, as proposed by either Flajolet
and Martin[12] or more recently by Durand and Flajolet[11]
– along with the accompanying algorithms, and protocols.
Moreover, it is the first distributed counting mechanism sat-
isfying all six constraints presented earlier.

Designing and implementing hash sketches over DHTs
in an efficient and scalable way, while maintaining the, im-
plicit in the peer-to-peer world, invariant of completely de-
centralized operation, is a formidable task. The goals we
wish to pursue include: (i) balanced access load, (ii) highly
efficient and scalable operation, independent of the num-
ber of items and logarithmic in the number of nodes in the
overlay, (iii) derivation of bounds on the error added by the
distributed operation and examination of its algorithmic im-
plications, (iv) alternative ways to implement hash sketches
in a distributed manner, (v) implementation and evaluation
of both [12] and [11] within our framework, and (vi) im-
plementation and evaluation of DHS with respect to its es-
timation error and overhead and with respect to utilizing
DHS-based histograms for query optimization.

The proposed design: (i) is DHT-agnostic, in the sense
that it can be deployed over any peer-to-peer overlay con-
forming to the DHT abstraction, (ii) imposes a totally bal-
anced distribution of access load on the DHT nodes, (iii)
provides probabilistic guarantees regarding the correctness
and accuracy of the produced estimates, (iv) allows for a
trade-off between accuracy and cost of maintenance, and (v)
incurs low bandwidth, storage, and processing overheads,
when used for counting the cardinality of widely distributed
item (multi-)sets. We implemented and evaluated DHS, us-
ing both PCSA[12] and super-LogLog[11] estimators. Fi-
nally, we show how using DHS as infrastructure, we can
build and maintain efficient histogram-based selectivity es-
timators for widely distributed data.

2 Background

2.1 Distributed Hash Tables

Distributed Hash Tables are a family of structured peer-
to-peer network overlays exposing a hash-table-like inter-
face. The main advantage of DHTs over unstructured P2P

networks, lies in the probabilistic (in the presence of node
failures and network dynamics) performance guarantees of-
fered by the former. Prominent examples of DHTs include
Chord[34], CAN[31], Kademlia[26], Pastry[10], etc.

DHTs offer two basic primitives: insert(key, value) and
lookup(key). Nodes are assigned unique identifiers and ar-
ranged according to a predefined geometry and distance
function[14]. This results in a partitioning of the node-ID
space among nodes, so that each node is responsible for a
well-defined set of identifiers. Each item is also assigned
a unique identifier from the same ID space, and is stored at
the node responsible for the set containing its ID. Each node
in anN -node DHT maintains direct IP links (aka fingers) to
O(logM)1 other nodes in appropriate positions in the over-
lay (M is the maximum allowable number of nodes/items
in the DHT), so that routing between any two nodes takes
O(logN) hops in the worst-case.

DHTs are highly efficient for point queries; they are
designed and optimized for locating single items corre-
sponding to a predefined key. For DHTs to accommodate
RDBMS-class applications, support must be added for more
rich and complex types of queries. There have been several
proposals in the direction of supporting RDBMS function-
ality over P2P infrastructures in the last few years[1, 15,
18, 30, 32, 35, 36]. The main focus of these systems is
on simple select-project-join (SPJ) or single-attribute range
queries, mainly due to performance limitations; without a
distributed query optimization mechanism, the efficiency
of multi-attribute and multi-join queries deteriorates rapidly
with the number of attributes/joined relations.

2.2 Hash Sketches

Hash sketches were first proposed by Flajolet and
Martin[12] (coined Probabilistic Counting with Stochastic
Averaging or PCSA), as a means of estimating the cardinal-
ity of a multiset D of data in a database (i.e. the number
of distinct items in the multiset). The estimate obtained is
(virtually) unbiased, while the authors also provide upper
bounds on its standard deviation. The only assumption un-
derlying hash sketches is the existence of a pseudo-uniform
hash function h() : D → [0, 1, . . . , 2L) – an assumption
also present in most (if not all) P2P-related research. Du-
rand and Flajolet presented a similar algorithm[11] (super-
LogLog counting) which reduced the space complexity and
relaxed the assumptions on the statistical properties of the
hash function of [12]2. Hash sketches have been used in
many application domains where counting distinct elements
in multi-sets is of some importance, such as approximate
query answering in very large databases[24], data mining
on the internet graph[29], and stream processing[9, 13].

2.2.1 Super-LogLog counting

Let ρ(y) : [0, 2L) → [0, L) be the position of the least
significant (leftmost) 1-bit in the binary representation of y;

1All log(·) notation refers to base-2 logarithms.
2The analysis leading to the equations used in this section is well be-

yond the scope of this paper. Interested readers are referred to [12, 11].



that is, ρ(y) = mink≥0 bit(y, k) 6= 0, y > 0, and ρ(0) =
L. bit(y, k) denotes the kth bit in the binary representation
of y (bit-position 0 corresponds to the least significant bit).

In order to estimate the number n of distinct elements in a
multisetD we apply ρ(h(d)) to all d ∈ D and record the re-
sults in a bitmap vector B[0 . . . L−1]. Since h() distributes
values uniformly over [0, 2L), it follows that

P (ρ(h(d)) = k) = 2−k−1 (1)

Thus, when counting elements in an n-item multiset, B[0]
will be set to 1 approximately n

2 times, B[1] approximately
n
4 times, etc. This fact is rather intuitive: imagine all n
possible L-bit numbers; the least significant bit (bit 0) will
be 1 for half of them (odd numbers); of the remaining n

2
numbers, half will have bit 1 set, or n

4 overall, and so on.
Then, the quantity R(D) = maxd∈Dρ(d) provides an

estimation of the value of logn, with an additive bias of
1.33 and a standard deviation of 1.87. Thus, 2R estimates
“logarithmically” nwithin 1.87 binary orders of magnitude.
However, the expectation of 2R is infinite and, thus cannot
be used to estimate n. To this extent, [11] propose the fol-
lowing technique (similar to the stochastic averaging tech-
nique in [12]): (i) use a set of m = 2c different B〈i〉[·] vec-
tors (also called buckets), each resulting to a different R〈i〉

estimate, (ii) for each element d, select one of these using
the first c bits of h(d), and (iii) update the selected vector
and compute R〈i〉 using the remaining bits of h(d).

If M 〈i〉 is the (random) value of the parameter R for
vector i, then the arithmetic mean 1

m

∑m
i=1 M

〈i〉 is ex-
pected to approximate log n

m plus an additive bias. The
estimate of n is then computed by the formula: E(n) =

αm ·m · 2
1
m ·
Pm
i=1 M

〈i〉
, where the constant αm is computed

by ([11]): αm = (−m · 2−
1
m−1

log 2 ·
∫∞

0
e−t · t− 1

m dt)−m.
The authors further propose a truncation rule, consisting

of taking into account only the m0 = bθ0 ·mc smallest M
values. θ0 is a real number between 0 and 1, with θ0 = 0.7
producing near-optimal results. With this modification, the
estimate formula becomes:

E(n) = α̃m ·m0 · 2
1
m0
·P∗M〈i〉 , (2)

where
∑∗ indicates the truncated sum, and the modified

constant α̃m ensures that the estimate remains unbiased.
The resulting estimate has a standard deviation of 1.05√

m
,

while the hash function must have a length of at least

H0 = logm+ dlog
(nmax

m

)
+ 3e, (3)

nmax being the maximum cardinality estimated.

2.2.2 PCSA counting

The algorithm in [12] is based on the same hashing scheme
(i.e. using ρ(·)) and the same observations (i.e. eq. 1)
as [11]. The PCSA algorithm differs from the super-
LogLog algorithm in the following: (i) [12] rely on the

Symbol Quantity
b size of a data item
N number of nodes
n number of items
M maximum number of items/nodes
L length (in bits) of DHT keys (= logM)
k length of DHS bitmaps/keys (≤ L)
m number of DHS bitmaps
l number of DHS dimensions/metrics
R degree of replication of DHS data

Table 1. Notation Summary

existence of an explicit family of hash functions exhibit-
ing ideal random properties, while [11] have relaxed this
assumption, (ii) [12] set R to be the position of the left-
most 0-bit in the bitmap B[·], as opposed to the position of
the rightmost 1-bit in the bitmap with [11], (iii) [12] use
log (max cardinality) bits per bitmap, while [11] need in
the order of log log (max cardinality) bits per bitmap, (iv)
the estimation in [12] is computed as:

E(n) =
1

0.77351
·m · 2 1

m

Pm−1
0 M〈i〉 . (4)

and (v) the bias and standard error of [12] are closely ap-
proximated by 1+0.31/m and 0.78/

√
m respectively. Note

that data insertion is the same for both algorithms (with the
sole difference of the assumptions on the hash function).

3 DHS: Distributed Hash Sketches

Table 1 summarizes the notation we shall be using for the
rest of this paper. DHTs already feature a pseudo-uniform
hash function; object (node/document) IDs are (usually)
computed as either the secure hash of some object-specific
piece of information[34, 10] (e.g. the IP address and port
of nodes, the content for files, etc.), or as the outcome of
a pseudo-uniform random number generator[26]3. In both
cases, the resulting ID is an L-bit pseudo-uniform number
(for some fixed, system-specificL), thus satisfying the main
assumption of hash sketches.

We note here that an L = 160 (as is the case in many
current DHTs) is too long a bit vector for any application,
since the bit vector must only be (at most) as long as the
base-2 logarithm of the estimated metric, give-or-take a few
bits (see eq. 3 and [12]). We denote by k ≤ L the length of
the DHS bitmap vectors and assume that items are added to
the DHS using the k lower-order bits of their corresponding
DHT keys. The minimum value of k is dictated by eq. 34.

3A PRNG can be used as a hash function, by using the hash function
input value as the seed to the PRNG, and (part of) the random sequence
produced as the hash function output.

4The Birthday Paradox limits the number of items in a DHT namespace
to 280 with 160-bit keys, while cryptographic invariants related to the hash
functions used may further limit the number of “useful” bits; thus, in the
absence of a notion of “maximum cardinality”, 80 bits seem like a good
(maximum) value for the length of DHS keys.



A naive DHT-based implementation would assign each
of the k positions of the B[·] vector to a node in the net-
work and use these nodes to store bit values in a distributed
manner. However, this design has many serious flaws: (i)
only k ≤ L out of 2L (maximum) nodes in the network are
burdened with the task of maintaining the values of the vec-
tor positions, leading to a severe load imbalance for these
nodes; (ii) due to eq. 1, there is a severe load imbalance
even among these very nodes; and (iii) with (maximum) 2L

objects spread over k nodes, the node join/leave operations
for any of these nodes would result in moving around infor-
mation for 2L

k ≥ 2L−1 objects – a prohibitive cost, regard-
less of the size of the data maintained per object.

We have implemented and evaluated both [12] (DHS-
PCSA) and [11] (DHS-sLL) within DHS. As noted earlier,
the data insertion procedure is the same for both algorithms.
We’ll first discuss the PCSA case when m = 1 (i.e. hash
sketches implemented using one B[·] vector only), extend-
ing our design for multiple vectors and super-LogLog later.

3.1 Mapping DHS bits to DHT nodes

We partition the node ID space, [0, 2L), into k consecu-
tive, non-overlapping intervals Ir = [thr(r), thr(r − 1)),
r ∈ [0, k), where: thr(r) = 2L−r−1. Using this partition-
ing, bit r of B[·] is mapped to node IDs randomly (uni-
formly) chosen from Ir (bit k is mapped to the interval
[0, thr(k − 1))).

Remember (eq. 1) that when counting distinct items in
an n-object multiset, bit r of the bitmap vector is “visited”
n ·2−r−1 times. With the k-bit IDs used in DHS, this trans-
lates to a maximum of 2k distinct objects in any possible
multiset, or to a maximum of 2k−r−1 objects being mapped
to position r in the bitmap vector. Now, note that intervals
Ir have exponentially decreasing sizes |Ir| = 2L−r−1. The
above result in a distribution of information across all nodes
in the network, as uniform as the hash function used.

3.2 DHS Insertion

For an object o with ID o.id to be recorded in the DHS,
we need to compute r = ρ(lsbk(o.id)), where lsbk(·) re-
turns the k lower-order bits of its argument, and store an
appropriate tuple on the underlying DHT using a key uni-
formly chosen from the interval [thr(r), thr(r − 1)).

Each DHS tuple is of the form <metric_id, bit,
time_out>, where metric_id is an identifier uniquely
identifying the metric to be estimated, bit = r denotes the
position in the distributed vector of the bit that is to be set,
and time_out defines a time-to-live interval for the current
tuple, reset at every updates of the tuple, allowing for aging
out of DHS entries. Estimated metrics may range from ba-
sic network parameters as the cardinality of the node popu-
lation or the number of distinct data objects shared in a P2P
overlay, to more elaborate quantities such as the cardinality
of relations in an RDBMS-like P2P setting, or the number
of tuples/object satisfying some predefined condition, etc.
Unless stated otherwise, we will assume that there is only

one metric estimated in the overlay; counting multiple met-
rics at once (also called “multi-dimensional counting”) will
be discussed in sect. 4.2.

Moreover, if a node desires to record multiple items in
the DHS, it can first compute the r values for these items,
group the results by r, and perform a “bulk” insertion of all
of each items. Thus, every node will need to contact at most
k ≤ L = logM nodes in order to record all of its items in
the DHS. Obviously, the node may choose a different set of
k nodes on each update round, as dictated by the ID-space
partitioning outlined earlier in this section and the random
selection of target nodes in these intervals.

Cost Analysis

The hop-count cost to insert an object in an N -node
DHT/DHS is in O(logN), as guaranteed by the underly-
ing DHT, translating to an overall O(b · logN) bandwidth
consumption if the size of the datum stored is b bytes. As
far as storage overhead is concerned, note that each node
will store information for at most one DHS bit; if multiple
items set the bit stored on a given node, the storing node
will only maintain data for one bit and update its timestamp
field accordingly. Thus, the storage overhead per node per
metric is in O(b).

We shall quantify the above with the following simple
example: assuming we use 160(= L = logN) bits for the
metric_id, 5 bits for the bit (i.e. DHS keys are k = 25 =
32 bits long, counting up to 232 ≈ 4 billion items), and 32
bits for the time_out field, a DHS-based estimator would
require on average ∼ 200 bits, or (b =)25 bytes, per node
per estimated metric, in the worst case!

Further note that, compared to the cost of actually insert-
ing a data item in the DHT, the cost of a DHS insertion is
negligible. Inserting an item in a DHT requires O(logN)
hops by default, but requires a more-or-less large data trans-
fer – should that be due to transferring of the whole ob-
ject inserted or just of a (set of) index tuple(s); on the
other hand, setting a bit in the DHS can be as cheap as
a PING-PONG/heartbeat message, and could actually be
piggy-backed on such DHT-related messages.

3.3 DHS Deletion and Maintenance

Deletion of data stored in a DHS is implicit, following a
soft-state approach. Remember that a time-to-live value is
stored on the DHT/DHS along with every piece of informa-
tion; data items are then deleted if not updated within this
time period, so deleting an item incurs no extra cost.

The computation of this time_out field poses an interest-
ing trade-off. Larger time-out values will result in less up-
dates per time unit needed to keep the DHS up-to-date. On
the other hand, a smaller value will allow for faster adap-
tation to abrupt fluctuations in the value of the metric es-
timated, but will incur a higher maintenance cost as far as
(primarily) network resources are concerned. However, we
have to point out once again that the per-node bandwidth
and storage requirements of DHS are very low, thus even a



high update rate might translate to a negligible bandwidth
consumption.

3.4 Increasing DHS Accuracy

As mentioned earlier, the accuracy of estimations of hash
sketches improves with multiple bitmap vectors. Extend-
ing the above algorithms for m > 1 (m being a power
of 2) is straightforward. Insertion of an item o with an
ID of o.id is done by selecting one out of m vectors using
lsbk(o.id)modm, and then using r = ρ(lsbk(o.id) div m)
as the position of the bit to be set.

In this case, item insertion is performed in the exact same
manner as in the single-bitmap case, only with m and r
computed as above. The DHS tuple data must now be ex-
tended to< metric_id, vector_id, bit, time_out >, where
vector_id is the ID of the vector being updated. With an-
other 10 bits for the vector_id field (i.e. maximum 1024
bitmaps), the DHS tuple size increases from 25 to 26 bytes,
while the per-metric update cost increases to 4160 bytes per
update round – still a negligible quantity.

The worst-case hop-count cost and bandwidth consump-
tion for a node to insert an item in such a DHS are again
in O(k · logN) and O(b · k · logN) respectively, while
the worst-case per-node storage overhead now becomes
O(m · b). Note that the hop-count cost and bandwidth
consumption are independent of the number of bitmaps,
since insertions/updates touch a single bitmap on every in-
sertion/update.

3.5 DHS Fault Tolerance and Robustness

For a chosen degree of replication of DHS data, the prob-
ability of not being able to locate DHS information for some
bit can be made arbitrarily small. For example, with logN
replicas, if pf is the probability of any node in the sys-
tem failing, the probability of missing DHS bit information
is equal to plogN

f , which for any practical purpose is ade-
quately small. Assuming for example pf = 0.10 and with
N = 1024, we get a DHS fault probability equal to 10−10.
Thus, in practice, the replication degree R will be smaller
than logN .

At this stage we have a number of options: we can ei-
ther rely on the underlying vanilla replication functionality,
offered now by most DHTs, or we can implement such a
replication strategy of our own. An appealing option for a
the latter case is: when inserting (or refreshing) a DHS bit,
accessing a particular node in the bit’s DHT interval, repli-
cate this set bit to a number of R successors/predecessors
of this node. Given a node failure observed during count-
ing, the counting algorithm can visit a number of successor
nodes (up toR) until the missing information is found. This
replication strategy incurs an additional absolute cost of at
mostR hops for insertion and refresh operations (O(logN)
total hops per insertion, with constant R).

Note that such replication is only needed for the DHS
bits stored in the smaller DHT intervals, since DHS bits in
the larger intervals already have better fault tolerance, given

Algorithm 1 Estimate the number of distinct elements in a
multiset using a DHS

1: R[0, . . . ,m− 1] = {−1, . . . ,−1}; all_bitmaps_set = false;
2: for all bit positions r = L− 1, . . . , 0 and
all_bitmaps_set == false do

3: Select a random node ID id ∈ [thr(r), thr(r − 1));
4: target = id; go_to_succ = true; counter = 0;
5: Compute lim for position r (lim = 5 by default);
6: Execute: DHT_lookup(id);
7: while all_bitmaps_set == false and

counter < lim do
8: counter = counter + 1;
9: for all j = {0, . . . ,m− 1} do

10: if R[j] == 0 and bit r is set for bitmap j at target
then

11: R[j] = r;
12: if all R[·] ≥ 0 then
13: all_bitmaps_set = true;
14: else if go_to_succ == true and id < thr(r − 1) then
15: target = target.successor;
16: else
17: target = id.predecessor; go_to_succ = false;

18: return E(n) = α̃m ·m0 · 2
1
m0
·P∗ R[·]

that a larger number of nodes are responsible for storing
the corresponding DHS bit. Alternative techniques for en-
suring fault tolerance and counting robustness could try to
leverage this built-in fault tolerance feature of DHS. For ex-
ample, slightly changing the way DHS bits are mapped to
DHT intervals, by disregarding the first few least significant
bits of each item being inserted. If the first b bits are disre-
garded, this has the effect of assigning the ith DHT interval
to the (i+ b)th bit. The assumption that only sizes beyond
some threshold given by 2b are being measured with DHS,
(e.g., with b = 10, greater than a one thousand) is certainly
justified. This ensures that more DHS bits are assigned
to larger DHT intervals. This approach for fault tolerance
comes at no extra ’replication’ cost during insertions and re-
freshes. The above sketches the fault tolerance possibilities
with DHS. Detailed investigation of the various approaches
and their trade-offs is beyond the scope of this paper.

4 Counting with DHS

Remember that estimating the number of distinct items
in a multiset using hash sketches consists of (i) finding the
(truncated) arithmetic mean of the positions R〈i〉 of the
rightmost 1-bit for super-LogLog, or of the leftmost 0-bit
for PCSA, inB[·], and (ii) using eq. 2 (super-LogLog) or eq.
4 (PCSA) to compute an estimate of the cardinality of the
multiset in question. Applying this algorithm in the DHS
setting is rather straightforward: what we need to do is visit
each of the intervals corresponding to the various bit posi-
tions of the m distributed B〈i〉[·] bitmap vectors and check
whether there is any object recorded there. Alg. 1 outlines
the algorithm with super-LogLog counting (the algorithm
for PCSA is omitted due to space limitations).

Since every bit position of the bitmaps is uniformly



mapped to an interval on the node ID space, we may have
to visit multiple nodes in every interval until we find one
storing information for an object (corresponding to the bit
being set). The DHS counting algorithm first selects a ran-
dom node in every ID-space interval and probes it for any
relevant tuple. If no such information is available at that
node, the algorithm proceeds by visiting the target node’s
immediate successors/predecessors within the specific ID-
space interval until either some tuple is located or an upper
limit of such retries is reached.

This iterative phase exists to compensate for the follow-
ing issue: when recording i items in an ID-space interval
mapping to i or more nodes, then there will exist nodes
which will store no relevant information; even when the tar-
get interval consists of less than i nodes, some of them may
store no DHS-related information, due to the randomness in
choosing the target nodes (both when storing and when re-
trieving DHS information). For our algorithms this means
that when we randomly visit a node holding a DHS bit, if it
is zero, we are still not certain, so we have to retry until we
find a set bit. The question is how many times before we
stop, while with a controllable probability we do not err.

4.1 Errors and Retries

Errors in the estimate returned by the DHS counting al-
gorithm are caused by: (i) statistical deviation on behalf of
the underlying hash sketch theory, and (ii) bits not being set
during the node probe step in the counting algorithm.

As far as hash sketches are concerned, [12, 11] feature a
rigorous analysis of their statistical properties. Reciting the
proofs found in these works is surely beyond the scope of
this paper. We refer interested readers to [12, 11] and just
mention here that the standard deviation is closely approxi-
mated by 1.05/

√
m for [11] and by 0.78/

√
m for [12].

We turn now to the computation of the upper limit of
nodes to contact per bit position of the DHS bitmap(s). As-
sume that n′ items have been uniformly distributed to N ′

bins (i.e. mapped to an N ′-node interval in the DHS). The
counting process of the previous section corresponds to uni-
formly and independently picking a bin from the set of bins
without replacement, and checking for whether there is any
item stored in it. The probability P (X = t) that t empty
bins are selected in the first t probes, equals:

P (X = t) =

(
N ′ − t
N ′

)n′
. (5)

Sketch of proof: When uniformly placing a single item
in one of N ′ bins, the probability of selecting a particu-
lar bin is 1

N ′ and the probability of not selecting it is N ′−1
N ′ .

Thus, after placing n′ items, a bin will be empty with proba-

bility
(
N ′−1
N ′

)n′
. This also equals the probability of choos-

ing an empty bin at our first probe. Now, the probability
of one of the remaining N ′ − 1 bins being empty (and the
probability of choosing an empty bin in our second probe),

is
(
N ′−2
N ′−1

)n′
, given our first probe resulted in an empty bin

being chosen. Note that choosing the next-in-line bin af-
ter the one we selected in the previous step is equivalent
to choosing one of the N ′ − 1 bins uniformly at random,
since items are put into bins in a uniform manner. In our
tth probe, the probability of choosing an empty bin will be(

N ′−t
N ′−t−1

)n′
. Since each probe is independent of the oth-

ers, the probability of choosing t empty bins in the first t
probes equals:(
N ′−1
N ′

)n′
·
(
N ′−2
N−1

)n′
· · ·
(
N ′−t+1
N ′−t+2

)n′
·
(

N′−t
N′−t+1

)n′
=

(
1
N ′
)n′ ·

(
(N ′−1)·(N ′−2)···(N ′−t+1)
(N ′−1)·(N ′−2)···(N ′−t+1)

)n′
· (N ′ − t)n

′
=

(
N ′−t
N ′

)n′
= P (X = t). ¦

By solving eq. 5 for t, we get that, in order to choose a
non-empty bin with probability of at least p, one has to visit
at least: t ≤ lim = dN ′ · (1− p 1

n′ )e bins/nodes. By setting
α = n′

N ′ , we get: lim = dN ′ · (1 − p 1
α·N′ )e. When using

multiple (m) bitmap vectors, items are partitioned among
the vectors, thus n′

m items are inserted in N ′ bins, so the
latter formula becomes: limm = dN ′ · (1 − p m

α·N′ )e. Fi-
nally, by taking replication into consideration, and assum-
ing a replication degree of R, we get:

limRm = dN ′ · (1− p m
R·α·N′ )e. (6)

Note again that N ′ is the number of nodes responsible
for a single-bitmap single-bit position (i.e. belonging to the
same ID-space interval), n′ is the number of items map-
ping to this interval, and α is their ratio. This means that
there is a different optimal limm for every ID-space inter-
val, with smaller-sized intervals (given a total n items being
inserted in an N -node DHS) having lower values for limm

(i.e. the interval(s) responsible for the least significant bit
of the bitmap(s) will have the largest limm value(s)).

The default value of limm used in DHS for all intervals
is 5 (constant), which suffices to guarantee that a non-empty
node will be found with probability of at least 0.99 when the
number of items mapped to any ID-space interval is greater
or equal to the number of nodes in the interval (i.e. n ≥ m ·
N ). Obviously, the default value of 5 also suffices for when
counting sets with a larger cardinality then the one dictated
by the above. However, when counting smaller-cardinality
sets, we may choose to either (i) increase limm, according
to eq. 6, (ii) use a smaller DHT/DHS overlay for the specific
operation a la super-nodes in hybrid P2P networks – a trend
that has lately started gaining supporters in the DHT world
too, or (iii) use explicit replication of DHS bits.

Thus, hop-count complexity is in O(k · (logN + lim)),
where lim is the upper bound of the number of iterations of
the probing phase. For constant lim, as used in DHS, the
hop-count complexity becomes O(k · logN). Note that the
cost of counting is independent of the number of bitmaps.

4.2 Counting in Multiple Dimensions

The latter observation constitutes a nice property of DHS
and one of its great strengths: counting hop-count cost is



independent of the number of bitmaps or in dimensions
(metrics). This is so because counting consists of finding
the rightmost 1-bit (or leftmost 0-bit) for all bitmaps of
the distributed hash sketch. For the single-bitmap single-
dimension case, the hop-count cost is in O(k · logN)
(O(logN) hops for each of the k bits of the bitmap). For
multiple bitmaps and/or dimensions, the hop-count cost re-
mains the same; the mapping of bit positions to ID-space in-
tervals is the same for all bitmaps and all dimensions; thus,
by visiting a given node in such an interval, the counting al-
gorithm is able to probe for the status of the corresponding
bit position in all bitmaps for all dimensions/metrics.

4.3 Histograms over DHS

Note that DHS is able to estimate the number of distinct
items satisfying a predefined condition; all we need to do is
have nodes record in the DHS all items satisfying this con-
dition, and then execute the DHS counting algorithm. This
provides us with the necessary tools to create and maintain
equi-width histograms over data stored on the P2P overlay5.

Assume we have a peer-to-peer system exposing an
RDBMS-like functionality (e.g. [1, 18], etc.); data are
stored in relations over the P2P overlay, following some
predefined (relational) schema, and are usually replicated
across nodes in the overlay. Now suppose we want to build
a histogram over some attribute a in one of the relations. We
proceed as follows: we create a partitioning of the domain
D : [amin, amax] of values of attribute a into I equally-
sized intervals/buckets Bi, with S = |Bi| = amax−amin+1

I ,
such that Bi = [amin + i ·S, amin + (i+ 1) ·S), for all i in
[0, I − 1). Thus each Bi will be assigned tuples satisfying
the condition: amin+i·S ≤ a < amin+(i+1)·S. We then
create a metric_id for each bucket, and have nodes record
all items they store to the corresponding metrics.

The per-node cost of creating the histogram equals the
per-node cost for inserting all items for i metrics into the
DHS – i.e. O(k · logN) hops and O(I · b · k · logN)
bytes. The cost for a node to reconstruct the histogram from
the data stored on the DHS is in O(k · logN) hops and
O(I ·m · b · k · logN) bytes. Note that the hop-count cost
is independent of the number of buckets and of tuples in the
relation, and even independent of the number of bitmaps.
The above design can be used to create and maintain arbi-
trary (non-equi-width) histograms, provided that the bucket
boundaries are constant and known in advance.

5 Performance Evaluation

In this section we present an experimental evaluation of
the performance and efficiency of DHS. First, we evaluate
the cost of building and using a DHS, with a focus on net-
work and storage requirements of the insertion algorithm,
and network overhead of the counting algorithms. A sec-
ond property we want to measure is the accuracy of the ac-
quired estimates. Finally, we evaluate the appropriateness

5We are currently investigating methods to construct other, more com-
plicated types of histograms (e.g. compressed, v-optimal, maxdiff, etc.)

of DHS for use within a query optimizer for internet-scale
P2P-based query processing systems such as [18].

5.1 Methodology

We assume we have a network consisting of 1024 nodes,
arranged on a Chord[34]-like DHT. Node and item IDs are
(L =)64 bits, created using MD46. DHS keys are (k =)
24 bits long (i.e. DHS bitmaps are 24 bits long). We tested
configurations with various numbers of DHS bitmaps and
report on the relative costs and accuracy. Unless stated oth-
erwise, DHS is using 512 bitmaps. With 24-bit DHS keys,
8 bits should be more than enough for the bit field. With
another 32 bits for the time_out field, plus 8 bits for the
metric_id field, plus another 16 bits for the vector_id field
(i.e. maximum 65536 vectors), the DHS tuple has a total
size of 64 bits or 8 bytes. The value of the lim parameter
was set to its default of 5 hops maximum.

The system hosts four relations – Q, R, S, and T – of size
equal to 10, 20, 40, and 80 GBytes respectively. We assume
a tuple size of 1kByte, so that relations contain 10, 20, 40,
and 80 million tuples respectively. Tuples in the relations
consist of a single integer attribute each, receiving values
according to a Zipf distribution with θ = 0.7. Tuples are
randomly (uniformly) assigned to nodes. After all items
have been assigned to nodes, we have the latter insert their
items into the DHS one at a time, and record (i) the overall
and average routing hops and bandwidth requirements, and
(ii) the storage requirements on a per-node basis.

After the DHS has been populated, we select nodes at
random and have them estimate the cardinalities of the four
relations, using the DHS. During this phase we measure
both routing hops and bandwidth consumption on a per-
estimation basis, and the accuracy of the estimation relative
to the actual cardinalities of the relations. Finally, we create
100-bucket equi-width histograms over DHS for all four re-
lations and measure again the cost for populating the DHS
and for reconstructing the histograms.

5.2 Results

Insertions and Maintenance DHS insertions and up-
dates took on average 3.4 hops in our 1024-node network,
for an average overall bandwidth consumption of ∼ 27
bytes per insertion/update (excluding possible DHT pro-
tocol overheads and TCP/IP routing header information).
This is in agreement with the expected O(logN) hop count
and O(b · logN) byte count per insertion (sect. 3.2).

As far as storage overhead is concerned, the experimental
results again agree with the analysis of sect. 3.2: the aver-
age storage per node was measured to be ∼ 384kBytes per
relation, for a total of ∼ 1.5MBytes per node for all tuples
of all four relations. Note that this figure corresponds to
the per-node storage requirements for maintaining informa-
tion for 100 histogram buckets per relation with 512 DHS
bitmap vectors per bucket, for a theoretical storage overhead
of ∼ 400kBytes per node per relation.

6MD4 was selected due to its speed on 32-bit CPUs; a real-world sys-
tem would probably use a stronger algorithm, such as MD5 or SHA1.



m nodes hops BW error
visited (kBytes) (%)

128 68 / 65 86 / 69 11.0 / 8.8 5.0 / 5.8
256 73 / 69 92 / 77 11.8 / 9.6 3.5 / 4.3
512 81 / 80 120 / 114 15.4 / 15.9 1.8 / 2.7
1024 96 / 91 139 / 128 17.8 / 16.0 1.1 / 7.5

Table 2. Counting costs (sLL/PCSA)

Counting The counting results are summarized in table 2.
Each estimation visited on average 80 nodes and required
on average 109 hops for DHS-sLL algorithm, while the rel-
evant numbers for the DHS-PCSA case were 76 nodes and
97 hops, depending on the number of bitmaps used.

This might seem counter-intuitive, since (i) sect. 4 states
that the cost of counting using a DHS is independent of
the number of bitmaps, and (ii) with an average of 5(=
0.5 · log 1024) hops per DHS lookup one would expect
a larger hop-count for the given number of visited nodes.
Note however that with multiple bitmaps, the per-bitmap
inserted items are much less than in the single-bitmap case.
Thus the probability of choosing an “empty” node increases
with the number of bitmaps, and so does the hop-count
cost due to retries (sect. 4.1). The node count mentioned
above is largely dominated by one-hop visits to neighboring
nodes due to retries; for example, of the 96 (average) nodes
visited by DHS-sLL in the 1024-bitmaps case, only ∼ 12
nodes were visited via DHT lookups, while the remaining
84 nodes were visited through one-hop retries.

Scalability We also tested our system with different num-
bers of nodes. As discussed in sect. 3.2 and 4, all operations
in DHS are logarithmic to the number of nodes in the sys-
tem. The experimental results confirm this analysis, with
the average hop-count growing from 109/97 hops for 1024
nodes, to∼ 112/103 for 10240 nodes for the DHS-sLL and
DHS-PCSA cases respectively (figure omitted due to space
limitations).

Accuracy For up to 2048 bitmaps (1024 for DHS-PCSA),
the accuracy achieved is really good; we measured an aver-
age error of ∼ 2.9% for DHS-PCSA, and ∼ 5% for DHS-
sLL. Both DHS-sLL and DHS-PCSA lose in accuracy for
more than 4096 bitmaps; with 4096 bitmaps or more, the
retry limit of 5 does not suffice to guarantee that we actu-
ally find a node storing information for a bit in question.
DHS-sLL seems more tolerant in this direction, giving an
estimation error of ∼ 15% for 4096 vectors (as opposed to
∼ 44% for DHS-PCSA), mainly due to the fact that DHS-
sLL probes higher-order bits first, thus dealing with less
sparse intervals. In any case, the accuracy achieved with 64
to 1024 bitmaps is already good, so using a larger number
of vectors is not necessary. In the following experiments we
are using 512 bitmaps for both DHS-PCSA and DHS-sLL.

Histograms and Query Processing The hop-count cost
for a node to reconstruct the histogram for a relation stored

m nodes hops BW
visited (MBytes)

128 69 / 67 89 / 72 1.1 / 0.9
256 73 / 70 94 / 80 1.2 / 1.0
512 79 / 81 118 / 108 1.5 / 1.4
1024 94 / 89 142 / 131 1.8 / 1.7

Table 3. Histogram building costs (sLL/PCSA)

in the P2P overlay was measured to be (on average) ∼
111/98 hops, while the bandwidth consumed during the
histogram reconstruction phase was ∼ 1.4MB/1.0MB for
the DHS-sLL and the DHS-PCSA cases respectively. The
results are summarized in table 3. We note again that the
hop-count cost to estimate a complete histogram – i.e. es-
timating the cardinalities of multiple multisets/buckets at
once – is equivalent to the cost of estimating the cardinal-
ity of a single multiset, as outlined in sect. 4.2. Moreover,
the attained accuracy was also very good: we measured an
average estimation error of ∼ 8.6% per histogram cell for a
DHS with 64 bitmap vectors, dropping to ∼ 7.7% for 128
and ∼ 6.8% for 256 bitmap vectors.

The bandwidth-consumption figures are very small, com-
pared to the data transfers required during the actual query
processing. Note that: (i) after a node has paid the 1MByte
cost to reconstruct the histograms, choosing the right join
ordering is a local operation, and (ii) this is the cost to re-
construct the whole histogram; query processing may re-
quire estimation of the cardinality of only specific buckets,
depending on the query predicate constraints.

Now assume that a query optimizer, armed with the above
histograms, is (at least) able of selecting the optimal join
tree. In this case, the savings in bandwidth and response
time will be considerable[5, 17]. For example, in [17] the
authors consider multi-way joins in a much smaller setting
than the one discussed above (256 nodes and four relations
with 256, 000 tuples each or 100 tuples per node). The
optimal join strategy in the three-way join case results in
a data transfer of 47MB, as opposed to 71MB transferred
by FREddies, both of which are orders of magnitude larger
than the ∼ 1MB required to reconstruct the histograms us-
ing DHS. Thus, if DHS-based histograms were added to
the PIER query processing logic, PIER would select the op-
timal join plan at a negligible additional cost, resulting in
major bandwidth and latency savings. This shows the im-
pact that DHS can have in internet-scale query engines.

6 Conclusions

In this paper we presented Distributed Hash Sketches (or
DHS); a novel, fully decentralized, scalable, and efficient
mechanism, capable of providing estimates on the cardinal-
ity of multi-sets in internet-scale information systems. DHS
is, to our knowledge, the first to simultaneously satisfy the
central goals of efficiency, scalability, access and storage
load balancing, high accuracy, and duplicate (in)sensitivity,
all without additional explicit indexing structures. These



characteristics make it suitable to become the counting tech-
nique of preference for internet-scale data networks.

We have shown how to build DHS utilizing either the
PCSA or the super-LogLog hash sketches. We have analyt-
ically estimated the additional estimation errors introduced
by the wide-scale distribution inherent in our technique. We
have implemented DHS and evaluated it both in terms of its
error and its performance characteristics. The experimental
results substantiate our claims for small errors and related
storage and bandwidth overheads, while showing the effi-
ciency of the counting operation. Furthermore, our imple-
mentation has shown that DHS-based histograms can intro-
duce great performance savings during query optimization.

We have illustrated a number of applications where DHS
can play a catalyst’s role. In particular, with DHS-based
histograms, most – if not all – histogram-based techniques
for query optimization can now be ported into internet-scale
environments, making a stride towards leveraging existing
know-how in the database systems community to facilitate
internet-scale query processing optimizations.
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